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Summary

The thesis aims to give an analysis and assessment through the extraction of
metric information from historical images and to experiment with its potentialities
in the heritage field with the aim of valorising historical iconographical
documentation.

This thesis deals with historical images stored in historical archives in the
heritage context. This documentation has been produced for many other purposes
but actually contains something very valuable for Cultural Heritage: data and
information. Specifically, the thesis explores how to extract and use dimensional
data from historical images for documenting monuments, buildings and groups of
buildings that no longer exist or were transformed over time.

This thesis focuses on two kinds of images documentation, historical
photographs and film footage from the early 19th century. Concerning the
extraction of metric information from historical images, this thesis intends to give
an upgrade of the previous studies on this topic using the latest developed
technologies. This upgrade is in terms of metric precision provided with the use of
classical photogrammetry combined with Deep Learning solutions. The output is
a method, suitable for different fields, but experimented with as an application in
the heritage context.

In this proposed method Deep Learning is used for the retrieval of primary
data used as input material in the standard Structure-from-Motion (SfM) pipeline
used to reconstruct lost Cultural Heritage. Object detection Neural Networks were
trained to automatically recognise a specific monument in film footage and image
collections. Then the images suitable to be processed with photogrammetry are
selected from all the frames detected by the Neural Network. The selection is
performed according to the camera motions within the scene of the video. Only
the shots taken from multiple points of view of the same scene are suitable for the
photogrammetric process. In order to process these data and to obtain metrically



certified results, a modification of the algorithms of the standard photogrammetric
pipeline was necessary. This purpose was achieved with the use of open-source
Structure-from- Motion algorithms and the creation of a specific benchmark to
compare the results.

Specifically, this thesis is divided into five Chapter. After the introduction in
Chapter 1, Chapter 2 is dedicated to photogrammetry applied to historical images.
A classification and a state of the art of historical archives material considering
their possible use in metric documentation and thus suitable for photogrammetry
is performed. Then, a photogrammetric workflow is proposed to process historical
images and the maximum metric quality level reachable by the photogrammetric
processing is investigated.

In Chapter 3 the state of the art of Deep Learning applied to Cultural Heritage
is presented. In particular, an innovative match-moving method is proposed to
improve ways to search for architectural heritage in video material and to reduce
the effort of manually examining them by the operator in the archive in terms of
efficiency and time.

Chapter 4 is concerned with the description of the case studies analysed and
the discussion of the results of the implementation of the method. Two case
studies in Paris were chosen: the UNESCO Heritage Tour Saint Jacques and the
pavilions of Les Halles of the architect Victor Baltard. These case studies
represent two different situations of heritage because the tower was transformed
over time but still exists and the pavilions were destroyed in 1971. Thus, it is
possible to compare the different results obtained from the implementation of the
workflow to the two case studies. To validate the methodology, the workflow was
tested also on other case studies and the results are reported: the historical
photographs of paintings of Byzantine churches; a Japanese historic building
before and after restoration and the temporary architecture of the International
Exposition in Turin in 1921 and 1928.

Conclusions and future perspectives of the research will be provided in the
final part of the thesis (Chapter 5).






Acknowledgment

First and foremost I would like to thank my supervisors, Prof. Fulvio Rinaudo
and Prof. Rosa Tamborrino for their advice and continuous patience during my
PhD study. Prof. Fulvio Rinaudo inspired my interest in the study of
photogrammetry and guided the step of my research with constant and prompt
feedback. He gave me the precious opportunity to travel during these years for
attending external courses, presenting at conferences and collaborating with other
scientists and researchers. Prof. Rosa Tamborrino offered me the possibility to
attend the Summer School in Digital Humanities that she organized and this
participation was instrumental in defining the application of my research. She also
sustained me during the research period in Paris, giving support and suggestions. [
am also extremely grateful for the stimulating experience to be a tutor at the
Master course in Digital History hold by both the supervisors.

Besides my advisors, I would like to thank the rest of my thesis committee for
their insightful comments and recommendations.

During my PhD path, I met a lot of esteemed researcher and professor that
appreciated my work and give me the possibility to work with them. These
experiences of course helped me to grow as a researcher and to improve my
competencies. For this reason, following I would like to thank all these people
that trust in me and my abilities.

I am extremely grateful to Francesco Salvadore and Stefano Tagliaventi,
researchers at CINECA, to whom this thesis is dedicated. They taught me and
supported me on the Artificial Intelligence and HPC part of this thesis. Since our
first meeting, they believed in this project and accepted with enthusiasm to
collaborate together. Their insightful feedback pushed me to sharpen my thinking



and brought my work to a higher level. Moreover, their immense knowledge and
plentiful experience as scientists have encouraged me all the time to pursue my
dreams and expectations in research and daily life. In the last years they were
always there for me and showed on many occasions to be on my side, in the
successful moment and in those more difficult. This was for me the most
important thing and I really appreciated what they have done for me.

I would like to thank also the other members of the SCAI Department at
CINECA in Rome that host me many times and gave me attention and care.

My sincere thanks go to Dr Ryo Higuchi and Prof. Satoshi Nasu of Tokyo
Institute of Technology who provided me with an opportunity to join their team as
visiting researcher, and who gave me access to the laboratory and research
facilities. Without their precious support, it would not be possible to collect
precious data for this thesis. I would like to acknowledge all the students of the
lab that welcome me with enthusiasm and make me feel loved. I would also like
to thank Prof. Hirofumi Sugawara of Kanazawa University for inviting me to visit
him during my research period in Japan and proposing me a collaboration on his
project. The results of it are part of this thesis. All these people have made my
study and life in Japan a wonderful time.

I would like to extend my sincere thanks to Prof. Rapha&le Héno for meeting
me during my research period in Paris and for her assistance in the recovery
material necessary for this thesis.

I would like to express thankfulness to the archive Lobster Films for sharing
footage used in this research, to CNC, Forum des Images, Ina.fr, Gaumont Pathé
Archives, Les Documents Cinematgraphique, and to ICONEM for kindly making
available the model of the Tour Saint Jacques. I also express gratitude to the
Cinema Museum and Bibliomediateca "Mario Gromo" of Turin for sharing the
movie "Torino 1928" (Luis Bogino), and the historical archive of Politecnico di
Torino’s Library for the planimetry of “Exposition” held in Turin in 1928 and for
the projects and photographs of “Mine and Ceramics” pavilion.

I acknowledge the CINECA award under the ISCRA initiative, for the
availability of high-performance computing resources and support, and for giving
me access to the [-Media-Cities during the experimentation phase.



I thank all my beloved PhD colleagues, and especially Marco and Marta, for
the listening, attention and stimulating discussions, for living together with the
difficulties and for all the fun we have had in the last four years.

I would like to offer my special thanks to all the friends that sustained me in
different ways during the last years: my researcher-mate Valerio, Roberto,
Daniele, my team-mate Antonia and Roberto; my advice-mate Alessio and
Carmine (also for hosting me in Paris); my uni-mate Pierfrancesco and Manuela;
my Salerno/Torino-mate Annarita, Sara, Martina; my crazy-mate Francesca,
Vincenzo and Stefano.

Last but not the least, I would like to thank my family and myself for not
giving up and for having the courage to go to the bottom of this path.






In memory of Stefano

To him and Francesco
For always been on my side



Contents

| B 18 Ve e 111510 )  RERE RPN 1

1.1 Principle of transparency: correct use of metric information in the

dOCUMENTALION PIOCESS . .vntinttett ettt et et ettt et e et e et eeaeeeeeeeeeneens 3
1.2 Motivation: Reconstructing lost or transformed Cultural Heritage with
PROTOGIAMIMELIY ..\ttt ettt et e e e 5
1.3 Digital Humanities: Geomatics as support to historical studies .................. 8

1.4 The nexus of the research with Historical Archives ..................c...oooil. 9

1.5 Innovation of the research: Combining Artificial Intelligence and
Photogrammetry ........ootitii it e 12
1.5. 1 Exploiting Artificial Intelligence for Cultural Heritage documentation 12

L.5.2 OPENISSUCS - .ttt e e et et e et et e 13

1.5.3 Aim of the thesis .......oiuinii e, 13

1.5.4 Proposed Workflow ....... ... 14

1.5.5 Structure of the thesis ... 15
RefOIENCES ..o et 19
2. Photogrammetry from historical images: Metric Quality Assessment ................ 22
2.1 Processing historical images with photogrammetry .............ccceeeveeeiieniennnnens 22

2.1. 1 Open issues in processing historical images .........cccecveevveevierreerveennans 22

Issues related to archive storage .. e 23

Issues related to the aim of the acqulsltlon ........................................ 24

Issue related to technical features ...........cooceeiiiiiiiiiiiiiiiccee e 24

2.1.2 Classification of historical images and state of the art ......................... 26

SINgle IMages ......oneiei e 27
Photographs for Photogrammetry ..............ocooiiiiiiiiiiiii i, 28
SLETEOSCOPIC VIEBWS ...ttt ettt et 28
Random IMageS .....ccovveeeiiieeiieceeee e e 29

VIAROS .ttt ettt e et e et e et e e tb e e e aae e araeeabeeenaaeenans 30

2.1.3 Structure-from-Motion pipeline with open source algorithms ............. 30

2.1.4 Solutions proposed: COLMARP .......ccccooiiiiniiiniiiiiiiiecciceeee 32

2.2 Optimizing feature extraction in COLMAP ..........cccccccooiiiiiiiiiiininnn. 33



2.2.1 Proposed WOTKTIOW ........oocuiiiiiiiiiiiieciecieeeeee e 34
2.2.2 Feature point SEleCtION .........ccceiiriiriiniriiiiiiiieieeeesieee e 35
2.2.3 Metric Quality Assessment: Point Cloud Comparison ..............cec....... 37

2.3 A benchmark for historical film footage to assess the metric quality of the

photogrammetric TECONSIIUCTION «...c.erutiriieiiriieriieiienie ettt 38
2.3.1 Toward the need of a new video benchmark ............ccccccevviieiieninnnnn. 38

2.3.2 Camera motions analysis and related Works ...........cccoccvevievciinniiennnnnee. 40

AN ot 41
TIUCKING 1ottt ettt ettt ebeesbeesaaeenseenneaennes 41
Panning .......oooveoiiiiiiiie e 42

2.3.3 Acquisition and processing of video dataset for the benchmark. ........ 42

Vide0 ACQUISTTION ..ovveuiieiiiiiiiiieniteteeie ettt ettt ettt 43

Case study and datasel .........ccveeiieriiieiieiieie et 44
Photogrammetric video processing in COLMAP .......c..ccccoviviniiniinnnenns 46

2.3.4 Metric quality assessment and evaluation results ............cccoeeveeveennenne. 50
Precision analySis .......ccveeiiorieriieieeeeeee e e 51
ACCUIACY ANALYSIS ..vievviieiiieeiiieiieeie ettt ettt ere et e e esbeesaaesebeeseeesneensaens 59
RETRICNICES ...t ettt et en 66
3. Recovery material suitable for photogrammetry ...........cocceceveeviriiinenniinieencnnene. 75
3.1.1 Existing match-moving methods ........c..ccevverieniniiininiiniiieeiceeee 77

3.1.2 Innovation of the proposed WOrkflow ...........ccccecveiiiiiiiiniiniieiieienee. 78

3.2 Architectural heritage detection using Neural Networks ...........ccccccveeneennne. 79

3.2. 1 State of the Art: Artificial Intelligence for Cultural Heritage ....... ....... 80

3.2.2 Object Detection Using Neural Networks ..........ccocceviiiiiiniiinienienia, 81

Faster R-CNN Neural NetWork .........cccoooeiiiiiniiiiiieneceeeeeeeeins 81

SSD Neural Network ..o, 82

3.2.3 Evaluation Metrics of Neural Networks ..........ccccceverieniniencnnenienene 84

3.3 Camera motions identification for photogrammetry ..........c.cccccevveevrennnnnne. 87
RETETEICES ...ttt ettt 92
APPENAIX A oottt et e b ettt e ebe e taeenbeennaenaeeenne 97
4. Applications on case studies and reSults ..........ccceevieriieiiieiieniieie e 99
4.1 Case Studies I Paris ........coieriiiiiiieeeeeeee e 103

4.1.1 Tour SAINt JACUES ...cvveeerieiieeiieeiieeiie ettt e 103

4.1.2 LS HAlles .ooueeieiiieiieeeee e 108

4.1.3 Recovering the material on the case studies .........c..ccceevvveeciienieenennen. 116

Historical video archives CONSULLEd ...ooovveeeeeeeee et 121



4.2 Testing the entire workflow: Al+ photogrammetry ............ccccceevveerireennnnns 123

42,1 DALASEL ..t 123
Dataset 1: Reference Case - Tour Saint Jacques .......c..cccceeeeverieneencneenens 124
Dataset 2: VIACO ..cc.eeiuieiieieiiieieeiieeiteie ettt 125
Dataset 3: Real Case-Tour Saint Jacques and Les Halles ...........cccccoeenennnee. 127

4.2.2 Results and Discussion of the implementation of the Neural Networks on

the CASE STUAIES ..eeveiiiiieiiieiie ettt ettt e et 129
Network Model Selection and TUNING ........cccoceeeiierieriieiieieeie e 132
Assessment of the Training Dataset.. ........ccoceeviieiienieniiinieiieeceeeen 138
Network Evaluation in a Realistic Scenario ..........cccooceevevirienenneneenenee. 142
Frame-Based MEtIiCs .......oooiiriieiiiiiieiieiee e 142

Time Interval-Based MEtrics. .......cceeviirieririenieiieieeeeeeee e 143
Hardware Analysis: High-Performance Computing vs. General Purpose
ettt a ettt eh e ettt et h e et h bttt et n e bt ettt et eneenee 146
4.2.3 Camera motions identification ............ccceeveerieriiienienieeeeeeeee e 146

4.2.4 Photogrammetric processing and evaluation of metric quality assessment
................................................................................................................................... 151
Photogrammetric ProCeSSING .......ovutertereert et eteiteeeaeenneaeeeenans, 152

Metric quality assessment - Benchmark comparison ........c..ccccevceevevicnenne. 154

Metric quality assessment - Cloud to mesh distance comparison ................ 158

Metric quality assessment - Feature point comparison ........c...cccceevevvennennne. 160

4.3 Validation of the photogrammetric method .............................o.. 164

4.3.1 Photogrammetric reconstruction from historical photographs of restored
Cultural Herftage ....o.veeniei ittt et e 165
Churches in Goreme National Park and the Rock Sites of Cappadocia -
Restored wall paintings ..........oouiniiiiiiiii e e 165
Nakamachi Komise Street in Japan- Restored architecture .................... 166

Results of the application of the method to the two case studies .............. 167
4.3 .2 Photogrammetric reconstruction from historical film footage of
ephemeral architecture .............oiiiiiii e, 171
The Hungarian pavilion at Turin International Exposition of 1911 ........... 172
The Mines and Ceramics pavilion at Turin International Exposition of 1928

.................................................................................................... 172
Photogrammetric reconstruction of the pavilions and metric quality assessment
................................................................................................... 174
RefIENCES ..o et 182
5. CONCIUSIONS ...ttt et 184
5.1 Restating the aims of the dissertation ..................coovviiiiininnnnn.. 184
5.2 Originality and findings of the research .....................c 185
5.3 Applications and furtherresearch ..................cooooiiiiiiiiiiin . 186

5.4 Importance of this research for the present .......................ooa. 188






List of Tables

Chapter 2
Table 1. Camera specifications

Table 2. Correlation of the precision in terms of Standard Deviation (o)
related to the frame scale factor (m) and the value of the base ratio (B/Z) (Kraus
and Waldh&usl, 1990)

.......................................................................................... 51

Table 3. Values, expressed in pixel and in centimetre, of the Mean, Standard

Deviation, Minimum and Maximum of the Residuals for each
photogrammetric processing, according to the corresponding tilting camera
motion case.

Table 4. Values, expressed in pixel and in centimetre, of the Mean, Standard

Deviation, Minimum and Maximum of the Residuals for each
photogrammetric processing, according to the corresponding trucking camera
motion case

Table 5. Residuals between the measures of the same distances extracted from
the point cloud of the laser scanner, chosen as reference, and the point cloud
resulted from the video processing for the tilting camera motion

Table 6. Residuals between the measures of the same distances extracted from
the point cloud of the laser scanner, chosen as reference, and the point cloud
resulted from the video processing for the trucking camera motion



Chapter 4

Table 1. Description of the training and validation dataset 1 on the
reference case of the Tour Saint Jacques. For each training implementation (RUN
A, RUN B and RUN C) different number and combination of images are used

.................................................................................... 125
Table 2. Description of the video dataset of the Tour Saint Jacques
.................................................................................... 125
Table 3. Description of the video dataset of Les Halles
.................................................................................... 126

Table 4. Combination and number of images from the dataset 3 used in
each run of the training and validation phase on the real case of the Tour Saint
Jacques

Table 5. Combination and number of images from the dataset 3 used in
each run of the training and validation phase on the real case of Les Halles.

Table 7. Accuracy values expressed in percentage according to different
clusters nd thresholds

Table 8. Technical features of the films used during the photogrammetric
processing

Table 9. Values of the benchmark, expressed in pixel and in centimetre, of
the Mean, Standard Deviation, Minimum and Maximum of the Residuals for each
photogrammetric processing, according to the corresponding tilting camera
motion case. The Tilting2 case, chosen as a reference in this processing
concerning the Tour Saint Jacques for the comparison with the results of the
frame extracted from the video “Etudes sur Paris”, is highlighted in red

Table 10. Values, expressed in pixel and in centimetre, of the Mean,
Standard Deviation, Minimum and Maximum of the Residuals of the results of the
photogrammetric processing of the frame extracted from the video “Ftudes sur
Paris”, compared with the Tilting2 case of the benchmark

Table 11. Values of the benchmark, expressed in pixel and in centimetre,
of the Mean, Standard Deviation, Minimum and Maximum of the Residuals for



each photogrammetric processing, according to the corresponding trucking
camera motion case. The Tilting3 case, chosen as a reference in this processing
concerning Les Halles for the comparison with the results of the frame extracted
from the video “La Destruction des Halles de Paris”, is highlighted in red.

Table 12. Values, expressed in pixel and in centimetre, of the Mean,
Standard Deviation, Minimum and Maximum of the Residuals of the results of the
photogrammetric processing of the frame extracted from the video “La
Destruction des Halles de Paris”, compared with the Trucking3 case of the
benchmark

Table 13. Residuals values resulted from the comparison of the distance
between the 3D model by Iconem, the point cloud resulted from the
photogrammetric processing of the video “Etudes sur Paris” and the drawing by
the architect Gabriel Davioud

Table 14. Distances values measured in project drawing of the architect
Victor Baltard, the 3D model by the Commune de Nogent-sur-Marne, the
description in Lemoine, 1980 and the point cloud resulted from the
photogrammetric process of the video “La Destruction des Halles de Paris”

Table 15. Distances values measured in project drawing of the architect
Victor Baltard, the description in Lemoine, 1980 and the point cloud resulted from
the photogrammetric survey of the pavilion’s cave in Yokohama (Japan)

Table 16. Residuals values (AX , AY and AZ) of the feature points
measured on the point cloud obtained from the processing of historical
photographs (called Xold, Yold and Zold) and the point cloud of the recent
photogrammetric survey (called Xnew, Ynew, Znew)

Table 17. Technical feature of the film footage “Nei cantieri
dell’esposizione”

Table 19. Values of the benchmark, expressed in pixel and in centimetre,
of the Mean, Standard Deviation, Minimum and Maximum of the Residuals for
each photogrammetric processing, according to the corresponding trucking



camera motion case. The Truckingl case, chosen as reference in this processing
concerning the Hungarian pavilion for the comparison with the results of the
frame extracted from the video “Nei cantieri dell’esposizione”, is highlighted in
red

Table 20. Values, expressed in pixel and in centimetre, of the Mean,
Standard Deviation, Minimum and Maximum of the Residuals of the results of the
photogrammetric processing of the frame extracted from the video “Nei cantieri
dell’esposizione”, compared with the Truckingl case of the benchmark

Table 21. Values of the benchmark, expressed in pixel and in centimetre,
of the Mean, Standard Deviation, Minimum and Maximum of the Residuals for
each photogrammetric processing, according to the corresponding trucking
camera motion case. The Trucking4 case, chosen as reference in this processing
concerning the “Mines and Ceramics” pavilion for the comparison with the results
of the frame extracted from the video “Torino 1928, is highlighted in red

Table 22. Values, expressed in pixel and in centimetre, of the Mean,
Standard Deviation, Minimum and Maximum of the Residuals of the results of the
photogrammetric processing of the frame extracted from the video “Torino 19287,
compared with the Trucking4 case of the benchmark

Table 23. Residuals values of distance measured on the project drawing
and the point cloud of the “Mines and Ceramics” pavilion obtained from the
photogrammetric process of video frame



List of Figures

Chapter 1

Figure 1. (a) Albrecht Meydenbauer. (b) The first one of Meydenbauers
photogrammetric camera that was invented in September 1858. (c¢) The French
Cathedral in Berlin. One of Meydenbauers experimental photographs from 1882 (40 x
40 cm). 100 years later, between 1977 and 1982, the image was used for the
reconstruction of the church which was severely damaged during World War 11
Albertz, 2001)

Figure 2. The proposed workflow: the first step is the object detection using Al,
the second step (used only in case of video) is the camera tracking, the third step is
the 3D reconstruction following the SfM pipeline and the fourth step is the metric

quality assessment

Figure 3. Tour Saint-Jacques la Boucherie (1508-22), Paris. (a) Henri Jean- Louis
Le Secq, 1853, Musée Carnavalet. (b) Francesca Condorelli (author), 2019

Figure 4. Les Halles of the architect Victor Baltard (a) before the demolitions in
1971, Charles Marville, 1855, Musée Carnavalet / Roger-Viollet.. (b) the destruction

of the Halles, Jean-Claude Gautrand, 1977, Galerie W

Figure 5. Historical archives photographs from G. de Jerphanion’s work (1925-



42) and images of the actual state of the paintings in Karanlik Kilise (11th
century)

Figure 6. Pictures of the Former Matsuno-Yu building from local archive before

the restoration in 2013

Figure 7. Pictures of the Former Matsuno-Yu building from on-site survey in

2018 after the restoration

Figure 8. (a) The Hungarian pavilion at International Exposition in Turin in 1921
(Cornaglia, 2001). (b) the “Mines and Ceramics” pavilion at International Exposition

in Turin in 1928, Library of Politecnico di Torino "Roberto Gabetti", 1928

Chapter 2

Figure 1. Historical photographs of the Valentino Castle, from the archive of
GAM - Galleria Civica d'Arte Moderna e Contemporanea, in which some archive

issues (bad conservation stage due to humidity) occur

Figure 2. Historical film footage of the Valentino Castle, from the I-Media- Cities
platform and the video archive of Cinema Museum of Turin, in which some aim of
acquisition issues (documentary) and technical features issues (low resolution quality

and lack of film information) occur

Figure 3. Historical photographs of the Valentino Castle, from the archive of
GAM - Galleria Civica d'Arte Moderna e Contemporanea — Fondo Gabino, in which
some technical features issues (images of the same object are taken by different types

of camera that differ in exposure and shooting) occur



Figure 4. Classification into five main categories of historical images stored in

historical archives, according to their aim of acquisition and their availability

Figure 5. The pipeline described in this section 2.2 corresponds to the third step
highlighted in red

Figure 6. Flowchart of the proposed workflow in which a step (in red) of
“Feature point selection” was added to the standard StM pipeline in COLMAP

Figure 8. An example of image coordinates measured with WebPlotDigitizer tool

and inserted in the software for the manual detection of Feature Points

Figure 9. An example of the database management in COLMAP in which key

points are stored as row-major float32 binary blobs

Figure 10. Scheme of the three types of camera motions: Up/Down Motion-

Tilting, Left/Right Motion-Trucking and Rolling Motion-Panning

Figure 12. Frames extracted from the video sequences of the left wing of the
courtyard of the Valentino Castle shot with tilting camera motion. The sequence 1
was shot at a distance of 43 m, the sequence 2 at 38 m, the sequence 3 at 33 m, the
sequence 4 at 28 m, the sequence 5 at 18 m, the sequence 6 at 10 m, the sequence 7 at

5m

Figure 13. Frames extracted from the video sequences of the fagade of the

Valentino Castle shot with trucking camera motion. The sequence 1 was shot at a



distance of 85 m, the sequence 2 at 65 m, the sequence 3 at 45 m and the sequence 4

at25m

Figure 14. The result of the first step feature detection and extraction of the
pipeline. The red points are the Feature Points automatically extracted from the

software

Figure 15. The result of the second step feature matching and geometric
verification of the pipeline. The green lines are a visualization of the rays that link

two homologous points in two consecutive images

Figure 16. The result of the third step of reconstruction. The point cloud results

are used for the metric quality assessment

Figure 17. Results of the three steps of the COLMAP SfM pipeline for the
iterative reconstruction. Processing of the frame extracted from the video sequence of
the left wing of the courtyard of the Valentino Castle shot with tilting camera motion.
The sequence 1 was shot at a distance of 43 m, the sequence 2 at 38 m, the sequence
3 at 33 m, the sequence 4 at 28 m, the sequence 5 at 18 m, the sequence 6 at 10 m, the

sequence 7 at S m

Figure 18. Results of the three steps of the COLMAP SfM pipeline for the
iterative reconstruction. Processing of the frame extracted from the video sequence of
the fagade of the Valentino Castle shot with trucking camera motion. The sequence 1
was shot at a distance of 85 m, the sequence 2 at 65 m, the sequence 3 at 45 m and the

sequence 4 at 25 m

Figure 19. Geometric sketch of two cameras perpendicular to the baseline and

parallel each other (Kraus and Waldh&usl, 1990)



Figure 20. An example of two consecutive frames for the tiltingl case in which

the overlapping is over 90% and the precision dramatically decreases

Figure 21. Gaussian distribution of the Residuals values for the tiltingl case,

video taken at a distance of 43 m

Figure 22. Gaussian distribution of the Residuals values for the tilting2 case,

video taken at a distance of 38 m

Figure 23. Gaussian distribution of the Residuals values for the tilting3 case,

video taken at a distance of 33 m

Figure 24. Gaussian distribution of the Residuals values for the tilting4 case,

video taken at a distance of 28 m

Figure 25. Gaussian distribution of the Residuals values for the tilting5 case,

video taken at a distance of 18 m

Figure 26. Gaussian distribution of the Residuals values for the tilting6 case,

video taken at a distance of 10 m

Figure 27. Gaussian distribution of the Residuals values for the tilting7 case,

video taken at a distance of 5 m

Figure 28. Gaussian distribution of the Residuals values for the truckingl case,

video taken at a distance of 85 m

Figure 29. Gaussian distribution of the Residuals values for the trucking2 case,

video taken at a distance of 65 m



Figure 30. Gaussian distribution of the Residuals values for the trucking3 case,

video taken at a distance of 45 m

Figure 31. Gaussian distribution of the Residuals values for the trucking4 case,

video taken at a distance of 25 m

Figure 32. Distances measured on the point cloud obtained from a laser scanner
survey of the left wing of the Valentino Castle and used for the comparison with the
point cloud of the same wing obtained from the video processing for the tilting

camera motion case studies

Figure 33. Comparison between laser scanner point cloud, chosen as reference,

and the video processing point cloud, for the case of the camera motion tilting1

Figure 34. Comparison between laser scanner point cloud, chosen as reference,

and the video processing point cloud, for the case of the camera motion tilting2

Figure 35. Comparison between laser scanner point cloud, chosen as reference,

and the video processing point cloud, for the case of the camera motion tilting3

Figure 36. Comparison between laser scanner point cloud, chosen as reference,

and the video processing point cloud, for the case of the camera motion tilting4

Figure 37. Distances measured on the point cloud obtained from a laser scanner
survey of the fagade of the Valentino Castle and used for the comparison with the
point cloud of the same fagade obtained from the video processing for the trucking

camera motion case studies

Figure 38. Comparison between laser scanner point cloud, chosen as reference,

and the video processing point cloud, for the case of the camera motion truckingl



Figure 39. Comparison between laser scanner point cloud, chosen as reference,

and the video processing point cloud, for the case of the camera motion trucking2

Figure 40. Comparison between laser scanner point cloud, chosen as reference,

and the video processing point cloud, for the case of the camera motion trucking3

Figure 41. Comparison between laser scanner point cloud, chosen as reference,

and the video processing point cloud, for the case of the camera motion trucking4

Chapter 3

Figure 1. The general workflow proposed in this dissertation. The following
sections will deal with the application of this workflow on historical film footage,

focusing on the two steps of “object detection using AI” and “camera tracking”

Figure 2. Workflow of the standard match-moving method that has been
modified to improve it for a more efficient use for the heritage. A new workflow is
proposed introducing the use of Al, the camera tracking algorithm, the use of open

source SfM algorithms and the metric quality assessment of the results

Figure 3. Sketch of the Faster Region-based Convolutional Neural Network
(Faster R-CNN)

Figure 5. Workflow of the second step of the proposed match-moving
method: the tilting and trucking camera motions identification suitable for

photogrammetry

Figure 6. An example of the frame selected by the predict step of the

algorithm.



Figure 7. An example of the frame extracted by the image extraction step of

the algorithm

Figure 8. An example of the cluster of frame created by the frame clustering

step of the algorithm

Chapter 4

Figure 1. Paris in 1860, view of the Saint-Gervais Quarter, showing the location
of the Tour Saint-Jacques at lower right, on the Seine's Right Bank and the Pavilions

of Les Halles. From Philippe Benoist, Paris dans sa splendeur (Paris, 1861)

Figure 3. Tour Saint-Jacques la Boucherie (1508-22), Paris. (a) Henri Jean-Louis
Le Secq, 1853, Musée Carnavalet. (b) Francesca Condorelli (author), 2019

Figure 4. Les Halles centrales by the architect Victor Baltard. (a) Pavilions 5 and
6, Charles Marville, 1855, Musée Carnavalet / Roger-Viollet. (b) Top view of Les
Halles, Roger Henrard, 1952, Musée Carnavalet/ Roger-Viollet

Figure 5. Maps and some buildings around Les Halles and the Tour Saint

Jacques, Blondel La Rougery, 1959



Figure 6. The Saint Jacques La Boucherie church. (a) Map of the city of Paris,
Harold B. Lee, Scale: ca. 1:2.000, 1618, Library Maps Collection. (b) Plan of Turgot,
1734, Archives Nationales

Figure 7. The Tour Saint Jacques. (a) The Saint Jacques La Boucherie church,
Garnerey, 1784. (b) The tower before the isolation by restoration in the 1850s, "The
Place du Chatelet and the Tour Saint-Jacques in 1848". (c) The Tour Saint Jacques on
a decorative stone podium after relocation, Theodore Baldus, 1858. In O’ Connell,
2001

Figure 8. The Tour Saint Jacques, Henri Jean-Louis Le Secq, 1853, Musée

Carnavalet.

Figure 9. The Tour Saint Jacques during transformation works, view of Rue
Saint-Martin and Maisons de la rue de la Vannerie, Martial, 1852, Bibliotheque

nationale de France

Figure 10. Plan Vasserot in which the Tour Saint Jacques is surrounded by
buildings, Cadastre par ilots de Vasserot et Bellanger, 1810-1836, Archives

Nationales de Paris

Figure 11. Plan Jacoubet in which the Tour Saint Jacques is surrounded by

buildings, 1836, Bibliothéque historique de la Ville de Paris

Figure 12. Plan Haussmann Paris in which the Tour Saint Jacques was moved
from its position and freed by sourroundings buildings, Plan parcellaire du
prolongement de la rue de Rivoli Typ. Vinchon / Grave par Avril Fréres / Lith.

Lemercier, 1851

Figure 13. The Tour Saint Jacques in the actual asset, Francesca Condorelli
(author), 2019



Figure 14. Les Halles. (a) Charles Marville, 1855, Musée Carnavalet / Roger-
Viollet. (b) and (c) 1943, Musée d’Orsay

Figure 16. Les Halles, 1943, Musée d’Orsay and Musée Carnavalet / Roger-
Viollet

Figure 18. Les Halles. (a) Detail of the roof. (b) The cave. (Medecine de France
N° 226, 1971)

Figure 21. Example of newspaper against the destruction of Les Halles, 1972,

Musée d’Orsay

Figure 22. Plan of Les Halles, 1867, Bibliothéque des Archives de Paris. The

Pavilion No. 8 highlighted in red was moved in Nogent-sur-Marne and in Japan

Figure 23. Pavilion n°8 in Nogent-sur-Marne, Francesca Condorelli (author),
2019

Figure 24. Pavilion No. 8 in Yokohama (Japan), Francesca Condorelli (author),
2019



Figure 25. A diapositive of Les Halles at Musée d’Orsay, Francesca Condorelli
(author), 2019

Figure 26. Plan of Les Halles, Victor Baltard, Monographie des Halles centrales,
1863, Archives de Paris

Figure 27. Fagade of Les Halles, Victor Baltard, Monographie des Halles

centrales, 1863, Archives de Paris

Figure 28. Section of Les Halles, Victor Baltard, Monographie des Halles

centrales, 1863, Archives de Paris

Figure 29. Details of the cave of Les Halles, Victor Baltard, Monographie des
Halles centrales, 1863, Archives de Paris

Figure 30. Details of the cave of Les Halles, Victor Baltard, Monographie des
Halles centrales, 1863, Archives de Paris
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Chapter 1

Introduction

The thesis intends to give a specific contribution to the extraction of metric
information from historical images and to experiment with its potentialities in the
heritage field with the aim of valorising historical iconographical documentation
to rise knowledge of historical buildings, with particular focus on the extreme
case of lost or transformed monuments.

This thesis deals with historical images stored in historical archives in the
heritage context. This documentation is part of the Intangible Cultural Heritage
(ICH). According to the UNESCO definition:

“The “intangible cultural heritage” means the practices, representations,
expressions, knowledge, skills — as well as the instruments, objects, artefacts and
cultural spaces associated therewith — that communities, groups and, in some
cases, individuals recognize as part of their cultural heritage. This intangible
cultural heritage, transmitted from generation to generation, is constantly
recreated by communities and groups in response to their environment, their
interaction with nature and their history, and provides them with a sense of
identity and continuity, thus promoting respect for cultural diversity and human
creativity. For the purposes of this Convention, consideration will be given solely
to such intangible cultural heritage as is compatible with existing international
human rights instruments, as well as with the requirements of mutual respect
among communities, groups and individuals, and of sustainable development.”
(Convention for the Safeguarding of the Intangible Cultural Heritage, Art.l,
2003)

This documentation has been produced for many other purposes but actually
contains something very valuable for Cultural Heritage: data and information.
Specifically, the thesis explores how to extract and use dimensional data from
historical images for documenting monuments.



This thesis focuses on two kind of images documentation, historical
photographs and film footage. For this reason, reference is made to the Digital
Heritage (DH) according to the UNESCO definition:

“The digital heritage consists of unique resources of human knowledge and
expression. It embraces cultural, educational, scientific and administrative
resources, as well as technical, legal, medical and other kinds of information
created digitally, or converted into digital form from existing analogue
resources. Where resources are “born digital”, there is no other format but the
digital object. Digital materials include texts, databases, still and moving
images, audio, graphics, software and web pages, among a wide and
growing range of formats. They are frequently ephemeral, and require
purposeful production, maintenance and management to be retained. Many of
these resources have lasting value and significance, and therefore constitute a
heritage that should be protected and preserved for current and future
generations. This ever-growing heritage may exist in any language, in any
part of the world, and in any area of human knowledge or expression.”
(UNESCO Charter on the Preservation of the Digital Heritage, Art. 1, 2003).

Concerning the extraction of metric information from historical images, this
thesis intends to give an upgrade of the previous studies on this topic using the
latest developed technologies. This upgrade is in terms of metric precision
provided with the use of classical photogrammetry combined with Artificial
Intelligence solutions. The output is a method, suitable for different fields, but
experimented with as an application in the heritage context.

The participation during the PhD path to courses and Summer Schools, such
as the “Cities Cultural Heritage and Digital Humanities” organized by prof.
Tamborrino in 2018, the research periods abroad in Paris and Tokyo in 2019, and
the collaboration with CINECA to test the [-Media-Cities platform, have led to
the selection of specific case studies used to experiment with the proposed
methodology.

Historical images served as tests in a variety of situations, conditions and
scales, depending on the different aspects that this study addressed: investigation
of the maximum metric quality level reachable by the photogrammetric
processing (Chapter 2), the test of the methodology on real cases of lost and
transformed monuments (Chapter 4). The thesis also responds to issues related to
the exploitation di digital collection proving a tool for the identification of specific
monument in the image collection boosting the existing search engine with Deep
Learning methods (Chapter 3). Finally, findings of the test and validation process
of the proposed method are deeply discussed (Chapter 4 and 5).



1.1 Principle of transparency: correct use of metric
information in the documentation process

The Cultural Heritage metric documentation plays an essential role in
preserving memory and knowledge of the past and constitutes the set of
information useful to plan any kind of interventions on Cultural Heritage assets.

The documentation is a common part of all the preservation, restoration, and
management actions because provides all the information necessary to understand
the object in question and leads to the adoption of best practices for the actions to
be planned. The documentation information allows the virtual reconstruction of
the investigated asset which forms today the starting point for each design of
interventions and for complete knowledge about the present situation and, in case,
of conditions of the same object in different historical epochs. All the
documentation data represent a valuable source of knowledge that can be passed
on to future generations and used for future actions (Stylianidis, 2019).

The knowledge of shapes and dimensions are one of the basic data of metric
documentation useful also to locate all other non-metric information to help the
comprehension of physical phenomena (e.g. structural diseases, etc.). The modern
Geomatics techniques allow obtaining all these metric information with a certified
accuracy and by extracting the best possible results by considering the quality of
the used primary data.

The metric survey starts from the collection of a significant number of points
with known coordinates in a unique reference system and the subsequent creation
of a 3D model of the surveyed object. The 3D modelling requires a deep
knowledge of the surveyed asset: as far as architectural assets (both single
buildings and historical centres) the strong collaboration with specialists in
History of Architecture is essential to correctly interpret and represent the original
elements and the material interventions that occurred during the life of the
investigated asset.

Rapid progress in the field of acquisition and processing of Cultural Heritage
data has attracted many researchers and has led to a large number of studies in this
direction. However, these rapid changes, while offer opportunities for
collaboration between those who recover metric data (geomatics experts) and
those who use them, at the same time they are presenting challenges to the
professional partnership that may cause difficulty in the collaboration. Of
particular concern is the issue related to the accuracy of the metric surveys. If this
is not clearly specified by information providers, users of information may not
recognise the importance and the limitation to their possible uses (Tucci and
Lerma, 2018). Therefore, it is important to establish guidelines on how to take
into account the different accuracy and precision requirements of 3D surveys
according to the different end-user applications and purposes. Especially in the
Cultural Heritage field, it is important to be aware that the metric surveying is not
the end of a project but the starting point of many applications which strongly



results in its metric quality. Geomatics experts play an important role in certifying
the reliability of surveying and in supporting professionals who need metric
information. Guaranteeing the quality of metric information extrapolated from 3D
models ensures that they can be properly used for restoration projects and
monitoring applications.

Recently, recovering the shape and dimensions of a Cultural Heritage asset
has achieved characteristics of a mature and stable system with a well-defined
system pipeline. Thanks to the development of advanced technologies in the field
of geomatics and the use of low-cost devices, 3D surveying and modelling
practices are becoming more and more fast and automatic. This phenomenon has
led to numerous advantages, increasing the spread of these techniques to a wide
platform of users (Tucci, 2016). However, the current trend to expand geomatics
methods also for non-specialist includes the risk of not considering the required
standards and the evaluation of quality and accuracy of metric data as essential
information to properly manage the 3D model.

The concepts of ensuring that 3D metric survey methods are applied with
scientific rigour are at the heart of several documents and papers which have
emphasized the importance of accurate communication to users of the level of
knowledge they represent.

Among these documents, certainly the London Charter represents an
important step towards the definition of what is necessary for three-dimensional
model generation in Cultural Heritage to be as rigorous and intellectually robust
as any other research method. The purpose of the charter is to specify the goals
and basic principles of the application of 3D metric survey methods concerning
intellectual integrity, reliability, transparency, documentation, standards,
sustainability, and access. The Charter aims to establish the principles which are
sufficiently focused to have an impact, but abstract enough to remain current as to
methods, and the technology continues to develop.

One of the most important issues for geomatics addressed in the document is
concerned with the principle of “transparency”.

As declared in the section of the Charter dedicated to transparency
requirements (Principle 4), this principle is based on providing enough
information to allow a good understanding and evaluation of 3D visualisation
methods and their results according to the contexts in which they are used and
disseminated. The source, the type and the degree of uncertainty of the data and
information collected must be specified. According to the objectives and the use
of the method of 3D visualization, the type and quantity of transparency
information will vary. The requirements for transparency of information may,
therefore, vary from one project to another or at different stages of the same
project. Moreover, to disseminate the documentation about the interpretation and
decisions taken during the process it is really necessary to better understand the
results. Each step of the process has to be documented in order to potentially reuse
the data of the research, apply the results in different contexts, and guarantee the



accessibility of information. Observing the issues highlighted in the Chart could
be a solution to the transparency problem (Beacham et al., 2006).

The data that the London Charter requires to make the virtual model
transparent can be provided only deriving them from a quality certification of all
the steps of the 3D metric survey. However, a significant gap between theory and
practice is still present and this represents a big challenge in the Cultural Heritage
domain.

The core of the problem concerns the awareness that a model without this
fundamental action of transparency does not reveal the effort in the process of
creation. This “opacity” is in contrast with the need to show the documentation
and reconstruction process, aspects that cannot be separated from the metric ones
(Tucci, 2016).

1.2 Motivation: Reconstructing lost or transformed
Cultural Heritage with photogrammetry

Among the various geomatic techniques, photogrammetry plays a
fundamental role, since it allows the recovery of the metric data necessary for the
geometric understanding of the object to be documented using only images.
Recent developments in the acquisition and processing of photogrammetric data
have reached a high level of automatism and the easy use of instruments and
software has increasingly encouraged researchers and experts in the field of
Cultural Heritage to use this technique in their works. Consequently, these
advantages make it possible to extend the application of photogrammetric
methods to low-skilled users and provide those who operate in the heritage fields
with a tool for studying and intervening in Cultural Heritage.

However, automatism does not mean autonomy and therefore, while it is true
that with any series of variously and randomly stereoscopic photos it is possible to
obtain a 3D point cloud, it is not true that the quality is certifiable nor even less
optimal. Simply the various automatic software does not care about to clearly
state the level of precision reached during the process and even less the accuracy.
Automatism has led to underestimating the metric survey. For example, it is
increasingly common not to care about reducing overlapping to the minimum
possible, to pay attention to the fact that inserting even just a divergent view the
process could fail, to consider that photographs with strong scale differences
threaten the metric quality and to care to understand the difference between
precision (goodness of the measurements) and accuracy (correspondence of the
survey to the real object).

For this reason, geomatics experts who create 3D models with high accuracy
of analysis become indispensable support for those who use them for various
applications. It is necessary to define the level of precision and accuracy achieved
in order to enable the correct use of 3D models. Accuracy requirements are
necessary to extract metric information and obtain high quality certified metric
products that are essential for documentation. Recent developments in the field of



photogrammetry for Cultural Heritage documentation have led to rapid progress
in obtaining metric measurements. Of course in order to do that, it is necessary to
acquire data with good primary quality (see CIPA 3x3 rules for example).
Moreover, the need to perform a step-by-step check of results leads to control if
the calibration of the images is acceptable or not, what is the variance-covariance
matrix of the distortion calibration parameters in order to choose the most
appropriate calibration model to use for relative image orientation, which are the
suitable distances to use for the sizing of the point cloud that the software
automatically generates.

Metric data without certified quality cannot provide the correct information
and can lead to misuse. Researchers have shown more interest in this direction,
and several studies have compared different acquisition tools and processing
software in different situations and case studies. This continuous development
also provides an opportunity to update well-defined approaches to extract metric
information from images.

If this need for precision and accuracy assessment is important for new
surveys, the same approach is necessary for the data extracted from historical
information. In fact, one of the most fascinating challenges is the use not of new
data but resources stored in historical archives.

Processing historical images, apart from some praiseworthy but very rare
cases, the optimal conditions obtainable with images acquired ex-novo are rarely
present and therefore it is all the more necessary to be able to verify the maximum
result obtainable in terms of accuracy even more rigorously than in the case of
images specially acquired for a photogrammetric survey.

However, archives are powerful platforms for saving invaluable treasures of
enormous informative potential and play an essential role in the conservation of
Cultural Heritage. In addition to written documents, old photographs and videos,
which have been preserved over time, are in many cases unique witnesses to
architectural and urban transformation. Monuments, historic buildings, and
landscapes, that have been transformed or destroyed over time, appear in them
and they become the only way to document changes of currently existing objects
and parts that are no longer visible and to testify the state of buildings, parts of a
city and urban environment at a specific time. It is obvious that terrestrial laser
scanning (TLS) or photogrammetry on-site cannot be applied for buildings that do
not exist anymore. In the case of assets that no longer exist, historical photographs
and films footage are the only sources to recover their forms, dimensions and
locations. This is an opportunity that could support historical studies and help in
some way with restoration and conservation decisions.

In all international charters for the conservation of Cultural Heritage,
photography is mentioned as one of the best ways of documenting cultural assets.
These recommendations have always been interpreted as a need for photographic
documentation, without taking into account the metric potential of photographic
images and the benefit that these properties could provide for the effective
documentation measures required before any kind of restoration.



Albrecht Meydenbauer, a young German architect, became a pioneer in the
valorisation of Cultural Heritage through photogrammetry (Albertz, 2001).

Figure 1. (a) Albrecht Meydenbauer. (b) The first one of Meydenbauers
photogrammetric camera that was invented in September 1858. (c) The French
Cathedral in Berlin. One of Meydenbauers experimental photographs from 1882
(40 x 40 cm). 100 years later, between 1977 and 1982, the image was used for the
reconstruction of the church which was severely damaged during World War II
(Albertz, 2001).

In 1858 he had the idea to use photographic images for the metric
documentation of buildings. He was aware of the imminent danger to cultural
assets and was convinced that the most important Cultural Heritage objects should
be recorded in a Cultural Heritage Archive so that it could be reconstructed even
if it was destroyed. Photogrammetric images were the most effective means to
achieve this goal, and he had fought against many obstacles and criticisms to
establish it as a method of scientific documentation. These images were widely
used during the reconstruction of the city of Berlin at the end of the last century.

In recent years, thanks to the digitisation efforts of many archives, the interest
in historical photographs and videos as valuable sources for the study of Cultural
Heritage and the reconstruction of historical development has increased. The main
problem with historical images is the availability of material of different types
with low image quality, a total lack of camera parameter knowledge, the presence
of deformations of the original dimensions, and damage due to improper storage.

However, recent developments in the field of image processing and Computer
Vision have led to a renewed interest in processing data with a lack of essential
properties for 3D metric information extraction. These improvements have
increased the already demonstrated metric power of old images. In fact, image
processing revisited from a photogrammetric point of view (search for
homologous points) has given the possibility to automate the relative orientation
and the generation of point clouds in a free and unscaled coordinate system. The
projective geometry has made it possible to calibrate the distortions of
photographic images concerning the central perspective in an automatic way (i.e.



without points of support). StM is based on projective geometry while traditional
photogrammetry is based on Euclidean geometry. However, the relative
orientation made in projective geometry is less "robust" (statistically speaking)
than the solution obtained in Euclidean geometry. In order to perform a complete
metric analysis, the combination of the two approaches is a good solution. The
projective geometry can be used for image calibration, automatic search for
homologous points and relative orientation. Then traditional photogrammetry can
improve the process and conclude it with the estimation of the mean and standard
deviation of the internal and external orientation parameters and the coordinates
of the homologous points.

1.3 Digital Humanities: Geomatics as support to historical
studies

Digital 3D modelling and visualization technologies have been attracting a lot
of interest not only in the geomatics field but also in the humanities research and
education, especially but not exclusively on historical architecture (Miinster,
2018). In recent years, in fact, have seen a growing trend towards finding new
approaches to study humanities and to attract scholars in this field. The
development of new informatics technologies has led the research to create
powerful digital tools to support these studies. In this direction, certainly the
Digital Humanities play a critical role in proposing systematic and technologically
equipped methodologies in activities to support the traditional scholarly
disciplines (Ganascia, 2015). Among these disciplines, architectural and urban
history is a major area of interest within the field of Cultural Heritage studies. The
need for preservation and documentation of historic cities has emerged as a
promotion of the development of technologies to better analyse and understand
historical sources. Examining and representing the past thanks to new
communication tools allows the creation of a framework through the technology
for people to experience, read, and follow an argument about a major historical
problem (Seefeldt et al., 2009).

Digital humanities is not a discipline or a series of disciplines in itself. It is
just a set of digital techniques that should help historical and literary research
contributing to modify its research strategies. Digital history compared to history
does not have different research objectives but uses different tools allowing more
complete use of sources and the possibility to quickly manage large amounts of
data to support research that is always the same.

One of the most important changes introduced by Digital Humanities is
concerned with the combination of metric survey and keys of interpretation that
allowed historians the match space and time in a more effective way (Tamborrino,
2014; Minster et al., 2019). The approach to historical research became more
engaging thanks to the fruition of information on Cultural Heritage.



However, to apply digital techniques to Cultural Heritage studies, a close
relationship between historians and technical experts is necessary. Encouraging
collaboration in this multidisciplinary context is fundamental to create a common
and interoperable language and thus, reaching high-quality results. As
interdisciplinary collaborations are becoming more common, aligning the interests
of geomatics and humanities scholars requires the formulation of a collaborative
approach for research where the methodologies and intellectual innovations
merge. Through data sharing, software sharing and knowledge sharing practices it
is possible to improve this collaboration and to involve the participation of
academic disciplines (Simeone et al., 2011). Boosting this cross-disciplinary
cooperation is one of the missions of association such as [COMOS/ISPRS CIPA,
founded by the Cultural Heritage community with this intent.

To reach this objective certainly the construction of digital infrastructures
such as digital libraries, archives, and repositories have produced new scenarios
for collaborative research increasing exponentially the possibility of sharing data.
The globally increasing digitization of data in private and public sectors improves
the amount of information relevant to the researches in the field of Cultural
Heritage and guarantees accessibility to contents and sources. For geomatics and
urban historians, this creates an increasing interest especially for digital
repositories dedicated to historic media such as photography and videos.

1.4 The nexus of the research with Historical Archives

The search for historical images suitable to recover metric information of a
Cultural Heritage asset is a challenging problem to be addressed, both for
geomatics and historians.

In this context, historical media archives have a central role. Images of the
historic building are published in books, magazines, reviews and can be found in
different status (negatives, positive copies, etc.) in public or private archives.
Unfortunately, not all archives have a digital database to facilitate the search for
interesting images. Digitised documents play an important role in the preservation
of historical contents and their dissemination to the public. Without digital
editions, the enormous amount of archives and old documents would not be easily
accessible (loannides et al., 2017). Digitisation enables ubiquitous distribution,
but also the enrichment of masterpieces with multimedia details and attractive
content. Traditional simple Information Systems that support the management of
cultural assets have given way to complex systems that display rich information
from heterogeneous data sources (e.g. sensor networks, social networks, digital
libraries, multimedia collections, web data service, etc.) employing sophisticated
applications that enhance the user’s experience (Amato et al., 2017). In this
context, new digital technologies have facilitated the way to access Cultural
Heritage information creating new tools to search, link and manage data.
Moreover, facilitating links between information on Cultural Heritage, public
perspectives and physical locations have enabled new ways of interacting with
heritage and wider public participation.



One of the fundamental problems in dealing with Cultural Heritage data is to
extract information from heterogeneous and unstructured sources. Consequently,
there is a need to create innovative applications for exploring, analysing, mining
and visualizing such data (Miinster et al., 2016; Markhoff et al., 2017; Amato et
al., 2017). Many libraries have understood the important role of the material they
store and have recently started to share it with the public. However, open issues
about historical material from archives (Miinster et al., 2018) still exist (a detailed
discussion is reported in Chapter 3). The first problem is the availability of the
material, often made difficult by an enormous quantity of unorganized data on
historic heritage. Archives can store a huge amount of data, so it often becomes
impossible for scholars to evaluate and visually examine the archive manually.
Consequently, a conventional Google search is often the main entrance for search
queries (Beaudoin et al., 2011) and thus, organizing the archival data structure is a
paramount challenge (Simeone et al., 2011). Especially, the filtering of data is still
a persisting and challenging issue. Archival data are often tagged with metadata
by varying operators after digitization, resulting in inconsistencies of metadata
within a single archive and additionally, between multiple data repositories. While
approaches for standardization of metadata exist (Lagoze et al., 2001; Elings et
al., 2007), these are not strictly followed by every institution hosting an archive.

The second issue is concerning the rights of the data that if not licensed
appropriately, the relevant data are not available for research. Sometimes even the
status of the ownership is unknown and e.g. images may not be reproduced,
changed or published. A Creative Commons licensing of the data is often
available only for a very small part of the complete archive. Additionally, the
quality of the digital copy is not consistent and improving the resolution requires
funding. Since the digitization in archives is not yet completed the process of
digitization remains the most important step for the data providers and institutes
(Pandey et al., 2014).

The third issue is related to the involvement of architectural historians and
skilled researchers in the design of digital media platforms. Generally libraries,
archives and museums are responsible for images repositories and search tools
and do not usually meet the requirements of architectural history scholars. In
architectural historical research, the visual character of the sources instead of texts
and words is essential. This could be a problem if an ordinary building or specific
architectural features have to be searched by scholars. Moreover, since the
existing applications for searching platforms are devised by computer scientist,
the degree of search expertise of the operator in archives dramatically influences
the success of the use of such tools (Friedrichs et al., 2018).

Recently, the increasing availability of photographs and videos in digital
format has led to new research for the exploitation of the archives. It has provided
the experiment of a web platform for access to this digital content. The huge
amount of data stored in historical archives makes it desirable that their annotation
and analysis have been automated and require minimal user intervention. For this
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reason, previous research has conducted in order to facilitate the access and the
use of digital information.

One recent example is [-Media-Cities (https://imediacities.eu, May 2020). It is
an innovative research project carried out by 9 European cultural institutions (film
and audio-visual archives from 8 different countries) to share, access and use their
digital content, making it a lever for new approaches in multidisciplinary research,
for innovation in the economy and the general accessibility of the European
Cultural Heritage. As an experimental innovation action, the project focuses on
digital content related to cities. I-Media-Cities aims to be a cross-border and
multilingual platform for the study of the history and urban development of large
EU cities by providing large collections of media that are generally not easy to
access, and for the study of the history of media through the way they have
represented urban spaces. The project provides a platform for access to digital
content (interoperable and multilingual) and makes it available to a growing
community of researchers and creators across Europe. Photographs and videos
can be searched as they are automatically annotated using a Machine Learning
approach that makes them searchable through dynamic maps and semantic
searches (Caraceni et al., 2017).

The previous example of similar platform exist and are reported here below.

PHAROS, The International Consortium of Photographic Archives, is an
international consortium of fourteen European and North American art historical
photo archives committed to creating an open and freely accessible digital
research platform allowing for comprehensive consolidated access to photo
archive images and their associated scholarly documentation. The PHAROS
collections collectively contain an estimated 25 million images documenting
works of art and architecture and the history of photography itself. The Getty
Research Institute is one of the partners, and in collaboration with four
international advisory institutions, led a project to create an online search platform
that would unify and provide global access to digitized art history books and
journals, including fundamental texts, rare books, exhibition catalogues, auction
sales catalogues, and related literature. Launched in spring 2012, the Getty
Research Portal is a trusted destination for researchers worldwide and a tool to
assist librarians in planning future digitization projects (Salomon, 2014). CLIOH
(Cultural Digital Library Indexing our Heritage) is a video indexing and retrieval
system for an archaeological database using self-organizing neural networks
(Huang et al., 2002). The CLARIAH Media Suite (2015) is one of the applications
of the Dutch infrastructure for Digital Humanities and Social Sciences developed
in the CLARIAH project that aims at the realisation of a common infrastructure
for the humanities and social sciences. It facilitates access to key Dutch media
collections with advanced multimedia search and analysis tools and user-friendly
applications for the processing of these data. Another example is the online
database Cinema Context (www.cinemacontext.nl, May 2020), a relational
database and research instrument for studying the history of film culture in the
Netherlands, created as structured datasets relating to the contexts of film
production, distribution and consumption (Noordegraaf et al., 2018). The
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ArchiMedialL project (http://archimedial.eu/, May 2020) in close cooperation
between architectural historians and computer scientists experiments with the
automatic recognition of architectural and urban forms in diverse visual media
that are available digitally or on the web. The aim is to solve the metadata
problem providing a way to search through these huge collections with descriptive
keywords by using Artificial Intelligence solutions which can identify and
correctly label descriptive data in pictures and paintings without an expert in art
and architecture knowledge (Brouwer, 2018).

In all these examples has emerged that Machine Learning has a pivotal role in
the advances of the process of the search for within archives material and in the
following section, the potentialities of this method are highlighted and deepened.

1.5 Innovation of the research: Combining Artificial
Intelligence and Photogrammetry

1.5.1 Exploiting Artificial Intelligence for Cultural Heritage
documentation

Thanks to the effort of cultural institutions such as museums, galleries and
heritage management organizations in investing a great deal of resources to
digitize and preserve their collections using state-of-the-art acquisition
technologies, this process have often been considered a success. Multiple
initiatives such as high-quality replicas of cultural objects, virtual museum tours,
digital valorisation, etc. have developed a new cultural and systemic awareness of
the importance of data on Cultural Heritage.

With the recent hype in the field of Artificial Intelligence (AI), new
techniques have been developed to manage them with Machine Learning (ML)
and Deep Learning (DL) provide tools to decision-makers. In the past, cultural
data enrichment was only possible using manual annotations that did not fully
exploit the hidden information that could be extracted with Al technologies.
Today, new challenges have arisen for researchers to make the digital preservation
of assets more efficient with Artificial Intelligence techniques for content
classification and generation.

One of the most successful aspects of the spread of Al is its application in
several disciplines. Artificial Intelligence, in fact, involves, for example, computer
science, engineering, art, medicine, linguistics etc. The blending of disciplinary
fields is also the starting point for a cultural change that no longer differentiates
between humanities, science and art disciplines. (Andrianaivo et al., 2019).

Since the lack of involvement of the researcher in the humanities in the design
of infrastructures on historical heritage material, the application of Al methods in
urban and architecture projects can improve the participation of the final users of
such tools.

In fact, for what concerns the documentation process and in particular the
collection of data and information about heritage, can really be improved if
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Artificial Intelligence is combined with techniques widely used in the heritage
field such as photogrammetry.

For this reason, recent research in this field has seen a rapid development of
technologies to support the management and analysis of historical heritage data.
Through Artificial Intelligence, tasks such as processing these large amounts of
data and reducing human effort can be automated and thus made more efficient.

The creation of new tools for the end-user of these data is an interesting
research topic, especially in the field of Cultural Heritage. Indeed, the volume, the
size and the variety of historical data lead to certain critical factors. The most
important of these is the manpower required to organise and search for the
documents.

To solve this problem, the application of Artificial Intelligence offers the
possibility to enhance historical archives and the retrieval of information on
Cultural Heritage.

1.5.2 Open issues

Summarizing what explained in the previous sections, some issues to address
have been raised.

First of all, the principle of transparency has emerged as the requirement to
certify metrically the results of the documentation process following a geomatics
approach. This general principle was adopted as an international standard now in
use. However, the determination of metric accuracy is technically challenging
when dealing with historical images from archives. Another important issue, in
fact, concerns the limitations in processing historical photographs and film
footage, since sometimes they have characteristics not suitable for the standard
photogrammetric workflows because acquired not for this purpose. Furthermore,
it was also highlighted that the difficulty of finding the material which often
requires physical access to the archives, since in many cases it allows on-site
consultation but not data sharing, is somehow resolved by the development of
international projects (such as I-Media-Cities and others already mentioned)
aimed at limiting the barriers to access to data in video archives. However, a
fundamental problem that remains unsolved is the need to identify the object of
interest within the amount of material that potentially contains it. The indexing of
metadata for historical archival material is often incomplete or inaccurate, and the
corresponding search engines are therefore not very efficient. The human effort to
find the data of interest represents a significant percentage of the geomatics
specialist and final user work.

1.5.3 Aim of the thesis

The specific objective of this thesis is to offer an analysis and assessment
through the metric potentialities of different images available in historical
archives, by considering the essential role of photogrammetry to extract metric
information and to obtain a 3D model. The aim is to explore how metric
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information about the scale of buildings and groups of buildings, which no longer
exist or transformed over time, could be extracted from early 19th century
photographs and videos of different quality, for 3D virtual reconstruction
analysing the material stored in historical archives to support researchers and
experts in historical research of Cultural Heritage.

In order to process these data and to obtain metrically certified results, a
modification of the algorithms of the standard photogrammetric pipeline was
necessary. This purpose was achieved with the use of open-source Structure-from-
Motion algorithms and the creation of a specific benchmark to compare the
results.

Besides the processing of historical photograph, photogrammetry is combined
with Artificial Intelligence to improve ways to search for architectural heritage in
video material and to reduce the effort of manually examining them by the
operator in the archive in terms of efficiency and time.

1.5.4 Proposed Workflow

In the workflow proposed in this work, a combination of Deep Learning
techniques with photogrammetry is presented. DL is used for the retrieval of
primary data used as input material in the standard Structure-from-Motion (SfM)
pipeline used to reconstruct lost Cultural Heritage.

In particular, the first step of the workflow was to use object detection Neural
Networks trained to automatically recognise the monument in film footage and
image collections.

In the second stage of the workflow, specifically for the video, the frames
suitable to be processed with photogrammetry are selected from all the frames
detected by the Neural Network. The selection is performed according to the
camera motions within the scene of the video. Only the shots taken from multiple
points of view of the same scene are suitable for the photogrammetric process.

The third step concerned the photogrammetric reconstruction of the heritage
with open-source algorithms in COLMAP developed by ETH of Zurich,
(COLMAP, Johannes L. Schoenberger, 2019). During the process specific feature
points are manually selected in order to guarantee their presence in the final point
cloud.

Finally, during the fourth of the metric quality assessment of the model, the
results of the 3D reconstruction of the heritage were compared with a benchmark
specifically created to evaluate the metric quality of the model according to the
type of camera motion used.
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Figure 2. The proposed workflow: the first step is the object detection using
Al, the second step (used only in case of video) is the camera tracking, the third
step is the 3D reconstruction following the SfM pipeline and the fourth step is the
metric quality assessment.

1.5.5 Structure of the thesis

This thesis is divided into four parts. A brief description of each part is
reported here below.

The first part is dedicated to photogrammetry applied to historical images. A
classification of historical archives material considering their possible use in
metric documentation and thus suitable for photogrammetry is performed. For
each category recognized, technical problems and criticality on processing these
data are deeply treated since it represents one of the most studied topics,
especially in the field of documentation of Cultural Heritage. In particular, a state
of the art concerning the previously proposed methods to extract metric
information from historical material is presented. After a description of the
advantages of the use of open-source software for photogrammetry, the choice of
the one suitable to process these kinds of data in this dissertation is explained.

Then, the two innovative methodologies to assess the metric quality of the
photogrammetric results are proposed. The first one, suitable for both type of
historical images, consists in improving the performance of open-source SfM
algorithms in order to guarantee the presence of strategic feature points in the
resulting point cloud, even if sparse. To reach this objective, a photogrammetric
workflow is proposed to process historical images. The first part of the workflow
presents a method that allows the manual selection of feature points during the
photogrammetric process. The second part evaluates the metric quality of the

15



reconstruction based on a comparison with a point cloud that has a different
density from the sparse point cloud.

The second one, more specific for video, concerns the creation of a
benchmark to evaluate the maximum metric quality reachable from this kind of
processing. A new video dataset was collected with the aim of reproducing the
camera motions in which the old video was shot. Three different camera motions
were considered: Up/Down Motion-Tilting, Left/Right Motion-Trucking and
Rolling Motion-Panning. The methodology was experimented on Valentino
Castle in Turin, a monument inscribed in the UNESCO World Heritage List. Data
were processed with the implementation of open-source Structure-from-Motion
algorithms and the results were analysed for the evaluation of metric quality.
Results show the different maximum precision assessments according to the
different typologies of camera motion.

In the second part, the state of the art of DL applied to Cultural Heritage is
presented. In particular an innovative match-moving method is proposed that aims
to exploit Artificial Intelligence and SfM algorithms to identify the frames
extracted from film footage in which the lost monument appears and that is
suitable to be processed with photogrammetry for its 3D reconstruction.

This part is divided into two sections. In the first one, the open issues in
collecting historical material are identified. An algorithm implemented to
automatically detect monument in video sequences is also described here. The
choice and the tuning of Neural Networks, the methodology used for testing them
are described, with particular focus on the new metrics introduced for the
evaluation of the algorithm in a real case. Following the description of the
collection and preparation of the datasets are reported. The second section deals
with the identification of video frames suitable to be processed with
photogrammetry according to different types of camera motions.

The third part is concerned with the description of the case studies analysed
and the discussion of the results of the implementation of the workflow.

Two case studies in Paris were chosen: the UNESCO Heritage Tour Saint
Jacques (Figure 3) and the pavilions of Les Halles of the architect Victor Baltard
(Figure 4). These case studies represent two different situations of heritage
because the tower was transformed over time but still exists (the study is focused
on the tower after transformations) and the pavilions were destroyed in 1971.
Thus, it is possible to compare the different results obtained from the
implementation of the workflow to the two case studies.
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Figure 3. Tour Saint-Jacques la Boucherie (1508-22), Paris. (a) Henri Jean-
Louis Le Secq, 1853, Musée Carnavalet. (b) Francesca Condorelli (author), 2019.

(b)

Figure 4. Les Halles of the architect Victor Baltard (a) before the demolitions
in 1971, Charles Marville, 1855, Musée Carnavalet / Roger-Viollet.. (b) the
destruction of the Halles, Jean-Claude Gautrand, 1977, Galerie W.

The methodology and the quality of the results were analysed, with particular
focus on each part of the workflow previously described.

To validate the methodology, the workflow was tested also on other case
studies and the results are reported: the historical photographs of paintings of
Byzantine churches (Figure 5); a Japanese historic building before and after
restoration (Figure 6 and 7) and the temporary architecture of the International
Exposition in Turin in 1921 and 1928 (Figure 8).

Conclusions and future perspectives of the research will be provided in the
final part of the thesis.
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from G. de Jerphanion’s work (1925-
42) and images of the actual state of the paintings in Karanhk Kilise (11th
century).

Figure 5. Histo

Figure 6. Pictures of the Former Matsuno-Yu building from local archive
before the restoration in 2013.

Figure 7. Pictures of the Former Matsuno-Yu building from on-site survey in
2018 after the restoration.
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(b)

Figure 8. (a) The Hungarian pavilion at International Exposition in Turin in
1921 (Cornaglia, 2001). (b) the “Mines and Ceramics” pavilion at International
Exposition in Turin in 1928, Library of Politecnico di Torino "Roberto Gabetti",
1928.
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Chapter 2

Photogrammetry from historical
images: Metric Quality Assessment

2.1Processing historical images with photogrammetry

2.1.1 Open issues in processing historical images

The determination of the metric quality of the 3D models is technically
challenging when derived from historical archives data. Assessing this quality is
very important because historical documents such as images, maps, plans are the
principal sources in the field of research of Digital Humanities. Among these
materials, certainly the historical images represent a great potential because they
can be processed with photogrammetry to extract metric knowledge to document
for restoration and virtual reconstruction of destroyed or transformed objects.
Orienting and registering historical pictures can also give a still unknown view of
buildings and details that were not only available with two-dimensional images and
can be explored in a 3D space (Maiwald et al., 2018), and compare the historical
and current states of Cultural Heritage objects (Al Khalil a, P. Grussenmeyer b
2019). The photogrammetric technique, in fact, offers the opportunity not only to
reconstruct accurately the geometry of the object but also to collect important data
such as texture, materials, colour, damages, information necessary for the
knowledge of its structure. In some particular conditions, without appropriate
documentation, the historical images are the only way to study and reconstruct the
past (Bitelli et al 2007).

Classical analytic photogrammetry tackled the issue of processing historical
images since their birth. Recently, the advancement of new technologies is
supporting the calibration and orientation steps in the photogrammetric pipeline
making them automatic. However, although the use of Structure-from-Motion
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(StM), the position and orientation of the camera, cannot always be automatically
estimated with these algorithms implemented on historical photographs.

The calibration of these images is the key step and some critical factors could
lead to a failure of the processing.

In the following Figure 1, 2 and 3 The Valentino Castle, the seat of Politecnico
di Torino, has been chosen as an example of some of the issues following
mentioned.

Issues related to archive storage

The first problem is the difficulty in finding suitable material for
photogrammetric processing with a good conservation stage. Low archival quality
due to improper transport or storage procedures of the film (humidity, temperature,
etc.) together with inaccurate processing of original films or hardcopies in field
laboratories could cause issues of digitization.

Film grains, dust particles and fingerprints may appear on the images and may
also be visible on the digital copy. In most cases, there is no information about the
scanning process, and if the scan information (sensor, resolution, dynamic range,
working range, precision, filter) is not available, all metric data could be damaged
(Maiwald, 2019).

Figure 1. Historical photographs of the Valentino Castle, from the archive of
GAM - Galleria Civica d'Arte Moderna e Contemporanea, in which some archive
issues (bad conservation stage due to humidity) occur.

The consequence is a low quality of images in terms of resolution and
radiometry (haze, image darkness, non-uniform luminosity); the lack of
information about the images (acquisition period, method and location); the
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difficulty in finding accurate data like constraints or control points (Bitelli et al.,
2007; Zawieska et al., 2017; Maiwald et al., 2017).

Issues related to the aim of the acquisition

Another challenge is relating to the fact that historical photographs and film
footage stored in archives were not taken to be used for metric documentation and
3D reconstruction purposes. In the majority of cases, they consist in the press and
personal memories for what concerns photographs; while for film footage they
consist of movies, amateur videos or cinematographic reports. For this reason,
images could be incomplete or could present occlusions due to persons or car in
front of the object to reconstruct.

Figure 2. Historical film footage of the Valentino Castle, from the [-Media-
Cities platform and the video archive of Cinema Museum of Turin, in which some
aim of acquisition issues (documentary) and technical features issues (low
resolution quality and lack of film information) occur.

Issue related to technical features

Another issue is that camera parameters and film information are often missing.
The inaccuracy or total lack of meta-information about inner orientation (focal
length and coordinates of principal point and fiducial marks when present) and
additional (i.e., distortion) parameters are the most important problems because
they are necessary to perform the interior and exterior orientation. Moreover, the
scanning process cloud affects the individuation of the principal point when only a
part of the original analogue image is scanned and it may be at the edge or even
completely outside the digital image.
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Figure 3. Historical photographs of the Valentino Castle, from the archive of
GAM - Galleria Civica d'Arte Moderna e Contemporanea— Fondo Gabino, in which
some technical features issues (images of the same object are taken by different
types of camera that differ in exposure and shooting) occur.

Problems increase when images of the same object are taken by different types
of camera that differ in exposure and shooting and are used in the same
reconstruction. The season, the weather, the time of the day in which images were
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acquired dramatically influence the changes in radiometric characteristics.
Moreover, the images may be blurred, noisy, underexposed and overexposed, and
different points of light, reflections and shadows may appear in the same scene and
interfere with feature extraction during the photogrammetric process. In addition,
extreme changes in perspective can occur between images, making 3D
reconstruction difficult.

The last issue concerns images acquired in a different historic period in which
the building could be affected by changes during time, such as destruction or
reconstruction of some parts. These details could be useful during the orientation
process, but at the same time could lead to some mistakes in the reconstruction.

2.1.2 Classification of historical images and state of the art

With the awareness of the limitations concerning the processing of historical
images highlighted in the previous section, in the following paragraphs a
classification of historical images is presented. Moreover, the state-of-art and
potentialities of these kinds of primary data are highlighted, focusing on the
previous attempts in managing these images.

Figure 4. Classification into five main categories of historical images stored in
historical archives, according to their aim of acquisition and their availability.

The proposed approach splits historical images into five main categories, as
shown in Figure 4, according to the aim of acquisition and the availability in
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archives: (1) single images; (2) photographs for photogrammetric purposes; (3)
random images; (4) stereoscopic views; (5) videos.

Single Images

Recovering metric information from a single image is a classical problem in
photogrammetry, 3D reconstruction, computer vision and robotics. In
photogrammetry “three-dimensional reconstruction of an object from a single
image is only possible if additional geometric information about the object is
available. Single image processing is typically applied for and orthophotos, and
plane object measurements. The achievable accuracy of object measurement
depends primarily on the image scale and the ability to distinguish those features
which are to be measured within the image” (Luhmann et al., 2020).

In the field of Cultural Heritage is particularly important in cases in which no
more than one view of a monument to document is possible to recover.

In the Cultural Heritage domain, some studies have been carried out for the
rectification of historical images that can efticiently provide measurements from a
single image using the a priori geometric properties of the object such as linearity,
parallelism, perpendicularity, symmetry (van den Heuvel, 1998). The methodology
includes the determination of segments and vanishing points and, if possible, the
intrinsic calibration of the camera (Brduer-Burchardt and Voss, 2002). The
knowledge of a reference geometry allows estimation of the reference scale.
Rectification, for example, is a technique particularly suitable for flat facades
(Khalil and Grussenmeyer, 2019) where the low relief (if present) is assumed to
produce deviations from the orthogonal projection since some details do not belong
to the rectification plan. They are negligible depending on the scale chosen or the
use of this rectification. In case of the destruction of the object, sometimes the
reference information is provided by the still existing buildings in the
neighbourhood (Hemmleb, 1999). If the parameters of the camera model, such as
the focal length, are unknown, they can be estimated from the geometric
information of the object. The rectification, when possible, estimates eight
transformation parameters which are the coefticients of the equations of the general
homography. They derive from the collinearity equations in the hypothesis that the
object is a perfect plane. The eight parameters of the homography contain functions
of all nine internal and external orientation parameters.

Other approaches developed a system to solve the problem of reconstructing
the geometry of an object from a single view: recognizing selected objects in
uncalibrated images (Bryson et al., 2014); jointly analyzing a collection of images
of different objects along with a smaller collection of existing 3D models to
reconstruct the scene from a single view (Huang et al., 2015); recovering 3D object
from single 2D line drawing in perspective projection reconstruction without
knowing camera parameters (Yang and Zhang, 2017); measuring objects images of
unknown origin using a Python tool that estimates vanishing points and resects a
camera and poses is also proposed (Settergren, 2020).
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Recently, with the spread of Artificial Intelligence techniques, this topic is
again addressed proposing different solutions. Following some example of
applications are reported. Some approaches deal with the problem considering that
a depth image from one viewing angle may be associated with an infinite number
of possible 3D models. Starting from the ability of the humans to solve such
ambiguity, some researchers applied supervised learning combining monocular and
stereo cues to estimate the depth map of the single image (Saxena et al., 2008);
trained neural networks to acquire 3D shape from single depth view (Yang et al.,
2018) and to estimate the 3D object shape from 2.5D sketches (Wu et al., 2017).

In the heritage domain, a study focused on the single photo 3D reconstruction
problem for lost cultural objects for which only a few images are remaining using
an image-to-voxel translation network (Z-GAN) as a starting point. (Kniaz et al.,
2019).

Photographs for Photogrammetry

Starting with the case of many photographs in Meydenbauer's metric image
archive, analogue before, and digital later, have been used for documentation
purposes. If the photogrammetric acquisition rules have been observed and
calibration data or camera position information is still available, a correct
reconstruction is possible under certain conditions. Thanks to the availability of the
calibration report of the metric camera used, generally, the generation of the 3D
model succeeds at a high rate, even if the images processed are old. The success of
a photogrammetric reconstruction also depends on the number of images of an
object, ideally taken with the same camera (Hemmleb, 1999). In the past, data
processing was carried out on digital stereo plotters or workstations; all analogue
photos had to be converted into digital ones using a photogrammetric scanner.
Today there are still photogrammetric materials, but the technology and processing
are completely different. Many SfM software is available and the commercial type
is the most used due to their easy use and the acceptable quality in many
applications of the results obtained in a fast way.

Several studies (Pavelka et al., 2017; Poloprutskya et al., 2019) tried to process
different types of photogrammetric images with different results. One of the most
used software in previous works is Agisoft Metashape, which leads to results only
when the historical images have high overlap.

Stereoscopic Views

In stereoscopic imaging, two images are acquired by different camera poses in
such a way that the optical axes of the two camera systems are perpendicular to the
base vector and almost parallel to each other (Khalil and Grussenmeyer, 2019).
Also converging views are suitable in stereoscopic views and the overlapping is
guaranteed. However, while classical photogrammetry solves the reconstruction
with overlapping starting from 30% between two images, Structure-from-Motion
techniques, which are suitable for many converging images, require an overlap of
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85% between images on at least three photographs. For this reason, the processing
of stereo image pairs fail. Moreover, increasing the percentage of overlapping, the
precision quickly decays (photogrammetric suggestion is to never exceed 60%).
This has been demonstrated in a recent study in processing old collections of
analogue negatives from terrestrial stereoscopic photogrammetry of historical
buildings (Rodriguez Miranda and Melén, 2017). There was almost no overlap in
the calculation of relative orientation, and in this situation, the SfM algorithms are
not capable of automatically resolving the absolute orientation of the photographs.
Traditional photogrammetry can fill this gap and provide adequate results.

Random Images

When images are acquired not following the required photogrammetric criteria
they are called “random™ in this dissertation. This means that they not present
overlapping and are often divergent. They are acquired not for documentation
purposes and not using a metric but a consumer camera, even if expensive but more
suitable to give a high photographic performance. They are mostly scanned from
analogue images or they are acquired from various sources such as the internet or
books. The main problems with these images are the differences in size and scale,
the unknown pixel size and focal length of the camera, and most importantly, the
different shooting times; thus, some parts visible in one image are missing in other
images and it is impossible to determine the homologous pixels. The light
conditions (shadows) are generally very different, which can lead to problems with
automatic matching procedures (Gruen et al., 2014) because some details are not
displayed correctly and as a result, too few characteristic points are found, which
means that the orientation of the image can be estimated inaccurately or not at all.
In the automatic subsequent extensive matching process, many wrong point
assignments were found, which led to wrong values in the final point cloud. Also,
radiation or blur distorted the result (Maiwald et al., 2017)

Various photogrammetric techniques and algorithms are used to solve these
problems. Undoubtedly the bundle adjustment presents a lot of advantages (Gruen
et al., 2014), but the most popular are structure-from-motion and image-based
rendering algorithms that can estimate the camera information from the images
themselves using computer vision techniques (Snavely et al., 2008; Schindler and
Dallaert, 2012). Data from these studies suggest that integration into the process
with current measurement data and images of the same object (Maiwald et al., 2017)
provides many reliable control points for the photogrammetric determination of the
internal and external orientation parameters of historical photographs (Hanke et al.,
2015). Starting from approximate values of unknown parameters and control points,
which are acquired today but can also be identified in the past, and assuming that
these points have remained unchanged during the elapsed period, it is possible to
solve the orientation problem in order to achieve a good convergence of the
reconstruction (Bitelli et al., 2007).
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Previous researches were involved in the use of these algorithms on
unstructured collections of the archive using touristic photos images to 3D model
the scene captured (Snavely et al., 2007) and to reconstruct lost heritage (Gruen et
al., 2004; Khalil and Grussenmeyer, 2019).

Videos

If no images are available, videos are actually an interesting source for 3D
measurement technique. Previous research has defined "Videogrammetry" as a
measurement technique based on the principles of "photogrammetry" (Gruen,
1997). The accuracy of a videogrammetric system and the results obtained in
various studies was certified as high as a laser scanner acquisition (Gruen, 1997;
Herraez et al., 2016). Another advantage is the reduction of the computing load and
thus higher efficiency (Sung et al., 2017). For historical videos, the advantage is the
possibility to extract images from hundreds of video sequences and to select stereo
pairs (Herrdez et al., 2016), which can be processed with photogrammetric
techniques.

2.1.3 Structure-from-Motion pipeline with open source algorithms

In computer vision, an automatic calibration and reconstruction process is
preferred. For this reason, the current state-of-the-art image orientation SfM
algorithms and dense image matching (Multiple View Stereo) allows non-experts
to obtain 3D point clouds from uncalibrated images without requiring specific
settings in the software of elaboration, even if with different geometric and visual
quality. Pipelines are generally quite robust and reliable, most of them are capable
of processing even large series of unordered images (Stathopoulou et al., 2019).
Commercials software, in particular, present many advantages such as the fully
automatic process, the easy use and the reliability of the results.

Among commercial software, Metashape (Agisoft, 2020), Pix4D and many
others, are the most used also in the research domain because offers many
interesting features like photogrammetric triangulation, point cloud data,
measurements for distances, volumes and areas, 3D model generation, orthophoto
and textures and the easy use.

However, the high cost of the software licenses, and above all the fully
automated approach is a disadvantage because it does not allow any intervention in
the reconstruction process, no information about calibration accuracy, image
orientation and final model (Barto$ et al., 2014). Commercial software, in fact, with
closed source code not allow customer-specific parameterization, which can often
lead to misleading results or the use of black boxes.

Moreover, in the case of historical images, this software fails to capture images
with low overlap, poor resolution and missing metadata, and deliver fully
satisfactory results in terms of completeness and robustness. Therefore the final
point cloud, if obtained, results uncomplete, not dense and with low accuracy.
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Nowadays, besides commercial software, a large number of freely
photogrammetric software or algorithms that contain image processing routines are
available. A typical pipeline starts with image orientation based on feature matches
between images and the sparse point cloud triangulation (Structure by Motion -
SfM) using incremental and/or global Bundle Adjustment (BA). Next, a dense 3D
reconstruction (usually called Multiple View Stereo - MVYS) is performed to further
densify the sparse point cloud by reconstructing the depth value of almost every
corresponding pixel in 3D space. Open source solutions are usually not designed to
support 3D scale reconstruction using ground control points (GCP), but rather with
a simple Helmert transformation (Stathopoulou et al., 2019).

The use of open-source algorithms allows the control of the quality of the
results at each stage of the photogrammetric pipeline and avoids the blind
automatisms of commercial software packages. However, a certain level of
technical expertise and knowledge is required. The advantage is to offer the
possibility to choose different levels of automatization, parameterization and
customization of the algorithms at the basis of the pipeline.

Previous studies (Barto§ et al., 2014; Rahaman and Champion, 2019;
Stathopoulou et al., 2019) gave an overview of the most used SfM software, both
commercial and open-source, with the aim of comparing their workflows and
outputs according to different parameters.

A comparison was performed between commercial and free software for the
process of archive images considering reconstruction density, point cloud
consistency and quality of the 3D mesh model. The software was selected on the
basis of their price, platform independence, scalability and output format (Khalil
and Grussenmeyer, 2019).

Another evaluation considered accuracy, ease of use and installation, and the
required processing time of open source software and their performance in
reconstruction was compared with the results obtained from commercial software
to assess the average deviation of their produced point clouds in order to choose the
best one according to the final use (Rahaman and Champion, 2019).

Three of the available commonly used open-source solutions, COLMAP
(Schonberger et al., 2016), OpenMVG+OpenMVS (Moulon et al., 2016) and
AliceVision (Moulon et al., 2016; Jancosek et al., 2011)., were evaluated under
diverse large scale scenarios with the aim to check algorithm reliability and
performances on large and extensive datasets (Stathopoulou et al., 2019).

The above mentioned open source solutions are mainly developed by the
computer vision community, are aimed at a broader audience of 3D reconstruction.
Their main goal is therefore not metric accuracy, but photorealistic 3D models of
any scale and low geometric quality. On the contrary, MicMac3 (Pierrot-Deilligny
and Paparoditis, 2006; Rupnik et al., 2017) is a fully photogrammetric open-source
pipeline that can handle GCP and camera constraints (e.g. fixed baselines, etc.).
MicMac (http://micmac.ensg.eu, 2020) has been developed at the National Institute
of Geographic and Forestry Information (IGN) and the National School of
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Geographic Sciences (ENSG), and the access is by simplified command line. The
use is not so easy for the unskilled operator because of many small processing steps,
but the estimation of the camera orientation parameters and the matching algorithms
are well defined and stable (Rupnik et al. 2017).

Despite the high control and stability of MicMac, in this thesis COLMAP was
chosen as reference software, as explained below in detail.

2.1.4 Solutions proposed: COLMAP

COLMAP (Schonberger and Frahm, 2016) open-source Structure-from-
Motion and Multi-View Stereo (MVS) algorithm implementation, developed by
ETH of Zurich (https://github.com/colmap/colmap, 2020), is the pipeline chosen as
the reference in this work.

This software is designed to create a versatile incremental SfM system for the
reconstruction of collections of unordered photographs. The advantage of
COLMAP is that the accuracy of the results is significantly improved while
increasing efficiency at every stage of incremental reconstruction. Moreover, it
allows the setting of a suitable scenario also for video sequences and supports both
graphical and command-line interface. These advantages allow a suitable
interaction for the purpose of the research.

The steps of the COLMAP SfM sequential processing pipeline for the
iterative reconstruction are: 1) Feature detection and extraction, 2) Feature
matching and geometric verification, 3) Structure and motion reconstruction.

In the first step, feature detection and extraction find sparse feature points in
the image and describes their appearance using a numerical descriptor. For the
feature detection, the SIFT algorithm (Lowe, 2004) is implemented with the
possibility to choose both CPU and GPU options.

In the second step, feature matching and geometric verification find
correspondences between the feature points in different images. A list of settings is
available: exhaustive matching, sequential matching, vocabulary tree, spatial
matching, transitive matching and custom matching.

The 3D reconstruction step is performed by implementing an incremental SfM
from a carefully selected initial image pair and applying a robust algorithm to select
the next view, followed by multi-view triangulation. During the bundle adjustment
phase, the Ceres solver and global BA are used at each step to improve camera and
point estimations and to avoid drift (Schonberger and Frahm, 2016). The multi-
view stereo reconstruction is performed based on the framework of (Zheng et al.,
2014) using a stereo approach based on probabilistic patches (Schonberger et al.,
2016; Stathopoulou et al., 2019).

During the process, the Final Cost values are computed. They represent the
average of the reprojection error overall image observations and are expressed in
pixel. It means that they describe a measure of dissimilarity that is the unlikelihood
that two pixels belong to a unique point in 3D since the correspondence can be
ambiguous.
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All data processed during the process are stored in a customized database and
could be easily managed.

In the next sections, it will be presented how the standard COLMAP pipeline
was customized for the purpose of processing historical images.

Other studies (Maiwald et al., 2018; Maiwald, 2019) focused on the
experimentation of different matching algorithm to find the one suitable for
historical photographs.

In this study, a method to optimize the feature extraction in COLMAP for
historical archives images and then the settings of the scenario suitable for the
processing videos are presented following.

2.2 Optimizing feature extraction in COLMAP

In the previous Chapter 1, the importance of metric quality certification of the
3D model obtained from a photogrammetric process was highlighted. Moreover,
the use of open-source software proved to be suitable for processing historical
images since it allows the adaptation of specific algorithm in the photogrammetric
pipeline.

Among the issues observed in the processing of materials from historical
archives, such as photographs and videos, one major problem is represented by the
fact that the resulting point clouds present low density. This limitation, due to the
lack of necessary information in the photogrammetric reconstruction, dramatically
affects the evaluation of the metric quality of the resulted point clouds.

Point cloud generation and 3D modelling are two different things. Point clouds
are not a 3D model but the starting point of the reconstruction. In modelling, many
simplifications are introduced so that the quality can only decrease. By reasoning
about points, when possible, a real idea of the accuracy of the measurement method
can be offered. When it is not possible, the errors found depend not only on the
measurement phase but also on the modelling phase.

A very common practice to evaluate the metric quality of the 3D reconstruction
process in photogrammetry is the point clouds comparison. The metric comparison
between point clouds with different density is limited by the fact that the 3D model
is constituted by incomplete parts. Consequently, assessing the quality of point
clouds is, therefore, a challenging problem, since this 3D representation format is
unstructured (Javaheri et al., 2017).

To solve this problem, several approaches have been proposed in previous
studies: outliers filtering (Hu et al., 2019) and noise smoothing (Wang et al, 2013);
automatic filtering procedure based on some geometric features computed on the
sparse point cloud created within the bundle adjustment phase (Farella et al., 2019).
These studies have focused on finding automatic solutions to the problem.

However, when historical archive material is processed, the difficulty of
comparing sparse point clouds lies in the fact that there is no direct correspondence
between each point in the two clouds (Tazir et al., 2018). It represents a major
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problem when it is necessary to scale the model for its metric quality assessment.
If point clouds from a recent survey are available, the comparison between this
point cloud and the one resulting from the photogrammetric processing of historical
images could fail because the few points of the sparse cloud do not match those of
the dense point cloud. The situation is even more difficult if there is no current
survey, but only historical drawings and archive projects from which the distances
to scale the model can be extrapolated.

Developing new ways to improve the performance of open-source Structure-
from-Motion algorithms for assessing the metric quality when the resulting point
clouds present low density or when dense point clouds are not available is great of
interest not only for the Cultural Heritage field but also in other applications.

For example, point clouds, coming from different primary data and/or
techniques (e.g. the ones coming out from photogrammetric survey and the ones
coming out from a laser scanning process), could vary greatly in their point
densities and their accuracies. This is due to the intrinsic characteristics of the
instruments, the sensor size and the distance between sensor and object (Bracci et
al, 2018). Especially in photogrammetry working with sparse point cloud happens
very often, for example when the surface of the object or scene is difficult to
reconstruct because is shiny (Delis et al., 2017), texture-less (Hafeez et al., 2017)
or curved (Wong & Chan, 2010). The result of point clouds is also affected by bad
illumination conditions (Girardeau-Montaut et al., 2005), the thickness of the object
and its transparency. Above all, the way in which the data is acquired can cause
noisy results and blunders especially when different platforms or low-cost sensors
(Byrne et al., 2017) are employed, due to scale and illumination changes or quality
and quantity of single sources (Farella et al., 2019).

This section investigates how the performance of open-source SfM algorithms
can be improved in order to guarantee the presence of strategic feature points in the
resulting point cloud, even if it is sparse. To achieve this, a photogrammetric
workflow is proposed to process historical images (Figure 5). The first part of the
workflow introduces a method that allows the manual selection of feature points
during the photogrammetric process. The second part evaluates the metric quality
of the reconstruction on the basis of a comparison with a point cloud that has a
different density from the sparse point cloud. This procedure could be also useful
in case of a lack of point clouds to be compared: the presence of some specific
known points, selected by the human operator, will allow the correct scaling of the
obtained point cloud.
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i ; Feature u«mm Metric
oy sy " king gl and Geometric 53 Quality
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Figure 5. The pipeline described in this section 2.2 corresponds to the third step
highlighted in red.
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2.2.1 Proposed workflow

As introduced in Section 2.1.4, the photogrammetric pipeline chosen as a
reference in this workflow is the COLMAP (Schonberger et al., 2016) opensource
Structure-from-Motion and Multi-View Stereo (MVS) algorithm implementation,
developed by ETH of Zurich, (COLMAP, Johannes L. Schoenberger, 2019).

e Metric Quality
SfM Pipeline Assessment

Feature Detection Feature Point
and Extraction Selection

!
Structure and Feature Matching
Maotion = and Geometric
Reconstruction Verification

Figure 6. Flowchart of the proposed workflow in which a step (in red) of
“Feature point selection” was added to the standard SfM pipeline in COLMAP.

Two main blocks compose the proposed workflow. The first one is the standard
photogrammetric pipeline in which an additional step of “Feature point selection”
(highlighted in red in Figure 6) was added, after the “Feature detection and
extraction” phase in order to manually select the tie points to use during the
subsequent “Feature matching and geometric verification” step.

The second block consists of evaluating the metric quality of the results
obtained from the previous photogrammetric process. In order to reach this
objective, firstly the cloud-to-cloud distance and then the Residuals were estimated.

2.2.2 Feature point selection

The algorithm to detect and extract new feature from images in COLMAP is
sketched in Figure 7 and detailed below:

txt
Manual Image e FP in the
Selection |=» | - dinates | > | Database | &, = final point
of FP cloud
script

Figure 7. Workflow of the step of the Feature point selection algorithm.
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- Manual selection of Feature Point: with the standard “Feature detection and
extraction” step, COLMAP automatically detects key points in the images, but it
could occur that some important radiometric corner in the image, that appear also
in other images, are missing. Introducing this step, it is possible to manual detect
the feature point of interest and to extract their 3D coordinates. The image
coordinates of the searched point were measured with the WebPlotDigitizer tool
(https://automeris.io/ WebPlotDigitizer, May 2020), as shown in Figure 8, and
inserted in the software choosing between two different methods, as explained in
the following stage.

[173.40, 1000.20]

Figure 8. An example of image coordinates measured with WebPlotDigitizer
tool and inserted in the software for the manual detection of Feature Points.
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Figure 9. An example of the database management in COLMAP in which key
points are stored as row-major float32 binary blobs.
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- Database: data processed in COLMAP are stored in a customized database
that could be easily managed. The previously detected key points are stored as row-
major float32 binary blobs, (a binary large object that is a collection of binary data
stored as a value in the database) where the first two columns are the x and y image
coordinates in pixel.

0 The first way is useful to insert new coordinates of Feature Points
not already detected by the automatic algorithm and that for this reason are not
present in the database. Creating a text file in which the image coordinates (x, y)
expressed in pixel and the scale and orientation information are indicated, writing
one line per feature, it is possible to import known feature (e.g. single points) in the
database and use them in the matching stage.

0 The second method is to query the database with SQLite to choose
the best key points to use for the matching and the incremental reconstruction within
all the tie points automatically extracted from the algorithm.

- Results: this assisted processing, in both ways, allows the choice and the
filter of highlight points such as corners and outline feature. The matching
algorithm searches for the selected feature point in each image to estimate the
equipolar line in the other images. The result of the matching is a point cloud that,
even if sparse, contains the corresponding point to the dense point cloud to compare.

2.2.3 Metric Quality Assessment: Point Cloud Comparison

The metric quality assessment of the photogrammetric reconstruction was
added as the last step in the workflow.

This evaluation consists of two main procedures: a global comparison between
a sparse point cloud and a dense point cloud and a punctual comparison between
selected specific feature points in the two point clouds.

The first comparison was performed using the CloudCompare software
(https://www.danielgm.net/cc/, May 2020). This open-source software allows the
comparison of point clouds by estimating their distances using the Multiscale Cloud
Model Comparison (M3C2) plug-in, which uses the normal directions of one of the
two surfaces to calculate local distances and provides estimations of the confidence
intervals for each measurement (Lague et al., 2013). Generally this method is a
good solution when the two point clouds have the same density. However, in the
case analysed in this dissertation, the advantage of this algorithm is that avoids the
problems raised by the low density of the point cloud resulting from the
photogrammetric process and rather performs a direct comparison of the two point
clouds. In fact, thanks to the selection of the feature points in the previous step, the
problem of the lack of points in some parts of the point cloud is avoided because
the presence of these points in the point cloud is guaranteed. For each point of the
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sparse cloud, a closer point can be defined in the dense cloud and the algorithm can
estimate the surface change as the distance between the two points.

The second comparison was carried out by first scaling the 3D model obtained
by the photogrammetric procedure on the basis of the feature points of the dense
point cloud, which are identical to the feature points previously selected in the
photogrammetric process. Finally, the estimation of the Residuals between the
coordinates of the feature points in the two point clouds concludes the metric
evaluation.

2.3 A benchmark for historical film footage to assess the
metric quality of  the photogrammetric
reconstruction

2.3.1 Toward the need of a new video benchmark

The previous section focused on the processing of historical images boosting
the photogrammetric pipeline with new steps in order to obtain point clouds
comparable even if a high density is not present.

For what concerns the processing of video frame and in particular historical
film footage, this method is not sufficient to evaluate the metric quality of the
models. As highlighted in section 2.1.1, determining the metric precision of the film
footage processing is a challenge since the main problem is the way in which the
video was shot. The motion of the camera used to shot the film, in fact, dramatically
influences the possibility or not to process these data. If it not has created
convergent views, the processing failed for the reasons related to the
photogrammetric acquisition 3x3 rules (Waldhéusl et al., 2013).

However, as deeply explained in the next paragraphs, specific types of camera
motions are selected and considered somehow appropriate for the photogrammetric
processing: Up/Down Motion-Tilting, Left/Right Motion-Trucking and Rolling
Motion-Panning.

To show the potentialities of the method proposed, this section examines the
maximum metric accuracy reachable while implementing photogrammetric
workflow on videos shot with these fixed camera motions.

In order to evaluate the metric quality achieved by processing historical film
footage with photogrammetric techniques, a benchmark was created on a new video
dataset with the aim of reproducing the camera motions in which old videos were
shot. The methodology was tested by acquiring videos on Valentino Castle in Turin,
a UNESCO World Heritage Site, and processing them with open source algorithms
using specific settings in COLMAP.

This is the first benchmark based on video acquisition and processing in relation
to film footage.
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In fact, despite the importance of this topic, the researchers have not dealt with
it in great detail, and previous studies have not addressed the determination of the
metric quality assessment of the results of photogrammetric processing of historical
film material.

For this reason, the creation of a new benchmark is necessary to achieve the
task of evaluating data, sensors and algorithms since it allows the comparison of
the results obtained with a univocal approach. Representing the maximum metric
quality achievable in this case, it can be used as a point of reference against which
results can be compared to have an idea of the quality of the processing
performance.

In the photogrammetric and remote sensing field existing benchmarks
evaluated sensors, algorithms and methods for data processing (Bakuta etal., 2019).
Some past benchmarking activities were promoted by association such as ISPRS
with a different aim: evaluating urban object detection and 3D building
reconstruction based on airborne image and laser scanner data (Rottensteiner et al.,
2012); creating datasets for multi-platform photogrammetry for the orientation of
oblique airborne image sets (Nex et al., 2015; Gerke et al., 2016); comparing of
indoor modelling methods (Khoshelham et al., 2017); proposing new dataset for
multi-view stereo processing (Schoeps et al., 2017); segmenting UAV videos (Ying
Yang & Yilmaz, 2018); assessing the performance of the entire image-based
pipeline for 3D urban reconstruction and 3D data classification (Ozdemir et al.,
2019).

For what concerns historical archival material, a benchmark was proposed to
orienting historical photographs, experimenting with different feature matching
algorithms (Maiwald, 2019).

However, differently from historical photographs, historical film footage needs
to consider also the motions of the camera. This represents the great innovation
introduced in this new benchmark here proposed and it will be useful also in other
applications.

Recently, in fact, the use of video for the documentation of Cultural Heritage
sites has become widespread thanks to the increased quality (both radiometric and
geometric) and the number of video streams. Of course new surveying sensors and
smartphones have encouraged the diffusion of easy ways to capture video
sequences and the consequence is the development of methods to derive 3D data
from video for different purposes, not only in the heritage field (industrial,
computer vision, UAV, for example).

Most of the research on video sequences have been used for recordings with ad
hoc cameras, and dense 3D reconstruction from a video has been proposed to obtain
an accurate representation of the scene (Pavoni et al., 2016). Aerial video sequences
have the same disadvantages as historical films, such as low resolution, blur-motion
effects and redundant video images, and can therefore be compared. Previous
studies have investigated the possibility of using video images for 3D modelling
with commercial software for processing data with Structure-from-Motion
(Cusicanqui et al., 2018). However, as already explained, in the case of historical
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films, the full automation of the software packages leads to no results and there is
areal need to control every step of the photogrammetric workflow.

To achieve a successful 3D reconstruction, certainly the overlapping between
subsequent frames, the scale of the image, the viewing angle and the baseline are
important factors to consider. Baselines have a particularly key role since if too
narrow, they are not optimal for triangulation of tie points, while if too wide the
matching of detected keypoints resulted difficult to perform. However, if these
factors are taking into account, a videogrammetric approach can provide 3D results
comparable to those of a photogrammetric solution based on images from a reflex
camera (Torresani and Remondino, 2019).

Considering the important role of the respect of the photogrammetric rules
required to obtain high metric quality results, in the next paragraphs the
identification of the type of camera motions used in the historical film footage and
the state of the art in processing them is presented. Then the acquisition of the
dataset and photogrammetric workflow used for processing of video frame is
described and finally the criteria used for the metric quality assessment and the
results are reported in the last paragraph.

2.3.2 Camera motions analysis and related works

In general, in historical film footage, it is very rare to find camera motions taken
from multiple points of view of the same object that create convergent views. If
they are available, the application of the bundle adjustment method allows the
computation of all camera parameters and 3D object coordinates as well as the
compensation of the systematic errors. Instead, it is much more common to find the
following types of camera motions (also shown in Figure 10):

Tilting m M M

Trucking
Panning

Figure 10. Scheme of the three types of camera motions: Up/Down Motion-
Tilting, Left/Right Motion-Trucking and Rolling Motion-Panning.
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1) Tilting(Up/Down Motion): camera positioned in a fixed position and that
takes the object by scrolling from top to bottom (or vice versa) in a vertical plane.

2) Trucking (Left/Right Motion): camera in motion along with a fixed point
and that takes the object by scrolling from right to left (or vice versa)

3) Panning (Rolling Motion): camera positioned in a fixed position and that
takes the object by horizontally pivoting from right to left (or vice versa) on a
central axis.

In these kinds of sequences acquisition, extracting 3D information is limited
not only by the low quality of the frames and the lack of information about camera
parameters, but also the noise due to the oscillation of the camera and the small
translation. The consequence is that the baseline between adjacent frames is absent
or very small, for this reason the bundle adjustment and perspective models could
fail for the continuous changes of the internal parameters and the collinearity
equations may be ill-conditioned or the rays cannot correctly intersect (Remondino,
2003).

Calibration and reconstruction accuracy increases with the convergence of the
images used and with the ratio between the Baseline and the Depth (B/D).

Acquiring converging images can generate a high correlation between system
parameters and lead to instability in the estimation of minimum squares. The ideal
would be to acquire images at different distances from the object to complete the
different correlations between the unknown parameters to be calculated within the
bundle. However, these conditions are not always respected due to the movements
of the camera.

The following part presents the feasibility and limitations of processing film
footage shot with these kinds of camera motions and the analysis of the state of the
art for each of them.

Tilting

In the case of a camera that is positioned at a fixed point and captures the object
from top to bottom (or vice versa), the baseline is absent or almost null between
adjacent images. This could cause problems in the processing because the frames
have too high overlap.

There is an absence of variation in the horizontal direction x and a marked
variation along y called vertical parallax. The object is however taken from different
positions and it is possible to estimate the distance of the camera from the point in
a 3D space, because the taken centre moves between frames. Frames filmed with
high inclination are to be discarded as they will result in divergent views compared
to those filmed with small tilting movements.

In a previous study, photogrammetric analysis of monocular video sequences
without the typical photogrammetric information needed to retrieve camera
parameters and generate 3D models was investigated. After a series of tests with
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different data sets it was shown that image orientation and calibration parameters
could be successfully determined by knowing the size of certain objects in the
scene, the pixel size and a perspective bundle adjustment (Remondino, 2004).

Trucking

In the case of the camera positioned in front of the object and that takes it in
motion by scrolling from right to left (or vice versa) there is certainly overlap
between adjacent frames. However, the overlap could be not so high and similar to
noise due to the instability of the camera.

Previous works treated the topic of how to obtain the camera parameters of
orientation and calibration from monocular sequences comparing both the
perspective and the projective approaches (Remondino, 2003). Since these
sequences were acquired using zooming cameras and with small translations, the
projective geometry resulted strongly effective in these cases. The perspective
collinearity model, which is highly stable but requires stable optics, is simplified
into a scaled orthographic projection that is able to deal with variable focal length
and small horizontal translation (Remondino, 2004).

Panning

In the case of a camera that is positioned at a fixed point and captures the object
by rotating from right to left (or vice versa), there is no baseline and the classical
bundle method cannot solve the adjustment. A previous study has shown that the
perspective camera model based on the classical bundle method can be used to
calibrate rotating cameras that do not produce cocentric images. Alternatively, a
simplified camera model can be used, which simply links the image matches to a
rotation matrix. The results obtained with the existing videos do not correspond to
the usual photogrammetric accuracy, mainly due to the very low image quality
(Remondino and Borlin, 2004).

Therefore, this case could be related to the spherical photogrammetry theorized
by Fangi (2007) and subsequent studies. This is an analytical approach that works
with a series of images taken from a single point of view to produce a spherical
panorama. It is obtained by assembling several images, which are then projected
onto a virtual sphere and then mapped onto an equirectangular projection plane
using commercial software. If several panoramas of the same scene taken from
different angles are available, it is possible to obtain an adequate orientation and a
3D reconstruction of the scene (Barazzetti et al, 2010; Pisa et al, 2011). In these
cases it has been shown that it is possible to obtain a good metric content with an
average value for the error modulus between about 0.03 m and 0.015 m (D'Annibale
etal., 2011).
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2.3.3 Acquisition and processing of video dataset for the
benchmark

Despite certain limitations suggested by previous studies, processing film
footage according to the three types of camera movements identified has been
observed as feasible, adopting different solutions. Motivated by the lack of existing
benchmarks related to the architecture field, a new dataset is presented with the aim
of reproducing the camera motions used to shot architecture and monuments in
historical film footage. In particular the tilting and trucking camera motions have
been highlighted as the more common for this kind of acquisition. In this evaluation,
only these two cases were selected to be analysed in this benchmark, while the case
of rolling motion refers to spherical photogrammetry, with the limitation that only
a larger number of panoramas can achieve good metric quality, as previously
shown.

Video Acquisition

The Valentino Castle in Turin was chosen as a case study and it has been used
to evaluate the effectiveness of the experimental methodology presented here. Data
for this study were collected by the author under optimal conditions with a
calibrated full-frame camera, CANON EOS 5DS R, with a fixed focal length of 20
mm and known settings (focus, aperture, exposure). The following Table 1 shows
the specifications of the camera.

Table 1. Camera specifications.

Effective megapixels 50.60

Sensor size 36 x 24 mm

Sensor type CMOS

Sensor resolution 8712 x 5808

Max. video resolution 1920x1080 (30p/25p/24p)
Focal length 20 mm

Nowadays, most cameras and video devices require a sensor with low power
consumption and price and small size. For this reason, the conventional CCD
sensors have been replaced by the CMOS sensors, even in expensive cameras such
as CANON EOS 5DS R used in this work. One of the disadvantages of this change
concerning the video acquisition is related to the rolling shutter. While the CCD
sensors present a global shutter where all pixels are reset simultaneously and are
able to collect the light in the same time interval, the CMOS sensors have a rolling
shutter, in which every row is read and reset in sequence acquiring the image row
by row (Forssén and Ringaby, 2010).

Classical Structure from Motion algorithms modelled on the global shutter
could fail if applied to rolling shutter because they assume that each image is
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captured at a single time instance and not row by row. It can seriously affect their
performance leading to geometric distortions if the camera or the scene is not static
(Hedborg et al., 2013).

Previous studies dealt with the problem of the relation between SfM and rolling
shutter proposing methods to model camera motion during image exposure trying
to solve the problem interpolating position and orientation (Hedborg, 2012); to
rectify video sequences (Forssén and Ringaby, 2010); to assess the difference in
metric quality comparing traditional non rolling shutter camera model with a
proposed rolling shutter one, demonstrating that the distortions due to rolling
shutter increase with the use of a fast moving or vibrating camera limiting the
accuracy of photogrammetric reconstruction (Vautherin et al., 2016).

In the case of Cultural Heritage asset, fortunately, most scenes are static. The
rolling shutter sensors work without problem because the relationship between the
scene and the camera remains unchanged. Problems only occur in dynamic scenes
when the object or camera is moving fast and the readout speed of the image sensor
is too slow. Under these circumstances, rolling shutter not only reduces the visual
quality of the film, but can make 3D reconstruction from the video not feasible,
since one image provides multiple points in time in the same frame and each row
of the image has its projection parameters (Verhoeven, 2016).

The benchmark presented here is related to architecture object that is for this
reason fixed and the scene is consequently static. The video was acquired very
slowly to guarantee a high overlap between the frame and to avoid and limit
distortions due to the rolling motion as far as possible. For this reason, the problems
related to rolling motions are neglected for the purposes of the evaluation performed
with the benchmark.

Case study and dataset

Data for the benchmark were acquired by shooting video on the Valentino
Castle in Turin.

Figure 11. The Valentino Castle, the seat of the Politecnico di Torino.
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The building is one of the "Residences of the Royal House of Savoy" and has
been on the UNESCO World Heritage List since 1997. The present Valentino
Palace of the Savoy dynasty is the result of various design phases that began in the
mid-1500s. Following the French pavillon-systéme, the architects Carlo and
Amedeo di Castellamonte designed the construction of an imposing building by
doubling the existing architectural structure, closed by a pavilion roof and flanked
by two tall and slender side towers, connected by terraced porticoes with two new
pavilion roofs, towards Turin and connected by a semicircular exedra. Later, in
keeping with the eclectic culture, the terraces connecting the two towers were
replaced by two large galleries. After extensive modification and restoration work,
the castle is now the seat of the Politecnico di Torino (Dameri, 2009).
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Figure 12. Frames extracted from the video sequences of the left wing of the
courtyard of the Valentino Castle shot with tilting camera motion. The sequence 1
was shot at a distance of 43 m, the sequence 2 at 38 m, the sequence 3 at 33 m, the
sequence 4 at 28 m, the sequence 5 at 18 m, the sequence 6 at 10 m, the sequence 7
at 5 m.
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In order to collect data for the benchmark, the videos were shot recreating the
camera motions previously identified as common in film footage and suitable for
photogrammetric processing.

Moreover, to analyse the trend of the accuracy values according to the taking
distance, the videos were shot at different and fixed distances.

In particular, videos shooting with the tilting camera motion were taken on the
left wing of the courtyard of the castle starting with a distance of 43 m from the
building and continuing taking it every 5 meters before and 10 then moving closer
until 5 m of distance (Figure 12).

Videos shooting with the trucking camera motion were taken on the fagade of
the castle starting with a distance of 85 m from the building and continuing taking
it every 20 meters moving closer until 25 m of distance (Figure 13).

Figure 13. Frames extracted from the video sequences of the fagade of the
Valentino Castle shot with trucking camera motion. The sequence 1 was shot at a
distance of 85 m, the sequence 2 at 65 m, the sequence 3 at 45 m and the sequence
4 at 25 m.

Photogrammetric video processing in COLMAP

Video frames were extracted from videos and processed with the software
COLMAP.

The results will become the benchmark for evaluating the quality of historical
video processing, and for this reason the settings, the parameters and the workflow
followed will be the same for the two different camera motions. In order to follow
the same process for the two different cases, the same three steps of the COLMAP
SfM sequential processing pipeline for the iterative reconstruction were followed:
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1) Feature detection and extraction, 2) Feature matching and geometric verification,
3) Structure and motion reconstruction.

The software allows the definition of different reconstruction scenarios, and in
this case the Video Sequence is the best way to achieve high accuracy and
efficiency, since a video has consecutive frames with a baseline that is too small.

In the first step, feature detection and extraction is used to find sparse feature
points in the image and describes their appearance using a numerical descriptor. In
the best case, as in this case of the benchmark creation, the camera is calibrated, so
it is possible to manually specify intrinsic parameters. Generally in the case of
historical film footage, only partial or no EXIF information is available, but the
software tries to find automatically camera and focal length information. The same
camera took multiple pictures with the same lens and settings, so the same
information may be shared between all the images. Then the intrinsic camera model
must be chosen. In this case, the intrinsic parameters are unknown a priori it is
recommended to choose the Simple Radial Camera Model that is able to model
distortion effects considering the following parameters: f, cx, cy, k1, k2, that is one
focal length (f), two coordinates of the principal point (cx, cy) and two radial
distortion parameters (k1, k2).

Figure 14. The result of the first step feature detection and extraction of the
pipeline. The red points are the Feature Points automatically extracted from the
software.

In the second step, feature matching and geometric verification find
correspondences between the feature points in different images. In the case study,
it was chosen the Sequential Matching mode developed for images acquired in
sequential order by a video camera. In this case, consecutive frames have visual
overlap and there is no need to match all image pairs exhaustively. For a better
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reconstruction, the frame rate was reduced, it was increased the overlap and loop
detection was enabled.

Figure 15. The result of the second step feature matching and geometric
verification of the pipeline. The green lines are a visualization of the rays that link
two homologous points in two consecutive images.

After the matching process, the incremental reconstruction process can begin
and the results can be displayed in real time. To get the best results, manual
reconstruction was chosen and a file patch-match.cfg was written, which contains
instructions for the reconstruction. In fact, in these cases, manual selection of the
source images with the greatest visual overlap leads to better results, as wider
baselines can be obtained by skipping a few neighbours.
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Figure 16. The result of the third step of reconstruction. The point cloud results
are used for the metric quality assessment.

The processed data are stored in a customized database and can be easily
managed. Finally, the results of the analysis and processing of the two types of
camera movements are shown in Figure 17 for the tilting sequences and Figure 18
for the trucking sequences, in which some example of feature points detected,
feature matching and the final point clouds are reported.
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Feature detection and Feature matching and geometric Structure and motion
extraction verification reconstruction

Camera Motion: Tilting

Case 2: Left wing of courtyard Camera Motion: Tilting

JALT l!l\tl_
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Camera Motion: Tilting

Camera Motion: Tilting

Camera Motion: Tilting

Camera Motion: Tilting

Case 7: Left wing of courtyard Camera Motion: Tilting Number of video frames: -

Figure 17. Results of the three steps of the COLMAP SfM pipeline for the
iterative reconstruction. Processing of the frame extracted from the video sequence
of the left wing of the courtyard of the Valentino Castle shot with tilting camera
motion. The sequence 1 was shot at a distance of 43 m, the sequence 2 at 38 m, the
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sequence 3 at 33 m, the sequence 4 at 28 m, the sequence 5 at 18 m, the sequence 6
at 10 m, the sequence 7 at 5 m.

Feature detection and Feature matching and geometric Structure and motion
extraction verification reconstruction

Case 1: Facade Camera Motion: Trucking

Case 2: Facade Camera Motion: Trucking Number of video frames:

Camera Motion: Trucking

Case 4: Facade Camera Motion: Truckin Number of video frames: 43
¢ g

Figure 18. Results of the three steps of the COLMAP SfM pipeline for the
iterative reconstruction. Processing of the frame extracted from the video sequence
of the facade of the Valentino Castle shot with trucking camera motion. The
sequence 1 was shot at a distance of 85 m, the sequence 2 at 65 m, the sequence 3
at 45 m and the sequence 4 at 25 m.

2.3.4 Metric quality assessment and evaluation results

The analysis examined the results obtained from the previous processing step
in order to assess the precision and the accuracy of the models and to evaluate their
metric quality.



Table 2. Correlation of the precision in terms of Standard Deviation (o) related
to the frame scale factor (m) and the value of the base ratio (B/Z) (Kraus and
Waldh&usl, 1990).
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Figure 19. Geometric sketch of two cameras perpendicular to the baseline and
parallel each other (Kraus and Waldhéusl, 1990).

In order to perform this evaluation, some photogrammetric rules are reported
following.

In photogrammetry, the precision is related to the frame scale factor (m) and
the value of the base ratio B/Z (with B for the baseline).

In a model that follows the Gaussian distribution, the precision coincides with
Standard Deviation.

The following Table (Kraus and Waldhéusl, 1990) shows this correlation in
terms of Standard Deviation (o), from which derives that:

e For the same base ratio, the standard deviation of X, Y and Z are directly
proportional to the frame scale factor;



Camera
motion

Tilting1
Tilting2
Tilting3
Tilting4
Tilting5
Tilting6
Tilting7

e For the same frame scale, Residuals in Z are inversely proportional to
the base ratio. While Residuals in X and Y slowly increase to decreasing
of the base ratio.

e For a specific base, Residuals in Z increase with the square of the
distance between camera and object (Kraus and Waldh&usl, 1990).

Consequently, for high overlapping between consecutive frames the precision
dramatically decreases.

Precision analysis

In order to analyse the precision of the point cloud obtained processing frame
of the videos, the values of the average of the reprojection Residuals overall image
observations, expressed in pixel, from the bundle adjustment report of the StM
process were examined (in COLMAP also called Final Cost). All values of
Residuals for each case were used for the estimation of the Mean and the Standard
Deviation. Moreover, the Minimum and Maximum values of Residuals were
highlighted. All these values expressed in pixel were transformed in centimetre with
the Ground Sample Distance (GSD) calculation, according to the corresponding
taken the distance. The GSD in an image varies because there are parts that are
closer to and others that are further away from the camera. In this thesis, the GSD
is always evaluated at the point of the object closest to the camera. After the
transformation in centimetre, the decimal values are neglected. The results are set
out in Table 3 for the tilting case.

Table 3. Values, expressed in pixel and in centimetre, of the Mean, Standard
Deviation, Minimum and Maximum of the Residuals for each photogrammetric
processing, according to the corresponding tilting camera motion case.

Mean 321'::33?, Relg:lllllal Rele\s/{?lflal Distance | GSD | Mean 33'::23?. Relg:]l:lal
px]  Ipxl [px] [px] m]  [em/px] [em]  [em] [em]
0.4 0.1 0.1 0.6 43.0 4.0 1.5 0.5 0.5
0.5 0.2 0.1 0.7 38.0 3.6 1.7 0.6 0.4
0.5 0.1 0.1 0.7 33.0 3.1 1.4 0.4 0.4
0.5 0.1 0.1 0.7 28.0 2.6 13 0.4 0.3
0.5 0.1 0.1 0.9 18.0 1.7 0.9 0.2 0.2
0.5 0.1 0.1 0.7 10.0 0.9 0.5 0.1 0.1
0.6 0.1 0.2 0.7 5.0 0.5 0.3 0.1 0.1

The problem with the tilting camera motion is that presents high overlapping
between consecutive frames which generates a fall of the precision.

Max
Residual

[em]
2.3
2.5
2.0
1.8
1.5
0.7
0.3
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Figure 20. An example of two consecutive frames for the tilting] case in which
the overlapping is over 90% and the precision dramatically decreases.

However, what stands out for the tilting camera motion case in Table 3 is the
continual decrease of the values of the Residual. The trend is almost linear and
depends on the taken distance. Increasing the distance from which shooting the
video from the object, the Residuals increase, even if in a moderate way. This is
quite obvious since the camera is more close to the object and the video quality of
the pixel is better. However, also if the object is taken from a higher distance, the
Residual values are of the order of 2 cm, the result acceptable referring to the
architectural case.

The following graphs in Figure 21, 22, 23, 24, 25, 26, 27 show the trend of
Residuals values for each distance that follow the Gaussian Distribution.
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Figure 21. Gaussian distribution of the Residuals values for the tilting1 case, video
taken at a distance of 43 m.
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Figure 22. Gaussian distribution of the Residuals values for the tilting2 case, video
taken at a distance of 38 m.
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Figure 23. Gaussian distribution of the Residuals values for the tilting3 case, video
taken at a distance of 33 m.
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Figure 24. Gaussian distribution of the Residuals values for the tilting4 case, video

taken at a distance of 28 m.
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Figure 25. Gaussian distribution of the Residuals values for the tilting5 case, video

taken at a distance of 18 m.
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Figure 26. Gaussian distribution of the Residuals values for the tilting6 case,

video taken at a distance of 10 m.
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Figure 27. Gaussian distribution of the Residuals values for the tilting7 case,
video taken at a distance of 5 m.

Also for the trucking camera motion case, all values of Residuals were used for
the estimation of the Mean and the Standard Deviation expressed in pixel and were
transformed in centimetre with the Ground Sample Distance (GSD) calculation
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Camera
motion

Truckingl
Trucking2
Trucking3
Trucking4

(considering GSD of the point closest to the camera and rounding the values at the

integers). The results are set out in Table 4.

Table 4. Values, expressed in pixel and in centimetre, of the Mean, Standard
Deviation, Minimum and Maximum of the Residuals for each photogrammetric
processing, according to the corresponding trucking camera motion case.

Mean Standard
Deviation Residual

[px]
0.6
0.7
0.7
0.7

Even for the trucking case, there is a linear trend of the values of the Residual
that decrease with the reduction of the distance. Moreover, with equal distances, the
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order of the values of Residuals is the same.

The following graphs in Figure 28, 29, 30, 31 show the trend of Residuals
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Figure 28. Gaussian distribution of the Residuals values for the trucking] case,
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Figure 29. Gaussian distribution of the Residuals values for the trucking? case,
video taken at a distance of 65 m.
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Figure 30. Gaussian distribution of the Residuals values for the trucking3 case,
video taken at a distance of 45 m.
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Figure 31. Gaussian distribution of the Residuals values for the trucking4 case,
video taken at a distance of 25 m.

Accuracy analysis

To assess the accuracy of the results, the point clouds obtained from the
photogrammetric process of the video were compared with a laser scanner survey
of the Castle. The point cloud from the laser scanner was chosen as a reference and
used to scale the point clouds obtained with the Alignment and registration plugin
in CloudCompare software.

Figure 32. Distances measured on the point cloud obtained from a laser scanner
survey of the left wing of the Valentino Castle and used for the comparison with
the point cloud of the same wing obtained from the video processing for the tilting
camera motion case studies.
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To evaluate the accuracy some distances equal in the two point clouds were
selected and measured in order to estimate the Residual between the two point
cloud. For the tilting case, the distances measured in the two point clouds are shown
in Figure 32.

Once measured the same distances in the two point clouds, the estimation of
the Residuals between the two measures were reported in Table 5.

As expected, the performance of tilting camera motion from a photogrammetric
point of view is affected by the fact that the camera is fixed in a specific point
without moving and the frame is acquired with a high overlapping, even if the
taking centre moves between frames. The consequence is the presence of high
values of Residuals, that get worse decreasing the distance and reach values of even
3 m. This result is also a consequence of the lack of dense points in the laser scanner
point cloud chosen as a reference in the comparison.

Table 5. Residuals between the measures of the same distances extracted from
the point cloud of the laser scanner, chosen as reference, and the point cloud resulted
from the video processing for the tilting camera motion.

TILTING 1 TILTING 2 TILTING 3 TILTING 4

Distance Sf;ff}:r COLMAP  Residuals COLMAP | Residuals COLMAP = Residuals COLMAP -

[m] [m] [m] [m] [m] [m] [m] ml WIS
AB 1251 127 <019 1256 = -0.05 1225 | 026 1184 [NO6IN
AC 1721 1793 <072  17.89 = -068  17.15 | 0.06 2029 [NES08
AD 1195 1207 = =012 1211 = -0.16 12 005 1334 SRS
EF 19.63 1952 0.1 1852 | 1.11 1921 © 042 1668 |25
EM 562 | 597 | 035  5.14 0.48 5.29 0.33 432 IS
FM 2029 1993 | 036 19 129 1951 078  17.13 [NEHEN
GH 249 | 249 0 23 0.19 263 | -0.14 258 [0
IL 126 127 | -0.01 1.24 0.02 1.3 -0.04 .16 NN

After this punctual analysis, a general comparison of the entire point clouds
was performed thanks to the Cloud-to-cloud distance comparison (M3C2) plug-in
in CloudCompare software (see Section 2.2.3), choosing a maximum local distance
of 1 m. The M3C2 algorithm estimated the distance of the video processing point
cloud from the reference point cloud considering a maximum distance of 1 m. The
scale bar on the right in each comparison shows the colours assigned to the intervals
of the distances between 0 and 1 m.

The results are shown in the following Figure 33, 34, 35, 36.



The same limit has emerged in the Cloud-to-Cloud distance comparison, in
which the values of distances between the two point clouds increase in the lateral
and high part of the point cloud due to the presence of distortions that dramatically
influence the results, creating curvatures and deformations.

This reflects expectations, since if the projective rays intersect with a large
baseline, the precision increases, while if it is null as in the case of tilting, the lateral
parts are less precise and more deformed.

However, in the central part of the facade the values are acceptable for the
architectural purpose.
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Figure 33. Comparison between laser scanner point cloud, chosen as reference,
and the video processing point cloud, for the case of the camera motion tilting1.
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Figure 34. Comparison between laser scanner point cloud, chosen as reference,
and the video processing point cloud, for the case of the camera motion tilting2.
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Figure 35. Comparison between laser scanner point cloud, chosen as reference,
and the video processing point cloud, for the case of the camera motion tilting3.
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Figure 36. Comparison between laser scanner point cloud, chosen as reference,
and the video processing point cloud, for the case of the camera motion tilting4.

Also for the trucking camera motion case, the Residuals between distances
(Figure 37) measured on the laser scanner point cloud, chosen as reference, and the
point cloud resulted from trucking camera motion analysis, were selected.
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Figure 37. Distances measured on the point cloud obtained from a laser scanner
survey of the fagade of the Valentino Castle and used for the comparison with the
point cloud of the same fagade obtained from the video processing for the trucking
camera motion case studies.

Table 6. Residuals between the measures of the same distances extracted from
the point cloud of the laser scanner, chosen as reference, and the point cloud resulted
from the video processing for the trucking camera motion.

TRUCKING 1 TRUCKING 2 TRUCKING 3 TRUCKING 4
Sf;l:flir COLMAP  Residuals COLMAP = Residuals COLMAP = Residuals COLMAP
[m] [m] [m] [m] [m] [m] [m] [m]
19.23 19.44 -0.21 19.54 -0.31 19.32 -0.09 19.25
15.44 15.54 -0.1 15.21 0.23 15.36 0.08 15.43
13.02 13.03 -0.01 13.04 -0.02 13.03 -0.01 13.03
2.76 2.7 0.06 2.65 0.11 2.73 0.03 2.77
1.29 1.29 0 1.28 0.01 1.3 -0.01 1.29
23.74 2391 -0.17 24.32 -0.58 24.07 -0.33
16.03 16.08 -0.05 16.55 -0.52 16.6 -0.57
5.39 5.32 0.07 5.55 -0.16 5.15 0.24
14.67 14.55 0.12 14.66 0.01 14.61 0.06
5.31 5.35 -0.04 5.18 0.13 5.06 0.25

It is clear that moving closer to the fagade the point cloud resulted is more
accurate and the values of Residual decrease. In each case, the values are not high
and are acceptable in the accuracy required by architectural studies.

The comparison of the point cloud from the video processing and the point
cloud obtained from the laser scanner, is computed between 0 and 1 m. As shown
in the following Figure 38, 39, 40, 41 the distance between the two point clouds is
included between 0 and 0.5 m. Moreover, with distance closer to the fagade the
point cloud results denser.
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Figure 38. Comparison between laser scanner point cloud, chosen as reference,
and the video processing point cloud, for the case of the camera motion truckingl.
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Figure 39. Comparison between laser scanner point cloud, chosen as reference,
and the video processing point cloud, for the case of the camera motion trucking2.
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Figure 40. Comparison between laser scanner point cloud, chosen as reference,
and the video processing point cloud, for the case of the camera motion trucking3.
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Figure 41. Comparison between laser scanner point cloud, chosen as reference,
and the video processing point cloud, for the case of the camera motion trucking4.

The results presented in this section represent the maximum metric quality
reachable considering the defined camera motion of the scene taken at specific
distances. They constitute the benchmark that will be used in the next parts of the
thesis to compare the results of video processing from a metric point of view in the
real case of the historical film footage. According to the identified camera motions
in the footage and the taking distance of the camera, the precision and accuracy of
the results of the photogrammetric reconstruction from the frame can be assessed.
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Chapter 3

Recovery material suitable for
photogrammetry

3.1 A Match-moving method combining AI and SfM
algorithms in historical film footage

As introduced, this section' focuses on the examination of the use of historical film
footage as material for photogrammetric reconstruction of lost or changed heritage. An
important aspect of the documentation process, in fact, is the collection of data and
information about heritage. Creating new tools for the final user of these data is an
appealing research topic especially in the Al domain. In fact, the volume, the size and
the variety of historical data lead to some critical factors. The most important is
concerned with the manpower needed to organize and search the documents. To solve
this problem the application of Deep Learning (DL) gives opportunities to enhance
historical archives and retrieval of heritage information.

For this reason, recent research in this area has seen the rapid development of
technologies to support the management and analysis of historical data regarding
heritage. Deep learning can be used to automate tasks such as processing these large
amounts of data and reducing human effort, thus making them more efficient.

When Artificial Intelligence (Al) is combined with techniques that are widely used
in the field of Cultural Heritage such as photogrammetry, the documentation process

! Part of the work described in this Chapter has also been previously published in Condorelli et al.,
2019 and 2020.
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can actually be improved. This is shown in this section in which Deep Learning is used
to search for suitable material for photogrammetry.

In the workflow proposed in this work a combination of Deep Learning techniques
with photogrammetry is presented. DL is used for the retrieval of primary data used as
input material in the standard Structure-from-Motion (StM) pipeline. This workflow
intends to find out how to improve ways to search for architectural heritage within a
large quantity of unorganized and low-quality video material and to reduce the effort
of the operator in the archive in terms of efficiency and time. In order to achieve this
purpose, the automatic detection of a specific monument in film footage and its three-
dimensional virtual reconstruction is performed using Deep Learning.

Dataset coliecting
and labeling
]
Training and »
Validation
1
Test: Object
Recognition

Feature Point
Selection

4
SfM Feature Matching ’

Object
Detection

using Al

Benchmark
Comparison

: 1
Metric Cloud to Cloud

Quality Distance
Assessment Comparison

»

Pipeline and Geometric
P Verification
i
Structure and

Motion Feature Point

Reconstruction

Comparison

Figure 1. The general workflow proposed in this dissertation. The following
sections will deal with the application of this workflow on historical film footage,
focusing on the two steps of “object detection using AI”” and “camera tracking”.

In particular the first part of this section deals with the issue regarding the
availability and accessibility of these materials in archives, often made difficult by the
lack of an appropriate organization of these data. The human effort to find the data of
interest represents a significant percentage of the final user work since the indexing of
metadata for historical archival material is often incomplete or inaccurate, and the
corresponding search engines are therefore not very efficient. The need to identify the
object of interest within the amount of material that potentially contains it without the



effort of manually examining individual videos in archives has led to the development
of an algorithm for automatic monument identification in film footage using Neural
Networks.

While the second part tackles the problem concerning the camera movements used
to shoot the videos, since historical film footage was not taken for use in 3D
reconstruction. To solve this problem an algorithm of automatic identification of
camera motion is presented.

Referring to the workflow presented in Chapter 1 (Figure 1), implementing it on
historical film footage turns into an innovative match-moving method. Match-moving
is a technique used to track the movements of a camera in a 3D space using the images
that it acquires while moving. This method is widely used in computer vision, the film
industry and video editing, as it makes it possible to match the real scene with virtual
creations such as visual effects. Structure from Motion (SfM) is the main part of this
process which allows the extraction of the 3D information from the scene. In the
workflow here proposed, match-moving allows the exploitation of Artificial
Intelligence and StM algorithms to identify the frames extracted from film footage in
which the lost monument appears and that are suitable to be processed with
photogrammetry for its 3D reconstruction.

3.1.1 Existing match-moving methods

Camera tracking technology is based on the SfM method, since the determination
of the camera position and the field of view is done by analyzing the film shot and
extrapolating the 3D data from the original 2D imagery (Condell and Moore, 2006;
Zhang et al., 2009; Ingwer et al., 2015).

According to previous studies (Lee et al., 2006), camera match-moving approaches
can be divided into two categories: feature-based approaches and model-based
approaches. The first uses appropriate feature points, i.e. a method based on a 3D plane
tracking technique that allows the estimation of the homographies induced by a 3D
plane between successive image pairs (Lourakis and Argyros, 2005); a practical real-
time camera tracking system that provides an offline process for space abstraction
using features and an online step for feature matching (Dong et al., 2009); and a non-
consecutive feature tracking framework for matching interrupted tracks distributed in
different subsequences or even in different videos (Zhang et al., 2016). The second
uses a known geometric object in a given environment, i.e., the development of a
marker-based real-time feature tracking method that operates in unknown
environments and uses a known marker for fast recognition and tracking of feature
points (Lee et al., 2006). Another technique uses depth information to evaluate camera
position and trajectory (Luo et al., 2016).
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Various tools and software are available to replicate the camera trajectory, which
differ in price, usage, functionality and user interface. Among the commercial software,
the most used are Boujou (Vicon Motion Systems Ltd. UK), which uses frame-by-
frame comparison to track the camera; and SynthEyes (Andersson Technologies LLC),
which can determine how the real camera moved during the shooting, what the field of
view (focal length) of the camera was and where the different positions were in 3D
space. An example of open source software is ACTS (Zhang et al., 2009), an automatic
camera tracking system that can track camera movement but is limited to only two
types, pure rotation and free movement. Another limitation is that it only works with
long sequences.

Research has been conducted on match-moving for building analysis (Daglar et al.,
2011) and on the use of video material as a source of metric data for filmed architecture
(Mancini et al., 2013). Previous research has proposed an automatic workflow for 3D
reconstruction of objects of interest in videos that have been captured by simple users
mainly for personal or touristic purposes and that for this reason contain noise or
information not related to the object to reconstruct. The frames with the object were
extracted using a video summarization algorithm and modelled with SfM algorithms
(Doulamis, 2018).

However, in the field of architecture a precise pipeline for the virtual reconstruction
of lost Cultural Heritage has not yet been defined.

Two important questions arise from the studies reviewed so far. Most of them are
outdated and there is a lack of experiments with the most effective Artificial
Intelligence techniques, which are very useful for such tasks. In addition, there is no
open source software, except in one case that has certain limitations, including the
inability to handle short tracks and the tilting and trucking camera motion types, both
of which are very common in historical film footage.

3.1.2 Innovation of the proposed workflow

Overall the match-moving process is similar in every software and consists in the
following steps, as shown in Figure 2: feature identification and tracking, camera
tracking and 3D modelling (Haji et al., 2016; Daglar et al., 2011).

» Feature tracking consists in determining the position of points of interest in the
footage by calculating their motion vectors frame by frame.

» Camera tracking finds the motion of the camera in 3D space by extracting its
characteristics (orientation, position and focal length) using SfM.

* 3D modelling is performed with the use of SfM to reconstruct a 3D scene.

However, the standard method has been significantly modified to improve it for a
more efficient use for the heritage. In this work, in fact, the goal to be achieved is
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different from the original match-moving process, which aims to correctly insert an
object into a video. This research aims to extract images from historical videos in a
way suitable for the photogrammetric process. For this purpose it is necessary to know
how the camera was moved to film the video, as this strongly influences the results of
the photogrammetric reconstruction. For this purpose the following innovations have
been introduced into the proposed workflow:

1) the use of Artificial Intelligence object recognition algorithms as a method
for feature tracking, which, as the state of the art of the study shows, is a
further development compared to previous studies;

2) the algorithm for camera tracking,

3) the open source StM algorithms and the metric quality assessment, which
certifies the quality of the 3D reconstruction.

This last step was deeply treated in the previous Chapter 2. Following the object
detection and the camera motions identification steps will be explained in more detail.

Featl
Identification and Object Detection
Tracking
STANDARD ! PROPOSED Camera Motions
MATCHMOVING [ R Sii W)  MATCHMOVING [itvbieris
METHOD ' METHOD Photogrammetry

SfM processing
and Metric Quality
Assessment

3D Modelling

Figure 2. Workflow of the standard match-moving method that has been modified
to improve it for a more efficient use for the heritage. A new workflow is proposed
introducing the use of Al, the camera tracking algorithm, the use of open source StM
algorithms and the metric quality assessment of the results.

3.2 Architectural heritage detection using Neural Networks

The first step of the workflow is to identify and to track features from the video.
This was performed using an object detection Neural Network trained to automatically
recognise the monument in the film footage.

Object detection involves the recognition of the searched object by segmenting a
region of interest, classifying it by putting a bounding box around it and assigning it a
label with the name of the corresponding class. In order to track the object in the video
sequence, the evolution of the position of the bounding boxes over time is analysed in
order to precisely locate the object.

79



Object detection is a good solution for applications such as the recognition of
monuments in film footage because it allows the tracking of the object even if the image
is noisy, the camera is not stable and the object has a complex structure (Parekh et al.,
2014).

3.2.1 State of the Art: Artificial Intelligence for Cultural Heritage

Machine Learning technique has become fundamental not only in the field of
computer science research, but also in everyday life, finding applications for example
in web search engines, fraud detection systems, spam filters, automatic text analysis
systems, and medical diagnostic systems. One of the reasons for this growing
importance is the successful application of DL methods in areas such as image
classification (Krizhevsky et al. 2015, Szegedy et al., 2015; Simonyan and Zisserman,
2015), in which convolutional neural networks (CNNs) exceed the human level in
object recognition and image search (Radenovi¢ et al., 2016; Tolias et al., 2016).

Besides the improvements of Machine Learning techniques, hardware
development, in particular the use of Graphical Processing Units (GPUs), has given a
boost to the computational efficiency of such algorithms.

However, only a few studies in the architectural and Cultural Heritage field have
developed. Different algorithms within DL, Supervised, Semi-supervised and
Unsupervised have been extensively used in Cultural Heritage applications (Fiorucci
et al., 2020). So far, thanks to this approach, researchers have been able to classify
interesting objects in images of buildings of architectural value (Llamas et al., 2016);
identify different monuments based on the feature of the images of monuments (Saini
etal., 2017); automatically annotate the cultural assets based on their visual feature and
the available metadata (Belhi et al., 2018); recognize a character in images of artworks
and their contexts (Montoya Obeso et al., 2019); interpret deep features learned by
Convolutional Neural Networks for city recognition (Shi et al., 2019); develop a mobile
app to perform monument recognition using convolutional neural networks and to
query a database and to extract all the information related to that object (Andrianaivo
etal., 2019).

Referring to an urban context, some researchers have concentrated on visual place
recognition to help humanity and architecture studies to retrieve information about
cities and locations. Training a NN it is, in fact, possible to find out where a picture of
a part of a city was taken and to recognise the place querying a database, or predict a
geo-location from an image (Khademi et al., 2018). An example is the training of a
model that classify images from Tokyo and Pittsburgh and generate the visual
explanations and descriptors for each image (Shi et al., 2019) and the investigation of
the interpretation of deep features learned by convolutional neural networks for city
recognition (Shi et al., 2019). Another study found visual elements (both architectural
and not) of a place, such as the city of Paris. These local geo-informative features are
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queried from a large database of photographs from a particular place offered by Google
Street View (Doersch et al., 2012).

In addition to these studies, existing research recognizes the important role played
by historical data in archives and the potentialities of DL and proposed different
methods: to automatically index and label the documents and search through the
collections (Picard et al., 2015); to retrieve images and information on heritage (Yasser
et al., 2017) and iconographic contents representing landscapes of the French territory
(Gominski et al., 2019). However, the majority of these works consider the analysis of
paintings, drawings, images, while film footage has been hardly explored with these
techniques. Only an example of Deep Learning application to extract semantic features
to analyse the role of intertitles in early cinema was conducted (Bhargav et al., 2019).

Considering these previous studies, the lack of an algorithm to recognise
monument in film footage is highlighted. In the following section the proposed solution
is presented in detail.

3.2.2 Object Detection Using Neural Networks

The first part of the workflow concerns the use of Neural Networks to recognise
the object of interest in the film footage. Among the different types available, Neural
Networks that support the object detection algorithm were selected. This solution
proved to be effective for the experimented pipeline since it allows image classification
even in complex images and with the extraction of bounding boxes of the object
recognized.

The usability of the workflow by the operator in the archive is an important aspect
to be considered. For this reason, the Luminoth software
(https://github.com/tryolabs/luminoth, accessed on July 2020) based on TensorFlow
(http://tensorflow.org, accessed on July 2020) was chosen because it implements an
object detection algorithm through state-of-the-art networks. In particular, in this work
the networks following described are used.

Faster R-CNN Neural Network

Faster R-CNN (Ren et al., 2016), stands for Faster Region-based Convolutional Neural
Network, is a deep convolutional network used for object detection, that appears to the
user as a single, end-to-end, unified network. The network can accurately and quickly
predict the locations of different objects. It is the faster evolution of an R-CNN network
(Girshick et al., 2014) the aim of which is to reduce the problem of object detection to
a classification problem, which is performed on limited regions of an image. The idea
behind this type of network is very simple: sub-portions of an image (regions) are
selected and these regions are used as the input of a classifier that uses convolution
networks to determine the class of the extracted object. From the computational point
of view, it would not be possible to apply the classifier to every possible sub-image of
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the starting image; for this reason R-CNN was designed to reduce the number of
possible regions to be used by the classifier. The R-CNN network uses an algorithm
for selecting possible regions (region-proposal) which reduces, around 2000 times, the
number of images fed to the classifier. For each proposed region, the classifier that
determines the class of the region is applied; and possibly a regression over a set of
bounding boxes is applied to determine the optimal bounding box of the region
containing the object. For the selection of the region module, a variety of methods for
generating category-independent region proposals exist. The main aspect of the Faster
R-CNN network is the replacement of the region selection algorithm (a
computationally expensive part) with a convolutional network called the Region
Proposal Network. The result is a network hundreds of times faster than the R-CNN
but with a comparable accuracy. A simplified sketch of the Faster R-CNN network is
provided in Figure 3, in which the Region Proposal Network (in green) generates
region proposals and for all region proposals in the image, a fixed-length feature vector
is extracted from each region using the ROI Pooling layer (in blue). The extracted
feature vectors are then classified using the Fast R-CNN and the class scores of the
detected objects in addition to their bounding-boxes are returned.

Faster R-CNN Region proposal Network

Conv layers
Classifier

Feature maps Rol pooling

Figure 3. Sketch of the Faster Region-based Convolutional Neural Network (Faster
R-CNN).

SSD Neural Network

SSD (Liu et al., 2016) stands for Single Shot Detector and it is oriented to reduced
computational demand while keeping an adequate accuracy, is in fact designed for
object detection in real-time. The SSD model is simpler if compared to methods that
require object proposals because it completely eliminates proposal generation and
subsequent pixel or feature resampling stage and encapsulates all computation in a
single network. To recover the drop in accuracy, SSD applies a few improvements
including multi-scale features and default boxes. These improvements allow SSD to
match the Faster R-CNN’s accuracy using lower resolution images, which further
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pushes the speed higher. The SSD object detection composes of 2 parts, the extraction
of feature maps, and the application of convolution filters to detect objects. The
network allows discretizing the output space of bounding boxes into a set of default
boxes over different aspect ratios and scales per feature map location. At prediction
time, the network generates scores for the presence of each object category in each
default box and produces adjustments to the box to better match the object shape.

A simplified sketch of the SSD network is provided in Figure 4. As shown in the
figure, SSD’s architecture builds on the VGG-16 architecture, but discards the fully
connected layers. The reason VGG-16 was used as the base network is because of its
strong performance in high quality image classification tasks and its popularity for
problems where transfer learning helps in improving results. Instead of the original
VGG fully connected layers, a set of auxiliary convolutional layers (from conv6
onwards) were added, thus enabling to extract features at multiple scales and
progressively decrease the size of the input to each subsequent layer.
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Figure 4. Sketch of the Single Shot Detector (SSD) network.
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As a general rule, SSD networks are usually expected to be faster but less accurate than
Faster R-CNN networks. This behaviour, however, depends on the sizes of the
considered objects and other factors, and it will be discussed in Chapter 4 in the context
of investigated Cultural Heritage cases.

The described networks are provided already pre-trained by Luminoth. However,
it is possible to add a new element to detect with a further training phase. This point is
particularly important for the Cultural Heritage field because specific training is a
necessary step.

From a user perspective, data preparation can also be a critical issue. The tool VGG
Image Annotator (VIA) has been used for the annotation of the bounding box of the
architectural heritage. VIA is a simple and standalone manual annotation tool for
images, audio and video that allows the description of spatial regions in images or video
frames. These manual annotations can be exported to plain text data formats such as
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JSON and CSV and therefore are ready for further processing by other software tools
(Dutta and Zisserman, 2019).

The file with the bounding box coordinates was used to prepare the dataset
according to the requirements of Luminoth. After that, a configuration file has to be
created specifying some necessary information, such as a run name, the location of the
dataset and the model to use to train the network.

Luminoth also allows users to select the hyperparameters of the training, i.e., the
parameters whose values are used to control the learning process. The selection is
performed by manually customizing the training configuration file. Tuning the
hyperparameters can be crucial to optimally solve the machine learning problem, e.g.,
in terms of convergence, stability and performance of training and inference phases.
All in all, the default values provided by Luminoth mostly demonstrated to be effective
in terms of all of the objectives. In particular, the momentum optimizer (Ruder, 2017)
was adequate to reach convergence. As for the learning rate tuning, the default values
were usually adequate but for some SSD-based training runs, some convergence issues
arose, and these problems were addressed by modifying the learning rate value from
the default (0.0003) to lower values (e.g., 0.00006). Luminoth also integrates an
automatic data augmentation mechanism and it was helpful to increase the entropy of
data used in the training. As concerns the number of epochs to be used during the
training, it was manually selected to ensure a complete training convergence. An early
stopping mechanism might be possible but it was not attempted so far to always get the
best results for the considered test cases. Finally, in Chapter 4 of this work, an analysis
of computing time performances comparing different generations of hardware is
provided to complete the picture also from that point of view.

3.2.3 Evaluation Metrics of Neural Networks

As introduced, the NNs potentially improve the efficiency of the first part of the
photogrammetric workflow. However, it is necessary to evaluate this performance
more objectively, directly addressing also the efficiency and reliability of the algorithm
in reducing the effort of the final user activity. According to these considerations, two
different types of metrics evaluation of the network are considered. In the first type,
the efficiency of the performance of NN is evaluated using standard metrics based on
images or frames evaluated separately, while in the second type of evaluation the
metrics are more closely related to the final tasks of the network, i.e. discovering the
time intervals where a selected object appears in a video minimizing the human time
required to manually analyse the movies. According to the frame-based approach,
standard conventions can be followed: given a dataset of images, it is first defined P
(N) as the number of images in which the object is present (not present), respectively.
During the real-world inference phase, these values are not known, and the network
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output is P’ (N”) that represents the images in which the network has found (not found)
the object. When performing the object detection inference, a probability of the
presence of the object is typically returned. Therefore, in order to get the P” and N’
values, it is necessary to define a probability threshold which is the minimum
probability to be returned to consider the object as found. In order to validate the
network performances, a test phase in which P and N are known is taken into
consideration so that it is possible to categorize the images according to 4 statuses:
True Positive (TP, image in both P and P '), True Negative (TN, image both in N and
in N'), False Positive (FP, image in P' but not in P) and False Negative (FN, image in
N 'but not in N). Obviously, T=TP+FN and N=TN+FP. Such quantities can be
combined to define meaningful parameters. In particular, a typical indicator is the
accuracy, calculated as:
TP+ T

AC= S TN T FP £ FN (1)

Two other typical indicators are:

Sensitivity (SN): defined as the number of correct positive predictions divided by the
total number of positives:
TP

SN= 357 N

)

Specificity (SP): defined as the number of correct negative predictions divided by the
total number of negatives:
TN

SP = SN TP €)

Considering a set of test images composed only of positive (negative) images, it is
clear that TN=FP=0 (TP=FN=0) and the accuracy exactly corresponds to the sensitivity
(specificity). As detailed in the next section, considering positive-only (or negative-
only) sets is very useful during the network training and validation phase to evaluate
the different capabilities of the network.

The indicators above are useful because they can work with both images and video
frames, allowing fine-grained comparisons, and are especially useful to assess the
quality of the network during the training phase. However, considering the usage of
the network in a real-world context, where a certain object has to be detected from a
large number of video archives, the authors believe that a set of metrics based on the
time intervals is more suitable to summarize the advantages of using NN in preference
to the manual alternative. Referring these measures to the intervals is more natural if
we consider that once a time interval with the searched object is found also with a
single-frame, it is easy to identify the correct time set in which the monument appeared
simply by going back or forward in the video. The proposed metrics are, therefore:
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e Discovery Rate (DR): calculated as the number of the intervals correctly predicted
by the network divided by the total number of the true intervals:

DR = TP (n. correctly predicted intervals)

4

P (n. correctly true intervals)

A time interval where the searched object appears is considered “correctly
predicted” if there is a predicted interval that overlaps with the true interval for at least
1 second of video. This discovery rate is somehow related to the sensitivity: indeed, it
indicates a measure of the correct positive predictions over the total number of positive
cases. This metric describes an issue that is very important for the user, i.e. the capacity
of the network to detect monuments avoiding loss of information.

e Time save Rate (TSR): calculated as the total time length of the video divided by
the sum of the times of the measured intervals:

Total video length
TSR = . — )
Sum. times of predicted intervals

This parameter is somehow related to the specificity and indicates how much time
the operator would save in his manual work of watching videos if the automatism of
the network is used. This parameter clearly depends also on the type of videos used for
testing. The vast majority of the results presented in this thesis are based on videos
which contain at least one occurrence of the searched object, such a circumstance
artificially limits the measured time save rate. To circumvent the dependency on the
archive source, another time save related parameter is defined.

. Time save Efficiency (TSE): as said, the time save rate indicates the
quantitative advantage for the end-user who adopts NN. It would be interesting to
compare the time save rate with the ideal time save rate, which is the minimum time
save rate knowing in advance the true intervals to watch. The ratio between the
measured time save and the ideal time save rate is the time save efficiency:

Total video length /
TSR measured Sum. times of predicted interval:

: " Total video length
TSRideal S Sum. times of true intervals ()

_ Sum. times of true intervals

TSE =

Sum. times

The time save efficiency is less prone to bias due to the type of archive source. The
value of this efficiency is typically reduced when dealing with false positives, i.e. when
some measured intervals do not correspond to true intervals. However, it is worth
noting that this efficiency can also reach values greater than 1 and this can happen
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when not all the true intervals are correctly found by the measured intervals. In this
scenario, despite the false-positive intervals, it is possible that the total time of the
measured intervals becomes shorter than the time of true intervals. However, this is a
clear symptom of a poor discovery rate.

In general, discovery-rate, time save rate, and time save efficiency should all be
maximized to improve training but, when it is not possible, the choice of one metric or
another is a matter of usage context. Because of the type of use of the network within
the photogrammetric pipeline, two extreme cases of use are considered:

1. In the first situation in which the videos selected by the DL are then manually
watched to decide which are the most suitable for photogrammetry, it is ideal to
maximize the discovery rate to avoid losing useful information.

2. In the second situation in which the pipeline is managed more automatically,
it is instead preferable to maximize the time save parameters to prevent incorrect
images from entering the subsequent processing.

3.3 Camera motions identification for photogrammetry

In the second phase of the workflow, the frames that can be processed by
photogrammetry are selected from all images detected by the Neural Network. The
selection is performed according to the camera motions in the video scene. As shown
in Chapter 2, the tilting and trucking camera motions have demonstrated to be more
effective to perform this kind of frame selection since only images taken from multiple
angles in the same scene are suitable for photogrammetry.

The algorithm for determining the camera motions from the results of object
recognition by the Neural Network is shown in Figure 5 and detailed below, while the
python script is reported in Appendix A.

<1
Remove
Frame
i Frame Cluster DX>DY
Frediet Extraction Frame Trucking
>1 Centroid
Centroid Residuals
Calculation Calculation
DY>DX
Tilting

Figure 5. Workflow of the second step of the proposed match-moving method: the

tilting and trucking camera motions identification suitable for photogrammetry.
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1. Predict: the object detection algorithm ends with the predict step, which lists
the frames where the searched monument appears. Each frame is uniquely identified
by the name of the video and the time appearance within the video. The object detection
also returns the coordinates of the position of the bounding boxes in the frame and the
probability score of the presence of the monument in the video. Based on a predefined
probability threshold, positive frames with a score below the threshold are removed
from the list of predicted objects.

tour saint_jacques (100}

ina.fr

Aes hnlles 1 N9

Figure 6. An example of the frame selected by the predict step of the algorithm.

2. Image extraction: from the results of the previous step, the frames are extracted
from the video and saved as separate images. It should be noted that the
photogrammetric method may start from this set of images, but a high failure rate can
be expected when simultaneously using images extracted from different videos (with
different characteristics and qualities), different scenes and different camera
movements. This usually requires manual intervention and decisions to achieve a
successful final photogrammetric reconstruction. In order to automate a successful
procedure, a further elaboration of extracted frames is proposed.
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Figure 7. An example of the frame extracted by the image extraction step of the
algorithm.

Figure 8. An example of the cluster of frame created by the frame clustering step
of the algorithm.

3. Frame clustering: the extracted frames are grouped in two different splitting
criteria, both aim to detect a change of the scene in the video. In particular, a new frame
cluster is created if at least one of the following criteria is met:

a. The first one is time-based: frames that are consecutive in the time-line belong
to the same group.
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b. The second one relies on a structural similarity comparison (Wang et al., 2004;
Avanaki 2009). Looping over the selected frames, a similarity score between 0 and 1
is evaluated for each frame compared to the previous one. If the score is less than a
predefined threshold Ts, a new group is created for the analysed frame.

4. Cluster cleaning: since the intention is to perform photogrammetry on each
cluster of frames, clusters with only one image are marked as invalid. Using frames
belonging to the same cluster of intervals leads to a higher success rate of the
photogrammetric process. In fact, putting together single frames taken at different time
intervals or from different videos can certainly help to recover more information about
the lost heritage, but at the same time there is a higher risk that the photogrammetric
process fails because they are dated in different historical time periods.

5. Bounding boxes centroid calculation: for each frame in a valid cluster, the
centroid [xc.,yc] of the bounding box is computed in order to analyse the position
change of the object.

tour saint_jacques (1.00)

Figure 9. An example of the centroid calculation by the algorithm.

6. Centroid residuals calculation: for each frame cluster, the cumulative residuals
between the frame centroids are evaluated using the first and last frame centroids of
the cluster:

Dx = xc(last frame) — xc(first frame)
Dy = yc(last frame) — yc(first frame)

7. Camera motion estimation: These residuals are used to guess the camera
motion. Clearly, the detection of centroid movements is not sufficient to accurately
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evaluate the camera motion. However, simple assumptions can lead to satisfactory
results for the success of the entire proposed procedure. In particular, when |Dx| > |Dy]|
the trucking camera motion is expected while camera tilting corresponds to the |Dx| <
|Dy| case. This simple assumption may lead to wrong results for common cases. If both
Dx and Dy are very small, this could correspond to a fixed camera poorly anchored to
the terrain (a tripod was not used for most historical film footage). On the other hand,
if Dx and Dy are not small but close to each other, camera motion guessing is more
questionable. For these reasons, the proposed algorithm uses can be summarized in the
following Figure 9, where T1 and T2 are two thresholds. In the end, the devised
algorithm allows the user to distinguish among four camera motion categories, namely:
“steady or oscillating camera”, “camera trucking”, “camera tilting” and “cannot
determine camera motion”. This simple categorization is however useful in view of the
final purpose of the algorithm that is to detect frame clusters useful for
photogrammetry.

Steady or oscillating
' camera

Camera trucking

Cannot determine |
camera motion

Camera tilting

Figure 10. Workflow of the camera motion estimation step of the algorithm.

As discussed above, some of the steps described lead to automatic data filtering.
Since filtering is an automatic process, it can lead to the elimination of data that is
potentially useful for the final process. Decreasing the introduced thresholds limits the
loss of data, but puts at risk the success of the automatic procedure, at least in some
cases. Depending on the context of use, it is necessary to evaluate the choices to make.
Overall, the choice to go towards an automatic procedure leads to a significant
improvement in the efficiency of the process, both in terms of time and in terms of
simplicity of execution. In these cases, a certain penalty in terms of the ability to exploit
the single data should be acceptable.
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Appendix A
Algorithm of camera motion
identification for photogrammetry

import json
import math
import argparse

def parse(data):

prevoius_centroid=[0,0]

for d in data:
bbox=d[ 'objects']J[0][ 'bbox"']
current_centroid=[(bbox[®]+bbox[2])/2,(bbox[1]+bbox[3])/2]
dx=abs(current_centroid[0]-prevoius_centroid[0])
dy=abs(current_centroid[1]-prevoius_centroid[1])
prevoius_centroid=current_centroid

print(dx,dy, math.sqrt(dx*dx+dy*dy) )

def parse_cluster(cluster,th):
bbox=cluster[0][2][0]['bbox']
prev_centroid = [(bbox[@]+bbox[2])/2,(bbox[1]+bbox[3])/2]
DX=0
DY=0
for cl in cluster:
bbox=c1[2][0][ 'bbox"']
current_centroid = [(bbox[©]+bbox[2])/2,(bbox[1]+bbox[3])/2]
dx=(current_centroid[0]-prev_centroid[0])
dy=(current_centroid[1]-prev_centroid[1])
prev_centroid=current_centroid
DX=DX+dx
DY=DY+dy
if (DX>th) or (DY>th):
if (DY>DX) :
print("tilting frame= "+str(cluster[0][0])+", len="+str(len(cluster))+",DX="+str(DX)+",DY="+str(DY))
else:
print("trucking frame= "+str(cluster[0][0])+", len="+str(len(cluster))+",DX="+str(DX)+",DY="+str(DY))

def cluster_frames(frames):
prev_time=frames[0][1]
clusters=[]
1dx=0
clusters.append([])
for fr in frames:
if (fr[1]-prev_time) > 1:
idx=1dx+1
clusters.append([])
clusters[idx].append(fr)
prev_time=fr[1]
return clusters
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def remove_single(frames):
new_cluster=[]
for fr in frames:
if len(fr) != 1:
new_cluster.append(fr)
return new_cluster

def main():
parser = argparse.ArgumentParser()
parser.add_argument('filename')
parser.add_argument('th',type=int)
args = parser.parse_args()
good_frames=[]
with open(args.filename) as f:
data = json.load(f)
frames=data[ 'bbox']
for fr in frames:
if len(fr['objects'])==1:
good_frames.append([fr['frame'],fr['time'],fr['objects']])

clusters=cluster_frames(good_frames)

clusters = remove_single(clusters)

for cl in clusters:
parse_cluster(cl,args.th)

if __name__
main()

"__main__":
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Chapter 4

Applications on case studies and
results

In this section the case studies chosen to test the workflow for the processing of
historical images proposed in this dissertation are described and the main results are
discussed.

The approach used is to apply the same methodology to different scales, referring
to the buildings and groups of buildings scales.

In particular, in the first part of this section the method was tested applied the entire
workflow on two of the different situations in which the heritage could be, in this case
they are lost and transformed monuments. Thanks to the participation at the “Summer
School: Cities Cultural Heritage and Digital Humanities” organized by prof.
Tamborrino in 2018, monuments in Paris were studied and different historical sources
analysed and made available for the research. Among these materials, the following
monuments were selected as an application in this dissertation: the Tour Saint Jacques
(Figure 3), a UNESCO World Heritage Site that is now existing, and the pavilions of
Les Halles (Figure 4) by Baltard that no longer exist since they were destroyed in 1971.

Starting from the application of Artificial Intelligence on film footage to select
suitable material for photogrammetry, the test continues with the 3D reconstruction
and the metric quality assessment of the models obtained to compare and to discuss the
results according to different type of material and algorithms used during the
processing.

In the second part of this section the discussion of results is concentrated on the
photogrammetric part of the workflow, testing it on both film footage and historical
photograph of other two case studies, representing ephemeral architecture and restored
heritage. The choice of this application derived from other two experiences made
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Figure 1. Paris in 1860, view of the Saint-Gervais Quarter, showing the location of
the Tour Saint-Jacques at lower right, on the Seine's Right Bank and the Pavilions
of Les Halles. From Philippe Benoist, Paris dans sa splendeur (Paris, 1861).
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(a) (b)
Figure 3. Tour Saint-Jacques la Boucherie (1508-22), Paris. (a) Henri Jean-Louis
Le Secq, 1853, Musée Carnavalet. (b) Francesca Condorelli (author), 2019.

(@ ‘ b

Figure 4. Les Halles centrales by the architect Victor Baltard. (a) Pavilions 5 and
6, Charles Marville, 1855, Musée Carnavalet / Roger-Viollet. (b) Top view of Les
Halles, Roger Henrard, 1952, Musée Carnavalet/ Roger-Viollet.

during the research activity: the test of [-Media-Cities platform (see Chapter 1),
with partner CINECA research centre and the Cinema Museum of Torino, that made
available the film footage concerning International Exposition in Torino, and the
collaboration with Tokyo Institute of Technology during the visiting research period
that made available material concerning archival images of Japanese heritage building
and wall paintings in Cappadocia. The results were used to validate the method
proposed in this work.
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Figure 5. Maps and some buildings around Les Halles and the Tour Saint Jacques,
Blondel La Rougery, 1959.
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4.1 Case studies in Paris

4.1.1 Tour Saint Jacques

The first selected case study is the Tour Saint Jacques (Figure 6-13) that is located
in Rue Rivoli in Paris’s 4th arrondissement. This bell tower is in flamboyant gothic
style and it has been inscribed in the UNESCO Heritage List since 1998 for its
historical importance.

(b)

Figure 6. The Saint Jacques La Boucherie church. (a) Map of the city of Paris, Harold
B. Lee, Scale: ca. 1:2.000, 1618, Library Maps Collection. (b) Plan of Turgot, 1734,
Archives Nationales.

Figure 7. The Tour Saint Jacques. (a) The Saint Jacques La Boucherie church,
Garnerey, 1784. (b) The tower before the isolation by restoration in the 1850s, "The
Place du Chatelet and the Tour Saint-Jacques in 1848". (¢) The Tour Saint Jacques on
a decorative stone podium after relocation, Theodore Baldus, 1858. In O’ Connell,
2001.
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The Tour Saint Jacques, in fact, is the only remaining evidence of the lost Saint-
Jacques-de-la-Boucherie church (Figure 6 and 7), a Carolingian chapel of the twelfth
century and substantially modified thereafter, and destroyed in 1797 after civil unrest.

The tower, which over the years had been incorporated into the surroundings
buildings (Figure 10 and 11) was saved from destruction because of its great
architectural value. During the Haussmann transformations it was cleared by these
buildings (Tamborrino, 2005) (Figure 8, 9 and 12), surrounded by a public park (Figure
13), and elevated on a decorative stone podium of 2,50 m to reach the new level of Rue
Rivoli (Meurgey, 1926; O* Connell, 2001).

Figure 8. The Tour Saint Jacques, Henri Jean-Louis Le Secq, 1853, Musée
Carnavalet.
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Figure 9. The Tour Saint Jacques during transformation works, view of Rue
Saint-Martin and Maisons de la rue de la Vannerie, Martial, 1852,
Bibliotheque nationale de France.
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Figure 10. Plan Vasserot in which the Tour Saint Jacques is surrounded by
buildings, Cadastre par ilots de Vasserot et Bellanger, 1810-1836, Archives
Nationales de Paris.

Figure 11. Plan Jacoubet in which the Tour Saint Jacques is surrounded by
buildings, 1836, Bibliotheque historique de la Ville de Paris.
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Figure 12. Plan Haussmann Paris in which the Tour Saint Jacques was moved
from its position and freed by sourroundings buildings, Plan parcellaire du
prolongement de la rue de Rivoli Typ. Vinchon / Grave par Avril Freres / Lith.
Lemercier, 1851.
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Figure 13. The Tour Saint Jacques in the actual asset, Francesca Condorelli
(author), 2019.
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4.1.2 Les Halles

The pavilions of the ancient market of Les Halles (Figure 14-24) were built in Paris
between 1854 (Haussmann approved the project in 1953) and 1874 by Victor Baltard,
one of the most important architects of the XIX century. Constituting a nerve centre in
the city of Paris and object of numerous political and social debates, Les Halles have
been extensively studied from the point of view of urban history due to its complexity.
This complexity refers to two different aspects. The first is related to the physical place,
since being a market in iron and glass, it is an indoor and outdoor space in
contemporary, constituted by different layers that make the virtual reconstruction more
difficult. The second aspect of its complexity regards the historical sources of different
types. This aspect more interesting from the metric point of view is deeply investigated
in this work, focusing on the combination and the metrical exploitation of the historical
material thanks to the use of photogrammetry and DL.

Figure 14. Les Halles. (a) Charles Marville, 1855, Musée Carnavalet / Roger-
Viollet. (b) and (c) 1943, Musée d’Orsay.
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Figure 15. Les Halles, Gilles Guérin, 1973, (http://www.gillesguerin.com/).
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Figure 16. Les Halles, 1943, Musée d’Orsay and Musée Carnavalet / Roger-Viollet.
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Figure 17. Details of Les Halles (in Thomine-Berrada, 2012).
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Figure 18. Les Halles. (a) Detail of the roof. (b) The cave. (Medecine de France N°
226, 1971).

Les Halles by Baltard were demolished in 1971 (Figure 19 and 20) and now it is
no longer possible to observe them in situ. After the transformation of the area, a new
building, Forum des Halles, was designed in 1979 and then restructured in 2002. After
a century of activity, the need of a more modern market, in line with the challenges of
supplying society with a rapidly growing population, arose. Congestion, dilapidated
housing in the neighbourhood, the monopoly of the streets, traffic, hygiene and
demographic pressure have been causing daily problems in the Les Halles
neighbourhood for many years. On 6 January 1959 the government decided to move
them to a more appropriate space outside the city. Ten years later and after a long
implementation, the transfer began on 3 March 1969 and ended in January 1973
(Archive of Paris).
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Figure 19. The destruction of Les Halles (in Thomine-Berrada, 2012).
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Figure 20. The destruction of Les Halles, Jean-Claude Gautrand, 1977, Galerie W.

This decision provoked significant reactions from Parisians who signed petitions
against the destruction of the pavilions (Figure 21) and the expropriations caused by
the renovation of the neighbourhood. It is the end of an activity that has become
legendary in the landscape of Paris. Les Halles soon became an admired monument, a
must for any foreign tourist passing through Paris. Paris’ guides contained a chapter on
Les Halles, whose appearance and activities they describe. Passengers passing through
do not fail to mention their visit to Les Halles. Several articles were dedicated to the
pavilions during and after their construction and popular literature found great phrases
to qualify Les Halles as "true cathedrals of cast iron and glass, agile and light, in their
unchanging solidity, luminous and airy".

Figure 21. Example of newspaper against the destruction of Les Halles, 1972,
Musée d’Orsay.

The literary commemorations of Les Halles are numerous, but dominated by the
monument that Emile Zola consecrated to them. The genesis of the novel “Le ventre
de Paris” dates back to 1869. Zola is fascinated by the swarm of life that animates those
pavilions. Les Halles are the protagonists of this fragrant symphony, of this violent and
serious painting of humanity that is beastly and complex.

They are among the latest demolitions carried out in the ‘800 in Paris as they have
generated a lot of discontents. For example, Musée d’Orsay was saved from destruction
after this event. Cultural institutions wondered how to preserve this architectural
heritage. Many reports in the written press or on television want to inscribe images of
Les Halles' life and activities in the collective memory and insist on the "end of a
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world". The photographs and videos taken during that period contribute to this
memory. The whole of France followed the immense site of destruction of the pavilions
in the media of the time.

Finally in 1972 it was decided to restore Pavilion No. 8 (Figure 22), which has
been saved and reassembled with some modifications in two different location, one is

in Nogent-sur-Marne, [le-de-France, and the other is in Yokohama, J apan.
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Figure 22. Plan of Les Halles, 1867, Bibliotheque des Archives de Paris. The
Pavilion No. 8 highlighted in red was moved in Nogent-sur-Marne and in Japan.

The main part of the pavilion was moved in Nogent-sur-Marne (Figure 23) and
used for exhibitions, salons, concerts, etc. Various modifications were made to adapt it
to the new use: installation of blue mosaic tiles that take up the motifs of the old brick
panels, closing of the facades with Parol glass, installation of the heating system,
thermal insulation of the rebuilt roof, arrangement of mobile scenographers. The
dismantling started in 1872 and ended 3 months later. Removal in 1976 is inaugurated
in 1977.
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Figure 23. Pavilion n°8 in Nogent-sur-Marne, Francesca Condorelli (author),
2019.

The cave of Pavilion No. 8 (Figure 24) which was to support the upper structure
of the basement portion, is composed of all such as pillars, arches and cast iron beams
was donated as a courtesy of the Commune of Paris to the city of Yokohama and
located on the Yamate hill. The French Consulate was built on the same site in 1894
and was in use until the 1940s. The site was purchased from France by the City of
Yokohama, and it built the present park, naming it France-Yama. The remains of the
consulate, which was destroyed by fire, still stand halfway up the hill. The ruins of the
Consulate and a replica of the windmill.
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Figure 24. Pavilion No. 8 in Yokohama (Japan), Francesca Condorelli (author),
2019.

115



4.1.3 Recovering the material on the case studies

Numerous historical material regarding the monuments survived over time. For
this reason, different historical archives were deeply consulted in Paris in order to
collect documents concerning the two case studies. Historical photographs, drawings,
images and design projects have been collected from the following archives: the Musée
d’Orsay archive, the Archives de Paris, the Bibliothéque Nationale de France, Archives
Nationales de France.

Figure 25. A diapositive of Les Halles at Musée d’Orsay, Francesca Condorelli
(author), 2019.

In particular, for the Tour Saint Jacques, together with maps and photographic
reportage of its transformation during the time, a collection of drawings by the architect
Gabriel Davioud of the surroundings of the tower was available thanks to the
participation in the “Summer School: Cities Cultural Heritage and Digital Humanities”
organized by prof. Tamborrino. In order to preserve at least the memory of the
medieval houses that were to be demolished, the Haussmann administration had taken
care to preserve the graphic memory of the expropriated districts documenting with
drawings made between 1840 and 1860 of the buildings in the area (Tamborrino, 2005).
The collection of drawings consists of elevations drawn in pencil on a scale of 1:100.
They show many details of the buildings surveyed and offer an image of Paris lost in
the middle of the 19th century. Moreover a 3D model, obtained from a recent
photogrammetric survey of the existing Tour Saint Jacques using UAV carried out by
Iconem in 2015 was kindly made available from the company, and a 3D model of the
existing pavilion of Les Halles by the archive of the Commune de Nogent-sur-Marne.
This material was used for the metric quality assessment, as better explained in the next
section 4.2.

For what concerns Les Halles, plans, sections, elevations and details have been
published several times by the architect Victor Baltard himself in an important
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monograph. All this allows the offering of a fairly faithful description of the way in

which Les Halles were built.

The “Monographie des Halles centrales de Paris” by Baltard, Archives de Paris,
ATLAS 97, is the most complete and accurate publication in existence on Les Halles;
it provides documentation of the 12 pavilions designed (the last two were only built in

1936 and not in accordance with the project).
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Figure 26. Plan of Les Halles, Victor Baltard, Monographie des Halles centrales,

1863, Archives de Paris.

Figure 27. Fagade of Les Halles, Victor Baltard, Monographie des Halles centrales,

1863, Archives de Paris.
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Figure 28. Section of Les Halles, Victor Baltard, Monographie des Halles
centrales, 1863, Archives de Paris.
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Figure 29. Details of the cave of Les Halles, Victor Baltard, Monographie des
Halles centrales, 1863, Archives de Paris.
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Figure 30. Details of the cave of Les Halles, Victor Baltard, Monographie des
Halles centrales, 1863, Archives de Paris.
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In Lemoine, 1980 is also reported a description of the pavilions’ structure
containing metric information: “The excavation of the foundations was 6.70 m to allow
the passage of the railways, then it descended to 7.70 m at the level of the turntables.
The construction system of the cave was simple and at the same time intelligent. A
number of cast iron support points at a distance of 6 m from each other and arranged
alternately, supported a network of sharp-edged vaults whose ribs were also made of
cast iron. The poles had an octagonal section and an average diameter of 265 mm,
increased to 440 mm for those that had to support the roofs. Originally the vault
reinforcement was made only of cast iron ribs. Subsequently, another reinforcement
tangent to the curve of the dyspluvium was added. In the keystone, a cast iron frame,
which contained a grid or glass plate, joined the two half trusses. This system, which
actually consisted of 4 cranes mounted rigidly with their hooks, was thrust free. The
vaults were made of a single thickness of Burgundy bricks put together in copy, in
bands of two colours. The sides of the vaults were filled with cement. Under the
covered streets the thickness is 44 cm, corresponding to rows of bricks. At the
intersection of the streets, which form a square of 15 m side, 1 m high sheet metal
beams support a series of brick vaults. Brick was widely used in the external parts of
the pavilions. The fence is solved with brick partitions 11 cm thick and 2.60 m high,
which rest on a base of red Vosges stoneware. This arrangement protects the inside of
the pavilions from draughts. These brick partitions are naturally supported by cast iron
columns that support the iron structure of the pavilions. The combination of the metal
with brick, later typical of covered markets and industrial uses, was something really
new at that time. The frame of the pavilions rested on master columns and on a row of
central columns at a distance of 4 m from each other that followed the plan of the shops.
The zinc roof covering rested on a double layer of planks separated by a cavity to
improve thermal insulation. The structure of the low sides of the pavilions was made
up of a series of iron truss beams, with I-section, resting on cast iron columns and iron
pedestals with a roughly octagonal section that extends the central columns. Some
cornerstones, adorned with rosettes, brace the device. These same pedestals were
connected to each other by arched corbels of a circumference sufficiently large and
rigorously joined to the mountain arch and to the crossbeam in order to be absolutely
opposed to the closing and opening of the corner. On this crossbar, placed at a height
of 12.50 m, stands the first level of the lamppost. A flat iron terrace around each
pavilion allowed the arches to be reached. The first level of the lamppost was
surmounted by composite trusses: a series of struts rest on an inverted truss beam on
the four sides of the pavilion subtended by a round iron tie-rod. The same device was
repeated for the second level of the lamppost, on 18 m instead of 30. A glass skylight
chorus to everything, culminating about 25 m above the ground. The small pavilions
did not have a two-level streetlight but a simple glass skylight” (Lemoine, 1980).

The Tour Saint Jacques and the parts of the existing Pavilion were photographed
during a visit both in Paris and in Yokohama.
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Finally, both architectures were deeply studied and documented with both
photographic and video material, because existing after the invention of the cinema and
they appear in historical film footage. Moreover, the availability of historic documents
such as plans, project and drawings with metric information, have helped the metric
evaluation process.

In this way, it is possible to compare the different results obtained in the
implementation of the workflow with the two case studies and therefore, they represent
good case studies to test the proposed algorithm.

Historical video archives consulted

A lot of video materials, both documentary and fictional, which were set in the
market and near the tower, were examined in several video archives in Paris and
historical film footage from the 1910s until the 1970s were collected. The video
archives consulted in Paris during a research period abroad are reported following.

» Lobster Films (last access October 2020, https://www.lobsterfilms.com/fr/),
created in 1985, is a company whose goal is to restore films and share their discovery
of the cinema from the early days until today. The cinematheque has a vast catalogue
also containing rare films.

* CNC (last access October 2020, http://www.cnc-aff.fr/) collects, inventories,
saves, restores and indexes the films it preserves through voluntary deposits, donations,
acquisitions and legal deposit. The online documentary database offers a selection of
films, regularly updated, from among the 110,000 films stored. Of these, 7,410 have
been digitized and made available to researchers and professionals at CNC consultation
stations in Paris and Bois d'Arcy. The collections are open to many national and
international partners and accessible to the public under certain conditions while
respecting the rights to the works.

* Institut national de l'audiovisuel — INA (ina.fr, last access October 2020) is a
public commercial entity in France responsible for archiving all radio and audiovisual
broadcasts in the country with particular focus on conservation, restoring, accessibility
on the internet, enhancing archives for scientific, educational and cultural purposes of
the French audiovisual heritage.

* Les Documents Cinématographiques (https://www.lesdocs.com/, last access
October 2020) is a society created in 1930. The cinematographic archive whose origin
dates back to 1889 it now includes a catalogue of historical films, documentaries and
fiction, intended for the general public and also for audiovisual professionals,
particularly in the field of television rights and sales.
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* Forum des Images (https://www.forumdesimages.fr/, last access October
2020) founded in 1988 is a cultural institution of the city of Paris dedicated to cinema
and audiovisual. Its archives include almost 8,000 films with Paris as subject or setting,
as well as several hundred other documents from various rare and difficult to access
collections.

* Gaumont Pathé Archives (https://gparchives.com/, last access October 2020)
was set up after the catalogues of Cinémathéque Gaumont and Pathé Archives were
combined in 2004. This venture is now the leading French image bank for black and
white and colour images illustrating the history of the 20th and 21st centuries. The
archive contains nearly 12,000 hours of footage and numerous documentaries.

All the historical film footage collected and used in this research were already
digitalized by the archives. According to the archive expert technicians, the conversion
procedure into digital format of the film did not conditionate, in an appreciable way,
his quality and characteristics, since the process was carried out with high quality
instruments and well-specialized method. Metadata of the films not always are present
in the cataloguing database, for this reason, the information necessary for the
photogrammetric processing were obtained according to the following considerations:

- When the video camera and the film used to shoot the video are known, the
image format and the focal length can be found out. The image format is, in
fact, related to the type of film used (for example: the film of 35 mm format
has a height of 35 mm and the dimensions of the frame are 18 mm x 24 mm,
as shown in Figure 31). The focal length is related to the camera used and
generally has a fixed-focus lens.

- When the metadata on the camera is unknown, the missing information was
found out searching the camera available in the year and in the place in which
the video was taken (considering that at the beginning of the ‘900 only few
cameras were invented).
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Figure 31. dimensions of the 35 mm film format.
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4.2 Testing the entire workflow: Al + photogrammetry

The case study selected were used to experiment with the entire workflow prosed
in this dissertation and reported in Figure 32. In particular, the existing monument of
the Tour Saint Jacques was adopted to test the implementation of two different types
of Neural Networks with different training scenarios in order to determine the best
performance between the two. This required a large number of images, which were
used together with historical and contemporary images of the monument for both the
training and validation phases. Once the experimentation of the two Neural Networks
had been carried out and the relative results analysed, the same methodology was tested
by applying the results obtained in this first part to a real case, such as the recognition
of a monument lost in a film, Les Halles, which no longer exists. For this reason, the
two case studies of the tower and the pavilions were analysed in parallel, in order to
gain a deeper insight into the minimum number of images required to form a network.
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Figure 32. The workflow proposed in this dissertation.

4.2.1 Dataset

The implementation of the Neural Networks needs a specific dataset from which
to learn to recognize the searched object. For the cases of the Tour Saint Jacques and
Les Halles, even if a lot of data were available, no suitable datasets for the application
of Deep Learning (DL) existed, and a new one was specifically created.

Cloud to Cloud

Feature Point
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The quality of primary data used in the implementation of the NN strongly
influences the training phase, for this reason it plays a crucial role in the achievement
of good results. To learn the features of the object the machine needs a significant level
of data entropy. This was easily reached in the case of the Tour Saint Jacques, since in
addition to historical images retrieved for both case studies, it was also possible to
collect hundreds of contemporary images with different backgrounds, lighting
conditions and points of view. The following methods were used for the collection: (1)
web crawling; (2) ad hoc photographic survey at the new location of the Tower; (3)
consultation of the historical archives in Paris.

The experiment was carried out in two different phases and with three different
datasets, which are described in the following sections.

Dataset 1: Reference Case - Tour Saint Jacques

The first dataset was created to analyse two different Neural Networks on the best
possible scenario of an existing heritage, such as the case study of the Tour Saint
Jacques. The collected images of the Tour Saint Jacques (Figure 33) were first divided
into four categories according to the following criteria:

1. Contemporary and historical images of the entire tower;

2. Views with the Parisian skyline, because they appear in the film footage;

3. Images showing monuments or architecture similar in shape (e.g. other towers)
or style (e.g. Gothic architecture) to the Tour Saint Jacques. The latter images act as a
"negative matching" and can reduce the incidence of false-positive ratio in
classification problems of Deep Learning (Hu et al., 2014; Kalal et al., 2010);

4. Images that show only details or parts of the tower, because this is a typical
situation when dealing with frames where the camera moves by filming only parts of
an object.

Figure 33. A selection of the pictures from the dataset 1: (1) Tour Saint Jacques;
(2) landscape; (3) negative matching; (4) tower parts.
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During the training phase, several combinations of number and type of images
were extracted to improve the network performance, as shown in Table 1 and explained
in the next section. In addition, during validation, 80 images from each group in the
dataset, designated as validl, valid2, valid3, and valid4 respectively, were used to
evaluate the quality of the results from different perspectives (Table 1)

Table 1. Description of the training and validation dataset 1 on the
reference case of the Tour Saint Jacques. For each training implementation
(RUN A, RUN B and RUN C) different number and combination of images

are used.
From Number in training Number
Description From - From historical in
P web  survey RUNA RUNB RUNC 7
photographs validation
Tour  — Saint x x 400 400 400 80
Jacques
Landscape X 80
Negative x x 200 200 80
matching
Tour Saint < 20 20 20 20

Jacques Parts

Dataset 2: Video

The second dataset was created to test the performance of the algorithm in a
realistic case. For both case studies, historical videos from the Paris archives were
collected. Despite the critical nature of the exploitation of these materials (see Chapter
2), a large number of videos were collected, whose characteristics are described in
Table 2 and Table 3 in which for each film footage the metadata available were
reported.

Table 2. Description of the video dataset of the Tour Saint Jacques.

Dataset Duration Year Director Type Film Colour Archive
La tour Saint 9min 47s 1967 J. Sanger documentary B&W  Ina.fr
Jacques
Etudes sur . 16 CNC and
Paris 76min 1928 A. Sauvage documentary mm B&W VOD
. Forum
P'a IS, Roman 49min 1991 S. documentary 16 B&W  des
d'une Ville Neumann mm
Images
Paris  2¢me 16 Forum
. 4min 44s 1935 G. Auger  documentary B&W  des
partie mm
Images

125



Forum

Passant — par 13min 955 p porier  fiction 8 B&w des
Paris 39s mm
Images
Vue 16 Forum
Panoramique  2min 1954 A. Lartigue documentary mm B&W  des
sur Paris Images
Un film sur C.
Paris Y 45min 1926 Lambert, J. documentary B&W  Lobster
Levesque
L.
La  nouvelle 24s 1929 Trauberg, historical B&W  Lobster
babylone G.
Kozintsev
Paris, 1946 13min 1946 J.C. documentary Colour Lobster
Bernard
f;le grande 4min 20s 1913 documentary B&W  Lobster
Paris et ses 7s 1912 Pathe documentary B&W  Lobster
monuments
Table 3. Description of the video dataset of Les Halles.
Dataset Duration Year Director Type Film Colour Archive
Crainquebille  Imin32s 1922 J.Feyder  drama Snsm B&W  Lobster
11452 0 Halles 35minl5s 1960 amateur Colour Lobster
Paris Mémoire Gaumont
J°é 21s documentary B&W  Pathé
écran .
Archives
Le . ventre de S5min55s documentary B&W  Ina.fr
Paris
Le . ventre de 3minlls 2008 IP. documentary Colour Ina.fr
paris Beaurenaut
Les Halles 12min
centrales 295 1969 . Sanger documentary B&W  Ina.fr
) Les
La Destruction .
des Halles de 3min28s 1971 H. Corbin, documentary 35 B&W Dpcuments
) J. Humbert mm Cinemato-
Paris )
graphiques
Le dernier G
march¢  aux 2min28s 1969 documentary B&W  Ina.fr
. Chouchan
Halles de Paris
Les Halles
histoire  d'un
marché 2minSs documentary B&W  Ina.fr
incontournable
a Paris
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Les Halles de
Paris en 1971
Les Halles 2min37s documentary B&W  Ina.fr

Imin2s 1971 documentary B&W  Ina.fr

Dataset 3: Real Case—Tour Saint Jacques and Les Halles

The evaluation of the implementation of NN on film footage in which a lost
monument appears means that it is not possible to use a dataset with contemporary
images of the building, since it was destroyed. For this reason, the third dataset (Figure
34 and 35) was created to test the algorithm of this real situation on the two case studies.
For this purpose, the image categories were divided into three different groups:

(1) Historical photographs of the monument.

(2) Historical images, both photographs and images extracted from the video
dataset in which the searched monument appears.

(3) Negative matching, for the Tower this coincides with the third group of the first
dataset; for the Les Halles it is the images with the buildings in Paris that appear in the
film.

In addition, for the Tower, some images were collected in a new validation group
called valid5 and added to the previous dataset 1 to test the algorithm on this reference
case. For Les Halles, the validation group on which the algorithm was tested is called
valid1. The number of images used during training and validation and the combinations
for the different runs are listed in Tables 4 and 5 and are explained in more detail in the
next section.

] ‘ - 3 il
L, Tl dit
.;,E;, o Lo 'L e & ==

Figure 34. A selection of the pictures from the dataset 3 for the tower: (1)
historical photographs; (2) historical images; (3) negative matching.

Table 4. Combination and number of images from the dataset 3 used in each run
of the training and validation phase on the real case of the Tour Saint Jacques.
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Number

Number in training RUN .
Dataset mn
validation
TiIA TIB TIC TID TIE TIF T2A T2B T2C T2D T2E T2F VALIDS
1. Tour
Saint
Jacques — 50 42 35 25 15 25 20 10 5 7 2 0
Historical
Photographs
2. Tour
Saint oy g g g 25 22 25 20 8 3 29
Jacques —
Frame
3. Negative 5 45 35 25 5 50 42 35 25 15 5 0
matching
1
2
3
. =kl 1] LA
Figure 35. A selection of the pictures from the dataset 3 for Les Halles: (1)
historical photographs; (2) historical images; (3) negative matching.
Table 5. Combination and number of images from the dataset 3 used in each
run of the training and validation phase on the real case of Les Halles.
. . . Number
Dataset Number in training RUN in
validation
TiA TIiB TIC TID TI1E TIF T2A T2B T2C T2D T2E T2F VALID1
1. Halles
Historical 50 42 35 25 15 25 17 23 16 6 0 32
Photographs
2. Halles
Frame 0 0 0 0 0 25 25 12 9 9 5 46
3. Negative
matching 50 42 35 25 15 50 42 35 25 15 5 0
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4.2.2 Results and Discussion of the implementation of the Neural
Networks on the case studies

This section deals with the results of the Neural Network referring to the metrics
introduced in Chapter 3 and chosen for evaluating their performance. A sketch of the
metrics chosen is reported in Figure 36 and examples of frames of True Positive, False
Positive, True Negative and False Negative resulted from the detection of monuments
by Neural Networks are reported in the following Figure 37-45.

Sensitivity: TP/ P

A /L2852
vay, &

Specificity: TN/ N

A, /LZ%
-

Accuracy: (TP +TN)/ (P + N)

positive (P)

Precision: TP/ (TP + FP)

Figure 36. A sketch of the metrics chosen to evaluate Neural Networks.
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-igure 37. Examples of frames True Positive of the Tour Saint Jacques: the
monument was correctly detected by Neural Networks.

L Vil 1) Lm_m E.' I | - "f'"?i f -
Figure 38. Examples of frames True Positive of the Tour Saint Jacques: the
monument was correctly detected by Neural Networks, even if it is a drawing.

tour_saint_jacques (0.9

tour_saint_jacques (1.00)

ina.fr

Figure 39. Examples of frames True Positive of the Tour Saint Jacques: even the
details and parts of the monument were correctly detected by Neural Networks.
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Figure 40. Examples of frames True Positive of Les Halles: the monument was

correctly detected by Neural Networks.
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Figure 41. Examples of Les Halles: the monue was correctl deteced b eurl
Networks, even if it is a drawing.
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Figure 42. ;(amp;ls of frames False Positive of the Tour Saint Jacques: the object
was detected by Neural Networks as “Tour Saint Jacques™ but it is not the tower.

halles;-s.ﬂl:. ‘i i' !! IT
= ||l

Figure 43. Examples of frames False Positive of Les Halles: the object was
detected by Neural Networks as “Les Halles™ but it is not the pavilion.
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(b)

False 44. Examples of frames False Negative of (a) the Tour Saint Jacques and (b)
Les Halles: the objects were detected by Neural Networks as “No Tour Saint Jacques”
and “No Halles” but they are the searched objects.

b
False 45. Examples of frames True Negative of (a) the Tour Saint Jacques and (b)
Les Halles: the objects were correctly detected by Neural Networks as “No Tour Saint
Jacques” and “No Halles™.

The first part of this section describes the training phase and discusses the choice
of the network model, the type of training dataset and the selection of the probability
threshold. The second part discusses the influence of size and source of the data set on
training. In the third subsection, the network is evaluated in a realistic scenario,
focusing on the behaviour of the parameters that are most closely related to the activity
of the end-user. In the fourth part a short discussion of the computational power
required for the use of Neural Networks is presented. Finally, in the fifth part, the
results of Neural Networks are discussed with respect to the last phase of the pipeline,
the photogrammetric reconstruction.

Network Model Selection and Tuning

The first part of the training experiments is based on the case of the Tour Saint
Jacques for the wide availability of past and modern images as well as some historical
video sets. The experiments started with the assumption of the RCNN network, also
called "accurate network" in the Luminoth reference. In the first training - called RUN
A - only positive matches were used, represented by images of the Tour Saint Jacques
with full or partial views (dataset 1 and 4). The results of the sensitivity analysis
performed on the training and validation sets containing the tower (validl and valid4,
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respectively) are shown in Figure 46, taking into account two acceptance thresholds
for the reference probabilities of 0.5 and 0.9, respectively.

What can be clearly seen in the graph is that the network converges quickly and
achieves a very high training accuracy (i.e. sensitivity) as well as very high validation
accuracy values for the valid1 set, which contains only images of the entire tower. The
accuracy is more limited for valid4 (about 0.8) because partial views of the tower are
not always recognized. In addition, the network is expected to become more selective
by increasing the probability threshold and the sensitivity tends to decrease
significantly, especially for valid4.

RUN A - RCNN - sensitivity valid1 and valid

1.0 =5 ==
0.8¢
EO.G
2 —%— training - threshold=0.5
%04 —4— valid 1 - threshold=0.5
—+— wvalid 4 - threshold=0.5
0.2 training - threshold=0.9
’ —— wvalid 1 - threshold=0.9
—a— valid 4 - threshold=0.9
0.0

0 5 10 15 20
training iteration

Figure 46. Sensitivity trend of RUN A with valid 1 and 4.

The validation behaviour of validation sets containing images without the tower is
shown in Figure 37 for the valid2 and valid3 sets. For the valid2 set containing the
images with the landscape around the position of the tower, the trend is quite good and
reaches a specificity value of 90%. For the valid3 set, the presence of towers different
from the Saint-Jacques leads to confusion in network learning and poor results close to
50% specificity. This means that the network is not able to distinguish the real tower
from other similar towers with high accuracy. The higher the threshold value, the more
selective the network becomes and the problem of false positives is thus at least
partially mitigated.
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RUN A - RCNN - specificity valid2 and valid3

1.0
0.8 -
B
5 0.6
D
2
w (0.4
—&— valid 2 - threshold=0.5
0.9 —4— valid 3 - threshold=0.5
? —*— valid 2 - threshold=0.9
—— valid 3 - threshold=0.9
0.0 5 10 15 20

training iteration

Figure 47. Specificity trend of RUN A with valid 2 and 3.

The difference between the specificity results of the valid2 and valid3 sets is not
surprising. Since the training runs start from pre-trained networks, it is to be expected
that the common categories - in the sense of Neural Networks - are already stored in
the initial network weights. From the validation results shown in Figure 47 it can be
seen that only a few false-positive results correspond to landscapes, while a
considerable number of tower-like forms are misinterpreted by the network as Tour
Saint Jacques. In order to deal with the most common type of false-positive result in
this scenario, the set of images in valid3, which contained similar shapes to the
searched Tour Saint Jacques, was used as a set of negative matching in subsequent
runs.

The second training RUN B was still based on the Faster-RCNN network but it
was performed including the negative matching set of images with the aim of
improving the performance of the network minimizing the false-positive results.

Figure 48 shows the sensitivity analysis of the RUN B network. As expected, the
network becomes more selective compared to the previous training scenario. The
graphs reveal a slight degradation of the recognition of the true positives compared to
RUN A where negative matching images are not used in training. However, in terms
of specificity—as shown in Figure 49—the problem of false-positive results seems to
be mostly solved. The significant improvement in specificity of RUN B compared to
RUN A demonstrates that using valid3 as the “negative matching” set was an eftective
choice. Overall, the advantages of RUN B training outweigh the disadvantages.
However, according to the use of the algorithm, it could be decided to always prefer
sensitivity, so RUN A would be slightly better.
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RUN A vs RUN B - RCNN - sensitivity validl and valid4 - threshold=0.9
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training iteration

Figure 48. Sensitivity trend of RUN A and RUN B with valid 1 and 4, and threshold
0.9.

RUN A vs RUN B - RCNN - specificity valid2 and valid3 - threshold=0.9

1.0
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]
(18]
204
—— valid 2 - RUN A
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| —— valid 2 - RUN B
—4— valid 3 - RUN B
0.0
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training iteration

Figure 49. Specificity trend of RUN A and RUN B with valid 2 and 3, and threshold
0.9.

Figures 50 and 51 reveal the analysis of sensitivity and specificity trends for the
two trainings RUN A and RUN B in order to assess the influence of the probability
threshold on the results. The value of sensitivity is likely to decrease with the threshold
whereas the specificity is expected to increase. From both figures, it results that 0.9 can
be a good compromise on the threshold selection.
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RUN A vs RUN B - RCNN - sensitivity threshold analysis - valid 1/4
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Figure 50. Sensitivity threshold analysis for RUN A and RUN B with valid 1 and

RUN A vs RUN B - RCNN - specificity threshold analysis - valid 2/3

1.0 T u X
"/—.k
0.9- H_’_’*_r/#,’//’x
0.8_ | | | |
20.7-
e
[dm)
20.6
)
0.5-
valid 2 - RUN A
0.4- —#— valid 3 - RUN A
0.3- —¥— valid2-RUNB
’ —— valid 3 - RUN B
0.2 '

threshold [0.5 /0.8 / 0.9 / 0.99]

Figure 51. Specificity threshold analysis for RUN A and RUN B with valid 2 and

The third training RUN C which was attempted is based on the SSD network, while
keeping fixed the training dataset (including negative matches). The results of the
comparison between the RCNN network and the SSD network are shown in Figures
52 and 53. What can be seen is that in positive cases the SSD network provides better
values of sensitivity at least for the valid 4 set (Figure 52). However, from a visual
inspection, it turns out that the images which are detected only by the SSD network are
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usually very poor-quality images or even drawings and therefore not suitable for the
photogrammetric extraction. In terms of specificity, from Figure 53 it turns out that the
values for both networks are high. Especially for the RUN B the values are very close
to the ideal value of the unit. On the other hand, from Figure 53 it results that there is
a specificity degradation for the SSD network. Even though, the specificity degradation
seems small—around 2% —it is worth noting that in realistic scenarios the amount of
negative images is huge and having 2% of false positives may be incredibly costly for
the end-user activity.

RUN B (RCNN) vs RUN C (SSD) - sensitivity threshold analysis - valid 1/4
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—¥— valid 1 - RUN C - SSD
—4— valid 4 - RUN C - SSD
0.6

threshold [0.5 / 0.8 / 0.9 / 0.99]

Figure 52. Sensitivity threshold analysis for RUN B and RUN C with valid 1 and 4.
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Figure 53. Specificity threshold analysis for RUN B and RUN C with valid 2 and 3.
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In summary, the SSD network is lighter in terms of computation than the faster
RCNN and can detect a larger number (usually of poor quality) of true positives, but at
the same time detects too many false positives. The consequence is a larger amount of
video to watch for the user. For these reasons, the threshold value of 0.9 together with
the Faster-CNN were identified as the most reliable feature of the network to use in the
next experimentations.

Assessment of the Training Dataset

The previous investigation identified Faster-CNN as a suitable model of the
network to utilize. It also highlighted the advantage of inserting negative matching in
the training datasets. Finally, the selection of 0.9 as the object detection threshold
proved to be a good compromise. In the next part of this section, the application of
these assumptions to a concrete case is examined. If the architectural heritage is lost,
only historical archive material is available. For this reason, only historical images,
both photographs and video images, were used in the following analyses. Given the
difficulty of finding the first monument images necessary for the training, it is
necessary to consider both the source of suitable images of the monument and the
number of images required for a quality training phase. In order to study these aspects
in the context of this study, several training phases were carried out. First, two different
types of runs were selected. In the first case, the training was conducted using historical
photos only, in the second case, images from historical videos were added to the
dataset. To enhance generality, both the case studies of the tower and of the pavilions
were tested: the terms T1 and H1 refer to the runs with the training datasets that contain
only historical photographs, respectively, for the tour Saint Jacques and Les Halles.
The terms T2 and H2 refer to the runs that also employ the frames extracted from
videos. Furthermore, with the aim of calculating the minimum number of images
required to achieve acceptable training results of the network, six different runs were
processed with a decreasing number of elements in the dataset: these runs are labelled
as A-B-C-D-E-F. For example, T1A stands for the run trained using 50 true images
and 50 negative matchings, considering only historical photographs. On the other hand,
T2A stands for the run trained using 50 true images and 50 negative matchings,
considering 25 historical photographs and 25 video frames containing the monument.
The other letters are related to the number of training images as follows: B=42, C=35,
D=25, E=15, F=5. A comparison among each case study was performed by validating
the network against datasets that contained only historical images, called valid5
(valid1) for the tower (Les Halles) test cases. The evaluation was achieved considering
single frames of the videos.

The results are provided in Figures 54-55, where the sensitivity is plotted against
the number of training images for each test case and each source of training images
(only historical photo or combination of historical photo and video frames). Since the
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involved test datasets always contain the searched monument, the sensitivity equals the

accuracy.

& Sensitivity Tour Saint Jacques - valid5 - threshold = 0.9

—a— TI1 -
—— T2
0.57

=
=

sensitivity

<2
L

e

10 20 30 40 50
number of images in fraining

Figure 54. Real values of sensitivity analysis for T1 and T2 with valid5 and
threshold equal to 0.9; (b) for H1 and H2 with valid1 and threshold equal to
0.9.
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Figure 55. Real values of sensitivity analysis for H1 and H2 with valid1l and
threshold equal to 0.9.
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Figure 56. Real values (red dots) and fitting curves (dotted line) of sensitivity
analysis for T1 with valid5 and threshold equal to 0.9.
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Figure 57. Real values (red dots) and fitting curves (dotted line) of sensitivity
analysis for T2 with valid5 and threshold equal to 0.9.
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1.0 Fit Sensitivity H1 - validl
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Figure 58. Real values (red dots) and fitting curves (dotted line) of sensitivity
analysis for H1 with valid1 and threshold equal to 0.9.
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Figure 59. Real values (red dots) and fitting curves (dotted line) of sensitivity
analysis for H2 with valid1l and threshold equal to 0.9.

The provided results show a monotonically increasing trend of the sensitivity when
the number of images increases, for all of the four considered evaluations. Furthermore,
a saturation trend for all of the cases can be ascertained. To achieve reasonably
saturated results, around 25 images were required for the tower case, whereas 35
images were needed for the Les Halles case. What is interesting in these charts is that
there is no great difference between the trend of the four curves, when compared to the
curve fittings based on the simple power-law f(x) = a+b-xc. This is represented in
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Figures 56-59. Even though this analysis is limited to two test cases, a first brief
indication is that with a minimum of 30 images it is possible to train the network
adequately to find the requested object. For low numbers of images, in particular the
T2 and H2 cases present a measurable advantage in terms of sensitivity performances
compared to the T1 and H1 counterparts. For a higher number of training images, the
advantage is smaller and more difficult to detect. All in all, at least for these two test
cases, the source and the type of the images do not significantly influence the
performance of the learning process of the network. Instead, the number of training
images is crucial to achieving good quality training.

Network Evaluation in a Realistic Scenario

Frame-Based Metrics

In the previous section, a detailed study of sensitivity performance with a variable
number and source of training images was presented. The sensitivity essentially
synthesizes the ability of the network to recognize the searched monument, but does
not provide information about the time savings that can be achieved with neural
networks compared to manual procedures. To discuss this last point, the first variable
to be evaluated is specificity. In order to evaluate meaningful specificity values, a
realistic test dataset is recommended. Indeed, in a realistic scenario where the amount
of positive and negative is as balanced as expected in a real archive, it is possible to
evaluate the best compromise between the metrics to be maximized. For this reason,
the same analysis varying the number of training images is repeated considering the
videos as the test dataset (as usual, the video frames used during the training are not
used in the test dataset).

Starting with the use of the standard metrics applied to video frames, the resulting
charts are provided in Figures 60 and 61 for both sensitivity and specificity parameters.
With respect to sensitivity, the trends against the number of training images are similar
to the previous sensitivity analyses, but the absolute values are slightly smaller, as
expected considering that the average quality of video frames is lower than the
historical photos used in the previous test datasets. All in all, the analysis shows that
the monuments correctly identified as positive are less than half of the total positive
ones, therefore some information is lost. In terms of specificity, the trends are not
monotonous; the ability to detect true negatives fluctuates but does not show a definite
trend in all four cases. The specificity values are always above 84%. This percentage
refers to the time-saving advantage for the end-user, but a direct interpretation of the
value in this sense is not obvious. Furthermore, it should be noted that the specificity
value is limited by the fact that the test videos were manually selected to contain at
least one occurrence of the target object, a circumstance that does not correspond to a
realistic analysis of the archive.
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Figure 60. Sensitivity analysis evaluated on frames.
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Figure 61. Sensitivity analysis evaluated on frames.

Time Interval-Based Metrics

As discussed in Section 3, the evaluation of metrics based on time-intervals may
be more suitable to realistically analyse the quality of trained networks concerning the
end-user activity.

In Figure 62 the time interval discovery-rate is plotted against the number of
training images for T1, H1, T2, H2 cases. The percentage of correctly predicted
intervals in which the monument appears found by the runs T2 and H2 of the network,
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in which both historical photographs and frames were used, reached a higher number
than the T1 and H1 since the value of probability to detect the correct object is around
75% against 50%. As previously explained, the evaluation of the discovery rate is
somehow related to the frame-by-frame sensitivity, even if calculated on intervals.
Comparing the results of discovery-rate and standard sensitivity, it is evident that using
a metric based on time intervals leads to an evaluation less strict than the counterpart
based on the frame, but the time interval perspective is more significant from the point
of view of the final user.
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Figure 62. Discovery Rate analysis.

In Figure 63, the time save parameter is plotted against the number of training
images. It turns out that for T2 and H2 runs with a low number of images the time save
is around 1000. However, in this range the discovery rate is very poor. With the
increase in the number of images the value decreases around 10/50 which is still a
satisfactory value for the time saved. It is expected that the value increases, even more,
when generic video archives are taken into consideration.
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Figure 63. Time Save Rate analysis.

In order to get rid of the dependency on the type of considered videos, it is possible
to compare the time save rate with the ideal time save rate, thus defining the time-
saving efficiency. Time save efficiency results are plotted in Figure 64. For a low
number of training images, the time save efficiency is higher than unity and this is due
to poorly trained network, which is not capable of detecting both true and false
positives. For mid-range and high-range numbers of training images, the efficiency is
order 1 which means that the operator time save is close to the ideal time save.
Obviously, this is possible because not all of the objects are correctly found. However,
the found images are usually the best quality ones and therefore are more usable for
the next steps of our pipeline. In this scenario, the time save rate efficiency close to
unity can be considered an optimal result.

Time Save Efficiency
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Figure 64. Time Save Efficiency analysis.
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Hardware Analysis: High-Performance Computing vs. General
Purpose

The High-Performance Computer of the Italian research centre CINECA (Rome,
Italy) was used for the training and validation of Neural Networks) thanks to the award
of ISCRA - Italian Super Computing Resource Allocation project.

The use of GPUs (Graphics Processing Units) has become a leading technology
in the context of Deep Learning thanks to the high computing power available and the
relatively low power consumption. Modern neural network frameworks support GPU
computing. GPUs are available in ordinary home computers or small workstations, but
GPUs are now also used as accelerators in high-performance computing (HPC)
clusters. In Table 6 we show the time needed to process an image during the training
phase.

To follow the evolution trend of the GPUs, results based on low/mid-range GPUs
were reported up to results from top GPUs used in HPC centres. The order follows the
release date of the devices. The type of GPU is also described as distinguishing HPC
GPUs from consumer GPUs. It turns out that the improvement over the years is
important, with a speed-up around 3 years after 5 years. Another very important point
is the advantage of using HPC-oriented GPUs compared to normal laptop GPUs. The
difference in timing is very marked. For complete training, the elapsed time may pass
from several tens of days to less than 24h. In the massive inference phase, the use of
HPC platforms can become a fundamental requirement.

Table 6. Hardware comparison.

NVIDIA 630M NVIDIA K40 NVIDIAP100 NVIDIA V100 NVIDIA 1650
2012 2014 2016 2018 2019

Low-range Laptop  HPC HPC HPC Mid-range Laptop
30s/image 1 s/image 0.5 s/image 0.3 s/image 9 s/image

4.2.3 Camera motions identification

In order to automatically select the frame sets to be used for photogrammetry, the
algorithm for identifying camera movements described in Chapter 3, and reported
again in Figure 65, was implemented. The procedure was tested on three different film
footage, namely: “Tour Saint Jacques” from Ina.fr archive, “Etudes sur Paris” from the
CNC-VOD archive and “La Destruction des Halles de Paris” from Les Documents
Cinematographiques archive (see Table 2 and 3).
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Figure 65.The workflow of the algorithm of camera motion identification.

The results of the predict step are the selections of the frames where the searched
monument appears correctly detected by the Neural Network (Figure 66). The
algorithm also identifies the name of the video and the timely appearance of the object
within the video, together with the coordinates of the position of the bounding boxes
in the frame and the probability score of the presence of the monument in the video.
The frame extraction step provided the list of all images selected (Figure 67).

halles (1.00}

(a) (b)
Figure 66. An example of the frames resulted from the predict step in which the
Neural Network correctly detected the (a) Tour Saint Jacques, and (b) Les Halles.

Figure 67. An example of the frames resulted from the frame extraction step in
which the algorithm lists all the images selected by the predict step.
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As explained in Chapter 3, the algorithm requires a correct selection of certain
parameters. First of all, for the step of frame clustering of the algorithm, the second
splitting criterion requires to adopt a structural similarity threshold Ts. Visual
examination of the extracted frames revealed that setting Ts=0.1 is an effective choice
for detecting a change of the scene in the great majority of the analysed cases.

Figure 68. Example of the result of the frame cluster step according to the structural
similarity threshold Ts. When the value of Ts is 0.1 there is a change of the scene.

During the camera motion estimation step, with respect to the Residual thresholds
T1 and T2 (Figure 69), a selection is not straightforward and tuning based on tentative
results seems to be a viable strategy. The results of the implementation of the algorithm
on the frame selected are shown in Figure 70-73 following the categorization: “steady

2 13 5 13

or oscillating camera”, “camera trucking”, “camera tilting” and “cannot determine

camera motion”.
o Steady or oscillating
v camera

Camera trucking

Cannot determine Camera tilting

Figure 69. Workflow of the camera motion estimation step of the algorithm.
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Centroid
X,Y

|DY| > |DX| + T2 Tilting detected

Figure 70. Results of the camera motion estimation step that recognised the
camera tilting” movement.

Centroid
X,Y

|[DX| > |DY| + T2 Trucking detected

Figure 71. Results of the camera motion estimation step that recognised the
“camera trucking” movement.
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Centroid
X,Y

|DX| <T1; |DY| <T1 Qscillating camera

Figure 73. Results of the camera motion estimation step that recognised the “steady
or oscillating camera” movement.

Table 7 shows the precision results for three different choices of (T1,T2), namely
(0,0), (10,10), (20,20). To assess the accuracy, for each cluster of images, for each
frame cluster the identified camera motion is compared against the real camera motion

2 13

considering the four output categories, i.e. “steady or oscillating camera”, “camera
trucking”, “camera tilting” and “cannot determine camera motion”. The accuracy is
evaluated as the ratio between the number of correctly identified frame cluster motions

and the total number of analysed frame clusters.

Table 7. Accuracy values expressed in percentage according to different clusters
and thresholds.

Film N° cluster Thresholds 0.0 Thresholds 10.0 Thresholds 20.0
0.0 10.0 20.0
TOT NNTP TOT NNTP TOT NNTP
[“o] [“o] [“o] [“o] [“o] [“o]
Tour Saint Jacques 57 13 12 72 60 77 68
Etudes sur Paris 112 26 100 72 100 73 100
La Destruction des 11 50 100 92 80 66 20
Halles de Paris

To allow a more detailed investigation of the results, the accuracy values are
reported for each video separately. Moreover, for each video, two accuracy values are
provided. The first one (TOT) is based on all the detected frame clusters while the
second one (NNTP) only includes frame clusters which really represent the searched

150



object. Indeed, since the camera motion algorithm is applied to the results of Neural
Network (NN) object detection, some extracted frames are False Positive NN results,
i.e. they do not correspond to the searched object. Since NN False Positives may
correspond to other objects, or also to completely wrong image detections, it is
expected that the camera motion algorithm will work more smoothly when filtering out
these bad cases. In any case, summarizing, the TOT accuracy summarizes both NN and
camera motion estimation accuracies, while NNTP accuracy more strictly refers to the
camera motion algorithm accuracy.

The results in Table 7 show that when considering T1=T2=0, the TOT accuracy is
poor (below 30%), whereas the NNTP accuracy is optimal for two of the videos but
very poor for the third one. By increasing the thresholds to T1=T2=10, both the average
accuracies are greater than or equal to 80%. Setting T1=T2=20, there is an accuracy
degradation, especially for one of the videos. Concluding, the intermediate setup
T1=T2=10 seems to be the best choice. All in all, it is clear that the number of analysed
cases is not enough to demonstrate the effectiveness of the algorithm and of the entire
workflow in a general context. However, the discussed preliminary results are
encouraging. Not only the overall accuracy values are satisfactory, but the most
suitable videos for photogrammetry are correctly identified and this means that, at least
for the considered videos, the described workflow allows the user to reach the final
goal which is identifying videos for photogrammetric reconstruction.

4.2.4 Photogrammetric processing and evaluation of metric quality
assessment

Among the footage correctly detected by the Neural Network two different films
to be processed were chosen. The first one is “Etudes sur Paris”, dated 1928, from the
CNC-VOD archive (Figure 74) in which sequences of the Tour Saint Jacques taken
with tilting camera motion appear. The second video, is “La Destruction des Halles de
Paris”, dated 1971, found in Les Documents Cinematographiques archive in which the
Pavilions appear shot with the trucking camera motion (Figure 75). The two films
present the characteristics shown in Table 8.

Table 8. Technical features of the films used during the photogrammetric

processing.
Film Gauge Focal Digital Format N° Camera
& Length  Resolution Frame Motion
Etudes sur Paris 16 mm 25 mm 480x360 pixels 16 Tilting
La Destruction des 35mm 35 mm 492x360 pixels 49 Trucking

Halles de Paris
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Figure 74. A selection of frames from the film footage “Etudes sur Paris” in
which the Tour Saint Jacques appears shot with the tilting camera motion.

Figure 75. A selection of frames from the film footage “La Destruction des
Halles de Paris” in which the Pavilion appears shot with the trucking camera
motion.

Photogrammetric processing

According to the workflow proposed in this dissertation (Figure 76), the
photogrammetric process implemented the SfM pipeline shown in Figure 77, referring
to the COLMAP worktlow. The results are reported in Figure 78 and 79.
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Figure 76. The general workflow proposed in this dissertation in which the third
step concerning the photogrammetric processing is highlighted in red and reported
below.

Object
Detection

using Al

Feature Point
Selection

SfM Feature Matching
Taali and Geometric
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Structure and
Mation
Reconstruction

Figure 77. A focus on the third step of the general workflow proposed in this
dissertation in which the three steps of the photogrammetric pipeline are reported.

i _Ral,_| otk 0 18 3

Figure 78. The frames identified from the film footage “Etudes sur Paris” with the
object detection Neural Networks and the camera motion algorithm are selected and
used for the photogrammetric process. The selection of the feature points, the results
of the matching process and the final point clouds are obtained.
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Figure 79. The frames identified from the film footage “La Destruction des Halles
de Paris” with the object detection Neural Networks and the camera motion algorithm
are selected and used for the photogrammetric process. The selection of the feature
points, the results of the matching process and the final point clouds are obtained.

Metric quality assessment — Benchmark comparison

In order to assess the quality of the point clouds obtained from the
photogrammetric process, the pipeline reported in the flowchart in Figure 80 is
implemented.

Dataset collecting
and labeling

Feature Point Benchmark
Selection Comparison

Obje(ft " ; 7 r i 1 FEa|ureMaluhing Metr_u: Cloud to Cloud
Detection 5'?:9‘.3" ‘ Cluste Pipeline and Geometric Quality Distance
using Al ‘alidation 3 I Verification Assessment Comparison
> L !

Swﬁ:;{snm Feature Paint
Recansiruction Comparison

Test: Object
Recognition

Figure 80. The general workflow proposed in this dissertation in which the fourth
step concerning the metric quality assessment is highlighted in red and reported below.

154



Benchmark
Comparison

Metric Cloud to Cloud

Quality Distance

Assessment Comparison

Feature Point
Comparison

Figure 81. A focus on the fourth step of the general workflow proposed in this

dissertation in which the three steps of the metric quality assessment are reported. In

particular the first stage of the analysis concerns the benchmark comparison and it is
highlighted in blue.

First of all, both the point clouds of the Tour Saint Jacques and Les Halles were
compared with the benchmark reported in Chapter 2.

In order to do that, the values of the Residuals, resulted from the report of the
photogrammetric process, were used for the estimation of the Mean and Standard
Deviation. In addition, the Minimum and Maximum values were converted to
centimetres with the calculation of the Ground Sample Distance (GSD), considering
for the transformation the point closest to the camera.

The results are set out in Table 10 for the Tour Saint Jacques, in which a distance
of 38 m was considered. Consequently the reference GSD for the tilting benchmark is
3.56 [em/px] as shown in Table 9, and the GSD for the case of the tower is 5.06
[cm/px], both calculated on the point closest to the camera. Moreover, the graph in
Figure 83 analyses the trend of the data between the benchmark and the Tour Saint
Jacques case study.

Figure 82. Frames extracted from the video sequences 2 of the benchmark of the
left wing of the courtyard of the Valentino Castle shot with tilting camera motion at a
distance of 38 m, compared with the frame extracted from the video “Etudes sur Paris”.
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Table 9. Values of the benchmark, expressed in pixel and in centimetre, of the
Mean, Standard Deviation, Minimum and Maximum of the Residuals for each
photogrammetric processing, according to the corresponding tilting camera motion
case. The Tilting2 case, chosen as a reference in this processing concerning the Tour
Saint Jacques for the comparison with the results of the frame extracted from the video
“Etudes sur Paris”, is highlighted in red.

Tilting - Benchmark vs Tour Saint Jacques Case Study

& = Benchmark
\ —— Case Study
EJ 'é \\.
= / \
=) 4 Al |
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e /
g / \
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s //// \\
0 ; ; ; _
1 0.2 0.3 0.4 0.5 0.6

Residuals [px]

Figure 83. Comparison of Normal Distribution of the Residual value between
benchmark tilting2 case and case study of the Tour Saint Jacques.

Standard Min Max . Standard Min Max
Camera Mean  poviation Residual Residual DiStance GSD Mean  poviation Residual Residual
motion bl px) [px] [px] [m] [em/px] [em] [em] [em]  [em]
Tiltingl 0.4 0.1 0.1 0.6 43.0 4.0 1.5 0.5 0.5 2.3
| Tilting2 0.5 0.2 0.1 0.7 38.0 3.6 1.7 0.6 0.4 2.5
Tilting3 0.5 0.1 0.1 0.7 33.0 3.1 1.4 0.4 0.4 2.0
Tiltingd 0.5 0.1 0.1 0.7 28.0 2.6 1.3 0.4 0.3 1.8
TiltingS 0.5 0.1 0.1 0.9 18.0 1.7 0.9 0.2 0.2 1.5
Tilting6 0.5 0.1 0.1 0.7 10.0 0.9 0.5 0.1 0.1 0.7
Tilting7 0.6 0.1 0.2 0.7 5.0 0.5 0.3 0.1 0.1 0.3
Table 10. Values, expressed in pixel and in centimetre, of the Mean, Standard
Deviation, Minimum and Maximum of the Residuals of the results of the
photogrammetric processing of the frame extracted from the video “Etudes sur Paris”,
compared with the Tilting2 case of the benchmark.
Case Mean mgﬁ'&i ll\l/lel:idual ll\l/leas)i‘dual Distance | GSD | Mean mgﬁ'&i ll\l/lel:idual lhllleas)i‘dual
[px]  [px] [px] [px] [m] [ecm/px] [em]  [cm] [cm] [cm]
Benchmark 0.5 0.2 0.1 0.7 38.0 3.6 1.7 0.6 0.4 2.5
Case study 0.2 0.1 0.1 0.4 38.0 5.1 1.2 0.3 0.5 1.8
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The graph shows that the curves in both the case study and the benchmark follow
the Gaussian distribution. What it is noted from Table 10 is that was not find a
significant difference in terms of Residuals values when comparing the two results.
However, some little disparities are present. A possible explanation for this might be
the approximation about the focal length of the camera used to shoot the film footage
and the taking distance that could generate the observed discrepancies. For this reason,
a margin of error has to be considered in this evaluation.

The same evaluation was performed for the case of Les Halles, as summarised in
Table 12. A distance of 45 m was considered, and consequently the GSD for trucking
benchmark is 4.22 [em/px], and the GSD calculated for Les Halles is 9.14 [cm/px],
both calculated on the point closest to the camera.

Figure 84. Frames extracted from the video sequences 3 of the benchmark of the
facade of the Valentino Castle shot with trucking camera motion at a distance of 45 m,
compared with the frame extracted from the video “La Destruction des Halles de
Paris™.

Table 11. Values of the benchmark, expressed in pixel and in centimetre, of the
Mean, Standard Deviation, Minimum and Maximum of the Residuals for each
photogrammetric processing, according to the corresponding trucking camera motion
case. The Tilting3 case, chosen as a reference in this processing concerning Les Halles
for the comparison with the results of the frame extracted from the video “La
Destruction des Halles de Paris™, is highlighted in red.

Camera Mean Standard Min Max Distance GSD Mean Standard Min Max
motion Deviation Residual Residual Deviation Residual Residual
[px]  [px] [px] [px] [m] [em/px] [em]  [em] [em] [em]
Truckingl 0.6 0.1 0.3 0.9 85.0 8.0 5.0 0.9 2.3 7.5
Trucking2 0.7 0.1 0.2 0.8 65.0 6.1 3.9 0.5 1.4 4.7
Trucking3 07 0.1 0.3 0.8 45.0 4.2 29 04 1.2 34
Truckingd .7 0.1 0.2 1.1 25.0 2.3 1.6 0.3 0.6 2.6
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Table 12. Values, expressed in pixel and in centimetre, of the Mean, Standard
Deviation, Minimum and Maximum of the Residuals of the results of the
photogrammetric processing of the frame extracted from the video “La Destruction des
Halles de Paris”, compared with the Trucking3 case of the benchmark.

Case Mean ]S)t:vl;:?il(;i 1I\{/[e::idual 1I\{/[eas};{dual Distance [ GSD Mean ]S)t:vl;:?il(;i 1I\{/[e::idual
[px]  [px] [px] [px] [m] [em/px] [em]  [em] [em]

Benchmark 0.7 0.1 0.3 0.8 45.0 4.2 2.9 0.4 1.2

Case study 0.5 0.1 0.2 0.8 45.0 9.1 4.6 0.9 1.6

Trucking - Benchmark vs Les Halles Case Study

Max
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Figure 85. Comparison of Normal Distribution of the Residual value between
benchmark trucking3 case and case study of Les Halles.

Even in this case, both the curves of the benchmark and the case study follows the
Gaussian distribution. The observed differences in terms of Residuals values between
the pavilion and the benchmark are not significant, even if the case study presents
values a little bit greater than the benchmark.

Anyway, the comparison of the two results reveals a high-quality precision of the
photogrammetric reconstruction, in both cases almost at the level of the benchmark.

Metric quality assessment — Cloud to mesh distance comparison

Once analysed the precision of the 3D model obtained from the photogrammetric
process, it is useful to evaluate the accuracy of them. In order to do that, the next step
of the metric quality evaluation was concerned with the scale and the analysis of the
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point cloud obtained from the photogrammetric process. This was performed in two
different ways: the cloud to cloud (mesh in this case) distance comparison and the
feature point comparison (Figure 85).

Benchmark
Comparison

ME“_IE Cloud to Cloud
Quality Distance

Assessment Comparison

Feature Point
Comparison

Figure 86. A focus on the fourth step of the general workflow proposed in this
dissertation in which the three steps of the metric quality assessment are reported. In
particular the second stage of the analysis concerns the cloud to cloud (mesh) distance
comparison and it is highlighted in blue.

In the case of the Tour Saint Jacques, the point cloud obtained by the
photogrammetric process, although of low density, was compared with the 3D model
of Iconem. The comparison (Figure 87) showed that the computed distances between
the model mesh and the resulting point cloud were less than 0.5 pixels.

(b)

Figure 87. Cloud to mesh distance comparison between the point cloud obtained
from the photogrammetric processing of the video “Etudes sur Paris” and the 3D model
obtained from the 3D survey by Iconem. (a) View of the entire Tour Saint Jacques. (b)
A detail of the comparison.
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Metric quality assessment — Feature point comparison

The specific Feature Points corresponding to points of interest in project drawing
manually selected during the photogrammetric process, were used in the final part of

the metric evaluation (see Chapter 2).
Benchmark
Comparison

Metric Cloud to Cloud

Quality Distance

Assessment Comparison

Feature Point
Comparison

Figure 88. A focus on the fourth step of the general workflow proposed in this
dissertation in which the three steps of the metric quality assessment are reported. In
particular the third stage of the analysis concerns the Feature Point comparison and it
is highlighted in blue.

For the case of the tower this was useful to compare the survey from the architect
Gabriel Davioud’s drawing before the Haussmann transformation (Figure 89), with the
3D model of the recent survey from Iconem, chosen as reference, and the point cloud
obtained from the photogrammetric process of the film footage. The results of the
comparison are reported in Table 13.

Table 13. Residuals values resulted from the comparison of the distance between
the 3D model by Iconem, the point cloud resulted from the photogrammetric processing
of the video “Etudes sur Paris” and the drawing by the architect Gabriel Davioud.

Distances Iconem Point Cloud [m] Drawing [m]
[m] Values Residuals Values Residuals
AB 1.60 1.88 -0.28
BC 7.28 7.53 -0.25
DE 6.00 7.62 -1.62
FG 6.50 6.40 0.10 9.48 -2.98
HI 15.76 15.50 0.36 19.68 -3.92
IL 16.70 16.70 0.10 27.50 -10.8
MN 10.00 10.0 0.00 17.17 -7.17
OP 0.70 0.70 0.00 1.50 -0.8
QR 7.00 7.00 0.00 11.46 -4.46
ST 1.50 1.40 0.10 2.00 -0.5
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Figure 89. Distances extracted from the drawing by the architect Gabriel Davioud
of the Tour Saint Jacques.

As already noted in the cloud to mesh comparison, the differences between the two
point clouds are not significant, also in terms of Residuals, as shown in Table 13,
instead of the survey by the architect Gabriel Daviuod that presents high differences
with the real measures. It has to be considered that the drawing was made before the
transformation and by hand, therefore the differences especially in the vertical
measures are according to the expectations.
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The method of Feature Point extraction was particularly useful for the case of Les
Halles because the only 3D models available are those of the part of the pavilion that
survived the destruction, a 3D model of the upper part of the pavilion made by the
Commune de Nogent-sur-Marne (Figure 92) and a photogrammetric point cloud of the
lower part of the pavilion moved in Yokohama, Japan, made on site (Figure 91b). These
models refer to the pavilion n°8 and certainly during the reconstruction some
differences from the original building occurred. Moreover, the metric description of
some parts of the pavilions was reported in Lemoine, 1980. Nevertheless, they could
be used, together with the architect Victor Baltard’s project drawings (Figure 90) to
compare some distances extracted from the obtained point cloud. Thanks to the
presence of these feature points in the final point clouds (Figure 91a), it was possible
to scale the obtained photogrammetric model using the distance AG because this part
of the pavilion is well visible in the point cloud. These points are then used to extract
some distances from all the sources available and the results are reported in Table 14
and 15.

Figure 90. Distances extracted from the drawing of Fagade of Les Halles, Victor
Baltard, Monographie des Halles centrales, 1863, Archives de Paris.

(a) (b)

Figure 91. Point clouds of the Pavilion No. 8: (a) the point cloud has resulted from
the photogrammetric processing of the film “La Destruction des Halles de Paris™. (b)
the point cloud has resulted from a photogrammetric survey of the pavilion’s cave in
Yokohama (Japan).
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Figure 92. 3D model of the upper part of the Pavilion No. 8 made by the Commune
de Nogent-sur-Marne, 2019.

Table 14. Distances values measured in project drawing of the architect Victor
Baltard, the 3D model by the Commune de Nogent-sur-Marne, the description in
Lemoine, 1980 and the point cloud resulted from the photogrammetric process of the
video “La Destruction des Halles de Paris”.

Distance Project Drawings 3D model Description in Lemoine, 1980 Point Cloud
[m] [m] [m] [m]
AB 8.50 9.00
BC 4.25
AC 11.55 13.60 12.50
CD 4.60 4.59
CF 9.50 9.58
DE 15.50 15.79
FG 9.50 9.58
AG 18.54 18.87
BH 5.00 6.00
Al 47.50 55.00
AL 47.66 63.37
MN 27.76 30.00
OP 3.05 4.60
NQ 3.80 4.00
AB+OP+NQ 15.35 17.60 18.00
QR 28.43 32.00
MQ 26.54 29.93
ST 15.80 18.00
TU 1.70 1.20
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Table 15. Distances values measured in project drawing of the architect Victor
Baltard, the description in Lemoine, 1980 and the point cloud resulted from the
photogrammetric survey of the pavilion’s cave in Yokohama (Japan).

Distance Project Drawings Description in Lemoine, 1980 Point Cloud
[m] [m] [m]
AB 4.00 4.00
BC 4.50 5.10
CD 1.15 1.15
AE 0.55 0.44 0.47
AF 10.00 12.00 12.00

Despite certain limitations due to the lack of information on the technical features
of the camera and the film used to shoot the videos and the unavailability of a precise
3D model for the case study of Les Halles, since it no longer exists, these findings are
very encouraging for the metric certification of the models obtained.

With this last evaluation, the implementation of the entire worktflow on historical
film footage is completed.

4.3 Validation of the photogrammetric method

In order to validate the workflow proposed in this dissertation, further case studies
were chosen. The validation was implemented only on the photogrammetric method to
show its potentialities. For this reason, it was applied to different situation and asset of
the heritage. First, it was applied to historical photographs with the aim to reconstruct
and compare heritage that has been restored. Then the same method was applied to
historical videos reconstructing ephemeral architecture such as the pavilions of
International Exposition.

Object

& ure Matching
Detection an etric

using Al e n Assessment

Figure 93. The general workflow proposed in this dissertation: for the two case
studies analysed the validation was performed only in the last two steps: the StM
pipeline and the Metric quality assessment.
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4.3.1 Photogrammetric reconstruction from historical photographs of
restored Cultural Heritage

First of all, the method was tested on the case of restored Cultural Heritage,
selecting two different scenarios. This research was conducted during the period abroad
at the Tokyo Institute of Technology and in collaboration with Prof. Nasu, Prof.
Higuchi and Prof. Sugawara, that provided the material for the analysis of two case
studies.

The first case study was to examine the historical and architectural transformations
of the church of Karanlik in G6reme National Park (Cappadocia, Turkey) by comparing
the reconstruction from historical archive photographs (by G. de Jerphanion, 1925-42)
and the present state of the church with special attention to the wall paintings. The
second was to measure the difference between the building of the former Matsuno-Yu
(Public Bath) in "Naka-machi Komise Street" (Japan) before and after the restoration
by comparing the point cloud obtained from images from local archives (2013) and a
recent survey of the building (2018).

Churches in Goreme National Park and the Rock Sites of Cappadocia
— Restored wall paintings

“The Goreme National Park and the Rock Sites of Cappadocia, registered
UNESCQO’s World Heritage list in 19835, is located in Nevsehir Province, 280 km
southeast of Ankara. It is in this spectacular landscape, wherein rock-cut churches
provide unique evidence of Byzantine art from the post-iconoclastic period, especially
during the 9th and 10th centuries (criteria for selection (i)).

Figure 94. Historical archives photographs from G. de Jerphanion’s work (1925-
42) and images of the actual state of the paintings in Karanlik Kilise (11th century).

The valley marks the centre of Cappadocia and has more than 100 churches from
the end of the 9th century to the 11th century. It was only after the publication of G. de
Jerphanion’s work (1925-42) that the importance of the Cappadocian Churches was
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put into evidence. The French Jesuit professor had explored the eastern part of
Cappadocia and left great documentation of the rock-cut churches with many drawings
and photographs. But the condition of the rock-cut churches is not the same as
Jerphanion’s period. The spectacular landscape of Cappadocia depends on the fact that
most of the rock here is tuff, which is easily eroded. In other words, the rocks from
which the churches were hollowed out are gradually disappearing. And extended
abandonment of the churches also brought along artificial damages, such as malicious
scars and graffiti. In addition, the rapidly increasing number of tourists harms the
environment of the preservation of the monuments” (Higuchi et al., 2019). One of the
famous masterpieces of this area is the Karanlik Kilise (11th century) and it was chosen
as a case study (Figure 94).

Nakamachi Komise Street in Japan — Restored architecture

Kuroishi is a city which locates on the northern edge of Honshu, Japan's largest
main island. The city has a traditional landscape from the Japanese feudal period (Edo
period, 17th century). Here, every traditional house has a wooden arcade, Komise, in
front of the building, and the arcades continue uninterrupted (Shimazu and Nasu, 2019;
Kuroishi, 2005). Komise protects pedestrians from snow, rain and sunlight in summer.
Due to its characteristic urban landscape, the central part of the city, Naka-machi, was
designated as an important protected area for traditional groups of buildings in 2005.
Because Naka-machi Street is so attractive, it is also called one of the 100 largest streets
in Japan. The case study analysed is a building along this street with Komise, the former
Matsuno-Yu building. It was a traditional Japanese public bath, but it was closed in
1993. After Naka-machi became an important conservation area for traditional building
groups, the building became a community centre in 2015 with the support of the
residents. For the processing, pictures before restoration were taken by locals in 2013
(Figure 95) and pictures after restoration were taken by prof. Nasu and his students
during their on-site survey in 2018 (Figure 96).

Figure 95. Local archive photographs of the Former Matsuno-Yu building before
the restoration in 2013.

166



Figure 96. Images of the photographic on-site survey of the Former Matsuno-Yu
building after the restoration in 2013, prof. Nasu, 2018.

Results of the application of the method to the two case studies

The results of the last two steps of the proposed workflow implementation (Figure
96) for the two case studies are then discussed.
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Figure 97. A focus on the third step of the general workflow proposed in this
dissertation in which the three steps of the photogrammetric pipeline are reported.

With the standard “Feature detection and extraction” step some keypoints were
recognized, but, as shown in Figure 98, some important radiometric corners in the
photograph, which also appear in other images, are missing.

With the “Feature point selection” step, introduced in this research, it is possible
to manually detect the feature point of interest. The coordinates of the searched point
were measured with  the WebPlotDigitizer  tool (Figure 99)
(https://automeris.io/WebPlotDigitizer, October 2019) and inserted in the software
with the two methods previously described in Chapter 2.

This manual selection was performed for all the feature points chosen in the archive
images for both case studies (as shown in Figure 100 and 101). Then, they were used
in the matching process and appear in the final point cloud.

167



Figure 98. Keypoints automatically extracted from the software with the standard
“Feature detection and extraction” step: some important radiometric corners in the
photograph are missing.

[173.40, 1000.20]

Figure 99. Image coordinates of feature point measured with WebPlotDigitizer tool
and added in COLMAP with the “Feature point selection” step.
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Figure 101. Feature points manually chosen for the Former Matsuno-Yu building.

Thanks to the presence of these points, it was possible to perform the distance
comparison in CloudCompare (Figure 102) between the sparse point clouds obtained
from the photogrammetric processing of archival photographs and the point clouds
obtained from the photogrammetric recent survey for both case studies.
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Figure 102. A focus on the fourth step of the general workflow proposed in this
dissertation in which the three steps of the metric quality assessment are reported.

Figure 103. Cloud to cloud distance for the Karanlik church in which the point
cloud obtained from the photogrammetric reconstruction from historical images is
compared with the point cloud obtained from a photogrammetric recent survey of the
church.

Figure 104. Cloud to cloud distance for the Former Matsuno-Yu building in which
the point cloud obtained from the photogrammetric reconstruction from archival
images is compared with the point cloud obtained from a photogrammetric recent
survey of the building.

Figure 103 shows that the distance between the two point clouds is less than 0.1m
for the first case study. For the second case study, the distance between the two point
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clouds (Figure 104) presents a greater value, until 1 m. It is a demonstration that the
restoration works widely modified the shape of the building.

For this reason, it was chosen to estimate the Residual values only for the first case
study. In the following Table 16 the results of the feature point comparison are
reported.

As shown, the Mean of the Residuals estimated on the three coordinates is summed
it up:

* Mean AX = - 0,04 m; Standard Deviation = 0,06 m
* Mean AY = 0,04 m; Standard Deviation = 0,08 m
* Mean AZ =0,03 m; Standard Deviation = 0,04 m.

Table 16. Residuals values (AX , AY and AZ) of the feature points measured on
the point cloud obtained from the processing of historical photographs (called Xoid, Yold
and Zo1d) and the point cloud of the recent photogrammetric survey (called Xnew, Ynew,
Znew)-

# Xnew Yhew ZLnew Xold Youd Zou AX AY
[m] [m] [m] [m] [m] [m] [m] [m]

1 0.46 1.77 -3.51 0.54 1.64 -3.60 -0.08 0.13
2 0.55 1.16 -3.61 0.61 1.04 -3.66 -0.06 0.13
3 1.17 0.80 -3.73 1.27 0.65 -3.80 -0.10 0.16
4 2.15 0.28 -3.76 2.20 0.39 -3.77 -0.05 -0.11
5 1.47 0.59 -3.69 1.50 0.59 -3.69 -0.03 0.00
6 1.33 0.38 -3.72 1.40 0.27 -3.78 -0.07 0.11

7 1.08 0.86 -3.64 1.10 0.83 -3.64 -0.02 0.04
8 1.29 1.45 -3.58 1.30 1.38 -3.55 -0.01 0.07
9 1.13 0.18 -3.69 1.19 0.20 371 -0.06 -0.02
10 1.49 1.02 -3.66 1.35 0.90 -3.64 0.14 0.12
11 0.82 0.09 -3.68 0.91 0.11 -3.74 -0.09 -0.02
12 0.53 0.65 -3.66 0.64 0.59 -3.74 -0.10 0.06
13 1.63 0.22 -3.73 1.60 0.25 -3.74 0.03 -0.02
14 1.97 0.06 -3.78 2.00 0.17 -3.80 -0.03 -0.11

4.3.2 Photogrammetric reconstruction from historical film footage of
ephemeral architecture

Finally, the method was tested on the case of lost Cultural Heritage, selecting two
different case studies in the scenario of ephemeral architecture of the International
Exposition taken in Turin at the beginning of ‘900. Material was provided thanks to a

AZ
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collaboration with the I-Media-Cities platform in which the CINECA and the Cinema
Museum of Turin are partners of the project (see Chapter 2).

The Hungarian pavilion at Turin International Exposition of 1911

The first case study chosen to validate the methodology proposed is the
photogrammetric reconstruction of the temporary pavilion of Hungary (Figure 105).
The pavilion was built for the Turin International Exposition of 1911 that took place in
the park of Valentino.

In the context of baroque pavilions, usual in a baroque town as Turin, Hungary
preferred to choose a national way to design its pavilion and got a great success. The
amazing Hungarian pavilion designed by Emil Tory and Moric Pogany in the official
guide of the exhibition was the most important attraction. It was clear the goal of this
special kind of architecture and decoration: to get a style both modern and national,
melting Secession and popular decorative patterns. It was realized in wood, one of the
most important Hungarian material, and presented geometrical lines and squared
volumes (Cornaglia, 2001).

Figure 105. Pictures and postcards of the Hungarian pavilion in the Turin
International Exposition of 1911.

The Mines and Ceramics pavilion at Turin International Exposition
of 1928

The second case study is the Exposition of 1928 (May 1st - November 11th) held
in Turin, in the park of Valentino, within which were built temporary pavilions of
which now there are few traces.

The exhibition was part of a series of civil, military and economic events organised
on the occasion of the 10th anniversary of the end of the First World War and the fourth
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centenary of the birth of king Emanuele Filiberto. In designing the pavilions, the
architects had the opportunity to experiment and offer to the public new architectural
languages in real buildings even if temporary.

By combining video, photo and design drawings (Figure 106-108), it was possible
to extract metric information from the “Mines and Ceramics™ pavilion by the architects
G. Pagano-Pogatschnig and P. Perona.

The pavilion consisted of a two-level unit, high approximatively 16 m, and two
parallel swings, of 5.50 m. It presents the characteristics of rigidly modern architecture:
a triumph of the straight line, symmetrical harmony, equilibrium of the closed masses,
rectangular windows aligned, corner doors, slight pillars.
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Figure 106. Planimetry of Turin Exposition 1928 — In red the “Mines and
Ceramics” pavilion, Library of Politecnico di Torino "Roberto Gabetti", 1928.

Figure 107. Project drawing of “Mines and Ceramics” pavilion at Turin Exposition
1928. Plan, Section and architectural details, Pagano et al., 1930.
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Figure 108. The “Mines and Ceramics” pavilion at Turin Exposition 1928, Pagano
etal., 1930.

Photogrammetric reconstruction of the pavilions and metric quality
assessment

As an ephemeral architecture, the pavilions were demolished, but, luckily a lot of
documents such as project drawings photographs, postcards, watercolours, books and
journals saved its historical memory. The Hungarian pavilion appeared in the historical
film footage “Nei cantieri dell’esposizione” shot in 1911 (Figure 109), now stored in
the Cinema Museum of Turin and available on I-Media-Cities platform. The film was
shot with the Left/Right Motion or Trucking type of camera motion and presents the
following characteristics in Table 17.

Table 17. Technical feature of the film footage “Nei cantieri dell’esposizione™.

Colour Black & White
Gauge 35 mm (24x36 mm)
Focal length 25 mm

Digital format Resolution 720x540 pixels
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Figure 109. Frame from the film footage: “Nei cantieri dell’esposizione”, Museo
del Cinema di Torino and I-media-cities, 1911.

The sources that have preserved traces of the International Exposition of 1928 are
the Dezzutti and Melis collections of the historical archive of architecture library of
Politecnico di Torino, and the magazine "Domus" (No. 9, September 1928) from which
it was possible to recover descriptive texts of the pavilions, measurements, surveys,
photos and technical drawings of the projects.

In addition, the Cinema Museum of Turin, in collaboration with the I-Media-Cities
platform, preserves the film of the movie "Torino 1928" (Luis Bogino, end 1920s -
early 1930s), in which the pavilions appear. The film was shot with a Cine Kodak
videocamera and has the following characteristics in Table 18.

Table 18. Technical feature of the film footage "Torino 1928".

Colour Black & White
Gauge 16 mm
Focal length 25 mm
Digital format Resolution 444x360 pixels
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Figure 110. A selection of the framés extracted from the video “Torino 1928 in
which the pavilion of “Mines and Ceramics™ appeared, Museo del Cinema di Torino
and I-media-cities, 1928.

Frames from the footage were extracted and processed implementing the
photogrammetric pipeline (Figure 111). The results are shown in Figure 112 and 113.
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Figure 111. A focus on the third step of the general workflow proposed in this
dissertation in which the three steps of the photogrammetric pipeline are reported.
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Figure 112. Feature detection and extraction, Feature matching and geometric
verification, Point cloud resulted from structure and motion reconstruction of the
Hungarian pavilion from the film footage “Nei cantieri dell’esposizione™.

Figure 113. Feature detection and extraction, Feature matching and geometric
verification, Point cloud resulted from structure and motion reconstruction of “Mines
and Ceramics” pavilion from the film footage “Torino 1928”.

For the precision analysis, the same methodology previously explained was used,
and the values of the Final Cost from the bundle adjustment report of the process were
exanimated and compared with a benchmark of the maximum metric quality reachable
by implementing photogrammetry on videos.

For the Hungarian pavilion the benchmark’s values were chosen according to the
Left/Right Motion or Trucking camera motion and a taking distance of 85 m.
Consequently the GSD for trucking benchmark is 7.97 [cm/px], and the GSD
calculated for the pavilion is 16.52 [cm/px], both calculated on the point closest to the
camera.

While for the “Mines and Ceramics™ pavilion the benchmark’s values were chosen
according to the Left/Right Motion or Trucking camera motion and a taking distance
of 25 m. Consequently the GSD for trucking benchmark is 2.34 [cm/px], and the GSD
calculated for the pavilion is 3.60 [cm/px], both calculated on the point closest to the
camera.

All values of Final Cost were used for the estimation of the Mean and the Standard
Deviation and reported in the following graphs to analyse the trend of the data and the
comparison with the benchmark.
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Figure 114. Frames extracted from the video sequences 1 of the benchmark of
the facade of the courtyard of the Valentino Castle shot with truckingl camera motion
at a distance of 38 m, compared with the frame extracted from the video “Nei cantieri
dell’esposizione™.

Table 19. Values of the benchmark, expressed in pixel and in centimetre, of the
Mean, Standard Deviation, Minimum and Maximum of the Residuals for each
photogrammetric processing, according to the corresponding trucking camera motion
case. The Truckingl case, chosen as reference in this processing concerning the
Hungarian pavilion for the comparison with the results of the frame extracted from the
video “Nei cantieri dell’esposizione™, is highlighted in red.

Camera Mean Standard Min Max Distance GSD Mean Standard Min Max
motion Deviation Residual Residual Deviation Residual Residual
[px]  [px] [px] [px] [m] [em/px] [em]  [cm] [cm] [cm]
|_Truckmg1 0.6 0.1 0.3 0.9 85.0 8.0 5.0 0.9 2.3 7.5
Trucking2 0.7 0.1 0.2 0.8 65.0 6.1 3.9 0.5 1.4 4.7
Trucking3 0.7 0.1 0.3 0.8 45.0 42 2.9 0.4 1.2 3.4
Truckingd 0.7 0.1 0.2 1.1 25.0 23 1.6 0.3 0.6 2.6

Table 20. Values, expressed in pixel and in centimetre, of the Mean, Standard
Deviation, Minimum and Maximum of the Residuals of the results of the
photogrammetric processing of the frame extracted from the video “Nei cantieri
dell’esposizione”, compared with the Truckingl case of the benchmark.

Case Mean ]SZ)t:vllig:lil(;(lll ll\lllc:;lidual g[eas}:dual Distance | GSD Mean ls)t:\f;glz:lil(:lil g[(::idual g[eas}:dual
[px]  [px] [px] [px] [m] [em/px] [em]  [em] [em] [em]

Benchmark 0.6 0.1 0.3 0.9 85.0 8.0 5.0 0.9 23 7.5

Case study 0.4 0.1 02 0.5 85.0 16.5 5.8 1.2 3.1 8.3
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Trucking - Benchmark vs Hungarian Pavilion Case Study
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Figure 115. Comparison of Normal Distribution of the Residual value between
benchmark tilting2 case and case study of the Hungarian pavilion.

Figure 116. Frames extracted from the video sequences 4 of the benchmark of
the facade of the courtyard of the Valentino Castle shot with trucking4 camera motion
at a distance of 38 m, compared with the frame extracted from the video “Torino 1928,

Table 21. Values of the benchmark, expressed in pixel and in centimetre, of the
Mean, Standard Deviation, Minimum and Maximum of the Residuals for each
photogrammetric processing, according to the corresponding trucking camera motion
case. The Trucking4 case, chosen as reference in this processing concerning the “Mines
and Ceramics” pavilion for the comparison with the results of the frame extracted from
the video “Torino 19287, is highlighted in red.

Camera Mean Standard Min Max Distance GSD Mean Standard Min Max

motion Deviation Residual Residual Deviation Residual Residual
[px]  [px] [px] [px] [m] [em/px] [em]  [em] [em] [em]

Truckingl 0.6 0.1 0.3 0.9 85.0 8.0 5.0 0.9 23 7.5

Trucking2 .7 0.1 0.2 0.8 65.0 6.1 3.9 0.5 1.4 4.7

Trucking3 .7 0.1 0.3 0.8 45.0 42 2.9 0.4 1.2 3.4

| Truckingd .7 0.1 0.2 1.1 25.0 2.3 1.6 0.3 0.6 2.6 |

179



Table 22. Values, expressed in pixel and in centimetre, of the Mean, Standard
Deviation, Minimum and Maximum of the Residuals of the results of the
photogrammetric processing of the frame extracted from the video “Torino 1928,
compared with the Trucking4 case of the benchmark.

Case Mean ]S)t:vl;:?il(;i 1I\{/[e::idual 1I\{/[eas};{dual Distance [ GSD Mean ]S)t:vl;:?il(;i 1I\{/[e::idual ll\(/leas)i(dual
[px]  [px] [px] [px] [m] [em/px] [em]  [em] [em] [em]

Benchmark 0.7 0.1 0.2 1.1 25.0 2.3 1.6 0.3 0.6 2.6

Case study 0.4 0.1 0,02 2.9 25.0 3.6 1.5 0.5 0.1 10.5
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Figure 117. Comparison of Normal Distribution of the Residual value between
benchmark tilting2 case and case study of the “Mines and Ceramics” pavilion.

To scale the model od the “Mines and Ceramics” pavilion only some measures
from design drawings were available. They were chosen and inserted in the point
clouds, considering the limitations due to the fact that probably after the constructions
some variations occurred. However, the advantage is that the projects give fundamental
and reliable information about the dimensions of the building, useful for the creation
of'a 3D model and following studies.
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Figure 118. Measure extracted from the project drawing of the “Mines and
Ceramics” pavilion. The distance AB was used to scale the model because present in
the metric description of the pavilion.

Table 23. Residuals values of distance measured on the project drawing and the
point cloud of the “Mines and Ceramics” pavilion obtained from the photogrammetric
process of video frame.

Distance Project drawing Point Cloud Residuals
[m] [m] [m]
AB 5.54 5.47 0.07
DE 1.00 0.98 0.02
EF 2.00 1.88 0.12
GH 20.00 19.36 0.64
BC 10.60 9.75 0.85

The obtained differences show a good quality of the survey also by considering
that the reference distances are the one extracted from a design drawing, and it is
acceptable that some of them were not correctly realized on the site. Finally, the results,
within tolerances described just now, could be considered adequate.
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Chapter 5

Conclusions

5.1 Restating the aims of the dissertation

This dissertation has demonstrated the potentialities of historical images for
the metric documentation of Cultural Heritage in the photogrammetric field
combined with Artificial Intelligence. Photogrammetry and Deep Learning were
used in an innovative way to extract metric information of historic buildings from
historical photographs and film footage for their 3D virtual reconstruction.

The study underlines the potentialities of the use of historical images in the
field of historical studies. Libraries, archives and repositories today provide a
large amount of digital data, and as a consequence, problems such as differences
in data quality and organization arise.

By using image collections, an innovative method for analyzing historical
images and expanding the use of photo and video archives is proposed. Through
the analysis of image search strategies for the virtual reconstruction of Cultural
Heritage, a systematic classification of images suitable for this purpose has been
carried out.

Furthermore, a new workflow was proposed to automatically select images
suitable for photogrammetric processing of historical images in order to document
Cultural Heritage with certified metric quality.

With the implementation of open-source Structure-from-Motion algorithms, it
is possible to obtain the 3D virtual reconstruction of the monuments and their
metric information.

In the first phase of the workflow, in order to make automatic the search for a
specific monument to be documented, an algorithm has been developed for the
detection of architectural heritage in historical images through Deep Learning.
This algorithm made it possible to identify the frames in which the monument
appeared without having to manually examine the various videos in the archive,
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thus reducing time and increasing efficiency, and to process them by
photogrammetry.

The use of object detection has proven to be a good solution for the automatic
recognition of architectural heritage in historical videos, especially because it
allows the extraction of the coordinates of the bounding boxes that locate the
monument within the frame. The experiment focused on reducing the human
effort to detect the wanted object and increasing the efficiency of the operator's
work in the archive. To achieve this goal, Deep Learning algorithms were
identified as potential solutions to reduce the time needed to search for
monuments in the video records of historical archives.

The second step was the automatic identification of camera movement in
order to select images suitable for photogrammetry. Following the evolution of
bounding boxes detected by the Neural Networks, the algorithm identifies camera
movements in significant categories. In particular, this strategy is used to detect
tilting and trucking camera motions, which are suitable for photogrammetry and
are very common in historical videos. Thanks to its structure, the algorithm can
work even when the track is very short. The video frames are first grouped in
frame clusters according to image similarity criteria. Then, for each frame cluster,
the camera motion category is evaluated. This is particularly useful in
photogrammetry, where each group of frames can be used separately to increase
the positive completion of the procedure. In fact, photogrammetric reconstruction
is bound to fail when images from different scenes or videos are used in the same
process. The proposed algorithm includes some parameters that, if properly
selected, can reach an overall accuracy of up to 80% in identifying camera
movements. This accuracy is obtained by minimizing the misinterpretation of
camera oscillations, due to the poor quality of the camera used to take historical
film footage and the absence of a tripod, and by correctly setting the image
similarity criterion used to group images.

The third step is to process the image extracted from the film using open-
source SfM algorithms. A method is experimented with to manually extract
feature points in photogrammetric processing of historical images in order to use
them in the matching phase of the reconstruction and to ensure their presence in
the resulting point cloud, even if poor. This allowed the metric evaluation of the
quality of the results during the last phase by comparing point clouds of different
density and resolution, which certifies the quality of the 3D reconstruction.

5.2 Originality and findings of the research

The originality of the proposed workflow lies in the improvement of the
photogrammetric pipeline by using Deep Learning algorithms. In fact, the
recognition of the monument in the video was inserted as the first step of the
photogrammetric reconstruction.

The research also showed how Neural Networks can be effectively trained for
historical monument search. In particular, firstly the algorithm was tested on two
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different architectures. The first was the Tour Saint Jacques for the tuning of the
networks in the best situation of a heritage that still exists but has undergone many
changes. Therefore, a large amount of material was available to test the algorithm
and obtain a metric comparison and test the potential of the approach. The second
case study was Les Halles selected to test the algorithms on a real case of a
destroyed architecture. The performance of the network was evaluated using
different datasets, depending on the different conditions found in the historical
data. According to the appropriate metrics of the cases in question, the quality of
the results is encouraging, both in terms of the human time saved and the results
obtained.

The experiments were conducted using High-Performance Computing (HPC)
clusters IBM Power9 with NVIDIA v100 by the research centre CINECA. Thanks
to the use of this hardware, the results showed that the reduction of the time
required to process an image during the training stage is about 95% (0.3 s/image
VS 9 s/image of a mid-range laptop).

The metric quality of the 3D models obtained from the photogrammetric
processing of historical images was also evaluated against a new benchmark
creating with the purpose of establishing the maximum metric quality reached
with these kinds of reconstruction.

The results of this study are very encouraging. Indeed, working with historical
images has inherent difficulties such as the lack of important information about
the camera, the quality of the film used to shoot them, and the lack of an accurate
metric reference when the monument is lost. The results presented in this thesis
show that the presented automatic workflow can be effective even under these
critical conditions.

The method has been validated on other case studies chosen in order to verify
it, and in most cases the 3D model obtained from historical images provided
results of acceptable accuracy, even in cases where the object reconstructed from
historical photographs no longer exists.

This evaluation is interesting because shows how to harness historical
material available in case of Cultural Heritage destroyed. This compared analysis
gives an idea of the reliability of the 3D reconstruction from historical images,
considering all the limitations intrinsically present in the primary data.

5.3 Applications and further research

The experimental work presented in this thesis is an investigation into the
level of quality of results it is possible to reach when processing historical images
from archives.
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There are several areas where this study makes an original contribution in the
field of Cultural Heritage. Although the analysis of the case studies was treated
from a technical point of view, the findings of this thesis have significant
implications for the understanding of historical considerations.

Besides the creation of a new tool for searching for historical material in
archives thanks to the automation of a manual task and the improvement of the
photogrammetric process by selecting the right material for the application, the
research has a great impact on the protection and valorisation of Cultural Heritage
from a different point of views.

The virtual reconstruction of transformed or lost Cultural Heritage allows
historians and architects to explore how it was in the past and to understand its
development and the original state of buildings and urban environments.

In order to enhance the archive and innovatively exploit archival resources,
the use of Deep Learning actually strengthened known methods of documenting
lost heritage. It gave an impact not only on improving the existing images archive
platform creating a more efficient and accurate system for the users of digital
resources (scholars, educators, student, museum etc.) but also offered some
important insights into the management and organization of historical information
and the protection of the past.

This information is extremely useful to make decisions and interventions on
the heritage, for management, restorations works and structural analysis.

Despite its limitations, the study certainly contributes to greater awareness in
the valorisation of Cultural Heritage data and should be repeated using different
datasets and imaging conditions.

The approach described in this work can be applied to different historical
monuments. Further research is needed to evaluate the effectiveness of the
experimental methodology and to extend its application to other case studies,
especially lost heritage. In particular, it would be interesting to apply the
procedure to other destroyed monuments for which 3D reconstruction from
historical videos is the only possible option.

Another interesting future extension of this study could tackle the complexity
of historical data. Further research will expand the discussion on open issues in
historical archives and provide references for possible solutions. The development
of a standard structure for metadata concerning historical images, for example,
will allow the classification and the link of collections across different database
and institutions.

From a technical point of view, there are many aspects which can be further
investigated. In particular, future studies should analyse a complete classification
of existing Neural Networks according to the different applications. Furthermore,
the introduction of other types of Neural Network models is another possible
solution that should be tackled to investigate how the accuracy of recognition can
be modified. The experimentation of an open-source cloud environment for the
training of the networks (such as Kubernetes - Kubernetes.io -, last access
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February 2021) could be implemented in order to use hardware different from the
HPC.

Another important development could be the refinement and improvement of
the algorithm for camera movement, e.g. by developing an automatic
determination of camera movements in the time intervals in which the object was
detected. In principle, this would allow automation of the entire photogrammetric
pipeline and could therefore be a particularly interesting field of research. In
addition, the same methodology could be applied to newer videos and allow
access and recording of information of daily life. For this reason, further research
could evaluate the effectiveness of the experimental methodology, here tested on
the heritage field, in other areas, such as UAVs, structural analysis and computer
vision.

From the end user's point of view, another area of development could be the
creation of digital services in order to simplify the use of Deep Learning for a
potential non-expert user. The development of an intuitive interface that allows
the automation of the most complex steps of the process would be a great help to
improve the usability of the workflow.

Another useful digital service could be the use of the outputs of the 3D
reconstruction for the development of VR and AR apps to improve the
involvement and interest of tourists in the collections in a more engaging way,
also remotely due to the COVID-19 situation.

5.4 Importance of this research for the present

As the work of an archaeologist that recovers and analyses the material traces
left from the culture of the past, this research is a first attempt to bring to light
traces of the memory through the reconstruction of fragments of Cultural Heritage
that appear in historical images. Linking different fragments of photographs or
footage in which a place appears in a specific time interval or different historic
period, could help to reconstruct the memory of heritage throughout history.

Taking advantages of photogrammetry and Artificial Intelligence technologies
allowed the identification and the virtual reconstruction of remaining traces of
heritage monuments and parts of a city that have been lost or changed over time.
However, the potentialities of the method go beyond the simple process of
documenting something real that existed in the past.

The strength of the method lies in creating the information and knowledge
base for the future generation. In fact, the pictures and the videos that are taken
every day simply by walking through a city can be used in the future to
reconstruct the Cultural Heritage.

Finding new ways to re-discovering the past and dealing with the historical
material that will become a memory for the future is the main challenge faced in
this research.
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