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Abstract: Envelope demodulation of vibration signals is surely one of the most successful methods
of analysis for highlighting diagnostic information of rolling element bearings incipient faults. From
a mathematical perspective, the selection of a proper demodulation band can be regarded as an
optimization problem involving a utility function to assess the demodulation performance in a
particular band and a scheme to move within the search space of all the possible frequency bands
{f, ∆f} (center frequency and band size) towards the optimal one. In most of cases, kurtosis-based
indices are used to select the proper demodulation band. Nevertheless, to overcome the lack of
robustness to non-Gaussian noise, different utility functions can be found in the literature. One of
these is the kurtosis of the unbiased autocorrelation of the squared envelope of the filtered signal
found in the autogram. These heuristics are usually sufficient to highlight the defect spectral lines
in the demodulated signal spectrum (i.e., usually the squared envelope spectrum (SES)), enabling
bearings diagnostics. Nevertheless, it is not always the case. In this work, then, posteriori band
indicators based on SES defect spectral lines are proposed to assess the general envelope demodula-
tion performance and the goodness of traditional indicators. The Case Western Reserve University
bearing dataset is used as a test case.

Keywords: bearings diagnostics; envelope demodulation; kurtogram; autogram; protrugram;
sparsogram; infogram; a posteriori band indicators

1. Introduction

Rolling element bearings (REBs) are fundamental components of most power trans-
mission systems involving rotating shafts, and as such, it is also important that they are
monitored so as to avoid catastrophic accidents. An effective way that emerged, among the
others, for the diagnostics of REBs is vibration monitoring [1].

In fact, vibration signals exhibit damage-characteristic signatures: in the time domain,
series of transients (i.e., impulse responses) could be found to repeat at specific defect
frequencies that depended on the defect location (i.e., the rolling element, the outer or
inner rings or the cage) [2]. Unfortunately, such sharp and short duration transients are
usually covered by background noise or by other common contributions to the overall
machine vibration signature (i.e., gears). Incipient damages signatures are usually so
weak that they are not detectable even in the frequency domain spectra. Nevertheless,
when the characteristic repetitive transients excite high-frequency resonances within the
transmission path, an envelope demodulation performed in the resonance frequency band
can enhance the signal-to-noise ratio of the bearing-characteristic signal. This technique is
known as the high-frequency resonance technique [3] or envelope demodulation.
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The selection of an appropriate demodulation band, usually called the informative
frequency band (IFB), is then a fundamental issue for finding the best squared envelope
spectrum (SES). From a mathematical perspective, the selection of such an IFB can be
regarded as an optimization problem involving a utility function to assess the demodulation
performance in a particular band and a scheme to move within the search space of all the
possible frequency bands (f,∆f) (center frequency and band size) towards the optimal one.

Milestones for the band selection task are the spectral kurtosis (SK) [4] and the kur-
togram [5], which uses as indicator (i.e., utility function) the kurtosis of the coefficients at
the output of quasi-analytic filters with different central frequencies CF and bandwidths
BF. This idea led to the fast kurtogram (FK) algorithm [6], based on the computation of
the utility function over a discrete paving of the (f,∆f) plane built with a multirate filter
bank. The consequent fixed discrete partitioning is computationally very efficient, but
could sometimes be limiting. Hence, a more flexible band selection was proposed in [7]
using a genetic algorithm to directly optimize the Finite Impulse Response (FIR) filter
parameters against a kurtosis-based utility function. To enhance band separation on the
contrary, wavelet packet transform (WPT) was proposed in [8].

The main limit of the kurtosis, in any event, was recognized to be its vulnerability
to non-Gaussian noise and its tendency to decrease when the transient’s repetition rate
increases [9]. Several different variations were then proposed. In [10], for example, a
frequency-domain “protrusion” was introduced in the protrugram. In this case the utility
function corresponds to the kurtosis of the amplitudes of the envelope spectrum of the
demodulated signal. Likewise, the kurtosis of the power spectrum of the envelope of the
wavelet packet transform (WPT) filtered signal was proposed in [11]. Nevertheless, the
protrugram, as the kurtogram, is the maximum for a single harmonic in the SES, so it is
still not ideal for the detection of repetitive transients.

The sparsogram defined in [12] proposes, on the contrary, a measure of spectral
sparsity (i.e., the ratio of L2 and L1 norm of the squared envelope spectrum (SES)) was
used to define the sparsogram. An in-depth study of spectral L2/L1 norm can be found
in [13] to explain the closeness of SK with spectral squared L2/L1 norm and with spectral
correlation (SC) [14], a key approach of cyclic spectral analysis (CSA) [15] together with
the cyclic modulation spectrum (CMS) [16], later generalized into the Fast-SC [17], a fast
estimator of SC.

Other indices, derived from different fields, can be found in the literature to improve
the kurtogram. The Gini index, for example, originally meant to produce a measure of
wealth inequality (i.e., sparseness, similarly to the idea of spectral L2/L1 norm [18]), was
derived from econometrics by [19] to improve the resistance to noisy random impulses.

Derived from physics, a characterization of both time- and frequency-domain im-
pulsiveness can be found in the infogram [20], based on the negentropy of the Squared
Envelope and on the negentropy of the Squared Envelope Spectrum, averaged to character-
ize both the impulsive and cyclostationary signatures of the repetitive transients.

A modification of the traditional kurtosis was proposed in [21], where the correlated
kurtosis (CK) was proved to improve the sensitivity to the repetitive impulses typical of
the bearing signature [22]. This technique is not completely blind, but requires the use of
the periodicity of the impulses as an input.

Other targeted methods which require assumptions about the periodicity of fault
symptoms and exploit the relationship between cyclostationarity and envelope analysis are
the envelope-based cyclic periodogram [23] and the log-cycligram [24], which was proved
to be robust to highly impulsive noise [25].

A method which is blind but takes advantage of the cyclostationarity of the signal
in a different way is the autogram. In [26], the kurtosis is not computed on the squared
envelope itself, but on the unbiased autocorrelation of the squared envelope of the filtered
signal. This allows it to overcome the lack of robustness to non-Gaussian noise of the
traditional kurtogram. A computationally more efficient implementation is described
in [27]. An analogous frequency domain approach is proposed in [28] where a modified
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protrugram is found from the computation of the kurtosis of the autocorrelation of the
envelope spectrum.

Given the huge variety of algorithms presented in the literature survey, the present
work sets two goals: to evaluate the general effectiveness of envelope demodulation and
to assess the performance of common band-selection indicators against novel a posteriori
indicators tailored for the purpose. The well-known Case Western Reserve University
bearing dataset will be used as a test case.

2. Methodology and Band Indicators

In this paper, the bearing diagnostics is regarded as an optimization problem based
on the vibration signal x[n], assumed with a null mean value. The goal was to find the
best combination of center frequency and band size (f,∆f) for filtering such a signal before
envelope demodulation so that the damage-characteristic signature is maximized in the
resulting SES.

According to the FK and most of the subsequent 2-D color maps found in the lit-
erature, the (f,∆f) plane is partitioned with a multirate filter bank, so that each part of
the paving has a corresponding filtered signal x{f,∆f}[n] whose envelope Ex{f,∆f}[n] =
|x{f,∆f}[n] + i H(x{f,∆f}[n])| can be easily estimated. Note that i stands for the imagi-
nary unit and H means Hilbert transform. In most of cases, the Squared Envelope
SEx{f,∆f}[n] = (Ex{f∗ ,∆f∗}[n])

2 is actually computed, as this can in principle reduce the
demodulation aliasing due to the cusps in the |sin ϑ| function (i.e., the Fourier basis) [29].
Nevertheless, the optimization is carried out by maximizing a band indicator (i.e., the
kurtosis) over the entire paving so as to find the optimal {f,∆f} = {f*,∆f*}. Finally, the
envelope demodulation is carried out by computing the spectrum of the signal filtered in
the optimal {f*,∆f*} to obtain an envelope spectrum: ESx{f∗ ,∆f∗}[k] = |DFT{SEx{f∗ ,∆f∗}[n]}|
or a squared envelope spectrum: SESx{f∗ ,∆f∗}[k] = |DFT{SEx{f∗ ,∆f∗}[n]}|2, as in most of
situations this improves the signal to noise ratio (SNR) [29].

According to the literature review in Section 1, the main blind band-selection indicators
are reported:

• Spectral kurtosis (kurtogram [4–6]):

K( f , ∆ f ) =
m4{Ex{f,∆f} [n]}

(m2{Ex{f,∆f} [n]})2

mr{y[n]} = 1
N ∑N

n=1(y[n])
r

(1)

where mr{y[n]} represents the rth order moment of a generic discrete signal y[n].
• Protrusion (protrugram [10]):

P( f , ∆ f ) =
m4

{
ESx{f,∆f}[n]

}
(

m2

{
ESx{f,∆f}[n]

})2 (2)

• Spectral L2/L1 sparsity (sparsogram [12]):

L2/L1( f , ∆ f ) =
L2{ESx{f,∆f} [k]}
L1{ESx{f,∆f} [k]}

=

√
∑

K= f s
2

k=1 (ESx{f,∆f} [k])
2

∑
K= f s

2
k=1 |ESx{f,∆f} [k]|

Lr{y[n]} =
(

∑N
n=1(|y[n]|)

r
)1/r

(3)

where Lr{y[n]} is the mathematical definition of the r-norm of a signal y[n].
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• Spectral Gini sparsity (Gini sparsogram [19]):

SGI( f , ∆ f ) = 1− 2 ∑ K= f s
2

k=1

→
ESx{f,∆f}[k]

L1

{
ESx{f,∆f}[k]

}(K− k + 1/2
K

)
(4)

where
→
ESx{f,∆f}[k] is the envelope spectrum ordered from the smallest to the largest value.

• Average negentropy (mean of negentropy and spectral negentropy—infogram [20]):

I( f , ∆ f ) = 1
2 (N( f , ∆ f ) + SN( f , ∆ f )) = 1

2

(
ne
{

SEx{f,∆f}[n]
}
+ ne

{
SESx{f,∆f}[k]

})
ne{y[n]} = 1

N ∑N
n=1

[
y[n]

m1{y[n]}

]
ln
[

y[n]
m1{y[n]}

] (5)

where ne{y[n]} is the generic definition of negentropy of a signal y[n] if the (square of the)
instantaneous energy flow in the signal is interpreted as a probability distribution.
• Kurtosis of the autocorrelation of the envelope (autogram [26,27]):

AK( f , ∆ f ) =
m4{R(Ex{f,∆f} [n])}

(m2{R(Ex{f,∆f} [n])})2

R(y[n])[k] = 1
n−k ∑n−k

t=1 (y[t]−m1{y[n]})(y[t + k]−m1{y[n]})
(6)

where R(y[n])[k] is the definition of the autocorrelation for a signal y[n].
• Kurtosis of the autocorrelation of the envelope spectrum (modified protrugram [28]):

MP( f , ∆ f ) =
m4

{
R
(

ESx{f,∆f}[k]
)}

(
m2

{
R
(

ESx{f,∆f}[k]
)})2 (7)

In order to evaluate the performance of such indices, two targeted a posteriori band in-
dicators are proposed. These require the knowledge of the theoretical bearing-characteristic
frequencies f̂d reported in Equation (8) from [2,30], where BPFO/I indicates the outer or
inner race defect frequency. BSF corresponds to the frequency of a defect on the rolling
element, while FTF points to cage defects.

BPFO = n fr
2

{
1− d

D cos∅
}

BPFI = n fr
2

{
1 + d

D cos∅
}

FTF = fr
2

{
1− d

D cos∅
}

BSF = fr
D
2d

{
1−

(
d
D cos∅

)2
} (8)

where d is the rolling element diameter, D is the mean race diameter, fr is the shaft speed
(relative speed among inner and outer ring), n is the number of rolling elements, and
∅ is the angle of the load from the radial plane. Remembering that variations in the
order of 1–2% from such theoretical values are common in actual bearings due to slips
of the rolling elements, an interval of interest fint for the bearing spectral signature can
be found to range from 0.95 · FTF to 3.05 · BPFI, as it is always wise to account for the
first three harmonics of the defect frequencies due to the intrinsic non-linearities in the
bearing response [29]. If the exact characteristic frequency of interest fd, identified within
the interval fd−int = 0.95· f̂d ÷ 1.05· f̂d (N.B., f̂d is the ideal value), occurs at sample kd, the
proposed a posteriori (i.e., derived after the demodulation [31]) indicators become:

NA( f , ∆ f ) =
ESx{f,∆f}[kd]

max
k∈ fint

ESx{f,∆f}[k]
(9)
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SNR( f , ∆ f ) =
ESx{f,∆f}[kd]

cdf
k∈ fd−int

(
ESx{f,∆f}[k]

)
95%

(10)

where NA stands for normalized amplitude index, SNR means signal to noise ratio, and
cdf

k∈ fd−int
(ESx{f,∆f}[k])95% represents the 95th percentile of the amplitudes of the envelope

spectrum in the range fd−int. The main issue that remains is related to the identifica-
tion of the exact fd in the range fd−int. For this purpose, a sort of stabilization diagram
is proposed in this work. Considering a given demodulation band ∆f, a waterfall of
ESx{f,∆f}[k] /max

k∈ fint
ESx{f,∆f}[k] for increasing center frequencies produces a bispectral map

displaying the demodulated amplitude value against the center frequency of demodulation
(f ) and the spectral content (k). When this bispectral map NA∆f (f, k) is integrated along the
center frequencies axis (i.e., averaged along f ), a peak in the fd−int interval can be used to
highlight the exact characteristic frequency of interest fd, occurring at sample kd. Finally,
NA and SNR (Equations (9) and (10)) can be used to quantify the effectiveness of the
demodulation process itself, as well as the effectiveness of each of the proposed indicators.
In fact, when setting a fixed ∆f, the mean value of NA∆f (f, kd) shows a relation with the
performance of the demodulation: if the value is near to 1, the damage characteristic fre-
quency is the main spectral peak in most of the demodulations. Hence it can be considered
as a demodulation effectiveness:

dE = mean
(

NA∆ f ( f , kd)
)

(11)

Clearly, the smaller the dE value, the weaker the damage signature in the demodulated
spectra and the higher the importance of a good band indicator for the demodulation.
Therefore, to evaluate the goodness of the reported band indicators, a different metric can
be defined. In particular, the optimal demodulation band given a certain band indicator
corresponds to the diad ( f ∗, ∆ f ∗)ind = argmax(indicator( f , ∆ f )). Hence, a second metric
called indicator effectiveness is proposed:

iE =
1
2

NA( f ∗, ∆ f ∗)ind +
1
2

SNR( f ∗, ∆ f ∗)ind/max(SNR( f , ∆ f )) (12)

Note that for the sake of simplicity, in this work a given value for the demodulation
band ∆f will be used, while the center frequency f is increased considering a 50% overlap
for consecutive bands. In particular, ∆f is selected considering that the resulting spectral
content in ESx{f,∆f}[k] is limited by the demodulation band. Hence, this must be large
enough to contain the upper bound of the interval fint (i.e., 3.05 · BPFI). According to
common knowledge [6,10,29], this choice seems to be advisable while not affecting much
the demodulation performance. The main steps of the methodology are summarized in
Figure 1.
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3. Brief Description of the CWRU Bearing Data Center Test Rig

The test rig used to acquire the Case Western Research University (CWRU) dataset con-
sists of a 2 hp Reliance Electric motor driving a shaft, as shown in Figure 2. A torque trans-
ducer and encoder were mounted between the motor and the load (i.e., a dynamometer).
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Figure 2. The CWRU bearing test rig [32,33].

In order to study the response from damaged bearings, faults were seeded by electro-
discharge machining (EDM) on the rolling elements and on the inner and outer races
of the drive- and fan-end bearings (as described in Table 1). These artificial damages
ranged from 0.007 to 0.028 inches (0.18 to 0.71 mm) in diameter size. Three monoaxial
accelerometers oriented along the vertical direction were placed on the housing of the
drive-end bearing (DE), on the fan-end bearing housing (FE), and on the motor supporting
base plate (BA). The acceleration signals were sampled at 12 kHz for some tests and at
48 kHz for others. The operational conditions were stationary in terms of speed, while two
loads were applied: at 0 Hp the resulting motor speed was of 1797 rpm, while at 3 Hp it
was reduced to 1720 rpm. The complete exploration of the whole database is out of the
scope of this work; hence, a small selection of particularly relevant acquisitions [26] was
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selected, as summarized in Table 2. Their corresponding raw time series are reported in
Figure 3. For further details refer to [32,33].

Table 1. Bearing fault frequencies details (BPFI/O: inner/outer race, FTF: cage, BSF: ball).

Location Name
Fault Frequencies (Multiple of Shaft Speed)

BPFI BPFO FTF BSF

Drive End 6205-2RS JEM 5.415 3.585 0.3983 2.357

Fan End 6203-2RS JEM 4.947 3.053 0.3816 1.994

Table 2. Details of the selected acquisitions (DE: drive end, FE: fan end, IR: inner race, B: ball).

Name Code Acc.
Location

Damage
Location

Damage
Size Fs Details

IR014_2 176 FE DE-IR 0.014′′ 48 ksps Good Acquisition
IR014_1 275 DE FE-IR 0.014′′ 12 ksps Impulsive noise
IR014_3 177 FE DE-IR 0.014′′ 48 ksps Electrical noise
B021_0 222 DE DE-B 0.021′′ 12 ksps Non-periodic impulses
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Figure 3. Time series of the 4 cases of interest: 176FE (top left), 275DE (top right), 177FE (bottom
left) with a zoom over the anomaly, 222DE (bottom right).

4. Results and Discussion

The methodology introduced in Section 2 was tested on the selected acquisitions
reported in Table 2 so as to assess the effectiveness of the demodulation procedure (i.e.,
ease of detecting the defect frequency in the demodulated spectra) and the effectiveness of
the different indicators in the selection of the optimal demodulation band according to the
previously introduced dE and iE metrics. Note that according to [6], an order 16 FIR filter
is used for the demodulation, while the ∆f is set to 1/8 of the Nyquist frequency for all the
acquisitions according to the consideration at the end of Section 2.

4.1. Acquisition IR014_2 (176FE)

Acquisition IR014_2 (176FE) was taken into account as it is a good and clean acqui-
sition and can represent a case well in which it should be relatively easy to find a good
demodulation band. In fact, the value of dE = 0.71 is quite high, as the demodulation is
effective in most of the considered bands, as can be observed in Figure 4.
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Figure 4. Bispectral demodulation maps of normalized amplitudes and signal to noise ratio given
a fixed ∆f while the center frequency is increasing from 0 to half the sampling frequency. In the
first picture, the average curve is displayed in red and the resulting exact damage frequency fd is
highlighted by the red triangle.

Once the exact characteristic frequency of the damage of interest fd is established
according to the procedure in Section 2, the section of the bispectral maps at fd represent
the NA and the SNR (i.e., the two proposed a posteriori indicators). It is now easy to
compute the effectiveness of the different band indicators, whose frequency trend is shown
in Figure 5. In the legend of the picture, the two ingredients of iE are in fact reported.
Their average, which represents the indicator effectiveness according to Equation (11), are
summarized in Table 3. For this particular case it is easy to notice that the spectral kurtosis
(i.e., the indicator of the kurtogram, K), the average negentropy (I, the indicator of the
infogram), and the indicator of the autogram (AK) show the best results, followed by the
Spectral Gini Index (SGI). The protrugram indicator (P), the L2/L1 norm indicator (L2/L1),
and the modified protrugram indicator (MP), on the contrary, had poor performance (even
if in this simple case a weaker peak could be still found, as visible in Figure 4).
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Figure 5. 176FE traditional band indicators as a function of the center frequency f, compared to the
proposed NA and SNR a posteriori indicators. The maximum of each indicator is highlighted by a
circle, and the value of NA and SNR at that point are reported in the legend. The average of such two
values produces the iE, which is summarized in Table 3.
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Table 3. Summary of the results in terms of demodulation and indicator effectiveness.

Acquisition: 176FE 275DE 177FE 222DE Avg

dE 0.71 0.59 0.58 0.18 -

iE

K 0.88 0.58 0.31 0.645 0.604
P 0.07 0.79 0.615 0.235 0.428

L2/L1 0.07 0.26 0.615 0.235 0.295
SGI 0.67 0.26 0.06 0.645 0.409

I 0.88 0.725 0.59 0.585 0.695
AK 0.88 0.845 0.59 0.645 0.740
MP 0.07 0.79 0.295 0.235 0.348

4.2. Acquisition IR014_1 (275DE)

Acquisition IR014_1 (275DE) was considered because it involves fan-end bearing dam-
age (inner race fault), while the acquisition comes from the drive-end, so the demodulation
should be more difficult. Furthermore, as can be observed in Figure 3, this signal involves
transients leading to non-stationarities which should negatively affect the spectral kurto-
sis [26]. The higher difficulty in the demodulation is reflected by the dE = 0.59. Focusing
on the resulting iE in Table 3, it is easy to see that in this case AK, P, MP. and I outmatch
the spectral kurtosis K, which is better than L2/L1 and SGI. The corresponding indices as a
function of frequency are reported in Figure 6a, where it can be noticed that not one of the
indicators reach the optimal solution, but AK is the nearest.

4.3. Acquisition IR014_3 (177FE)

Acquisition IR014_3 (177FE) is corrupted by noise of an electrical nature around 0.5 s
(refer to Figure 3). This anomaly seems to mainly affect SGI, MP, and K, while from Table 3
it is clear that I, AK, P, and L2/L1 can highlight the damage-characteristic frequency in quite
an effective way. The spectral plot of the indices in Figure 6b highlights the presence of a
single optimal band, but none of the indicators are able to precisely recognize it.

4.4. Acquisition B021_0 (222DE), Fan End Bearing Featuring Ball Fault, Non Periodic Impulses

Finally, Acquisition B021_0 (222DE) selected as the accelerometric signal is of a highly
non-stationary nature, showing many large impulses. Regarding this, apart from MP,
L1/L2, and P, all the other band indicators reported in Table 3 seem to be able to find a
demodulation band which can produce good diagnostic results. From Figure 6c, it can be
seen that in a large band (i.e., roughly 2000–4000 Hz) the envelope demodulation could
lead to almost optimal results. Nevertheless, the best indicators (AK, K, and SGI) point to a
suboptimal frequency range in the high-frequency portion of the spectrum. The result is
suboptimal, but nonetheless acceptable from a diagnostic point of view.
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Figure 6. Traditional band indicators as a function of the center frequency f, compared to the proposed
NA and SNR a posteriori indicators. The maximum of each indicator is highlighted by a circle, and
the value of NA and SNR at that point are reported in the legend. The average of such two values
produces the iE which is summarized in Table 3. (a) IR014_1, (b) IR014_3, (c) B021_0.

5. Conclusions

Despite the number of analyzed acquisitions, this was not high enough to derive
general rules. The proposed methodology seems to effectively allow the evaluation and
comparison of the performance of the demodulation process itself, as well as the goodness
of the band indicators traditionally used for bearing diagnostics. In fact, the paper pro-
poses two novel a posteriori indicators, which were used for the computation of both a
demodulation effectiveness metric and an indicator effectiveness metric.

From the results in Section 4, derived from a portion of the CWRU database, which,
although reduced, considers many relevant signal peculiarities, it was possible to find a
ranking of the considered band indicators. According to Table 3, by averaging the iEs in
the four different cases, it was easy to notice how the autogram indicator AK proved to
be very good for the selection of the optimal center frequency for the demodulation, as
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well as the averaged negentropy I, taken from the infogram. All of the other indicators, on
the contrary, although only in some cases, appeared to behave better than the kurtogram
indicator K, but not on average. This probably explains why the spectral kurtosis, the
milestone for band selection, is still the reference algorithm for the bearing diagnostics.

Future improvements and applications may involve the definition of confidence
intervals for the indicators [34], the application on different machineries and datasets such
as in [35,36], the compensation of non-stationary rotational speeds [37–39], and the analysis
of the effect of the sampling rate on the results.

The main limitation of this sort of “brute force” approach to the optimization is that it
requires the computation of the SES in all the sub-bands, leading to longer computational
times which prevent the use of such an algorithm in real time. Hence, further studies on
the computational complexity and optimization of the algorithm could be conducted in
the future.
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