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Abstract: In this work, a unified formulation of full geometrically nonlinear refined shell theory is
developed for the accurate analysis of highly flexible shell structures. The tensor calculus is utilized
to explicitly derive the linear and nonlinear differential operator matrices of the geometrical relation in
the orthogonal parallel curvilinear coordinate system. By employing the Carrera Unified Formulation
(CUF), various kinematics of two-dimensional shell structures are consistently formulated via an appro-
priate index notation and a generalized expansion of the primary variables by arbitrary functions in the
thickness direction, leading to lower- to higher-order shell models with only pure displacement variables.
Furthermore, the principle of virtual work and a finite element approximation are exploited to straight-
forwardly formulate the nonlinear governing equations in a total Lagrangian approach. Particularly,
the path-following Newton-Raphson linearization method based on the arc-length constraint is used to
deal with the full geometrically nonlinear problem. Independent of the theory approximation order, the
forms of the fundamental nuclei of the secant and tangent stiffness matrices of the unified shell element
are formulated via the CUF and the three-dimensional Green-Lagrange strain components. Numerical
assessments and comparisons of the present results with those provided in the literature for popular
benchmark problems involving different metallic shell structures are found to be excellent and demon-
strate the capabilities of the developed CUF shell model to predict the post-buckling, large-deflection,
snap-through and snap-back nonlinear responses with high accuracy.

Keywords: Carrera Unified Formulation; Refined shell theory; Geometrical nonlinearity; Large-deflection;
Post-buckling; Snapping; Arc-length method.

1 Introduction

Owing to their superior advantages such as high strength-to-weight and stiffness-to-weight ratios, thin-
walled structures with curvatures, better known as shells, are among the most significant and ubiquitous
structural components vastly employed in modern engineering applications such as bridges, roofs, air-
craft and spacecraft skins, rockets, and pressure vessels. Thus, a series of traditional theories have been
established in the linear scenario to conduct the structural analysis of shells, including the classical shell
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theory [1] based on the Kirchhoff-Love assumptions, the first-order shear deformation theories (FSDT)
[2] built on the Mindlin-Reissner assumption, and a variety of higher-order shear deformation theories
(HSDT) [3, 4, 5]. Kapania and Raciti [6] and Carrera [7] comprehensively reviewed the modeling and
analysis of laminated composite structures including shells. Currently, highly flexible shell structures
are widely used in different structural components such as space antennas, solar sails, wing structures,
and rotor blades in aeronautical engineering [8], flexible robotic arms in mechanical engineering, subma-
rine hulls in naval industry, soft tissues and advanced instrument in biological engineering [9], flexibel
phononic crystals and metamaterials in reconfigurable and wave devices [10, 11, 12], to name a few.
On one hand, these highly flexible structures are prone to suffering large-deflection, post-buckling and
snapping behaviors when subjected to severe environmental conditions and large loadings. On the other
hand, some aircraft structural components (such as fuselage, wing, and stabilizer panels) and flexible me-
chanical metamaterials are able to operate properly beyond the buckling range and have a post-buckling
strength [10, 13, 14]. As a consequence, accurate predictions of the in-service nonlinear response of
highly flexible structures in the geometrically nonlinear regime are of prime importance for their failure
evaluation and rational employment.

Nowadays, considerable works have been focusing on the problem of how to develop excellent two-
dimensional (2-D) theories in the geometrically nonlinear scenario for modeling the flexible structures.
Among the 2-D theories, the simplest theory is the classical Kirchhoff-Love type theory [14, 15, 16,
17] that neglects the transverse shear deformation and cannot yield accurate results for the nonlinear
analysis of elastic plates/shells. In fact, the shear deformations become more significant for the increasing
thickness-to-width ratio and anisotropy as well as for the presence of geometrical nonlinearities. In
order to improve the accuracy of the classical theory, much effort has been made to seek for the 2-
D modified and refined structural theories to investigate the effect of the transverse shear strains on
the geometrically nonlinear response of (moderately) thick and anisotropic plate/shell structures. In
particular, contributions to the development of FSDT combined with different thickness stretching effects
and various geometrically nonlinear theories (such as the von Kármán assumption) have been made to
study the large-deflection, post-buckling and snapping behaviors of different shapes of metallic and
composite structures under various combinations of edge support conditions and loadings [18, 19, 20, 21,
22, 23, 24, 25, 26]. Nonetheless, a uniform shear distribution across the thickness direction is assumed
in the FSDT and thus the shear correction factors have to be introduced to adjust the transverse shear
stiffness. Consequently, to avoid the shear correction factors appearing in the FSDT and accurately
predict the distribution of the transverse shear strains/stresses in the thickness direction, several 2-D
HSDT and refined theories along with different nonlinear strain assumptions have been proposed for the
enhancement of transverse shear stress distributions in the geometrically nonlinear analysis of flexible
thin-walled structures [13, 27, 28, 29, 30, 31, 32].

In addition to the modification and improvement of the transverse shear deformation, special atten-
tion has been devoted to higher-order theories of plates/shells accounting for the thickness stretching
effect in the geometrically nonlinear analysis, which is a necessity when the significant thickness de-
formation is present in flexible or soft structures subjected to large deflections [10, 26]. The classical
5-parameter shell formulation [33] with Reissner-Mindlin kinematical assumptions, based on the degen-
erated shell concept and consistent with the FSDT of 2-D shell model [34], postulates a plane stress
state and enforces the inextensibility condition of transverse normals by introducing a rotation tensor to
analyze finite rotations [24]. As a result, it is not suitable to describe the large-displacement problems
with the considerable thickness change of shell structures. In order to allow the thickness stretch of
shells and maintain the fully three-dimensional (3-D) constitutive law, the 6-parameter shell model can
be developed by adding an additional degree of freedom, but its implementation is unfortunately ac-
companied by the thickness locking or Poisson locking phenomenon (i.e. constant normal strain through
the thickness) [23, 35], which is due to the artifact of the 6-parameter shell-theory formulation rather
than the discrete finite element formulation in contrast to the classical ‘shear locking’ effect. Therefore,
the so-called 7-parameter model accounting for the thickness stretching and mitigating the Poisson lock-
ing due to the quadratic expansion of the transverse displacement has been proposed with unmodified
fully 3-D constitutive equations in the FSDT sense [22, 23, 24, 36]. In recent years, a large number
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of higher-order thickness stretching models have been developed within the framework of the HSDT of
plates/shells to provide a better prediction and evaluation of the thickness deformation of the flexible
structures in the geometrically nonlinear regime [31, 32, 37, 38].

Furthermore, contributions have been made to developing different geometrically nonlinear theories
(such as finite, moderate and small rotations, the von Kármán approximations, etc.) [23, 34, 39, 40, 41]
into the higher-order shear deformation or/and thickness stretching models to effectively explore the
geometrically nonlinear responses of plates/shells, which is challenging but plays a crucial role in the
design, manufacturing, and application of flexible structures. Nevertheless, it should be emphasized that
various approximations of geometrically nonlinear relations can result in different application ranges
with certain limitation conditions. For example, the von Kármán type geometrically nonlinear theory
inherently hypothesizes that only those nonlinear terms related to the in-plane partial derivatives of the
transverse displacement are reserved in the strain-displacement relation, which could provide physically
acceptable predictions for thin plates/shells with moderate rotations. However, the accuracy of von
Kármán approximations could be not ensured for the thick structures with large rotations, especially in
the case of shear loadings [41, 42]. On the contrary, based on the assumption of layerwise linear displace-
ment distribution through thickness, the full geometrically nonlinear kinematic relations was considered
by Kim and Chaudhuri [40] in a total Lagrangian approach to demonstrate the stable nonlinear equi-
librium curves of laminated cylindrical panels, and it was pointed out that the von Kármán nonlinear
strain approximation overestimates the transverse displacements for the same loadings, especially in the
advanced nonlinear range. Thus, some investigations contain all nonlinear terms of the Green-Lagrange
strain tensor in the framework of the higher-order and refined models to conduct the full geometrically
nonlinear analysis [26, 42, 43, 44, 45, 46, 47].

To the authors’ best knowledge, no general theoretical framework is available from the open literature
to take account of the higher-order shear deformation, thickness stretching effects and even refined models
into the full geometrically nonlinear analysis of shell structures in a unified way. This provides the
motivation for the present work. It is worth mentioning that, based on the Carrera Unified Formulation
(CUF) and the total Lagrangian description, the refined and full geometrically nonlinear beam and plate
theories have been established to analyze the large displacement/rotation and post-buckling responses
for both metallic and composite beam/plate structures [42, 45, 46] and to assess the effectiveness of
different geometrically nonlinear strain approximations in the beam case [47]. When combined with a
numerical incremental method, the total Lagrangian description has some superiorities compared with
the Eulerian and updated Lagrangian approaches [43, 47, 48, 49]: (1) The numerical error will not be
accumulated since the accuracy at the current solution step is independent of the solution at the previous
step; (2) There is no necessity to conduct the coordinate transformation of stress and strain components
during iteration; (3) With no loss of accuracy, it allows large loading steps and reverse analysis for the
convergent solutions.

After an assessment of available works in the literature for the analysis of shells, the primary objective
of the present study is to generalize the CUF beam/plate models [42, 45] for developing a full geomet-
rically nonlinear refined and unified shell theory in the total Lagrangian approach to accurately predict
the geometrically nonlinear responses (including large-deflection, post-buckling and snapping behaviors)
of flexible shell structures. The proposed CUF shell model employs only pure displacement variables as
the independent ones, which is convenient in terms of calculus stability and mesh manipulation. Ow-
ing to the intrinsic scalable nature of CUF [5, 50], the nonlinear governing equations and the related
finite element (FE) arrays can be conveniently and straightforwardly constructed to obtain the refined
and full geometrically nonlinear structural theory through the fundamental nuclei (FNs), a core unit of
the structural stiffness matrix whose form is independent of the kinematics assumptions. The adopted
kinematic theories can be treated as the input parameters to the FE analysis, resulting in a variety of
lower- and higher-order FE models.

This paper is organized as follows. Sec. 2 employs the tensor analysis of curved surfaces to explicitly
derive the linear and nonlinear differential operator matrices of the geometrical relation in the orthogonal
parallel curvilinear coordinate system, and presents a brief description of the unified finite shell elements
based on CUF. By utilizing the principle of virtual work in the total Lagrangian description, Sec. 3
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derives the nonlinear equilibrium equations and the FNs of the secant stiffness matrix of the proposed
unified geometrically nonlinear shell model. The path-following incremental linearized method with the
arc-length constraint is briefly reviewed in Sec. 4, where the FNs of the tangent stiffness matrix are also
obtained. Numerical examples are finally provided in Sec. 5 to evaluate the performance of the proposed
unified shell elements in solving some challenging benchmark problems with geometrical nonlinearities
taken from the literature, while some concluding remarks are made in Sec. 6.

2 Unified finite shell elements with geometrical nonlinearity

2.1 Geometrical description of the shell reference configuration

Consider a deformable continuum B that occupies in the Euclidean space a region Br in the undeformed
“reference configuration” at initial time t0. At time t, the body B will occupy a region Bt in the “current
configuration”, if subjected to certain mechanical loading. A shell structure is by definition a deformable
body with one geometric dimension of both regions Br and Bt being significantly smaller than the other
two. Its smaller dimension is called thickness. In this work, since the total Lagrangian description
is adopted to formulate the unified finite shell elements with geometrical nonlinearity, we will briefly
review the geometrical description of the shell reference configuration Br. For more details about the
mathematical definitions and geometrical formulations of shells, the interested readers are referred to
the chapter of Naghdi [2] and the monograph of Green and Zerna [51].
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Figure 1: Geometrical description of an arbitrarily curved shell in the undeformed reference configuration
with the parallel curvilinear coordinate system (ξ1, ξ2, ξ3). The covariant basis vectors gα and ρα on the
parallel surface Ωp and the mid-surface Ω0 as well as the unit normal vector n are shown.

As shown in Fig. 1, an arbitrarily curved shell can be considered as a solid medium geometrically
defined by a mid-surface Ω0 (where Ω0 is the reference or undeformed mid-surface of the shell) immersed
in three-dimensional (3D) physical space and a constant thickness parameter h of the medium around the
mid-surface. A parallel curvilinear coordinate system (ξ1, ξ2, ξ3) is constructed within the shell structure,
where ξ1 and ξ2 are two parametric curves which define the parallel surfaces, and the coordinate ξ3 is
chosen to be along the common unit normal vector n to the surfaces with ξ3 ∈ [−h/2, h/2]. The surface
ξ3 = 0 defines the mid-surface Ω0 of the region Br while ξ3 6= 0 defines one parallel surface Ωp. We take
two arbitrary material points P and Q on the mid-surface Ω0 and the parallel surface Ωp, respectively.
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Point Q lies directly above P in the direction of the unit normal vector n. The position vectors ρ (point
P ) and X (point Q) given with respect to a fixed orthonormal Cartesian coordinate system with unit
basis vectors Ii(i = 1, 2, 3) can be connected via parametrization as

X
(
ξ1, ξ2, ξ3

)
= ρ

(
ξ1, ξ2

)
+ ξ3n

(
ξ1, ξ2

)
. (1)

For each point of the shell volume Br, we can use the position vector X to define the 3-D natural
(or covariant) base vectors gi, dual (or contravariant) base vectors gi and components gij , δ

j
i , gij of the

metric tensor as

gi =
∂X

∂ξi
= X,i, (i = 1, 2, 3) ,

gi · gj = δji , gij = gi · gj , gij = gi · gj ,
(2)

where the comma ‘,’ in X,i denotes the partial derivative. The derivatives of base vectors with respect
to coordinates can be expressed by the Christoffel symbols Γkij and Γijk as

gj,i = Γkijgk = Γijkg
k, gi,j = −Γijpg

p, (3)

which provides the relations between the Christoffel symbols and components of the metric tensor as

Γijk = gklΓ
l
ij = 1

2 (gik,j + gjk,i − gij,k) , Γpij = gkpΓijk. (4)

Furthermore, the partial derivative of an arbitrary vector F in the curvilinear coordinate system is

∂F

∂ξj
= F i;jgi = Fi;jg

i, (5)

where the semicolon ‘;’ in F i;j and Fi;j represents the spatial covariant derivative, defined as follows:

F i;j = F i,j + FmΓijm, Fi;j = Fi,j − FmΓmji . (6)

On the other hand, for each point of the mid-surface Ω0 characterized by the position vector ρ, we
define the natural (or covariant) base vectors ρα, dual (or contravariant) base vectors ρα, unit vector n
normal to Ω0, coefficients aαβ and bαβ of the first and second fundamental forms of the mid-surface and
other quantities that will be used in this paper as

ρα =
∂ρ

∂ξα
= ρ,α, (α = 1, 2) , n =

ρ1 × ρ2
|ρ1 × ρ2|

,

ρα · ρβ = δβα, aαβ = ρα · ρβ, aαβ = ρα · ρβ,

bαβ = bβα = n · ρα,β = −n,β · ρα, bβα = aγβbαγ ,

(7)

where the partial derivative n,β is defined, based on the Weingarten formula, as

n,β = −bαβρα = −bαβρα. (8)

According to Eq. (1), (2)1, (7)1 and (8), the relations between the 3-D base vectors and those of the
mid-surface are

gα = ρα + ξ3n,α =
(
δωα − ξ3bωα

)
ρω, g3 = n, (9)

which leads to the components gij of the metric tensor and the coefficients dαβ of the second fundamental
form of the parallel surface Ωp as

gαβ =
(
δωα − ξ3bωα

) (
δλβ − ξ3bλβ

)
aωλ, gα3 = 0, g33 = 1,

dαβ = −n,β · gα = bωβ
(
δωα − ξ3bωα

)
.

(10)
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If the parametric curves ξ1 and ξ2 are chosen to be the lines of curvatures of the shell body, the
coordinate system will be referred to as the orthogonal parallel curvilinear coordinate system, where the
unified finite shell elements with geometrical nonlinearity are formulated in this work. For this system,
the three covariant basis vectors gi are thus orthogonal to each other, which also holds for contravariant
basis vectors gi. Their moduli (or length) are defined as

|gi| = Hi,
∣∣gi∣∣ = 1/Hi, (i = 1, 2, 3) , (11)

where Hi are the Lamé parameters of the parallel surface Ωp. The components gij and gij of the 3-D
metric tensor become

gij = gij = 0, (i 6= j),

g11 = 1/g11 = H2
1 , g22 = 1/g22 = H2

2 , g33 = 1/g33 = H2
3 = 1.

(12)

Substituting Eq. (12) into Eq. (4) yields Γpij in the orthogonal curvilinear coordinate system as

Γkij = 0, (i 6= j 6= k) ,

Γiij =
1

Hi

∂Hi

∂ξj
, (i 6= j or i = j) ,

Γjii = −Hi

H2
j

∂Hi

∂ξj
, (i 6= j) .

(13)

In addition, the coefficients aαβ and bαβ of the first and second fundamental forms and the components

bβα of the mid-surface Ω0 degenerate to

a11 = A2, a12 = 0, a22 = B2,

b11 = −A2/R1, b12 = 0, b22 = −B2/R2,

b11 = −1/R1, b21 = b12 = 0, b22 = −1/R2,

(14)

where A and B are the Lamé parameters of the mid-surface Ω0; R1 and R2 are its principal curvature
radii. Inserting Eq. (14) into Eq. (10), we have

g11 = A2
(
1 + ξ3/R1

)2
, g22 = B2

(
1 + ξ3/R2

)2
,

d11 = −A
2

R1

(
1 + ξ3/R1

)
, d12 = 0, d22 = −B

2

R2

(
1 + ξ3/R2

)
,

(15)

which results in the Lamé parameters Hi and principal curvature radii R̃α of the parallel surface as

H1 = A
(
1 + ξ3/R1

)
, H2 = B

(
1 + ξ3/R2

)
, H3 = 1,

1/R̃1 = −d11/g11 = 1/(R1 + ξ3), 1/R̃2 = −d22/g22 = 1/(R2 + ξ3).
(16)

In the orthogonal coordinate system, the infinitesimal in-plane area dS̃ on the parallel surface Ωp

and the infinitesimal volume dV of the shell structure Br can be expressed as:

dS̃ = H1H2dξ
1dξ2n = H1H2dS/(AB), dV = H1H2H3dξ

1dξ2dξ3, (17)

where dS = ABdξ1dξ2n is the infinitesimal in-plane area on the mid-surface Ω0 of the shell.
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2.2 Geometrical relations in the orthogonal curvilinear coordinate system

For highly flexible shell structures prone to suffering large displacements/rotations, post-buckling and
even snapping, it is extremely vital to take account of the high-order terms of finite displacement deriva-
tives into the geometrical relations so as to accurately predict the geometrically nonlinear response and
the stress field distributions. Consider the motion x = χ(X, t) of the shell body from the reference
configuration Br to the current configuration Bt, where χ is a vector function with a sufficiently regular
property. The current position vector of the material point associated with X is given by x. In the total
Lagrangian description, we have the displacement vector u as

u = x−X = uig
i = uigi, (18)

in which the last two equalities are in component forms described in the reference configuration Br.
Thus, the deformation gradient tensor F = ∇x and the Green-Lagrange strain tensor E =

(
FTF− I

)
/2

as a measure of the strain satisfy

F = I +∇u, E = El + Enl =
1

2

[
∇u + (∇u)T + (∇u)T · ∇u

]
, (19)

where the symbol ∇ denotes the gradient operator with respect to the reference configuration Br with
the displacement gradient being defined as ∇u = ∂u

∂ξj
⊗gj , and the superscript ‘T’ signifies the transpose.

According to Eqs. (5) and (6), the linear part El and nonlinear part Enl of the strain E in Eq. (19) can
be derived as

El =
1

2

[
∇u + (∇u)T

]
=

1

2
(ui;j + uj;i)g

i ⊗ gj =
1

2

(
uj,i + ui,j − 2umΓmij

)
gi ⊗ gj , (20)

and

Enl =
1

2
(∇u)T · ∇u =

1

2
uk;iu

k
;jg

i ⊗ gj =
1

2

(
uk,iu

k
,j − umΓmkiu

k
,j + uk,iu

nΓknj − umΓmkiu
nΓknj

)
gi ⊗ gj ,

(21)
where the symbol ⊗ is the dyad operator.

In the orthogonal curvilinear coordinate system, the covariant and contravariant basis vectors gi and
gi are not necessarily unit vectors (see Eq. (11)). In order to facilitate the analysis of physical problems,
we introduce a set of orthogonal normalization base vectors ei as

ei = gi/
∣∣gi∣∣ = Hig

i = gi/ |gi| = gi/Hi. (22)

Furthermore, the displacement vector can be written, in terms of ei, as

u = ũiei, (23)

where ũi represent the physical components that are different from the tensor components ui and ui. In
fact, using Eqs. (18), (22) and (23), we have

ui = Hiũi, ui = ũi/Hi. (24)

Thus, substituting Eqs. (22) and (24) into Eqs. (20) and (21) yields

El =
1

2

3∑
i,j=1

[(
∂Hj
∂ξi

ũj +Hj
∂ũj
∂ξi

+ ∂Hi
∂ξj

ũi +Hi
∂ũi
∂ξj

)
ei
Hi
⊗ ej

Hj

]
−

3∑
i,j,m=1

(
HmũmΓmij

ei
Hi
⊗ ej

Hj

)
,

Enl =
1

2

{
3∑

i,j,k=1

[
∂(Hkũk)
∂ξi

∂(ũk/Hk)
∂ξj

ei
Hi
⊗ ej

Hj

]
−

3∑
i,j,k,m=1

[
HmũmΓmki

∂(ũk/Hk)
∂ξj

ei
Hi
⊗ ej

Hj

]
+

3∑
i,j,k,n=1

[
∂(Hkũk)
∂ξi

ũn
Hn

Γknj
ei
Hi
⊗ ej

Hj

]
−

3∑
i,j,k,n,m=1

(
HmũmΓmki

ũn
Hn

Γknj
ei
Hi
⊗ ej

Hj

)}
.

(25)
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In the present work, we only consider the shells with constant curvatures (e.g., cylindrical and
spherical shells), which gives constant principal curvature radii R1 and R2. Moreover, if the in-plane
curvilinear coordinates ξ1 and ξ2 are chosen to be the arc-length coordinates, the Lamé parameters A
and B of the mid-surface Ω0 fulfill A = B = 1. As a result, the derivatives of Hi with respect to ξ1 and
ξ2 vanish according to Eq. (16), and ∂Hα/∂ξ

3 = 1/Rα (α = 1, 2). Using Eqs. (13) and (16) and making
the following variable substitutions:

(α, β, z)→
(
ξ1, ξ2, ξ3

)
, (uα, uβ, uz)→ (ũ1, ũ2, ũ3) , (Hα, Hβ, Hz, Rα, Rβ)→ (H1, H2, H3, R1, R2) ,

(26)
Eqs. (19)2 and (25) can be derived and rearranged in matrix form as

E = El + Enl = (bl + bnl)u, (27)

where u and E are now the 3-D displacement vector and the Green-Lagrange strain vector, respectively,
which are defined as

u(α, β, z) =
{
uα uβ uz

}T
, E =

{
Eαα Eββ Ezz Eαz Eβz Eαβ

}T
, (28)

The 6× 3 linear and nonlinear differential operators bl and bnl in Eq. (27) are given by:

bl =



∂α
Hα

0 1
HαRα

0
∂β
Hβ

1
HβRβ

0 0 ∂z

∂z − 1
HαRα

0 ∂α
Hα

0 ∂z − 1
HβRβ

∂β
Hβ

∂β
Hβ

∂α
Hα

0


, (29)

and

bnl =



1
2H2

α

[
(∂α)2 + 2uz∂α

Rα
+ uα

R2
α

]
(∂α)

2

2H2
α

1
2H2

α

[
(∂α)2 − 2uα∂α

Rα
+ uz

R2
α

]
(∂β)

2

2H2
β

1
2H2

β

[
(∂β)2 +

2uz∂β
Rβ

+
uβ
R2
β

]
1

2H2
β

[
(∂β)2 − 2uβ∂β

Rβ
+ uz

R2
β

]
1
2(∂z)

2 1
2(∂z)

2 1
2(∂z)

2

1
Hα

(
∂α∂z + uz∂z

Rα

)
∂α∂z
Hα

1
Hα

(
∂α∂z − uα∂z

Rα

)
∂β∂z
Hβ

1
Hβ

(
∂β∂z + uz∂z

Rβ

)
1
Hβ

(
∂β∂z −

uβ∂z
Rβ

)
1

HαHβ

(
∂α∂β +

uz∂β
Rα

+
uβ

RαRβ

)
1

HαHβ

(
∂α∂β + uz∂α

Rβ

)
1

HαHβ

(
∂α∂β −

uα∂β
Rα
− uβ∂α

Rβ

)



,

(30)
in which ∂α = ∂(·)/∂α, ∂β = ∂(·)/∂β, and ∂z = ∂(·)/∂z. For the plate case, we have Rα →∞, Rβ →∞
and Hα = Hβ = 1, which make the differential operator matrices (29) and (30) degenerate to those in
the Cartesian coordinate system [42].

2.3 Constitutive equations

In the total Lagrangian description, the Green-Lagrange strain vector E is work-conjugate to the second
Piola-Kirchhoff stress vector S, which is defined as S = {Sαα, Sββ , Szz, Sαz, Sβz, Sαβ}T. In this work, we
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assume that the shell response remains in the elastic regime without elasto-plastic behavior. Furthermore,
the constitutive relation between S and E is assumed to be linear, i.e.

S = C̃E, (31)

where C̃ is the material elastic matrix that is independent of the shell deformation. For homogeneous
shell structures, C̃ is constant. However, C̃ will be a function of X for the non-homogeneous case such
as composites.

The material elastic matrix C̃ can be obtained by transforming its original form C from the material
coordinate system (1, 2, 3) to the global system (α, β, z). For materials with monoclinic symmetry, the
original elastic matrix C in the material system reads:

C =



C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0
C55 0

sym. C66

 . (32)

For isotropic metallic materials considered in this work, the Young’s modulus EY and the Poisson’s ratio
ν determine the elements of the original elastic matrix C, i.e., C16 = C26 = C36 = C45 = 0 and

C11 = C22 = C33 =
(1− ν)EY

(1 + ν)(1− 2ν)
,

C12 = C13 = C23 =
ν EY

(1 + ν)(1− 2ν)
,

C44 = C55 = C66 =
EY

2(1 + ν)
.

(33)

2.4 CUF and finite element approximation

According to the Carrera Unified Formulation (CUF) for the 2-D shell theory, the 3-D displacement field
u(α, β, z) of the shell structure can be expanded as a set of thickness functions depending only on the
thickness coordinate z and the corresponding variables depending on the in-plane arc-length coordinates
α and β. Specifically, we have

u(α, β, z) = Fτ (z)uτ (α, β), τ = 0, 1, · · · , N, (34)

where Fτ are the expansion functions of the thickness coordinate z, uτ is the generalized displacement
vector depending on the in-plane coordinates α and β, N denotes the order of expansion in the thickness
direction, and the summing convention with the repeated index τ is assumed. The choice of Fτ and
N is arbitrary, and different base functions (e.g. Taylor Expansions, Lagrange Expansions, Hierarchical
Legendre Expansions) of any order can be taken into account to model the displacement field of shell
structures along the thickness. Thus, the type of Fτ determines the class of the 2-D CUF shell model
that is to be adopted.

In this paper, we will consider the Lagrange polynomials as Fτ functions along the thickness direction.
The resulting shell theories are known as Lagrange Expansion (LE) CUF shell models in the literature [5].
The LE CUF shell model uses only pure displacement components as primary unknowns and thus permits
boundary conditions to be applied directly to these displacements. Details of Lagrange polynomials not
directly related to the CUF can be found in the book [52] and are not presented here. For brevity, the
considered shell theories are indicated by the acronym LDN, which represents the Lagrange expansion,
Displacement-based theory with the order of expansion N . Specifically, the two-node linear (LD1), three-
node quadratic (LD2), and four-node cubic (LD3) Lagrange expansion functions are employed along the
thickness direction to formulate linear to higher-order kinematics CUF shell elements with geometrical
nonlinearity.
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For the sake of generality, the Finite Element Method (FEM) is used to discretize the shell structure
in the α-β plane. Therefore, the generalized displacement vector uτ (α, β) can be approximated as follows:

uτ (α, β) = Ni(α, β)qτi, i = 1, 2, . . . , p+ 1, (35)

where Ni is the i-th shape function, p denotes the order of the shape functions and the repeated index
i indicates summation. The vector of the FE nodal parameters qτi is defined as

qτi =
{
qατi qβτi qzτi

}T
. (36)

The specific expressions of the shape functions Ni are not displayed here, and they can be found in
many reference books about FEMs, for instance in Bathe [52]. In this work, the classical 2-D nine-node
quadratic FE (Q9) will be adopted for the shape function in the α-β plane. Note that the choice of the
thickness expansion functions for various kinematics is completely independent of that of the shell FEs.

3 Nonlinear equilibrium equations and secant stiffness matrix

It is well-known that nonlinear static equilibrium equations can be easily derived by using the principle of
virtual work, which states that for arbitrary infinitesimal virtual displacement satisfying the prescribed
geometrical constraints, the virtual variation of internal strain energy (δLint) must be equal to the virtual
variation of the work of external loadings (δLext), i.e.,

δLint = δLext, (37)

where δ represents the virtual variation operator. The analysis of large displacement/rotation, post-
buckling and snapping behaviors of elastic systems results in complex nonlinear differential problems
which are difficult to solve analytically. However, based on the FEM (Eq. (35)) and CUF (Eq. (34)),
the nonlinear equilibrium equation (37) of the shell structure can be expressed as a system of nonlinear
algebraic equations which will be derived below and solved along with the proper numerical method.

For the total Lagrangian formulation, the work-conjugate vectors giving the virtual variation of the
internal strain energy are the second Piola-Kirchhoff stress vector S and the variation of the Green-
Lagrange strain vector δE. Thus, we have

δLint =< δETS >, (38)

where < (·) >=
∫
Br(·) dV , Br is the undeformed reference configuration of the shell body, and dV =

HαHβHzdαdβdz is the infinitesimal initial volume of the shell structure in Br, which is defined in
Eq. (17). According to Eqs. (34) and (35), the strain vector E in Eq. (27) and its virtual variation δE
can be expressed in terms of the generalized FE nodal unknowns qτi and δqsj as

E = (Bτi
l + Bτi

nl)qτi, δE = (Bsj
l + 2Bsj

nl)δqsj , (39)

where the two matrices Bτi
l and Bτi

nl of linear and nonlinear geometrical relations are given by

Bτi
l = bl(Fτ Ni) =



FτNi,α
Hα

0 FτNi
HαRα

0
FτNi,β
Hβ

FτNi
HβRβ

0 0 Fτ,zNi

Fτ,zNi − FτNi
HαRα

0
FτNi,α
Hα

0 Fτ,zNi − FτNi
HβRβ

FτNi,β
Hβ

FτNi,β
Hβ

FτNi,α
Hα

0


, (40)
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and

Bτi
nl[1, 1] = 1

2H2
α

[(
uα,α + uz

Rα

)
FτNi,α +

(
uα
Rα
− uz,α

)
FτNi
Rα

]
, Bτi

nl[1, 2] =
uβ,αFτNi,α

2H2
α

,

Bτi
nl[1, 3] = 1

2H2
α

[(
uz,α − uα

Rα

)
FτNi,α +

(
uα,α + uz

Rα

)
FτNi
Rα

]
, Bτi

nl[2, 1] =
uα,βFτNi,β

2H2
β

,

Bτi
nl[2, 2] = 1

2H2
β

[(
uβ,β + uz

Rβ

)
FτNi,β +

(
uβ
Rβ
− uz,β

)
FτNi
Rβ

]
, Bτi

nl[3, 1] =
uα,zFτ,zNi

2 ,

Bτi
nl[2, 3] = 1

2H2
β

[(
uz,β −

uβ
Rβ

)
FτNi,β +

(
uβ,β + uz

Rβ

)
FτNi
Rβ

]
, Bτi

nl[3, 2] =
uβ,zFτ,zNi

2 ,

Bτi
nl[4, 1] = 1

2Hα

[(
uα,α + uz

Rα

)
Fτ,zNi + uα,zFτNi,α − uz,zFτNi

Rα

]
, Bτi

nl[3, 3] =
uz,zFτ,zNi

2 ,

Bτi
nl[4, 2] =

uβ,αFτ,zNi+uβ,zFτNi,α
2Hα

, Bτi
nl[5, 1] =

uα,βFτ,zNi+uα,zFτNi,β
2Hβ

,

Bτi
nl[4, 3] = 1

2Hα

[(
uz,α − uα

Rα

)
Fτ,zNi + uz,zFτNi,α +

uα,zFτNi
Rα

]
,

Bτi
nl[5, 2] = 1

2Hβ

[(
uβ,β + uz

Rβ

)
Fτ,zNi + uβ,zFτNi,β − uz,zFτNi

Rβ

]
,

Bτi
nl[5, 3] = 1

2Hβ

[(
uz,β −

uβ
Rβ

)
Fτ,zNi + uz,zFτNi,β +

uβ,zFτNi
Rβ

]
,

Bτi
nl[6, 1] = 1

2HαHβ

[
uα,βFτNi,α +

(
uα,α + uz

Rα

)
FτNi,β +

(
uβ
Rβ
− uz,β

)
FτNi
Rα

]
,

Bτi
nl[6, 2] = 1

2HαHβ

[(
uβ,β + uz

Rβ

)
FτNi,α + uβ,αFτNi,β +

(
uα
Rα
− uz,α

)
FτNi
Rβ

]
,

Bτi
nl[6, 3] = 1

2HαHβ

[(
uz,β −

uβ
Rβ

)
FτNi,α +

(
uz,α − uα

Rα

)
FτNi,β +

(
uα,β
Rα

+
uβ,α
Rβ

)
FτNi

]
,

(41)

in which the comma again denotes the partial derivative. Replacing the indices τ and i with s and j in
Eqs. (40) and (41) leads to the other two matrices Bsj

l and Bsj
nl.

Substituting the geometrical relation (39)2 and the constitutive equation (31) into Eq. (38), we have

δLint = δqT
sj <

(
Bsj
l + 2Bsj

nl

)T
C̃
(
Bτi
l + Bτi

nl

)
> qτi

= δqT
sj K

ijτs
0 qτi + δqT

sj K
ijτs
lnl qτi + δqT

sj K
ijτs
nll qτi + δqT

sj K
ijτs
nlnl qτi

= δqT
sj K

ijτs
S qτi,

(42)

where Kijτs
S = Kijτs

0 + Kijτs
lnl + Kijτs

nll + Kijτs
nlnl is the Fundamental Nucleus (FN) of the secant stiffness

matrix. Note that Kijτs
0 (the linear stiffness matrix) stands for the linear component of KS , Kijτs

lnl and

Kijτs
nll represent the nonlinear contributions of first order, and Kijτs

nlnl contains the nonlinearities of second
order [42, 45]. These 3× 3 matrices are obviously defined as

Kijτs
0 =< (Bsj

l )TC̃Bτi
l > , Kijτs

lnl =< (Bsj
l )TC̃Bτi

nl >,

Kijτs
nll = 2 < (Bsj

nl)
TC̃Bτi

l > , Kijτs
nlnl = 2 < (Bsj

nl)
TC̃Bτi

nl >,

(43)

where the actual computations of these matrices Kijτs
0 , Kijτs

lnl , Kijτs
nll , and Kijτs

nlnl have been carried out
directly in the FORTRAN program via the matrix multiplication after the two matrices Bτi

l and Bτi
nl

are provided according to Eqs. (40) and (41).
If the thickness expansion functions (Fτ = Fs for τ = s) and the in-plane shape functions (Ni = Nj

for i = j) are given, the element secant stiffness matrix of arbitrary refined shell models accounting for
geometrical nonlinearity can be established by expanding the FN of the 3×3 secant stiffness matrix Kijτs

S
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and looping the indices τ, s = 0, ..., N and i, j = 1, ..., p+ 1. Consequently, by properly selecting various
shell kinematics (i.e., by choosing Fτ as well as the order of expansion N), the classical, higher-order and
refined shell theories as well as the related secant stiffness matrix can be implemented in an automatic
and unified manner based on the index notation of CUF, especially considering the effect of geometrical
nonlinearity.

If we further insert Eq. (42) into the principle of virtual work (37) and formulate the virtual variation
of the external work δLext by δqsj (conservative systems are considered in this work), the nonlinear
equilibrium conditions of the generic shell theory can be obtained in a simple and unified manner as

Kijτs
S qτi − psj = 0, (44)

which represents a set of three nonlinear algebraic equations, where psj is the FN of the nodal loading
vector and its derivation is not presented in this paper, but can be found in [50].

Once the element secant stiffness matrix is obtained according to the desirable approximation order,
it can be assembled in the classical way of FEM, see [5]. In fact, by conducting the finite element assembly
procedure in the framework of CUF, we can obtain the nonlinear algebraic governing equations from
Eq. (44) as

KS q− p = 0, (45)

where KS , q, and p are global, assembled FE arrays of the whole shell structure. For more details
about the calculation of the work of external loadings and the associated vector of generalized forces p,
interested readers can be referred to Carrera et al. [5].

4 Linearization for tangent stiffness matrix

4.1 Newton-Raphson method with path-following constraint

For the purpose of conducting the finite element calculation of the nonlinear algebraic governing equations
(45), an incremental linearized scheme, typically the Newton-Raphson method (or tangent method), has
been used to solve the fully geometrically nonlinear beam and plate systems [42, 45, 46, 47]. Based on
the Newton-Raphson method [53], Eq. (45) can be rewritten as:

ϕres ≡ KS q− p = 0, (46)

where ϕres is the vector of the residual nodal forces (unbalanced nodal force vector). Expanding ϕres of
Eq. (46) in Taylor’s series about a known solution (q,p), utilizing the linearization method and omitting
the higher-order terms, we have

ϕres(q + δq,p + δp) = ϕres(q,p) +
∂ϕres
∂q

δq +
∂ϕres
∂p

δλpref = 0, (47)

where ∂ϕres/∂q = KT is the tangent stiffness matrix that will be derived in the next subsection and
−∂ϕres/∂p is equal to the unit matrix I. In Eq. (47), it has been assumed that the load varies directly
with the vector of the reference loading pref with a rate of change equal to the load parameter λ, i.e.
p = λpref . It should be emphasized that, since we take the load-scaling parameter λ as a variable, an
additional constraint relationship c(δq, δλ) is required to Eq. (47), which finally gives{

KT δq = δλpref −ϕres,

c(δq, δλ) = 0.
(48)

In terms of the characteristics of the constraint equation (48)2, different incremental schemes can be
implemented. In this work, a path-following constraint equation, which is a function of both displacement
and load parameter variations, will be utilized. Specifically, an arc-length method proposed by Crisfield
[54, 55] and later modified by Carrera [56] is exploited, where the constraint relationship corresponds to
a multi-dimensional sphere with radius equal to the given arc-length value that varies at each load step
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depending on the ratio of convergence at the previous iteration. More information about the arc-length
method is referred to the above-mentioned literature.

In this work, due to the generally non-symmetric behaviour of the secant stiffness matrix, we will
employ the tangent stiffness matrix to formulate the linearized iterative scheme while the secant stiffness
matrix is used merely for evaluating the residual ϕres at each iteration. Furthermore, the full Newton-
Raphson method that updates the tangent stiffness matrix at each iteration will be used to conduct
the numerical calculations. For more detailed discussions on these aspects, the interested readers are
referred to the paper of Pagani and Carrera [45] as well as the references cited therein.

4.2 Fundamental nucleus of tangent stiffness matrix

Note that the FN of the tangent stiffness matrix KT can be obtained from the linearization of the
nonlinear equilibrium equation [57], see Eq. (47). For the conservative loading, the linearization of the
virtual variation of external loads vanishes, i.e. d(δLext) = 0, where the symbol ‘d’ stands for the
linearized differential operator. After linearizing the virtual variation of the internal strain energy, we
can derive the tangent stiffness matrix as

d(δLint) =< d(δETS) >=< δETdS > + < d(δET)S >= δqT
sjK

ijτs
T dqτi, (49)

where Kijτs
T = Kijτs

0 + Kijτs
T1

+ Kijτs
σ is the FN of the tangent stiffness matrix. Thus, the only terms to

be linearized are the stress-strain constitutive equation and the strain-displacement geometrical relation.
We will separately consider each nonlinear contribution Kijτs

T1
and Kijτs

σ below.

The first term < δETdS > in Eq. (49) can be derived by linearizing the constitutive equation (31).
Specifically, using the differential symbol ‘d’ to replace the variation symbol δ in Eq. (39)2 and under
the assumption of constant material coefficients (i.e., dC̃ = 0), we have

dS = d(C̃E) = C̃dE = C̃(Bτi
l + 2Bτi

nl)dqτi, (50)

which, combined with Eq. (39)2 and (43), leads to

< δETdS > = δqT
sj < (Bsj

l + 2Bsj
nl)

TC̃ (Bτi
l + 2Bτi

nl) > dqτi

= δqT
sj K

ijτs
0 dqτi + δqT

sj

(
2Kijτs

lnl

)
dqτi + δqT

sj K
ijτs
nll dqτi + δqT

sj

(
2Kijτs

nlnl

)
dqτi

= δqT
sj

(
Kijτs

0 + Kijτs
T1

)
dqτi,

(51)

where Kijτs
T1

= 2Kijτs
lnl + Kijτs

nll + 2Kijτs
nlnl is the nonlinear contribution to Kijτs

T resulting from the lin-

earization of the constitutive relation. Note that Kijτs
0 , Kijτs

lnl , Kijτs
nll , and Kijτs

nlnl are the same 3× 3 FNs
as presented in Eq. (43).

The derivation of the second integration term < d(δET)S > in Eq. (49) demands for conducting the
linearization of the nonlinear geometrical relation. Thus, following Crisfield [58] and based on Eqs. (27)-
(30), we have the components of the 6× 1 vector d(δE) as

d(δE)[1, 1] = 1
H2
α

[
duα,αδuα,α + duαδuα

R2
α

+ duβ,αδuβ,α + duz,αδuz,α + duzδuz
R2
α

+ 1
Rα

(duzδuα,α − duz,αδuα + duα,αδuz − duαδuz,α)
]
,

d(δE)[2, 1] = 1
H2
β

[
duα,βδuα,β + duβ,βδuβ,β +

duβδuβ
R2
β

+ duz,βδuz,β + duzδuz
R2
β

+ 1
Rβ

(duzδuβ,β − duz,βδuβ + duβ,βδuz − duβδuz,β)
]
,

d(δE)[3, 1] = duα,zδuα,z + duβ,zδuβ,z + duz,zδuz,z,

(52)
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and

d(δE)[4, 1] = 1
Hα

[
duα,αδuα,z + duα,zδuα,α + duβ,αδuβ,z + duβ,zδuβ,α + duz,αδuz,z + duz,zδuz,α

+ 1
Rα

(duzδuα,z − duz,zδuα + duα,zδuz − duαδuz,z)
]
,

d(δE)[5, 1] = 1
Hβ

[
duα,βδuα,z + duα,zδuα,β + duβ,βδuβ,z + duβ,zδuβ,β + duz,βδuz,z + duz,zδuz,β

+ 1
Rβ

(duzδuβ,z − duz,zδuβ + duβ,zδuz − duβδuz,z)
]
,

d(δE)[6, 1] = 1
HαHβ

[
duα,αδuα,β + duα,βδuα,α + duβ,αδuβ,β + duβ,βδuβ,α + duz,αδuz,β

+ duz,βδuz,α + 1
RαRβ

(duβδuα + duαδuβ) + 1
Rα

(duzδuα,β − duz,βδuα + duα,βδuz

− duαδuz,β) + 1
Rβ

(duzδuβ,α − duz,αδuβ + duβ,αδuz − duβδuz,α)
]
,

(53)
It should be emphasized that the relation d(δEl) = 0 has been used in deriving Eqs. (52) and (53). By
employing the CUF (34) and the FE approximation (35) for both the linearized differential variables
(i.e. du = FτNidqτi) and the variations (i.e. δu = FsNjδqsj), we can express the vector d(δE) in terms
of Fτ , Ni, Fs and Nj . Substituting the resulting expression of d(δE) into the second integration term
< d(δET)S >, we can obtain

< d(δET)S > = d(δET)
(
Sl + Snl

)
= δqT

sjK
ijτs
σ dqτi = δqT

sj

(
Kijτs
σl

+ Kijτs
σnl

)
dqτi

= Kijτs
σ [1, 1] δqαsjdqατi + Kijτs

σ [2, 2] δqβsjdqβτi + Kijτs
σ [3, 3] δqzsjdqzτi

+ Kijτs
σ [1, 3] δqαsjdqzτi + Kijτs

σ [3, 1] δqzsjdqατi + Kijτs
σ [2, 3] δqβsjdqzτi

+ Kijτs
σ [3, 2] δqzsjdqβτi + Kijτs

σ [1, 2] δqαsjdqβτi + Kijτs
σ [2, 1] δqβsjdqατi ,

(54)

where Sl = C̃El and Snl = C̃Enl based on Eqs. (27) and (31), Kijτs
σ = Kijτs

σl
+ Kijτs

σnl
is the FN of the

geometrical stiffness matrix [57] arising from the nonlinear form of the strain-displacement geometrical
relation, and the components of Kijτs

σ are expressed in the following:

Kijτs
σ [1, 1] = < Dijτs

σ + Sαα
H2
α

FτNiFsNj
R2
α

>, Kijτs
σ [2, 2] = < Dijτs

σ +
Sββ
H2
β

FτNiFsNj
R2
β

>,

Kijτs
σ [3, 3] = < Dijτs

σ + Sαα
H2
α

FτNiFsNj
R2
α

+
Sββ
H2
β

FτNiFsNj
R2
β

>,

Kijτs
σ [1, 3] = −Kijτs

σ [3, 1] = < Sαα
H2
αRα

(FτNiFsNj,α − FτNi,αFsNj)

+ Sαz
HαRα

(FτNiFs,zNj − Fτ,zNiFsNj) +
Sαβ

HαHβRα
(FτNiFsNj,β − FτNi,βFsNj) >,

Kijτs
σ [2, 3] = −Kijτs

σ [3, 2] = <
Sββ
H2
βRβ

(FτNiFsNj,β − FτNi,βFsNj)

+
Sβz
HβRβ

(FτNiFs,zNj − Fτ,zNiFsNj) +
Sαβ

HαHβRβ
(FτNiFsNj,α − FτNi,αFsNj) >,

Kijτs
σ [1, 2] = Kijτs

σ [2, 1] = <
SαβFτNiFsNj
HαHβRαRβ

>,

(55)
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in which

Dijτs
σ = Sαα

H2
α
FτNi,αFsNj,α +

Sββ
H2
β
FτNi,βFsNj,β + SzzFτ,zNiFs,zNj

+ Sαz
Hα

(FτNi,αFs,zNj + Fτ,zNiFsNj,α) +
Sβz
Hβ

(FτNi,βFs,zNj + Fτ,zNiFsNj,β)

+
Sαβ
HαHβ

(FτNi,αFsNj,β + FτNi,βFsNj,α) .

(56)

After Kijτs
T1

and Kijτs
σ are obtained, the FN of the tangent stiffness matrix Kijτs

T is calculated straight-
forwardly from Eq. (49). Analogous to the secant stiffness matrix, the 3 × 3 FN can act as the basic
building block to formulate the element and global tangent stiffness matrices for any higher-order and
refined shell elements accounting for various kinematics and the full Green-Lagrange nonlinear strains.

5 Numerical examples and discussions

In this section, numerical calculations are carried out to demonstrate the capabilities of the developed
full geometrically nonlinear CUF shell model to accurately predict the large-deflection, post-buckling
and snapping equilibrium curves for some popular benchmark problems of nonlinear shell structures
with different geometrical shapes, boundary and loading conditions as well as various sizes in a unified
framework. The homogeneous isotropic metallic shell structures are taken into account as the first-
step but effective verification of the CUF shell model by comparing our results with those provided in
the literature. The total Lagrangian description along with the path-following Newton-Raphson method
based on the arc-length constraint is utilized to compute all the numerical results. Note that depending on
the actual number of iterations during the previous load step, the arc-length value can be automatically
updated in each load step. The expansion functions along the thickness direction are based on the
Lagrange polynomials, i.e., LE CUF shell models are used in this work. The acronym LDN representing
the Lagrange expansion, Displacement-based theory with the order of expansion N will be employed to
describe the refined CUF shell theories. In particular, the two-node linear (LD1), three-node quadratic
(LD2), and four-node cubic (LD3) LE functions have been used in the following numerical investigations.
If not otherwise stated, the FE analysis makes use of regular meshes of parabolic nine-node Lagrangian
elements Q9 to approximate the displacement fields in the shell plane and all the numerical examples
are based on the full Gauss integration scheme.

5.1 Post-buckling of a slender plate under compression

P

z
d

Free

L

h

a

b

a
Clamped

b PAClamped
Free

Free

Figure 2: Schematic diagram of a clamped-free slender plate under the in-plane compressive point load
P . Note that a small point load d is applied at the right free end to activate the post-buckling response.

The first numerical example is to show the enhanced abilities of the proposed full geometrically
nonlinear unified shell model to provide an accurate prediction of the post-buckling equilibrium curves
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for a slender plate subjected to the in-plane compression loading P , as shown in Fig. 2. This is a classical
benchmark problem for the post-buckling analysis and has been considered by [24, 42]. For the purpose
of illustration, the Young’s modulus EY and Poisson’s ratio ν of the slender plate adopted here are equal
to EY = 75 GPa and ν = 0.316. The length, width and thickness of the slender plate are assumed to
be L = 30 cm, b = 6 cm and h = 0.6 cm, respectively. The clamped-free edge support conditions are
applied to the slender plate. Specifically, the clamped edge condition satisfies uα = uβ = uz = 0 at
α = 0, and the remaining edges are free of loadings. In addition, the point compression load P is applied
at the point (α = L, β = b/2, z = 0). In order to activate the stable branch along the post-buckling
nonlinear path, a small disturbing point load d is applied at the free end (α = L, β = b/2, z = h/2).
The schematic diagram of the edge support conditions and loading states is displayed in Fig. 2.
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Figure 3: Convergence analysis of post-buckling equilibrium curves for the clamped-free isotropic slender
plate under the in-plane compressive point load: (a) comparison of different in-plane mesh numbers; (b)
comparison of various orders of Lagrange expansion functions in the thickness direction.

Now the convergence analysis of the present full geometrically nonlinear CUF shell model will be first
conducted via a regular mesh for this example. Specifically, the post-buckling nonlinear response of the
clamped-free slender plate to the applied compression loading P is shown in Fig. 3 for different in-plane
mesh numbers (Fig. 3(a)) and various LE functions in the thickness direction (i.e., LD1, LD2 and LD3, as
displayed in Fig. 3(b)), where the dimensionless maximum transverse deflection uz(A) = uz/L, located at
the plate center A, varies with the applied dimensionless in-plane compression load P = P (4L2)/(π2EIb),
where Ib = bh3/12. It can be seen from Fig. 3(a) that fairly fast convergence rate is obtained when
increasing the number of the in-plane mesh. In addition, Fig. 3(b) demonstrates that all the lower
and higher order CUF shell models can be employed to accurately predict the post-buckling equilibrium
curves with the excellent convergence characteristic. Moreover, Fig. 3 illustrates that the critical buckling
compression load Pcr of the slender plate is approximately equal to P cr = Pcr(4L

2)/(π2EIb) = 1.000,
where the classical Euler critical load for the cantilever beam subjected to compression has been used
for normalization. Further, the present numerical results based on the CUF shell model also agree well
with those using the full geometrically nonlinear CUF plate model in the work of Wu et al. [42].

In order to provide the convenient comparison with the reference solutions presented here, the equi-
librium states of post-buckling response of the clamped-free slender plate under the in-plane compression
based on different geometrically nonlinear CUF shell models are tabulated in Table 1 along with the
total degrees of freedom (DOFs). Furthermore, based on the CUF kinematics 20× 5Q9 + 1LD2, Fig. 4
depicts the kinematic evolution of the post-buckling pattern of the clamped-free slender plate under a
series of different loadings, where the initial undeformed framework is also shown for the comparison
purpose.
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Table 1: Equilibrium points (uz(A), P ) of nonlinear response curves of the clamped-free slender plate
under the in-plane compressive load based on different geometrically nonlinear CUF shell models.

Mesh number + Expansion order (DOFs)

10× 5Q9 + 1LD2 20× 5Q9 + 1LD2 25× 5Q9 + 1LD2 20× 5Q9 + 1LD1 20× 5Q9 + 1LD3
(2079) (4059) (5049) (2706) (5412)

uz(A) P uz(A) P uz(A) P uz(A) P uz(A) P

7.73E-6 0.08681 7.81E-6 0.08680 7.80E-6 0.08680 8.23E-6 0.08769 7.84E-6 0.08679
2.52E-5 0.23880 2.55E-5 0.23867 2.55E-5 0.23867 2.74E-5 0.24570 2.56E-5 0.23865
6.59E-5 0.45570 6.66E-5 0.45496 6.66E-5 0.45489 7.48E-5 0.47725 6.68E-5 0.45489
1.55E-4 0.67162 1.57E-4 0.66947 1.57E-4 0.66921 1.82E-4 0.69852 1.57E-4 0.66932
3.37E-4 0.82660 3.41E-4 0.82294 3.41E-4 0.82246 3.48E-4 0.82208 3.41E-4 0.82272
7.02E-4 0.91965 7.09E-4 0.91489 7.10E-4 0.91424 6.79E-4 0.90718 7.10E-4 0.91463
0.00143 0.97077 0.00145 0.96535 0.00145 0.96459 0.00134 0.95803 0.00145 0.96507
0.00289 0.99759 0.00292 0.99181 0.00293 0.99099 0.00267 0.98599 0.00292 0.99152
0.00582 1.01134 0.00587 1.00537 0.00589 1.00452 0.00532 1.00068 0.00588 1.00507
0.01166 1.01834 0.01178 1.01227 0.01180 1.01140 0.01061 1.00823 0.01178 1.01197
0.02335 1.02201 0.02358 1.01587 0.02362 1.01499 0.02121 1.01216 0.02358 1.01557
0.04086 1.02397 0.04126 1.01777 0.04133 1.01689 0.03708 1.01413 0.04127 1.01747
0.06707 1.02592 0.06773 1.01960 0.06785 1.01872 0.06086 1.01581 0.06774 1.01930
0.10621 1.02917 0.10724 1.02260 0.10744 1.02171 0.09638 1.01829 0.10726 1.02230
0.15277 1.03448 0.15425 1.02744 0.15452 1.02654 0.14922 1.02327 0.15427 1.02714
0.20784 1.04318 0.20982 1.03537 0.21019 1.03445 0.21162 1.03178 0.20986 1.03507
0.27239 1.05722 0.27492 1.04813 0.27540 1.04718 0.28449 1.04595 0.27497 1.04784
0.34701 1.07953 0.35012 1.06836 0.35071 1.06736 0.36813 1.06902 0.35018 1.06807
0.43142 1.11475 0.43507 1.10017 0.43577 1.09908 0.46154 1.10615 0.43514 1.09989
0.52359 1.17047 0.52768 1.15024 0.52846 1.14901 0.56125 1.16594 0.52776 1.14997
0.61842 1.25996 0.62274 1.23000 0.62357 1.22851 0.65957 1.26373 0.62284 1.22973
0.70564 1.40819 0.70500 1.36043 0.71080 1.35845 0.74225 1.4292 0.71012 1.36018
0.76738 1.66755 0.76204 1.58424 0.77266 1.58120 0.78646 1.72662 0.77210 1.58400
0.78008 2.06281 0.77518 1.99980 0.78359 1.99407 0.77169 2.19459 0.78320 1.99959
0.73448 2.84993 0.73171 2.68870 0.73206 2.67643 0.68874 3.16361 0.73167 2.68858

Y

X

Z

Figure 4: Some post-buckling configurations of the clamped-free slender plate under a series
of in-plane compressive loads for various equilibrium states (the normalized loading forces P =
1.020, 1.023, 1.027, ..., 2.000, 2.689). The initial undeformed framework of the slender plate is also shown.
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5.2 Pinched semi-cylindrical shell

The second analysis deals with a clamped semi-cylindrical shell subjected to the point load P at the
free end (see Fig. 5). This popular benchmark problem has been studied by [24, 59, 60, 61]. For
representative purposes, the Young’s modulus EY and the Poisson’s ratio ν of the shell are set to be
equal to EY = 2.0685 × 107 and ν = 0.3, respectively. The length, radius and thickness of the semi-
cylindrical shell is L = 3.048, R = 1.016 and h = 0.03, respectively, corresponding to a thin shell. The
clamped edge condition at β = 0 satisfies uα = uβ = uz = 0 and along the longitudinal edges, all
the circumferential deflections are constrained, i.e., uα = 0 at α = 0 and α = πR. The point load P
is applied at the point A (α = πR/2, β = L, z = h/2). The edge conditions are displayed in Fig. 5
along with the loading state. The symmetric condition enables to model half of the semi-cylindrical shell
(see the shaded area in Fig. 5) to improve the computational efficiency, i.e., the symmetric boundary
condition at α = πR/2 fulfills uα = 0.

B
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Clamped

Free end

a

b
z

D

A

u
a
=0

Figure 5: Schematic diagram of a clamped isotropic semi-cylindrical shell subjected to the point load at
the free end (the boundary conditions along the longitudinal edges are also shown).
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Figure 6: Convergence analysis of nonlinear response curves for the clamped isotropic semi-cylindrical
shell under the point load: (a) comparison of different in-plane mesh numbers; (b) comparison of various
orders of Lagrange expansion functions in the thickness direction.

First of all, the convergence analysis of the present CUF shell models is provided. To be specific, the
large-deflection nonlinear curves for the clamped semi-cylindrical shell under the point load P is diplayed
in Fig. 6 for comparison of different in-plane mesh numbers (Fig. 6(a)) and various LE functions in the
thickness direction (i.e., LD1, LD2 and LD3, as shown in Fig. 6(b)). The equilibrium curves provide the
downward deflections uz(A) at the point A as functions of the applied point force P/103. Obviously,
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when increasing the in-plane mesh numbers to 16 × 16Q9, the results have an excellent convergence.
Additionally, at least LD2 kinematics should be used to accurately predict the large-deflection equilibrium
curves. Consequently, the kinematics 16 × 16Q9 + 1LD2 will be taken, for which the predicted large-
deflection response to the point load can be assumed to have a high accuracy, as illustrated in Fig. 6.
However, to provide the reference solutions of different in-plane meshes and expansion orders for future
comparisons, the equilibrium points of large-deflection response of the clamped semi-cylindrical shell
under the point force are tabulated in Tables 2 and 3 that also show the total DOFs.

Table 2: Equilibrium points (uz(A), P/103) of nonlinear response curves of the clamped isotropic semi-
cylindrical shell under the point load based on geometrically nonlinear CUF shell models with different
in-plane mesh numbers.

Mesh number + Expansion order (DOFs)

12× 12Q9 + 1LD2 (5625) 16× 16Q9 + 1LD2 (9801) 20× 20Q9 + 1LD2 (15129)

uz(A) P/103 uz(A) P/103 uz(A) P/103 uz(A) P/103 uz(A) P/103 uz(A) P/103

0.01661 0.03836 1.13033 0.83312 0.01703 0.03837 1.05677 0.75441 0.01723 0.03837 1.07489 0.75483
0.07937 0.13465 1.17518 0.86918 0.05597 0.10341 1.14274 0.81010 0.08355 0.13391 1.13816 0.79545
0.17378 0.21708 1.21999 0.91978 0.12270 0.17061 1.21304 0.87272 0.18299 0.21573 1.19124 0.83812
0.28519 0.31479 1.27058 0.98675 0.19847 0.23067 1.29174 0.96022 0.29654 0.31553 1.25126 0.89705
0.40990 0.44405 1.31692 1.04637 0.27629 0.29922 1.35721 1.06181 0.40477 0.42338 1.30178 0.95837
0.53095 0.54976 1.36426 1.13242 0.35620 0.37836 1.42945 1.19003 0.52951 0.52555 1.35864 1.03929
0.67422 0.62589 1.41043 1.23601 0.43938 0.46141 1.48950 1.32976 0.66427 0.59618 1.40674 1.12266
0.74447 0.65723 1.45170 1.32381 0.52660 0.52987 1.54541 1.47355 0.72502 0.62080 1.46049 1.22720
0.82130 0.68183 1.48797 1.41756 0.61973 0.58193 1.60870 1.66354 0.78249 0.64133 1.50612 1.33323
0.89507 0.71181 1.52479 1.53552 0.70454 0.62029 1.65510 1.82883 0.84678 0.66207 1.58616 1.54758
0.96325 0.73470 1.56494 1.66733 0.79779 0.65377 1.69816 1.98973 0.90035 0.67987 1.65559 1.76792
1.02141 0.76256 1.59623 1.76147 0.88401 0.68178 1.74378 2.20869 0.96093 0.70140 1.69434 1.90422
1.07789 0.79972 1.63574 1.91704 0.96547 0.71299 1.01905 0.72616 1.72892 2.04882

Table 3: Equilibrium points (uz(A), P/103) of nonlinear response curves of the clamped isotropic semi-
cylindrical shell under the point load based on geometrically nonlinear CUF shell models with various
expansion orders.

Mesh number + Expansion order (DOFs)

16× 16Q9 + 1LD1 (6534) 16× 16Q9 + 1LD2 (9801) 16× 16Q9 + 1LD3 (13068)

uz(A) P/103 uz(A) P/103 uz(A) P/103 uz(A) P/103 uz(A) P/103 uz(A) P/103

0.01841 0.03839 1.03686 0.72665 0.01703 0.03837 0.96547 0.71299 0.01706 0.03836 0.96581 0.71277
0.06052 0.10361 1.11920 0.78203 0.05597 0.10341 1.05677 0.75441 0.05612 0.10336 1.05712 0.75416
0.13269 0.17128 1.21137 0.86302 0.12270 0.17061 1.14274 0.81010 0.12295 0.17050 1.14308 0.80978
0.21441 0.23188 1.28605 0.95303 0.19847 0.23067 1.21304 0.87272 0.19874 0.23060 1.21341 0.87246
0.29796 0.30061 1.35670 1.05929 0.27629 0.29922 1.29174 0.96022 0.27654 0.29920 1.29210 0.95981
0.38350 0.37891 1.43577 1.20455 0.35620 0.37836 1.35721 1.06181 0.35645 0.37833 1.35759 1.06148
0.47250 0.45948 1.50073 1.35686 0.43938 0.46141 1.42945 1.19003 0.43964 0.46129 1.42984 1.18959
0.5660 0.52466 1.56114 1.51430 0.52660 0.52987 1.4895 1.32976 0.52688 0.52961 1.48988 1.32919
0.66585 0.57366 1.61842 1.68654 0.61973 0.58193 1.54541 1.47355 0.62002 0.58167 1.54582 1.47308
0.75674 0.61046 1.66615 1.85185 0.70454 0.62029 1.60870 1.66354 0.70485 0.62006 1.60910 1.66281
0.85706 0.64737 1.71162 2.02440 0.79779 0.65377 1.65510 1.82883 0.79811 0.65354 1.65553 1.82841
0.94990 0.68356 1.75840 2.24337 0.88401 0.68178 1.69816 1.98973 0.88434 0.68152 1.69857 1.98900

Furthermore, our numerical results predicted by the kinematics 16 × 16Q9 + 1LD2 are compared
in Fig. 7 with the reference solution provided in Sze et al. [61], where the 40 × 40 S4R four-node shell
elements in ABAQUS was used to calculate the large-deflection response for the same problem. It is
noticed that the agreement of the present results with those of Sze et al. [61] is excellent. For the sake of
completeness, some typical deformed configurations at three equilibrium states are illustrated in Fig. 8
for the clamped semi-cylindrical shell under the point load P . It must be underlined that the initial
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undeformed framework of the semi-cylindrical shell is also illustrated in Fig. 8 for comparison purposes.
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Figure 7: Nonlinear equilibrium curves of the clamped isotropic semi-cylindrical shell under the point
load compared with the reference solution provided in Sze et al. [61].

Figure 8: Some deformed configurations of the clamped semi-cylindrical shell under the point load P
for three equilibrium states: (b) uz(A) = 0.7045, P/103 = 0.62; (c) uz(A) = 1.4295, P/103 = 1.19; (d)
uz(A) = 1.7438, P/103 = 2.21. The initial undeformed framework of the semi-cylindrical shell is also
shown in Fig. 8(a).

5.3 Pull-out of an open-ended cylindrical shell

Next, an open-ended cylindrical shell subjected to a pair of radial pull-out point forces P (see Fig. 9) will
be considered, which is a typical example to test the effectiveness of the FE formulations and has been
investigated by [24, 59, 61, 62]. The material properties of the cylindrical shell used in this work are
assumed to be EY = 10.5× 106 and ν = 0.3125. Its length, radius and thickness are equal to L = 10.35,
R = 4.953 and h = 0.094, respectively. The pull-out loads P are applied at points (α = 0, β = L/2,
z = h/2) and (α = πR, β = L/2, z = h/2). The schematic diagram of boundary conditions and loading
states is demonstrated in Fig. 9. Owing to the symmetry of the present problem, only an octant of the
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Figure 9: Schematic diagram of boundary conditions and loading states for an open-ended isotropic
cylindrical shell subjected to pull-out point loads P .
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Figure 10: Convergence analysis of nonlinear response curves for the open-ended isotropic cylindrical
shell subjected to pull-out point loads: (a-c) comparisons of different in-plane mesh numbers at points
A, B and C depicted in Fig. 9; (b) comparison of various orders of Lagrange expansion functions in the
thickness direction at point A.
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cylindrical shell (see the shaded area in Fig. 9) is modeled to save the computing time, which makes the
symmetric boundary conditions at α = 0 and β = L/2 satisfy uα = 0 and uβ = 0, respectively.

Table 4: Equilibrium points (uz(A), P/104) of nonlinear response curves of the open-ended cylindrical
shell subjected to pull-out point loads based on geometrically nonlinear CUF shell models with different
in-plane mesh numbers.

Mesh number + Expansion order (DOFs)

10× 10Q9 + 1LD2 (3969) 14× 12Q9 + 1LD2 (6525) 18× 12Q9 + 1LD2 (8325)

uz(A) P/104 uz(A) P/104 uz(A) P/104 uz(A) P/104 uz(A) P/104 uz(A) P/104

0.50151 0.05644 2.39316 2.43317 0.52305 0.05693 2.46311 2.23847 0.52898 0.05705 2.46996 2.10966
0.86219 0.11503 2.40106 2.46628 1.16593 0.17856 2.46868 2.25756 0.90557 0.11695 2.47985 2.12423
1.12421 0.17582 2.40970 2.50696 1.51173 0.30448 2.47455 2.27968 1.17753 0.17915 2.48915 2.14425
1.31702 0.23794 2.41904 2.55604 1.62356 0.36535 2.48072 2.30510 1.37717 0.24245 2.49748 2.16672
1.46091 0.30002 2.42908 2.61455 1.70933 0.42296 2.48719 2.33408 1.52613 0.30525 2.50472 2.18953
1.56979 0.36052 2.43979 2.68369 1.82795 0.52480 2.50098 2.40392 1.63897 0.36598 2.51241 2.21701
1.65321 0.41803 2.45115 2.76481 1.87889 0.57927 2.50829 2.44542 1.72558 0.42328 2.52053 2.24970
1.71781 0.47145 2.46317 2.85931 1.92890 0.64103 2.51585 2.49178 1.79283 0.47622 2.52908 2.28817
1.78027 0.53263 2.47581 2.96861 1.97822 0.71178 2.52367 2.54340 1.84557 0.52425 2.53804 2.33306
1.84085 0.60340 2.48907 3.09403 2.02712 0.79365 2.53174 2.60069 1.89720 0.57812 2.54739 2.38506
1.89989 0.68631 2.50289 3.23677 2.07583 0.88920 2.54005 2.66411 1.94797 0.63909 2.55712 2.44496
1.95784 0.78495 2.51726 3.39791 2.12454 1.00151 2.54859 2.73416 1.99813 0.70880 2.56722 2.51361
2.01521 0.90416 2.53212 3.57837 2.17338 1.13415 2.55735 2.81137 2.04792 0.78923 2.57767 2.59191
2.07253 1.05030 2.54740 3.77895 2.22247 1.29112 2.56633 2.89629 2.09754 0.88273 2.58846 2.68088
2.13024 1.23125 2.56306 4.00031 2.27181 1.47620 2.57553 2.98953 2.14715 0.99207 2.59958 2.78156
2.18865 1.45600 2.57903 4.24308 2.32111 1.69072 2.58494 3.09166 2.19687 1.12045 2.61101 2.89513
2.24768 1.73182 2.59525 4.50785 2.36002 1.87909 2.59456 3.20332 2.24675 1.27138 2.62274 3.02277
2.29479 1.98700 2.38926 2.02504 2.60437 3.32510 2.29678 1.44814 2.63476 3.16578
2.33010 2.19001 2.40902 2.11546 2.61438 3.45759 2.34669 1.65178 2.64707 3.32545
2.35279 2.30846 2.42066 2.15404 2.62457 3.60136 2.39529 1.87305 2.65965 3.50312
2.36547 2.35127 2.43920 2.17937 2.63495 3.75694 2.43010 2.03120 2.67250 3.70010
2.37513 2.37421 2.44405 2.18803 2.64549 3.92483 2.44967 2.09597 2.68559 3.91762
2.38441 2.40145 2.45293 2.20849 2.65619 4.10547 2.46017 2.10341 2.69893 4.15685

To clearly highlight the fairly fast and excellent convergence of the present full geometrically nonlinear
CUF shell models, the large-deflection equilibrium curves for the open-ended cylindrical shell subjected
to pull-out point loads P are shown in Fig. 10 for different in-plane mesh numbers (see Figs. 10(a)-
(c)) and various LE functions (see Fig. 10(d)). In particular, the equilibrium curves give the radial
displacements uz(A), uz(B) and uz(C) at points A, B and C in Fig. 9 as functions of the applied point
load P/104. It can be found that the nonlinear response of the cylindrical shell is dominated by bending
stiffness with large displacements before the point force of P/104 = 2, after which the large-deflection
equilibrium curves are characterized by an extremely stiff response of the shell. In addition, it is obvious
from Fig. 10 that the CUF shell model based on the kinematics 18×12Q9 + 1LD2 are able to predict the
large-deflection nonlinear response to the pair of point loads with a high accuracy. Moreover, Tables 4
and 5 summarize the equilibrium points of the nonlinear response for different in-plane meshes and
expansion orders, respectively, together with the total DOFs.

The converged solutions predicted by the 18 × 12Q9 + 1LD2 CUF shell model are compared in
Fig. 11 with the results obtained by Sze et al. [61], who made use of the 24 × 36 S4R shell elements
in the commercial code ABAQUS to calculate the large-deflection response for the same example. The
CUF shell model results are in close agreement with those provided by Sze et al. [61] when P/104 . 2
but the present solutions provide slightly stiffer predictions for the three curves considered at points A,
B and C in the highly nonlinear regime (P/104 & 2). This is due to the fact that the S4R shell elements
in ABAQUS are geometrically approximate based on an isoparametric approach by prescribing a unit
normal at each node and also the von Kármán strain assumption is adopted. These approximations may
fail to address the problems with large rotations and warping, which can be predicted by the present
CUF shell model based on the exact geometrical nonlinear relations and pure displacement unknowns.
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Table 5: Equilibrium points (uz(A), P/104) of nonlinear response curves of the open-ended cylindrical
shell subjected to pull-out point loads based on geometrically nonlinear CUF shell models with various
expansion orders.

Mesh number + Expansion order (DOFs)

18× 12Q9 + 1LD1 (5550) 18× 12Q9 + 1LD2 (8325) 18× 12Q9 + 1LD3 (11100)

uz(A) P/104 uz(A) P/104 uz(A) P/104 uz(A) P/104 uz(A) P/104 uz(A) P/104

0.53142 0.05708 2.51557 2.14903 0.52898 0.05705 2.46996 2.10966 0.5292 0.05705 2.47076 2.10981
0.90954 0.11705 2.52596 2.19339 0.90557 0.11695 2.47985 2.12423 0.90593 0.11696 2.48067 2.12440
1.18258 0.17934 2.53696 2.24611 1.17753 0.17915 2.48915 2.14425 1.17800 0.17918 2.48998 2.14447
1.38305 0.24271 2.54853 2.30832 1.37717 0.24245 2.49748 2.16672 1.37770 0.24249 2.49833 2.16702
1.53272 0.30560 2.56066 2.38127 1.52613 0.30525 2.50472 2.18953 1.52671 0.30532 2.50558 2.18992
1.64618 0.36645 2.57334 2.46637 1.63897 0.36598 2.51241 2.21701 1.63959 0.36607 2.51329 2.21752
1.73338 0.42395 2.58654 2.56517 1.72558 0.42328 2.52053 2.24970 1.72624 0.42341 2.52143 2.25035
1.80120 0.47719 2.60026 2.67934 1.79283 0.47622 2.52908 2.28817 1.79351 0.47638 2.52999 2.28900
1.86714 0.53812 2.61446 2.81074 1.84557 0.52425 2.53804 2.33306 1.84626 0.52444 2.53897 2.33410
1.93159 0.60873 2.62914 2.96134 1.89720 0.57812 2.54739 2.38506 1.89791 0.57835 2.54834 2.38637
1.99500 0.69164 2.64428 3.13321 1.94797 0.63909 2.55712 2.44496 1.94870 0.63937 2.55809 2.44657
2.05777 0.79024 2.65988 3.32853 1.99813 0.70880 2.56722 2.51361 1.99888 0.70914 2.56820 2.51557
2.12027 0.90865 2.67591 3.54947 2.04792 0.78923 2.57767 2.59191 2.04870 0.78965 2.57867 2.59429
2.18275 1.05185 2.69236 3.79819 2.09754 0.88273 2.58846 2.68088 2.09835 0.88326 2.58948 2.68373
2.24535 1.22539 2.70921 4.07666 2.14715 0.99207 2.59958 2.78156 2.14798 0.99273 2.60061 2.78496
2.30797 1.43402 2.72643 4.38662 2.19687 1.12045 2.61101 2.89513 2.19772 1.12127 2.61207 2.89913
2.36964 1.67491 2.74400 4.72938 2.24675 1.27138 2.62274 3.02277 2.24764 1.27241 2.62382 3.02747
2.41545 1.86645 2.29678 1.44814 2.63476 3.16578 2.29770 1.44943 2.63587 3.17125
2.44356 1.96568 2.34669 1.65178 2.64707 3.32545 2.34764 1.65335 2.64820 3.33178
2.46019 1.99730 2.39529 1.87305 2.65965 3.50312 2.39625 1.87481 2.66080 3.51040
2.47527 2.02496 2.43010 2.03120 2.67250 3.70010 2.43103 2.03270 2.67367 3.70841
2.48996 2.06148 2.44967 2.09597 2.68559 3.91762 2.45050 2.09667 2.68679 3.92705
2.50353 2.10408 2.46017 2.10341 2.69893 4.15685 2.46096 2.10365 2.70015 4.16748
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Figure 11: Nonlinear equilibrium curves (at points A, B and C depicted in Fig. 9) of the open-ended
isotropic cylindrical shell subjected to pull-out point loads compared with the reference solution given
in Sze et al. [61].
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Furthermore, to better understand the kinematic evolution of the large-deflection response of the
open-ended cylindrical shell subjected to pull-out point loads, six characteristic deformed configurations
at equilibrium states are portrayed in Fig. 12. Note that only the semi-cylindrical shells are displayed
and its initial undeformed frameworks are also illustrated simultaneously in Fig. 12.

Figure 12: Some deformed configurations of the open-ended cylindrical shell subjected to pull-out point
loads P for six equilibrium states: (a) uz(A) = 1.3772, P/104 = 0.24; (b) uz(A) = 1.7256, P/104 = 0.42;
(c) uz(A) = 1.9480, P/104 = 0.64; (d) uz(A) = 2.0975, P/104 = 0.88; (e) uz(A) = 2.2968, P/104 = 1.45;
(f) uz(A) = 2.4700, P/104 = 2.11. Note that only the semi-cylindrical shells are displayed and their
initial undeformed frameworks are also shown.

5.4 Hinged cylindrical panel under point load

The next example considered here is a hinged elastic cylindrical shallow panel subjected to a central
pinching force P , as shown in Fig. 13. This is a well-known benchmark problem and particularly popular
due to the snapping behaviors, which means that the tangential global stiffness matrices become singular
at some intermediate state. The problem has been computed by [24, 59, 61, 63, 64]. It should be
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Figure 13: Schematic diagram of boundary conditions and loading states for a hinged isotropic cylindrical
shallow panel under the point load P .

emphasized again that the path-following Newton-Raphson method based on the arc-length constraint
is used to follow the nonlinear path and capture the limit points corresponding to the snap-through or
snap-back phenomenon. The material properties of the isotropic cylindrical panel EY = 3102.75 N/mm2

and ν = 0.3 have been adopted with the geometrical data being L = 508 mm, R = 2540 mm, θ = 0.1 rad
and two different shell thicknesses h = 12.7 mm and h = 6.35 mm corresponding to moderately thick
and thin shells. The panel is hinged at edges α = ±Rθ satisfying uα = uβ = uz = 0 at the mid-line
z = 0 and free at edges β = 0, L. The point load P is applied at the point C (α = 0, β = L/2, z = h/2).
The edge conditions and loading state are shown in Fig. 13. The symmetric character enables to take
a quarter of the cylindrical panel (see the shaded area in Fig. 13) as the computational domain. Thus,
the symmetric boundary conditions at α = 0 and β = L/2 fulfill uα = 0 and uβ = 0, respectively.
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Figure 14: Convergence analysis of nonlinear equilibrium curves for the hinged isotropic cylindrical
shallow panel under the point load compared with the reference solution provided in Sze et al. [61]: (a)
12.7 mm; (b) 6.35 mm.

Based on the present geometrically nonlinear CUF shell models (i.e., two in-plane mesh elements
5×5Q9 and 10×10Q9 as well as one quadratic (LD2) Lagrange polynomial are employed), the nonlinear
equilibrium curves, providing the variations of the transverse deflection uz(C) at the central point with
the central pinching force P , are illustrated in Figs. 14(a) and 14(b) for the hinged cylindrical panel
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with thicknesses h = 12.7 mm and h = 6.35 mm, respectively. Adopting the 16 × 16 and 24 × 24 S4R
shell elements as well as the Riks solution method in the commercial code ABAQUS, Sze et al. [61] also
calculated the load-deflection curves of the cylindrical shallow panels with two thicknesses h = 12.7 mm
and h = 6.35 mm, whose numerical results are exploited here in Fig. 14 for comparison purposes. It
is rather clear that the present results shown in Fig. 14 obtained by the 10 × 10Q9 + 1LD2 CUF shell
model are in complete agreement with those reported in Sze et al. [61] for the two shell thicknesses.
Interestingly, the moderately thick cylindrical panel exhibits a limit point with the tangential matrix
becoming singular (see Fig. 14(a)) and beyond the limit point, the nonlinear response of the panel will
be unstable with a snap-through behavior, whereas the thinner panel displays a complex equilibrium
path with not only horizontal but also vertical tangents with 0◦ and 90◦, which correspond to the snap-
through and snap-back phenomena, respectively. Similar to the previous examples, for the 5 × 5Q9
and 10 × 10Q9 + 1LD2 CUF shell models, Table 6 summarize the equilibrium points of the nonlinear
response of the hinged cylindrical panel under point load with the moderately thick (h = 12.7 mm) and
thin (h = 6.35 mm) thicknesses.

Table 6: Equilibrium points (uz(C), P ) of nonlinear equilibrium curves of the hinged isotropic cylindrical
shallow panel under point load based on geometrically nonlinear CUF shell models with two different
in-plane mesh numbers. Note that the results are shown for both 12.7 mm and 6.35 mm thick cylindrical
panels, and uz(C) and P are expressed in mm and kN.

Mesh number + Expansion order (DOFs)

5× 5Q9 + 1LD2 (1089) 10× 10Q9 + 1LD2 (3969)

uz(C) P uz(C) P uz(C) P uz(C) P uz(C) P uz(C) P

(a) 12.7 mm moderately thick cylindrical panel

0.49422 0.19417 8.93350 2.14701 20.7310 0.58999 0.50964 0.19408 7.98502 2.02347 15.5031 1.38060
1.01929 0.39007 9.80375 2.20036 23.0090 0.94794 1.03809 0.38537 8.68809 2.09874 16.0075 1.17937
1.57634 0.58645 10.6752 2.21947 25.8366 1.77417 1.58540 0.57303 9.39238 2.15535 16.7547 0.91005
2.16634 0.78188 11.5364 2.19959 29.2210 3.29606 2.15150 0.75614 10.0937 2.19155 17.6665 0.68139
2.79007 0.97472 12.3746 2.13620 33.1598 5.83540 2.73615 0.93377 10.7872 2.20551 18.8512 0.54275
3.44800 1.16312 13.1769 2.02573 3.33897 1.10490 11.4677 2.19541 20.3947 0.55631
4.14019 1.34498 13.9337 1.86665 3.95939 1.26846 12.1294 2.15959 21.9415 0.73051
4.86623 1.51797 14.6441 1.66090 4.59658 1.42333 12.7666 2.09661 23.7841 1.10805
5.62504 1.67945 15.3244 1.41586 5.24947 1.56834 13.3744 2.00560 25.9316 1.75805
6.41474 1.82652 16.0184 1.14671 5.91669 1.70223 13.9493 1.88649 28.3883 2.76964
7.23242 1.95594 17.1093 0.79560 6.59650 1.82367 14.4912 1.74041 31.1565 4.25732
8.07390 2.06409 18.6028 0.56003 7.28681 1.93125 15.0051 1.57015

(b) 6.35 mm thin cylindrical panel

1.53098 0.14062 16.6499 0.21722 17.5801 -0.37722 1.61952 0.13978 16.8069 0.18385 17.4074 -0.37414
3.21266 0.26088 16.8009 0.07590 18.3942 -0.36376 3.37952 0.25796 16.8038 -0.06282 18.1195 -0.36211
5.02749 0.36168 16.6132 -0.03845 19.3716 -0.33917 5.25390 0.35638 16.2702 -0.14414 18.9720 -0.34204
6.94749 0.44629 16.0812 -0.12070 20.5368 -0.29734 7.20918 0.43898 15.5468 -0.19652 19.9894 -0.30974
8.93548 0.51703 15.3709 -0.17254 21.9141 -0.22828 8.72831 0.49289 14.9532 -0.23533 21.1975 -0.25843
10.4636 0.56036 14.7941 -0.21085 23.5251 -0.11608 10.2941 0.53941 14.6401 -0.27287 22.6214 -0.17729
12.0087 0.59077 14.5318 -0.24939 25.3872 0.06337 11.8672 0.57361 14.5040 -0.30799 24.2823 -0.04979
13.1509 0.59902 14.4938 -0.28668 27.5144 0.34495 13.0249 0.58533 14.4895 -0.33728 26.1963 0.14815
13.9812 0.59157 14.5707 -0.31867 29.9225 0.77773 14.1136 0.57633 14.7440 -0.36437 28.3767 0.45027
14.7490 0.56595 14.8348 -0.35064 32.6338 1.43074 15.0372 0.53591 15.2349 -0.37829 30.8396 0.90332
15.3986 0.51634 15.4478 -0.37488 35.6811 2.40183 15.5942 0.48014 15.7870 -0.38351 33.6089 1.57267
15.9137 0.44041 16.1807 -0.38375 39.1086 3.83050 16.0600 0.40163 16.3221 -0.38364 36.7188 2.55064
16.3258 0.33978 16.9068 -0.38329 42.9723 5.91606 16.4659 0.30227 16.8143 -0.38076 40.2150 3.96824

Moreover, to clearly demonstrate the kinematic evolution of the nonlinear response of the cylindrical
shallow panel subjected to the point load, some characteristic deformed configurations at three notable
equilibrium states for the thickness h = 12.7 mm are depicted in Fig. 15, where the initial undeformed
framework is separately illustrated in Fig. 15(a) for comparison. As we can see, despite the high non-
linearity for this problem, the maximum deflection is much smaller than the overall dimensions of the
panel, i.e., no large displacements and rotations occur during the nonlinear response. Therefore, the
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S4R shell elements in ABAQUS based on the FSDT and the von Kármán assumption can provide good
approximations for this example with moderate rotations. Note that this classical problem is merely used
for the first-step effective verification of the proposed CUF shell model and it cannot immediately reflect
the superior advantages of the full geometrically nonlinear unified shell model that will be discussed in
Sec. 6.

Figure 15: Some deformed configurations of the hinged cylindrical shallow panel under the point load
P for three equilibrium states: (b) uz(C) = 7.2868 mm, P = 1.93 kN; (c) uz(C) = 13.3744 mm,
P = 2.01 kN; (d) uz(C) = 18.8512 mm, P = 0.54 kN. The initial undeformed framework of the panel is
also shown in Fig. 15(a).

5.5 Beam-like cylindrical arch

As a finial example, an elastic beam-like cylindrical shallow arch subjected to a point load P at the
mid-span (see Fig. 16) is studied. The adopted material properties of the isotropic cylindrical arch
are the same as those in Subsec. 5.4. The geometrical sizes are equal to R = 2540 mm, θ = 0.1 rad,
h = 12.7 mm and b = 10.16 mm, where b is the width of the beam-like cylindrical arch. Two kinds
of surpport conditions at edges α = 0 and 2Rθ will be considered: (1) the hinged boundary conditions
satisfying uα = uβ = uz = 0 at the mid-line z = 0 and (2) the fixed boundary conditions fulfilling
uα = uβ = uz = 0 at the whole cross section. The point load P is applied at the point C (α = Rθ,
β = b/2, z = h/2). The boundary conditions and loading state are depicted in Fig. 16.
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Figure 16: Schematic diagram of boundary conditions and loading states for a beam-like isotropic cylin-
drical arch under the point load P .
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After the convergence analysis, the 20 × 1Q9 +1LD2 CUF shell model is employed to compute the
nonlinear equilibrium curves for the hinged and fixed beam-like cylindrical arches under the point load,
as shown in Fig. 17 that illustrates the transverse deflection uz(C) at the central point as functions of
the central point force P . As we can see, the nonlinear response of the hinged beam-like arch exhibits a
snap-through behavior at some intermediate state, similar to the previous results in Subsec. 5.4, whereas
that of the fixed beam-like arch demonstrates a monotonically increasing variation without the snap-
through phenomenon. This difference is believed to be due to the fact that, compared with the hinged
arch, the fixed one cannot withstand the rotations at both ends, which is also clearly shown in Fig. 18.
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Figure 17: Nonlinear equilibrium curves for the beam-like isotropic cylindrical arch under point load
with the hinged and fixed boundary conditions.

For the hinged and fixed beam-like cylindrical arches under a central point load, Table 7 tabulates
the equilibrium points of their nonlinear responses based on the 20 × 1Q9 + 1LD2 CUF shell model
for the future reference. Further, the kinematic evolution of some notable deformed configurations at
equilibrium states are depicted in Fig. 18 for both the hinged and fixed beam-like cylindrical arches
subjected to the central point load, where the initial undeformed frameworkes are also illustrated in
Fig. 18 for comparison purposes.

Table 7: Equilibrium points (uz(C), P ) of nonlinear equilibrium curves of the beam-like isotropic cylin-
drical arch under point load with the hinged and fixed boundary conditions based on the geometrically
nonlinear CUF shell model. Note that uz(C) and P are expressed in mm and N.

Mesh number + Expansion order (DOFs) = 20× 1Q9 + 1LD2 (1107)

Hinged Fixed

uz(C) P uz(C) P uz(C) P uz(C) P uz(C) P uz(C) P

0.31761 3.88570 4.14844 35.0658 9.38396 40.5780 17.2315 12.2876 0.26143 3.92604 5.42311 57.1081
0.64616 7.67893 4.60393 37.0457 9.99592 39.1866 18.3772 9.78003 0.55464 8.16041 6.33452 62.9068
0.98599 11.3651 5.07381 38.7482 10.6253 37.4343 19.5787 8.83521 0.88343 12.7027 7.35311 68.5950
1.33740 14.9292 5.55836 40.1562 11.2727 35.3365 20.8432 10.1150 1.25207 17.5452 8.49082 74.2171
1.70072 18.3551 6.05786 41.2533 11.9388 32.9179 22.1774 14.4078 1.66532 22.6714 9.76084 79.9365
2.07626 21.6267 6.57257 42.0244 12.6245 30.2149 23.5872 22.6475 2.12846 28.0547 11.1779 86.1090
2.46435 24.7271 7.10277 42.4553 13.3309 27.2778 25.0773 35.9368 2.64740 33.6567 13.3174 96.2282
2.86530 27.6389 7.64872 42.5342 14.0594 24.1745 26.6517 55.5769 3.22867 39.4273 15.6986
3.27942 30.3445 8.21071 42.2514 15.0790 19.8910 3.87954 45.3053 18.3517
3.70703 32.8261 8.78901 41.6002 16.1344 15.8080 4.60806 51.2220 21.3137
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6 Conclusions

In this work a unified formulation of full geometrically nonlinear refined shell theory is developed based
on the Carrera Unified Formulation (CUF) and the total Lagrangian approach. In particular, the
linear and nonlinear differential operator matrices in the geometrical relation is obtained explicitly in
the orthogonal parallel curvilinear coordinate system via the tensor calculus. The fundamental nuclei
(FNs) of the secant and tangent stiffness matrices of the shell element with geometrical nonlinearities
are derived in a unified way owing to the scalable characteristics of CUF. Some benchmark numerical
assessments are conducted by utilizing the path-following Newton-Raphson linearization scheme along
with the arc-length constraint, which is especially suitable for the nonlinear analysis of post-buckling
and snapping phenomena. The convergence analyses of these popular benchmark problems are executed
for different in-plane mesh numbers and various expansion orders of Lagrange functions in the thickness
direction. Sufficient data points for different kinematic assumptions are tabulated in numerical format to
accurately reconstruct the relevant load-deflection curves and to provide the reference solutions for future
comparisons of the new finite element models. The excellent agreement with the numerical solutions
from the literatures manifests the validation and the enhanced accuracy of the proposed CUF shell model
to predict the large-deflection, post-buckling, snap-through and snap-back nonlinear responses of flexible
shell structures.
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Figure 18: Some deformed configurations of the beam-like cylindrical arch under the point load P
with different boundary conditions: (a) hinged (loading forces P = 42.02, 12.29 and 55.58 N); (b) fixed
(loading forces P = 51.22, 79.94 and 172.00 N). The initial undeformed frameworks are also depicted in
Figs. 18(a) and 18(b).

In addition to the accurate predictions of the nonlinear responses of flexible structures, the present
full geometrically nonlinear refined shell model possesses some other advantages: (i) The nonlinear
governing equations of the CUF shell models are expressed by the fundamental nuclei and can be obtained
in a unified and general manner, which enables to automatically adjust the model efficiency/efficacy
depending on the complexity of the problem under consideration; (ii) In principle, the nonlinear higer-
order CUF model can accurately predict the nonlinear internal stress states of composite structures [47];
(iii) Owing to the scalable behaviors, the full geometrically nonlinear CUF model can be conveniently
harnessed to assess the effectiveness of different geometrically nonlinear strain approximations [47]. These
aspects are not available for other analytical and numerical methods in the literature. The analyses of
points (ii) and (iii) for anisotropic composite shell structrues are now under way.
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