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Abstract—This paper presents a preliminary version of a
probabilistic model for the uncertainty quantification of complex
electronic systems resulting from the combination of the least-
squares support vector machine (LS-SVM) and the Gaussian
process (GP) regression. The proposed model, trained with a
limited set of training pairs provided by a set of full-wave
expensive simulations, is adopted for the prediction of the effi-
ciency of an integrated voltage regulator (IVR) with 8 uniformly
distributed random parameters. The accuracy and the feasibility
of the proposed model have been investigated by comparing the
model predictions and its confidence intervals with the results of
a Monte Carlo (MC) full-wave simulation of the device.

Index Terms—IVR, Machine Learning, least-squares support
vector machine, Gaussian process, error bounds.

I. INTRODUCTION

In the last decades, several techniques have been presented
for the efficient analysis of the responses of complex electron-
ics systems affected by uncertain stochastic parameters [1]-
[5]. The system uncertainties are usually related to manufactur-
ing processes, tolerances and uncertain device characteristics,
which unavoidably affect the system responses.

Polynomial chaos (PC) expansion [1], [2] and recently
support vector machine (SVM) [3] and least-squares support
vector machine (LS-SVM) regressions [4], [5] can be con-
sidered as reference techniques in the field of uncertainty
quantification, since they allow building accurate and fast-to-
evaluate surrogate model of the system output as a function
of its stochastic parameters. The surrogate model is built
from a limited set of training samples generated by the full
computational model, thus providing an effective and viable
alternative to the traditional Monte Carlo (MC) simulation [6].

However, all the above mentioned techniques provide a
deterministic model. In the sense that the surrogate model
can be seen as a function providing for any configuration of
the input parameters of the system a prediction of the system
output without any information on the model uncertainty (i.e.,
the confidence intervals (CI)). In fact, the degree of confidence
of the model prediction is usually known only for the training
samples, but it is completely unknown when the model is
evaluated for a generic point in the parameters space.

The Gaussian process (GP) regression [7]-[10], also known
as Kriging model, can be seen as a viable solution to the
above problem. Specifically, the GP regression can be used
to enrich a generic deterministic model by adding the CI to
its predictions, for any configuration of its input parameters,
thus providing the user with a probabilistic model. It is
important to remark that the proposed procedure works under
the assumption that the error of the deterministic model on
the training sample is different from zero. This means that the
deterministic model can be estimated from a regression, but
not from an interpolation of the training data.

In this work, we are presenting a preliminary probabilistic
model based on the combination of two techniques: the LS-
SVM and the GP regressions. The proposed model is applied
in order to predict the efficiency of an integrated voltage reg-
ulator (IVR) as a function of 8 uniformly distributed uncertain
parameters. The accuracy of the proposed probabilistic model
is investigated by comparing the model prediction and its CI
with the resulting provided by a MC simulation of the above
electronic system in Ansys HFSS.

II. GP REGRESSION

Let us considering the problem of approximating a given set
of L train pairs {(x;,y;)}~_, provided by a full computational
model ie., y; = M(x;) as a function of its stochastic
parameter x; € P with P C RY, via the following GP
regression [7]-[10]:

M(x) ~ p(x) +e(x) (1)

where p(x) is a deterministic function representing the mean,
also called frend, of the GP and £(x) ~ GP(0, k(x,x')) is a
Gaussian process GP with zero mean and covariance k(x, x’)
approximating the deviation of the deterministic model from
the actual function M, for any configuration of the parameters
X. A GP can be consider as an extension of the concept of
multivariate Gaussian distributions to infinite dimensionality
which returns for any arbitrary value of x., a prediction of the
mean value p5, and the variance 0,2(* of a normal distribution.

The covariance function k(x,x’) of the GP specifies the
correlation between pairs of random variables under the as-



sumption that M is smooth, this means that points with similar
predictor values are aspected to have close response values.
The covariance function can be defined by several kernels,
however, hereafter in this paper we will considered the ARD
Matern 5/2 kernel function which writes:

k(x,x') = JJ% (1 +Vbr + 27’2> exp(—V5r),  (2)

with,
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where o¢ and o, for m =1,...,d are the hyper-parameters
of the kernel estimated via an optimization procedure e.g., by
minimizing the negative log marginal likelihood of the GP [7].

Different from the standard GP regression, hereafter in
this work, we are assuming that the trend u(x) of the GP
in (1) is a known function previously estimated via a generic
regression technique. In the particular case in which the GP
regression uses a fixed mean function, the hyper-parameters
of the covariance function in (2) can be easily estimated by
considering as training samples, the distance between the mean
function and the actual responses of the full computational
model as follows:

gi:M(Xi)_M(Xi)7 fOI"L'Zl,...,L. (4)

It is important to remark that the proposed approach does
not work with the interpolation methods for which the error
on the training sample is exactly zero.

Once the optimal hyper-parameters of the covariance func-
tion in (2) have been estimated, as an example via the GP
regression tool of MATLAB, the prediction of the probabilistic
model at a new point x, € P, knowing the training pairs
{(xi, 7))}, can be approximated by a Gaussian random
variable M (x,) ~ N (px,,02 ) with mean y, and variance
o2

fix, = (%) + kK'Y
0% =k — kK kI

X

(52)
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where iy, and 0,2(* are the estimation of the mean and the
variance of the normal distribution associated to the GP in (1),
y = [01,-..,9z]7, K € REXL is the correlation matrix given
by Kij = k(XZ‘,Xj), k, = [k(X*,X1>, ey k(X*,XL)] € RIxL
and Ky, = k(Xy, X4 ).

The prediction mean py, is used instead of deterministic
model £(x), whereas the variance o2 _ gives a local error indi-
cator about its precision. The resulting probabilistic interpreta-
tion of the model realization allows estimating the confidence
bounds on the model prediction for a given confidence interval
of 100(1 — a))% as follows:

(x. = 21-34/02.) < M(x) < (. +21-51/02.)

(6)

where z denotes the inverse of the Gaussian cumulative
distribution function evaluated at 1 — %

Fig. 1. Graphical interpretation of the LS-SVM regression.

III. DETERMINISTIC MODEL VIA LS-SVM REGRESSION

The LS-SVM regression allows building accurate and com-
pact surrogate models of the response of a generic high-
dimensional nonlinear function M starting from a limited
number of training samples [4]. Therefore, it can be seen as
a good candidate to approximate the trend u(x) of the GP
in (1). Given a set of training samples {(x;,y;)}% ,, provided
by a full computational model M as a function of its parameter
x; € P with P C RY, a generic nonlinear LS-SVM regression
in the dual space can be written as:

L
Mpssvar(x) =Y oK (xi, %) + b %)
i=1

where a; € R are scalar coefficients, K(-,-) : R? — R is the
kernel function and b € R is the bias term.

The goal of the LS-SVM regression is to minimize the error
e; computed between the model prediction and the training
samples in the L2 norm (see Fig. 1 for additional detail). The
above constraint, along with the one on the model flatness,
allows estimating the parameters «; and b via the solution of
the following linear system:

Sl S M

where a« = [ag,...,ar]t, y = [y1,...,yc]t, 1T =
[1,...,1] € RY™*L, T € REXL s the identity matrix and © €
REXL is the kernel matrix for which the element Qi =
K(x;,x;) forany 4,5 =1,..., L.

The most common kernels used in both the SVM and the

LS-SVM regression are listed below:
o linear: K(x;,x) = x/x;
« polynomial of order ¢: K(x;,x) = (1 +x/x)9;
o Gaussian radial basis function (RBF): K(x;,x) =
exp (—||x; — x||?/20?).
The LS-SVM regression is already implemented in MAT-
LAB within LS-SVMLab Toolbox version 1.8 [11].

IV. APPLICATION EXAMPLE

The combination of the GP and the LS-SVM regression
presented in Sec. II and III has been used to develop the
probabilistic model in (1) with the aim of estimating the effi-
ciency of the IVR converter shown in Fig. 2, as a function of
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Fig. 2. Tllustration of the two-chip SiP IVR architecture considered in Sec. IV.
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Fig. 3. Top view (panel (a)) and side view (panel (b)) of the geometrical
parameters of a solenoidal inductor with magnetic core [9].

8 uncertain geometrical parameters of its embedded inductor.
The considered architecture consists of a system-in-package
(SiP) solution including two chips (buck converter and low-
dropout (LDO)/load) with an integrated inductor on an organic
package [12]. The inductor is a solenoid with Nickel-Zinc
(NiZn) ferrite magnetic core as shown in Fig. 3(a) and (b).

The effect of the tolerances of the inductor geometrical
parameters on the IVR efficiency has been characterized via a
MC simulation based on the full-wave solver of Ansys HFSS.
Specifically, 8 geometrical parameters have been considered
as uniform random variables, as shown in Table I, whereas
the number of windings and the magnetic core thickness ratio
of the inductor have been fixed to N, = 6 and ¢,,, = 0.9 [2].

The probabilistic model in (1) has been trained from L =
200 samples drawn from a latin hypercube sampling scheme
and resulting from a set of full-wave simulations. The de-
terministic model Mpgsyas in (7) has been estimated from
the available training samples via the LS-SVM regression
with RBF kernel. Then, the obatained model has been used
to train a GP regression with fixed mean function (i.e.,
w(x) = Mpssym(x)) by using as covariance the ARD
Matern 5/2 kernel function in (2). The hyper-parameters of the
covariance function have been estimated based on the training
pairs {(x;,9;)} defined in (4).

First of all, the accuracy of the deterministic model has been

TABLE I
UNCERTAIN GEOMETRICAL PARAMETERS OF THE SOLENOIDAL
INDUCTOR IN FIG- 3.

Uniform random variables Unit U [Min; Maz]
Gap between windings g mil U [4; 6]
Size of via Sv pm U [80;120]
Copper Trace Width Wy mil Ui9;11]
Copper Thickness Bottom teb pm U [64; 96]
Copper Thickness Top tet pm U [64; 96]
Dielectric Thickness tq pm U [180; 220]
Dielectric Width wgq mil U [59.4;60.6]
Magnetic Core Width offset ~ Aw,,  mil U9;11]
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Fig. 4. Scatter plot (10000 samples) comparing the IVR efficiency calculated
via a MC simulation in Ansys with the prediction of the probabilistic model
in (1).

investigated via the scatter plot in Fig. 4. The plot compares
the IVR efficiency estimated by the mean of the GP via (5a),
with the result calculated through a MC simulation with 10000
samples. The plot highlights the good accuracy of the model as
the samples are very close to the dashed line, which represents
the perfect agreement between the model and the reference
samples.

Then, the full probabilistic model is validated in Fig. 5
by comparing the efficiency of the IVR obtained from the
Ansys simulations for 15 realizations (black crosses) randomly
selected among the results of the MC simulation, with the
mean values (red dots) and the 95% CI (horizontal blue
bars) predicted by the proposed probabilistic models which
combine the GP and the LS-SVM regression with RBF kernel.
The results clearly highlight the capability of the model of
accurately predicting the actual efficiency of the IVR, since
most of the simulation results lay between the 95% CI given
by the proposed model.

As a further validation, in Fig. 6 (top panel) the probability
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Fig. 5. Comparison between the results of 15 Ansys simulations (black
crosses) randomly chosen among the 10000 MC samples with the correspond-
ing main value (red dots) and 95% CI (horizontal blue bars) estimated via
the proposed probabilistic model.

density functions (PDFs) provided by the mean values of
the GP via (5a) are compared with the histogram of 10000
MC samples. We see that the main variability of the IVR
efficiency is well captured by the model. Also, Fig. 6 (bottom
panel) compares the bounds provided by a MC simulation
with 10000 samples (black crosses) with the one predicted by
both the mean value (red dots) and the CI (dashed gray lines)
of the probabilistic model. The results clearly highlight the
capability of the proposed probabilistic model to provide more
reliable bounds of the system responses, thus proving a better
estimation of the minimum and maximum IVR efficiency for
the considered realizations. In terms of computational cost, the
computational time required to generate the L = 200 training
pairs is 3 h 27 min. Once the probabilistic model has been
built, it allows predicting the IVR efficiency for 10000 samples
in less than 1s, while 10000 MC simulations required about
7 days.

V. CONCLUSIONS

This paper presented a probabilistic model for the prediction
of the efficiency of an IVR as a function of 8 uncertain
parameters related to the geometry of its embedded inductor.
The proposed probabilistic model has been built from a limited
set of training samples provided by a set of deterministic sim-
ulation in Ansys HFSS, based on a latin hypercube sampling
scheme. The probabilistic model combines the LS-SVM and
the GP regression. It allows estimating the IVR efficiency
for any configuration of the inductor geometrical parameters,
also providing an estimation of the model uncertainty, such
as the CI of the model prediction. The accuracy of the
proposed probabilistic model has been proven both from the
deterministic and the statistical perspective by comparing its
prediction with the results of a MC simulations.
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Fig. 6. Top panel: PDFs of the IVR efficiency obtained from the mean values
of the probabilist model (red bins) compared with the histogram of 10000 MC
samples (black bins). Bottom panel: comparison among the bound predicted
by the MC simulation (black crosses), the mean values of the GP (red dots)
and the mean values with their CI (gray dashed lines).
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