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Summary

In this thesis, we deal with theoretical and numerical modelling of semiconductor lasers
targeted at on-chip optical communications. Specifically, we focus on photonic crystal
lasers, where the optical cavity is carved out of a semiconductor slab by strong, pe-
riodic modulation of the slab refractive index. These lasers are promising sources for
optical interconnects, as they aremicroscopic and have low threshold current, as well as
reduced energy cost. We also cover quantum dot (QD) lasers epitaxially grown on sili-
con. In addition to other well-known advantages, QDs offer enhanced tolerance against
threading dislocations (TDs) in the crystalline structure. These dislocations are caused
by the mismatch in the lattice constant and thermal expansion coefficients between the
silicon substrate and III-V semiconductor materials grown above. Therefore, QDs are a
highly attractive active material for on-chip applications. In Chapter 1, we briefly draw
up this overarching research context.

In Chapter 2, we investigate the modal properties of passive photonic crystal cav-
ities. We model a photonic crystal cavity as an effective Fabry-Perot resonator. The
travelling modes are the Bloch modes of the waveguide on which the cavity is based.
By this approach, we derive compact and transparent expressions for the resonance
condition and field distribution, which agree with previous predictions based on fitting
of finite-difference time-domain (FDTD) simulations. By our approach, we also analyze
the scaling of radiation loss with the size of the cavity and offer new insights.

In Chapter 3, we analyze the optical propagation in active photonic crystal waveg-
uides, with a special interest in slow-light effects associated with material gain. In
fact, photonic crystal waveguides may support significant slow-light, meaning that the
group velocity may be much smaller than the vacuum light speed. In this propaga-
tion regime, the modal gain per unit length is enhanced as compared to conventional
waveguides under the same pumping conditions, with possible applications to compact
optical amplifiers and lasers. We view the presence of material gain as a weak perturba-
tion to a reference photonic crystal waveguide with purely real refractive index. Thus,
we expand the field in the basis of the counter-propagating Bloch modes of this refer-
ence waveguide. Owing to the presence of gain, a distributed feedback sets is between
these Bloch modes, which would be otherwise uncoupled. By this coupled-Bloch-mode
approach, we derive a scattering matrix formulation which efficiently describes the op-
tical propagation in active photonic crystal waveguides in the presence of slow-light.
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Our model confirms previous results that a fundamental limitation to the slow-light
gain enhancement is posed by the gain itself. Furthermore, we offer new insights on
the impact of a generally complex refractive index perturbation. In particular, we show
that slow-light semiconductor optical amplifiers may benefit from a smaller linewidth
enhancement factor.

In Chapter 4, we leverage the scattering matrix formulation of the previous chapter
to investigate the impact of slow-light on the oscillation condition of various types of
photonic crystal lasers. These include lasers with photonic bandgap mirrors, photonic
heterostructure mirrors and a new kind of photonic crystal laser, known as the Fano
laser. Our approach goes beyond the conventional picture of slow-light simply reducing
the mirror loss and offers new insights. Furthermore, it is flexible and adaptable to the
laser configuration of interest. In fact, the laser cavity may generally consist of various
sections, either passive or active, with each section modelled by a scattering matrix.

By expanding the oscillation condition around the lasing point, in Chapter 5 we de-
rive a rate equation model which self-consistently accounts for slow-light, including
the gain-induced distributed feedback. This approach is potentially applicable to vari-
ous kinds of lasers, including the Fano laser. We focus on lasers with photonic bandgap
mirrors and presents preliminary results on the stationary and small-signal character-
istics.

Finally, in Chapter 6 we deal with the continuous wave operation of Fabry-Perot,
QD lasers epitaxially grown on silicon. As compared to previous approaches, we em-
ploy a drift-diffusion transport model, augmented with conventional rate equations for
photons and carriers in the dot-in-a-well (DWELL) layers. Our analysis reveals that
TDs in the DWELL layers are those responsible for the degradation of the laser perfor-
mance. We demonstrate that the asymmetric transport of electrons and holes explains
the quenching of the power emitted on the ground state above the excited state lasing
threshold under dual state emission. Furthermore, we show that electrostatic effects
lead to an optimum p-type modulation doping minimizing the ground state threshold
current, an effect evidenced by recent experiments.
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Chapter 1

Research context

1.1 Introduction
The internet traffic has experienced a gigantic increase in the past two decades [22],
as dramatically illustrated by Fig. 1.1. Such tremendous growth generates continu-

Figure 1.1: Global internet traffic in the last two decades. Reproduced from [22].

ing demands for data links with higher bandwidth and lower power consumption.
With this regard, optical links may offer advantanges as compared to their electrical
counterpart. As a matter of fact, transition from electrical to optical communication
has been observed when the product of bandwidth and transmission distance exceeds
100Gb/s × m [67, 86]. For instance, distributed feedback (DFB) lasers [61, 104] are used
in long-haul optical communications. These lasers have an energy cost around 1 pJ/bit.
Over shorter distances, inside data centres and supercomputers, vertical-cavity surface-
emitting lasers (VCSELs) [42, 156] are widely employed, because they have a lower
energy cost around 100 fJ/bit. Optical links are also expected to be advantageous in
the so-called computercom networks, i.e. on-chip communications [95]. In fact, power
consumption and heat generation currently represent a significant limitation to the per-
formance of processor chips. A major contribution to this power consumption is not
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Research context

due to logic operations within transistors, but rather to transfer of data through elec-
trical wires [67]. This also constitutes an environmental issue, as the global usage of
electricity ascribed to communication technologies is constantly increasing [5].

The solution is enabling on-chip optical communication, with an architecture con-
sisting of electrical processing and optical data transfer [106]. For this integration of
optics and electronics, a new generation of semiconductor lasers is required, featuring:

• reduced energy cost,

• small footprint,

• and silicon-compatibility.

Specifically, the energy cost should be lower than 10 fJ/bit [95], a target which remains
elusive to VCSELs. On the contrary, photonic crystal lasers [54, 24, 89] are promising
candidates. In these lasers, the optical cavity is formed by introducing a defect within

Figure 1.2: Examples of microcavity-based photonic crystal lasers. (a) Lambda-scale-
embedded active region photonic crystal (LEAP) laser [89]. (b) Photonic crystal laser
epitaxially grown on silicon [187]. (c) Hybrid indium-phosphide on silicon nanolaser
diode [24]. (a), (b) and (c) are reproduced from [142], [187] and [24] respectively.

an otherwise (ideally) perfect photonic crystal structure. This structure is carved out of
a semiconductor material via strong, periodic refractive index modulation. The region
surrounding the defect collectively acts as a distributed Bragg reflector, thereby tightly
confining light to the defect. Various implementations exist, which essentially differ

2



1.1 – Introduction

in the nature of the defect and type of pumping. These defect-based photonic crystal
lasers can be collectively denoted bymicrocavity-based photonic crystal lasers [126]. As
an example, Fig. 1.2 illustrates specific implementations. Other types of photonic crystal
lasers exist, which are not defect-based. In these devices, lasing is achieved thanks to a
strong distributed feedback throughout a perfectly periodic lattice [92]. These photonic
crystal lasers are outside the scope of this thesis. Therefore, unless otherwise specified,
when talking about photonic crystal cavities and lasers throughout this thesis, we will
implicitly refer to defect-based photonic crystal structures.

Photonic crystal lasers allow to scale down the active region, while keeping a high
quality factor. As a result, they exhibit low threshold current and small energy cost, with
a wavelength-scale active region. As an example, Fig. 1.3 illustrates the energy cost as a

Figure 1.3: Energy cost as a function of the active region area for various semiconductor
lasers. The LEAP laser is the so-called lambda-scale-embedded active region photonic
crystal laser. References in this figure are numbered as in [89], from which the figure
is reproduced.

function of the active region for DFB lasers, VCSELs and lambda-scale-embedded active
region photonic crystal lasers (LEAP lasers) [89], which are a particular type of pho-
tonic crystal lasers. A schematic illustration of a LEAP laser is reported in Fig. 1.2(a).
Regarding silicon-compatibility, heterogeneous [24, 159] and, more recently, epitaxial
[187] integration of photonic crystal lasers on silicon have been also demonstrated.
Fig. 1.2(b) and (c) shows examples of, respectively, epitaxially and heterogeneously in-
tegrated photonic crystal lasers.

Essentially, heterogeneous integration [62, 86] consists in pre-patterning thewaveg-
uide for the laser output power on a silicon-on-insulator (SOI) substrate. Films of III-V
semiconductor material are grown separately on a III-V substrate. Then, the III-V films
are bonded to the previously patterned SOI substrate and, after bonding, the laser is

3



Research context

processed by standard lithographic techniques. On the other hand, epitaxial integra-
tion [78, 76] is viewed as the ultimate solution to minimize the complexity and cost
of the fabrication process and improve the integration density of silicon photonic inte-
grated circuits. Within this approach, lasers are directly grown on silicon via epitaxy,
without need of bonding. For a thorough review of various approaches to integrate
lasers on silicon, we refer to [175].

A major challenge for epitaxial integration is represented by the mismatch in the
lattice constant and thermal expansion coefficients between silicon and III-V semicon-
ductor materials. This mismatch leads to threading dislocations [164], which act as
non-radiative recombination centres and degrade the laser performance. This issue can
be tackled by employing quantum dots (QDs) as the laser active material. In fact, QDs
have been proved to be much more tolerant than quantum wells (QWs) to threading
dislocations [78]. Carriers are highly localized within QDs, thereby reducing the prob-
ability of interaction with defects [74]. This feature adds to other well-known advan-
tages of QDs, such as low threshold current, large differential gain, enhanced tolerance
to temperature growth and increased stability against optical feedback [152]. These
advantages make QDs highly attractive for on-chip applications [107, 111].

This thesis fits in this overarching research context of semiconductor lasers for on-
chip optical communications. It builds up on two projects. A first project is devoted to
photonic crystal structures, with a special focus on slow-light effects in active waveg-
uides and lasers. In this respect, Prof. Jesper Mørk of DTU Fotonik has been, on several
occasions, an invaluable source of suggestions and ideas. Photonic crystal structures
fabricated and characterized in his group have often inspired the investigations of this
thesis. These also include Fano lasers, on which I focused during my external research
stay at DTU Fotonik from January, 2020 to July, 2020. A second project covers instead
quantum dot lasers on silicon, as part of an ongoing collaboration with the group of
Prof. Matteo Meneghini at University of Padova. A detailed outline of the chapters of
this thesis is provided in Sec. 1.3.

1.2 Rate equations analysis of microcavity lasers
Photonic crystal lasers are compact, microscopic lasers where one longitudinal mode
usually dominates by far over the others. For this reason, coupling of modes in space
and time can be usually neglected and conventional rate equation models well capture
the main characteristics of the laser [85, 126]. In this section, we employ a conven-
tional rate equation model [23] to roughly quantify figures of merit such as threshold
current, output power and energy cost, which should be considered when designing
microcavity lasers for computercom applications [87]. Therefore, this section serves
as an introduction to the main advantages of the small active (and mode) volume of
microcavity lasers, such as photonic crystal lasers. This simple picture, though, is chal-
lenged in the slow-light region of photonic crystal lasers, where the presence of gain

4



1.2 – Rate equations analysis of microcavity lasers

may induce a strong distributed coupling between the counter-propagating modes of
the laser cavity. This is one of the main motivations of this thesis, as further outlined
in Sec. 1.3.

The rate equations for the carrier density 𝑁 and photon density 𝑁𝑝 read [23]

𝑑𝑁
𝑑𝑡

=
𝜂𝑖𝐼

𝑞𝑉𝑁
− 𝑅 − 𝑣𝑔𝑔𝑁𝑝 (1.1a)

𝑑𝑁𝑝

𝑑𝑡
= Γ𝑣𝑔𝑔𝑁𝑝 + Γ𝑅sp −

𝑁𝑝

𝜏𝑝
(1.1b)

Here, 𝜂𝑖 is the injection efficiency, 𝐼 the injected current, 𝑞 the electron charge and 𝑉𝑁
the volume of the active region. 𝑅 is the total carrier recombination rate and 𝑔 the gain
per unit length. 𝑣𝑔 = 𝑐/𝑛𝑔 is the group velocity, with 𝑐 being the vacuum light speed and
𝑛𝑔 the group index. Γ is the total confinement factor (i.e. accounting for all the active
layers), which defines the mode volume 𝑉𝑝 = 𝑉𝑁/Γ. 𝑅sp is the spontaneous emission
rate coupled to the lasing mode, while 𝜏𝑝 is the photon lifetime. This is related to the
cavity quality factor (Q-factor) 𝑄 and threshold gain 𝑔th by

1
𝜏𝑝

= 𝜔
𝑄

= Γ𝑣𝑔𝑔th (1.2)

with 𝜔 being the mode angular frequency. In photonic crystal lasers, the group velocity
may be significantly reduced due to the strong, longitudinal refractive indexmodulation
(an effect thoroughly discussed in Sec. 3.1). It should be emphasized, though, that the
group velocity entering laser rate equations for cavity quantities (such as Eqs. (1.1a) and
(1.1a)) should only reflectmaterial dispersion [101]. The carrier recombination rate can
be expressed as [23]

𝑅(𝑁) = 𝐴𝑁 + 𝐵𝑁2 + 𝐶𝑁3 (1.3)

Here, 𝐴 and 𝐵 are the non-radiative and radiative recombination coefficient respec-
tively, while 𝐶 is the Auger coefficient. The gain per unit length is given by

𝑔 =
𝑔0

1 + 𝜖𝑁𝑝
ln

(

𝑁 + 𝑁𝑠0

𝑁tr + 𝑁𝑠0 )
(1.4)

with 𝑔0 being the empirical gain coefficient, 𝑁𝑠0
the gain coefficient fitting parameter

and 𝑁tr the transparency carrier density. The gain saturation with increasing photon
density is described by the gain compression factor 𝜖.

For an excellent discussion on the application of the rate equation model to pho-
tonic crystal lasers, we refer to [126]. In the following, we follow the approach of [87],
thereby neglecting for simplicity the spontaneous emission coupled to the lasing mode
in Eq. (1.1b). This means that spontaneous emission enhancement due to Purcell effect
[169, 108] is not taken into account. As shown in [126], the enhanced spontaneous
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Symbol Parameters Values
𝐴 Non-radiative recombination coefficient [s−1] 5.0 × 108

𝐵 Radiative recombination coefficient [cm3 s−1] 1.7 × 10−10

𝐶 Auger coefficient [cm6 s−1] 1.0 × 10−28

𝑑 Active layer thickness [nm] 6
𝛼𝑖 Intrinsic loss [cm−1] 15
𝑤 Active region width [nm] 300
𝜂𝑖 Injection efficiency 0.4
𝑛𝑔 Group index 3.8
𝜆 Operating wavelength [𝜇m] 1.55
𝑇 Temperature [K] 300
𝑔0 Empirical gain coefficient [cm−1] 1742

𝑁𝑠0
Gain coefficient fitting parameter [cm−3] −1.05 × 1018

𝑁tr Transparency carrier density [cm−3] 1.405 × 1018

𝜖 Gain compression factor [cm3] 3 × 10−17

𝑉𝑏0
Built-in bias voltage [V] 0.6

Table 1.1: Parameters for rate equation analysis [87]

Figure 1.4: Threshold current versus Q-factor for different values of (a) the cavity length
𝐿 and (b) confinement factor Γwell of a single active layer. In (a), Γwell is 3%, while in
(b) 𝐿 is 2.5 𝜇m. In both cases, the active region consists of 3 active layers.

emission would lower the lasing threshold, smooth the transition from below to above
threshold and increase the modulation bandwidth. The parameters are summarized in
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1.2 – Rate equations analysis of microcavity lasers

Tab. 1.1. They reflect typical LEAP lasers with electrical injection [87].
An essential requirement for lasers targeted at computercom applications is a low

threshold current 𝐼th. From Eq. (1.1a), one finds

𝐼th =
𝑞𝑉𝑁

𝜂𝑖
𝑅(𝑁th) (1.5)

with 𝑁th being the threshold carrier density. Therefore, one should reduce the active
region volume to lower the threshold current. However, a high Q-factor should be also
maintained. In fact, from Eqs. (1.2) and (1.4) the threshold carrier density reads

𝑁th = (𝑁tr + 𝑁𝑠0) exp(
𝜔

𝑣𝑔𝑄Γwell𝑁well𝑔0 ) − 𝑁𝑠0
(1.6)

Here, Γwell is the confinement factor of a single active layer and 𝑁well the number of
active layers, with Γ = Γwell𝑁well. Fig. 1.4 shows the threshold current as a function of
the Q-factor for different values of (a) the cavity length 𝐿 and (b) confinement factor
Γwell. At a given value of the Q-factor, the threshold current decreases as the cavity
length is reduced, owing to the smaller active region volume. Furthermore, a larger
confinement factor Γwell also lowers the threshold current, due to the smaller threshold
carrier density. The number of active layers 𝑁well should be optimized in dependence

Figure 1.5: Threshold current versus Q-factor for different values of the number 𝑁well
of active layers. The cavity length is 2.5 𝜇m. The confinement factor Γwell of a single
active layer is 3%.

of the Q-factor. This is highlighted by Fig. 1.5, showing the threshold current versus
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the Q-factor for different values of 𝑁well. The number of active layers minimizing the
threshold current stems from the trade-off between two effects. On the one hand, the
threshold carrier density diminishes with increasing 𝑁well if the Q-factor is sufficiently
low. On the other hand, the active region volume builds up as 𝑁well grows, thereby
increasing the threshold current. This effect prevails at high values of the Q-factor.

Figure 1.6: (a) Output power versus Q-factor for different values of the confinement
factor Γwell of a single active layer. The cavity length is 𝐿 = 2.5 𝜇m, the number of
active layers 𝑁well = 3 and the bias current 𝐼 = 100 𝜇A. (b) 𝑄𝑐 contribution to the
Q-factor for a given 𝑄𝑖 versus the Q-factor itself.

A second requirement to be taken into account in the laser design is the output
power. Above threshold, from Eq. (1.1a) one finds

𝑁𝑝 =
𝜂𝑖
𝑞𝜔

𝑄

(𝑉𝑁/Γ)
(𝐼 − 𝐼th) (1.7)

From this equation, it is clear that a larger ratio between the Q-factor 𝑄 and mode
volume 𝑉𝑁/Γ enhances the photon density for a given threshold current. To compute
the output power, we may express the Q-factor in terms of two contributions [87]

𝜔 / 𝑄 = 𝜔 / 𝑄𝑖⏟
𝑣𝑔𝛼𝑖

+ 𝜔 / 𝑄𝑐⏟
𝑣𝑔𝛼𝑚

(1.8)

Here, 𝑄𝑖 accounts for photons lost due to the cavity intrinsic loss 𝛼𝑖 and 𝑄𝑐 for those
leaving the cavity via output coupling, i.e. because of the mirror loss 𝛼𝑚. The output
power is

𝑃out =
ℏ𝜔𝑁𝑝 (𝑉𝑁/Γ)

1/ (𝑣𝑔𝛼𝑚)
= ℏ𝜔

𝑞
𝜂𝑖

𝑄𝑖
𝑄𝑖 + 𝑄𝑐

(𝐼 − 𝐼th) (1.9)
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1.2 – Rate equations analysis of microcavity lasers

As a consequence, the Q-factor controls the slope efficiency, which tends to unity in
the limit 𝑄𝑐 ≪ 𝑄𝑖, that is 𝛼𝑚 ≫ 𝛼𝑖. As 𝑄𝑐 increases, the slope efficiency degrades and
the output power is reduced. This effect is evident in Fig. 1.6(a), showing the output
power versus the Q-factor 𝑄 for different values of Γwell and a given bias current. 𝑄𝑖 is
fixed and defined by the group index and intrinsic loss in Tab. 1.1. 𝑄𝑐 is instead com-
puted from 𝑄𝑖 and 𝑄 by means of Eq. (1.8) and reported in Fig. 1.6(b). For a given Γwell,
the output power initially builds up as the Q-factor grows, owing to the increasingly
smaller threshold current. However, as the Q-factor is further increased, the output
power saturates and then steeply diminishes, because of the reduction of the slope ef-
ficiency. Consequently, while a larger Q-factor always improves the threshold current,
an optimumQ-factor exists which maximizes the output power. The larger the confine-
ment factor Γwell is and the smaller this Q-factor becomes, since the threshold current
is reduced.

Figure 1.7: (a) 3-dB direct modulation bandwidth and (b) FOM versus Q-factor for
different values of the confinement factor Γwell of a single active layer. The cavity length
is 𝐿 = 2.5 𝜇m, the number of active layers 𝑁well = 3 and the bias current 𝐼 = 100 𝜇A.

In addition to threshold current and output power, the 3-dB direct modulation band-
width 𝑓3dB is another important figure of merit orienting the laser design. The angular
frequency 𝜔3dB = 2𝜋𝑓3dB can be generally expressed as [23]

𝜔3dB = √𝜔2
𝑅 − 1

2
𝛾2 + 1

2√𝛾4 − 4𝛾2𝜔2
𝑅 + 8𝜔4

𝑅 (1.10)

with 𝜔𝑅 being the relaxation resonance (angular) frequency and 𝛾 the damping factor.

9



Research context

Above threshold, 𝜔𝑅 and 𝛾 read [23]

𝜔𝑅 =
√

𝜂𝑖Γwell𝑁well

𝑞𝑉𝑁
𝑣𝑔

𝑎0
1 + 𝜖𝑁𝑝

(𝐼 − 𝐼th) (1.11a)

𝛾 = 𝐾
𝜔2

𝑅

4𝜋2 + 1
𝜏Δ𝑁

(1.11b)

Here, 𝐾 is the so-called 𝐾−factor

𝐾 = 4𝜋2
(

𝑄
𝜔

+ 𝜖
𝑣𝑔𝑎0 ) (1.12)

The differential gain 𝑎0 = (𝜕𝑔/𝜕𝑁)|𝜖=0 and differential carrier lifetime 𝜏Δ𝑁 = (𝜕𝑅/𝜕𝑁)−1

are evaluated at the lasing threshold. In the limit of low damping (i.e. 𝛾 ≪ 𝜔𝑅), the 3-dB
modulation bandwidth 𝑓3dB is proportional to 𝜔𝑅. Therefore, reducing the threshold
current, scaling down the active region volume and increasing the confinement factor
are effective strategies to increase the modulation bandwidth. In this respect, photonic
crystal lasers offer clear advantages. As an example, Fig. 1.7(a) shows 𝑓3dB as a func-
tion of the Q-factor for different values of Γwell and a given bias current. Initially, as
the Q-factor grows, the modulation bandwidth steeply increases, due to the strong re-
duction of the threshold current. However, at high values of 𝑄, the damping factor is
strong enough to make 𝑓3dB saturate and then even decrease. The figure also empha-
sizes that the bandwidth significantly improves with a larger confinement factor if 𝑄 is
not too high. A convenient figure of merit encompassing both the static and dynamic
characteristics may be [87]

FOM = 𝐵 ⋅ 𝑃out (1.13)

Here, 𝐵 = 1.3𝑓3dB is the data rate which is assumed to be achievable under direct non-
return-to-zero modulation [168]. The FOM is reported in Fig. 1.7(b) as a function of
the Q-factor under the same conditions of Fig. 1.6(a) and Fig. 1.7(a). As a result of the
constraints simultaneously imposed by the Q-factor on ouput power and modulation
bandwidth, the optimum Q-factor is usually within the range 1000-3000.

As an alternative, the energy cost EC is often employed [106] to describe the laser
energy efficiency in terms of static and dynamic characteristics. It is defined as [87]

EC =
𝑃in

𝐵
=

𝐼𝑉𝑏0
+ 𝑅𝑠𝐼2

𝐵
(1.14)

Here, 𝑃in = 𝐼𝑉𝑏0
+ 𝑅𝑠𝐼2 is the electrical power absorbed by the laser, with 𝑉𝑏0

being
the built-in bias voltage and 𝑅𝑠 the series electrical resistance. This is related to the
electrical resistivity 𝜌𝑠 by 𝑅𝑠 = 𝜌𝑠/𝐿. Fig. 1.8 illustrates the energy cost as a function of
𝑓3dB for a given value of the Q-factor. Each color denotes a different value of the cavity
length, with the solid (dotted) line corresponding to 𝜌𝑠 = 104 Ω ⋅ 𝜇m [87] (𝜌𝑠 = 0). The
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1.2 – Rate equations analysis of microcavity lasers

Figure 1.8: Energy cost versus 3-dB direct modulation bandwidth, with each color
corresponding to a different value of the cavity length. The electrical resistivity 𝜌𝑠 is
104 Ω ⋅ 𝜇m (solid) and 0 (dotted). The Q-factor is 𝑄 = 1000, the number of active layers
𝑁well = 3 and the confinement factor of a single active layer Γwell = 3%.

figure highlights that an optimum modulation bandwidth exists which minimizes the
energy cost, as also noted in [106]. An optimum occurs irrespective of 𝑅𝑠, although a
smaller electrical resistance obviously reduces the energy cost. Furthermore, we have
verified that neglecting the gain compression factor improves the energy cost at high
values of bandwidth (as expected), but it does not alter the trend in Fig. 1.8 from a
qualitative point of view. This trend can be easily understood by assuming 𝛾 ≪ 𝜔𝑅 (i.e.

low damping), leading to 𝑓3dB ≈ 𝜔𝑅
2𝜋 √1 + √2 [23]. In this case, by using Eq. (1.11a)

and neglecting the gain compression factor, we may express the data rate 𝐵 as

𝐵 = 1.3𝑓3dB ≈ 1.3
2𝜋 √(1 + √2)

𝜂𝑖Γwell𝑁well

𝑞𝑉𝑁
𝑣𝑔𝑎0(𝐼 − 𝐼th) (1.15)

From Eq. (1.15), the bias current reads 𝐼 = 𝐼th + 𝐵2/𝜁, with 𝜁 being a proportionality
factor independent of the bias current

𝜁 = 1.69
4𝜋2 (1 + √2)

𝜂𝑖Γwell𝑁well

𝑞𝑉𝑁
𝑣𝑔𝑎0 (1.16)

By inserting the expression of the bias current into Eq. (1.14) and neglecting for sim-
plicity the electrical resistance, one finally finds

EC ≈ (
𝐼th
𝐵

+ 𝐵
𝜁 ) 𝑉𝑏0

(1.17)
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This equation reveals that at low data rates the power consumption is dominated by
the threshold current, with the energy cost being inversely proportional to the data
rate. However, as one demands larger and larger data rates, the required excess current
𝐼 − 𝐼th increases and gradually dominates the power consumption. Therefore, the en-
ergy cost deteriorates as the data rate grows. Overall, Fig. 1.8 emphasizes that a close
relationship exists among size, speed and energy efficiency [106]. Compact lasers are
necessary to minimize the energy cost. In fact, the energy cost benefits twofold from a
shorter cavity length, i.e. a smaller active volume. Firstly, via reduction of the thresh-
old current. Secondly, via the enhanced modulation bandwidth at a given current in
excess to threshold (i.e. a larger 𝜁). The small values of energy cost around 1-10 fJ/bit
outline that photonic crystal lasers are good candidates for computercom applications.
It is instructive to estimate from Eq. (1.17) the optimum data rate which minimizes the
energy cost. For this purpose, we may express 𝐼th as 𝑞𝑉𝑁

𝜂𝑖

𝑁th
𝜏𝑠

, with 𝜏𝑠 being an effective
carrier lifetime. By setting to zero 𝜕 (EC) /𝜕𝐵, one finds the optimum date rate

𝐵opt =
√

1.69
4𝜋2 (1 + √2) Γwell𝑁well𝑣𝑔𝑎0

𝑁th

𝜏𝑠
(1.18)

This equation explains why the optimum bandwidth in Fig. 1.8 is independent of the
cavity length. In fact, since the Q-factor is fixed, the threshold carrier density does not
vary with the cavity length. As a result, the optimum bandwidth stays the same.

1.3 Outline
In the following, we provide a detailed outline of the following chapters.

In Chapter 2, we deal with passive photonic crystal cavities. These cavities are usu-
ally analyzed by rigorous approaches, such as finite-difference time-domain or various
frequency domain methods [71]. However, these approaches are computationally de-
manding and based on a global analysis of the cavity, which often obscures the underly-
ing physics. On the contrary, in Chapter 2 we develop a transparent and efficient mod-
elling framework [136] for the analysis of passive photonic crystal cavities. Within this
framework, the cavity is modelled as an effective Fabry-Perot resonator for the Bloch
modes of the waveguide on which the cavity is based. By this approach, as compared to
previous investigations [118, 178], we provide new insights on the resonance condition
and field distribution in passive photonic crystal cavities.

In Chapter 3, we focus on active photonic crystal waveguides. It is well known that
photonic crystal waveguidesmay support significant slow-light [65, 9]. This means that
the group velocity may be much smaller than the vacuum light speed. In this propaga-
tion regime, the modal gain per unit length which can be achieved in a photonic crystal
waveguide with active material may be significantly enhanced as compared to a con-
ventional active waveguide under the same pumping conditions [29]. This slow-light

12



1.3 – Outline

gain enhancement may enable the realization of shorter optical amplifiers [97, 18] and
more compact lasers [178], suited to computercom applications. However, this strategy
cannot be pursued uncritically, since a fundamental limitation to the slow-light gain en-
hancement is posed by the gain itself [41, 19]. In Chapter 3, we elaborate on the model
presented in [19], from which we derive a convenient scattering matrix formulation
[137, 139]. By this approach, the presence of material gain is viewed as a weak per-
turbation to a reference photonic crystal waveguide with purely real refractive index.
Therefore, the optical propagation in the active waveguide is described by a scattering
matrix for the amplitudes of the forward- and backward-propagating Bloch modes of
the reference waveguide. Owing to the presence of gain, a distributed feedback sets
is between these Bloch modes, which would be otherwise uncoupled. The model is
applied to investigate the impact of slow-light in compact semiconductor optical am-
plifiers [139]. In particular, we show that, for a givenmaterial gain, devices with smaller
linewidth enhancement factor may offer better performance.

In Chapter 4, we investigate the impact of slow-light on the oscillation condition
of various photonic crystal lasers. After a quick review of the currently most promis-
ing types of photonic crystal lasers, we focus on some specific implementations based
on line-defect waveguides. We go beyond the conventional picture [105, 178] accord-
ing to which slow-light simply enhnaces the modal gain or, equivalently, reduces the
mirror loss. On the contrary, we employ the scattering matrix formulation developed
in Chapter 3 to offer new insights. In particular, the model is applied to lasers with
photonic bandgap mirrors [178] and photonic heterostructure mirrors [148], the latter
being similar to LEAP lasers. Furthermore, we explore the impact of slow-light on the
tuning characteristics of a new, recently proposed photonic crystal laser, the so-called
Fano laser [102].

In Chapter 5, we derive a rate equation model which self-consistently accounts for
slow-light in photonic crystal lasers. In fact, the conventional picture would predict an
increase of the photon lifetime due to the slow-light reduction of the mirror loss. Thus,
the laser modulation speed could be compromised by slow-light [105, 106]. However,
as discussed in Chapter 4, slow-light does not simply reduce the mirror loss. Owing to
the gain-induced distributed feedback between the forward- and backward-propagating
Bloch modes, the computation of a photon lifetime is not straightforward. We note
that the photon lifetime is an essential parameter for the laser dynamic characteristics.
With these motivations in mind, in Chapter 5 we present the preliminary stages of our
investigations.

Finally, in Chapter 6 we set aside photonic crystals to deal with quantum dots on sili-
con as an activematerial. We focus on Fabry-Perot, quantum lasers epitaxially grown on
silicon [17, 57]. Currently, these devices are considerably longer (measuring hundreds
of 𝜇m) than photonic crystal lasers. Therefore, they are not directly suited to comput-
ercom applications. However, they represent an instrumental platform for studying the
properties of the active material epitaxially grown on silicon. In particular, we inves-
tigate three relevant issues regarding the continuous wave operation of these lasers.

13



Research context

Namely, the impact of threading dislocations [59]; the quenching of the power emit-
ted on the ground state above the excited state lasing threshold, in the presence of
double state lasing [49]; and the existence of an optimum p-type modulation doping
which minimizes the ground state threshold current [186]. As compared to previous
approaches [38, 80], we employ a drift-diffusion transport model [39, 165], augmented
with conventional rate equations for photons and carriers in the quantum dot layers.
This analysis sheds light on the role of carrier transport and offers new [138] insights.
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Chapter 2

Passive Photonic Crystal Cavities

In this chapter, we deal with passive photonic crystal cavities based on line-defect
waveguides. In Sec. 2.1, we provide an overview on photonic crystal cavities and ex-
plain the main concepts behind their working principle. Furthermore, we provide mo-
tivations for this chapter. In the following sections, we present our investigations on
the resonant modes of line-defect cavities. Specifically, in Sec. 2.2 we deal with the dis-
persion relation and Bloch modes of the waveguide on which the cavity is based. In
Sec. 2.3, we obtain the resonance condition. In Sec. 2.4, we derive simple analytical ex-
pressions for the longitudinal resonant modes of the cavity. In Sec. 2.5, we focus on the
fundamental resonant mode, which is thoroughly analyzed both in the real and recip-
rocal space. In particular, we investigate the scaling of the radiation loss with the size
of the cavity. Finally, in Sec. 2.6 we draw the conclusions.

2.1 Introduction and motivation
It is well known that defects in the crystalline structure of semiconductor materials
(such as impurity doping atoms) introduce additional stateswithin the electronic bandgap
[158]. Similarly, defects in the periodic pattern of refractive indexmaking up a photonic
crystal lead to additional states within the photonic bandgap [179]. By introducing a
line-defect or a point-defect, one can create a waveguide or a resonant cavity, which can
guide light efficiently or confine it tightly. As an example, Fig. 2.1(a) shows a photonic
crystal slab based on an hexagonal lattice of holes. Fig. 2.1(b) and (c) depict, respec-
tively, a waveguide and a cavity carved out of the crystal. This type of lattice ensures a
large photonic bandgap for TE polarization (i.e. with the electric field lying within the
plane of periodicity) [55] and is often employed in the realization of photonic crystal
lasers. In this case, the slab also includes the active medium, made of strained quantum
wells [119, 121] or quantum dots [30, 187] which provide high gain for TE-polarized
light. The holes are drilled in a slab of semiconductor material with large refractive
index (for instance, GaAs, InP or Si). The slab is surrounded by a cladding with low

15



Passive Photonic Crystal Cavities

Figure 2.1: (a) Two-dimensional photonic crystal based on an hexagonal lattice of holes.
Associated (b) photonic crystal waveguide and (c) photonic crystal cavity. The holes are
drilled in a slab made of semiconductor material, with high refractive index contrast
between holes and slab.

refractive index (usually, air). The lattice constant 𝑎 and slab thickness are on the order
of the guided wavelength and half the guided wavelength respectively. The cavity in
Fig. 2.1(c) is often denoted as LN cavity, with N corresponding to the number of missing
holes [118].

Figure 2.2: Band structure of a line-defect waveguide with air cladding. Reproduced
from [27].
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Fig. 2.2 shows the band structure of a line-defectwaveguide such as that in Fig. 2.1(a),
with the cladding made of air. The figure is reproduced from [27] and highlights the
main features of the band structure. The 𝑥-axis reports the wavevector along the prop-
agation direction (i.e. 𝑧, in our case) restricted to the positive half of the first Brillouin
zone. Indeed, the band structure in the first Brillouin zone is symmetric with respect
to the origin [150]. The two bands denoted by guided modes correspond to the modes
which are fully guided along the line-defect. These modes are confined in the vertical
direction (i.e. 𝑦-direction) by total internal reflection, while confinement in the lateral
direction (i.e. 𝑥-direction) is ensured by the photonic bandgap. Theoretically, these
modes are truly lossless. Out-of-plane radiation losses only occur, in practice, due to
fabrication imperfections, which are generally indicated as disorder. Later, we will re-
turn to this point, to outline the difference as compared to the radiation loss occurring
in a cavity. For further details on losses in photonic crystal waveguides induced by
disorder, we refer to Sec. 3.1.2. The point where the wavevector is equal to 𝜋/𝑎 is the
upper limit of the first Brillouin zone and is often denoted as photonic band edge or
simply band edge. It corresponds to the cutoff frequency of the guided mode. At this
frequency, the group velocity is ideally equal to zero. The regions of the band struc-
ture indicated as slab mode region include the continuum of modes which are confined
along the vertical direction by total internal reflection, but are delocalized in the lateral
direction. Finally, the air light cone is the so-called leaky region (often simply indicated
as light cone), where the wavevector is too small to fulfil the condition of total internal
reflection. Consequently, these modes are not only delocalized in the lateral direction,
but also in the vertical one.

2.1.1 Photonic crystal cavities

Figure 2.3: Photonic crystal laser based on an LN cavity. Reproduced from [119].

We now turn our attention to photonic crystal cavities, by focusing on specific im-
plementations. The light confinement in LN cavities is illustrated by Fig. 2.3. The figure
is reproduced from [119], which was the first demonstration of a photonic crystal laser
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based on this type of cavity. As in the case of waveguides, light is confined in the ver-
tical (lateral) direction by total internal reflection (by the photonic bandgap). However,
due to the finite size of the cavity, there is always a fraction of wavevector components
of the cavity resonant mode lying in the leaky region. Therefore, even in the ideal
case of a structure with no fabrication imperfections, the resonant cavity suffers from
radiation loss [3]. If the cavity is not properly designed, this loss can severely limit
the quality factor (Q-factor). In fact, due to the small size of the cavity, the resonant
mode may broadly extend in the reciprocal space, with a large amount of wavevector
components which cannot fulfill the condition of total internal reflection. By displac-

Figure 2.4: Optimization of a point-defect photonic crystal cavity by displacing the
holes at the edges. The arrows indicate the hole displacement, with each each letter
corresponding to a pair of holes being displaced. Reproduced from [2].

ing the holes at the edges of the cavity, the fraction of wavevector components in the
leaky region can be significantly reduced and the Q-factor consequently increased. The
procedure is summarized by Fig. 2.4, which is reproduced from [2]. The arrows indi-
cate the hole displacement, with each each letter corresponding to a pair of holes being
displaced. By this technique, the Q-factor computed by finite-difference time-domain
(FDTD) simulations is increased from few thousands up to around 105. Importantly,
the mode volume is almost unchanged and remains on the order of the cubic guided
wavelength. The experimental values of the Q-factor are lower (owing to fabrication
imperfections and impurities [7]), but well confirm the optimization trend. We refer to
Sec. 2.1.2 for further details on the physical principle behind this optimization strategy.

A type of photonic crystal cavity which is even more promising in terms of Q-factor
is the so-called photonic heterostructure cavity [155]. The working principle is summa-
rized by Fig. 2.5, which is reproduced from [7]. The cavity is formed by connecting
line-defect waveguides with different lattice constants. Essentially, the larger lattice
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Figure 2.5: (a) Line-defect waveguide and (b) corresponding band structure. The blue
(red) arrow in (b) denotes the pass-band (stop-band), where propagation of photons
through the waveguide is allowed (inhibited). (c) Photonic heterostructure cavity. (d)
Schematic representation of the band diagram of the photonic heterostructure cavity
along the waveguide direction. Reproduced from [7].

constant in region II as compared to regions denoted by I (see Fig. 2.5(c)) induces a rel-
ative shift of the band edge of the line-defect waveguides corresponding to the various
regions. Specifically, an increase (decrease) in the lattice constant results in a shift of
the band edge to lower (higher) frequencies (see Fig. 2.5(b) and (d)). This ensures an ef-
fective confinement of photons along the waveguide direction. In fact, photons which
are allowed to propagate in region II find themselves within the bandgap of regions I.
The experimental Q-factor of this cavity was found to be around 6 ⋅ 105, with a mode
volume on the order of the cubic guided wavelength [7]. The superior Q-factor of the
heterostructure cavity stems from the gentler field confinement, which suppresses the
field spectral content within the leaky region.

Various modifications and improvements of the heterostructure cavity have been
demonstrated. For instance, the lattice constant can be varied more gradually by in-
creasing the number of regions which make up the heterostructure. This approach has
led to a theoretical Q-factor with a record value of 109, while keeping a mode volume of
one cubic guided wavelength [163]. However, tuning the lattice constant is not the only
technique to engineer the photonic bandgap. This can be also performed by varying
the waveguide width [162].

Themodification of the lattice constant andwaveguidewidth are structural changes.
However, another intriguing and possibly reconfigurable modification is the refractive
index modulation. One can of course change the refractive index of adjacent waveguide
sections in a structural manner. This approach has indeed culminated in the demonstra-
tion of high-speed electrically pumped photonic crystal lasers [160], which are reviewed
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Figure 2.6: FDTD simulation of photon pinning by dynamic refractive index modu-
lation. (a) Line-defect waveguide. The blue arrow indicates the light pulse injected
into the waveguide. The red spot indicates the pulse focused on the waveguide at
𝑡 = 11.025 ps to locally tune the refractive index. The waveguide is 80 𝜇m long. (b)-
(h) Snapshot of the optical field distribution at various time instants. Reproduced from
[115].

in Sec. 4.1. However, the refractive index can be also tuned dynamically, thus inducing,
on demand, a photonic heterostructure cavity. This can be done, for instance, by shin-
ing an optical pulse at a given location along a line-defect waveguide. Through optical
nonlinearities, the refractive index is locally changed and a high-Q heterostructure cav-
ity is formed, which effectively traps photons injected from the waveguide input [115].
Fig. 2.6 summarizes the FDTD simulations carried out in [115]. The relative refractive
index modulation Δ𝑛/𝑛 is around 10−3. Interestingly, the theoretical Q-factor for this
type of cavity is extremely high (larger than 109).

2.1.2 Radiation loss and light cone
After this overview, we can now have a closer look at the electric field inside an LN
cavity in the reciprocal space. These concepts are preliminary for the analysis which
we carry out in the following sections.

At a given frequency, the time-averaged power radiated out of the cavity is propor-
tional to the integral within the light cone of the spatial Fourier transform of the electric
field intensity [171]. Therefore, as anticipated in Sec. 2.1.1, suppressing the wavevec-
tor components of the field within the light cone is an effective strategy to maximize

20



2.1 – Introduction and motivation

the Q-factor. This can be better understood by considering that the Fourier transform
of the electric field spatial profile consists of a set of plane waves, each with a given
wavevector k. The light cone is determined by the component of k which is tangen-
tial to the interface between slab and cladding [3]. We denote the magnitude of this
component by |𝑘∥|, with |𝑘∥|2 = 𝑘2

𝑥 + 𝑘2
𝑧 (see Fig. 2.1 for the reference system). If |𝑘∥|

cannot be conserved at the interface, there is total internal reflection. Otherwise, the
plane wave with that wavevector can leak out of the slab. As a consequence, the light
cone corresponds to the region in the reciprocal space defined by

|𝑘∥| < �̄�
𝑐

𝑛clad (2.1)

with �̄� being the angular frequency of the resonant mode and 𝑛clad the cladding refrac-
tive index. Therefore, one should in principle take into account the two-dimensional
spatial distribution of the field in the 𝑥𝑧-plane of the LN cavity (see Fig. 2.1(c)). Further-
more, it should be emphasized that TE-likemodes in these cavities have two electric field
components (𝐸𝑥 and 𝐸𝑧 in our reference system), both possibly coupling to radiation
modes.

Figure 2.7: Spatial distribution of the (a) longitudinal and (b) lateral electric field com-
ponent in an LN cavity. Spatial Fourier transform of the (c) longitudinal and (d) lateral
component. Reproduced from [7].

In practice, the analysis can be considerably simplified. Firstly, it turns out that the
longitudinal field component (𝐸𝑧 in our reference system) has a much smaller spectral
content within the light cone as compared to the lateral one (𝐸𝑥 in our reference sys-
tem). This is outlined by Fig. 2.7, which is reproduced from [7] (notice the difference
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in the reference system adopted therein). Therefore, we may only consider the lateral
component. In the following sections, when computing the resonance condition and
analyzing the resonant modes in the real and reciprocal space, we make indeed this
approximation.

Secondly, one can actually go further and reduce the analysis to one dimension
by only considering the field spatial distribution along the longitudinal direction, as
suggested by various authors [2, 118]. In fact, the fraction of wavevector components
within the light cone is mainly caused by the broadening along the 𝑥-axis in Fig. 2.7(d),
with this broadening due to the field variation along the longitudinal direction in the
real space. In the following sections, we make use of this approximation as well.

In light of these considerations, one can easily understand the strategy which has
guided researchers in the optimization of the Q-factor of LN cavities. The rule of thumb
is that the spatial envelope of the field should vary as gradually as possible at the edges
of the cavity. Intuitively, this can be understood by assuming the cavity to be one-
dimensional. In this case, the field of the resonant mode in the real space may be ex-
pressed as the product of an envelope and a sinusoidal wave with spatial period given
by the guided resonant wavelength. Therefore, abrupt changes in the envelope lead
to high frequency components in its spatial Fourier transform. These components are
then transferred to the light cone upon convolution of the envelope Fourier transform
with the Fourier transform of the sinusoidal wave, thus degrading the Q-factor. As a
consequence, these abrupt changes should be avoided [7]. This is exactly the raison
d’être of the displacement of holes at the edges of the cavity in Fig. 2.4. Indeed, by dis-
placing the holes, the periodicity of the crystal on either side of the cavity is perturbed
and its reflection somehowweakened. Therefore, the field penetrates deeper within the
crystal and is more gently confined within the cavity.

2.1.3 Motivation of this chapter
The general advantage of photonic crystal cavities is that they are small and have a
high quality factor. Broadly speaking, the strength of the light-matter interaction scales
with 𝑄/𝑉, with 𝑄 being the quality factor and 𝑉 the mode volume. Indeed, a larger 𝑄/𝑉
essentially means that photons are confined for a longer time in a smaller volume.

A laser would obviously benefit of a large 𝑄/𝑉 in terms of its threshold current. In
fact, the threshold carrier density exponentially decreases with increasing Q-factor and
optical confinement factor (see Eq. (1.6) in Sec. 1.2). In addition, a larger 𝑄/𝑉 enhances
the relative fraction of spontaneous emission coupled to the lasing mode as compared
to the undesired spontaneous emission into other modes (Purcell effect) [108]. These
benefits allow for compact and energy efficient lasers, which are strongly required for
photonic integrated circuits and optical interconnects [87]. However, the advantages
are not limited to lasers. A larger 𝑄/𝑉 implies a higher intracavity light intensity per
unit input power [113]. This means that devices relying on optical nonlinearities (for
instance, optical switches) would also bemore energy efficient [153]. In sensors, a larger
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𝑄/𝑉 results in a better detection sensitivity [20]. A high Q-factor also enables adiabatic
frequency conversion [162], with possible applications to photonic memories. This is a
general and completely classical wave phenomenon, whose experimental observation
in the optical domain has been allowed by the long photon lifetime of photonic crystal
cavities. Essentially, the cavity resonance frequency is dynamically tuned by changing
the cavity refractive index within the photon lifetime, while the cavity is holding a
light pulse. As a result, the frequency of the resonant mode is adiabatically shifted
in proportion to the shift in the cavity resonance frequency. The refractive index is
changed such that the light trapped within the cavity, at the new frequency, is more
strongly coupledwith the output. Therefore, a light pulsemuch shorter than the photon
lifetime is emitted. This phenomenon suggests a way to store and release photons on
demand, with arbitrary timing.

Overall, these are only a few examples illustrating why high-Q photonic crystal
cavities have attracted large interest. For an excellent review of the many possible
applications of these cavities, we refer to [113].

Photonic crystal cavities can be analyzed by rigorous approaches, such as finite-
difference time-domain (FDTD) or various frequency domain methods, which directly
solveMaxwell’s equations over the entire structure. From the analysis of the simulation
results, the Q-factor is obtained. Essentially, the FDTD method computes the Q-factor
from the decay rate in time of the electromagnetic energy stored within the cavity (i.e.
the photon lifetime). In the frequency domain, the Q-factor is instead obtained from
the ratio between the real and imaginary part of the complex eigenfrequency of the
resonant mode [70]. Various techniques are discussed and compared in [71].

However, these approaches are computationally demanding. Furthermore, they rely
on a global analysis of the cavity, from which gaining physical insights is not always
straightforward. On the other hand, it has been shown that the photon confinement
in passive photonic crystal cavities based on line-defect waveguides can be largely un-
derstood in terms of a Fabry-Perot picture [70]. Essentially, these cavities behave as
effective Fabry-Perot resonators for the Bloch modes of the waveguide.

Inspired by this idea, in this chapter we develop a transparent and efficient mod-
elling framework for the analysis of passive photonic crystal cavities. This framework
is then extended in Chapter 3 and Chapter 4 to structures with optical gain. Specifically,
in this chapter we derive analytical expressions for the resonant modes of passive pho-
tonic crystal cavities solely based on the knowledge of the Blochmodes of the associated
line-defect waveguide. By this approach, we study the scaling of the radiation loss with
the cavity length, which has recently received attention in the context of passive cavi-
ties [118] and lasers [178]. Our analysis offers new insights on the results presented in
those studies, which rely on different approaches.

In [118], a systematic investigation of LN cavities is carried out by FDTD simula-
tions. Specifically, the field distribution and Q-factor of these cavities are analyzed. Be-
ing based on direct solution of Maxwell’s equations, the FDTD method is rigorous, but
time-consuming. In addition, it often obscures the underlying physics. As compared

23



Passive Photonic Crystal Cavities

to [118], we provide analytical expressions derived in a transparent manner, without
need of fitting. In [178], the approach of [145] is applied to LN cavities. Essentially, the
photonic crystal cavity is described by a stepwise variation of the average permittiv-
ity along the propagation direction. The modes of a given cavity, possibly affected by
disorder, are expanded on the basis of the Bloch modes of the ideal cavity (i.e. without
disorder) truncated to a given order. By inserting this expansion into Maxwell’s equa-
tions, a finite generalized eigenvalue equation is obtained. By solving this equation,
one finds the modes of the disordered cavity with the corresponding eigenfrequencies.
This approach is applied in [178] to investigate the scaling of the Q-factor versus cavity
length with and without disorder. Our analysis clarifies specific aspects of the results
of [178] in the absence of disorder and suggests a possible, simple interpretation of the
impact of disorder.

2.2 Dispersion relation and Bloch modes
To compute the resonant modes of an LN cavity, we need three ingredients: 1) the
dispersion relation and 2) Blochmodes of the line-defect waveguide onwhich the cavity
is based; 3) the resonance condition of the cavity. In this section, we focus on the first
two ingredients.

2.2.1 Dispersion relation

Figure 2.8: (a) Three-dimensional and (b) top view of a supercell to compute dispersion
relation and Bloch modes of a line-defect waveguide.
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The photonic band structure of a perfect crystal may be computed by the plane
wave expansion method [47, 56]. Essentially, by making use of Bloch’s theorem [8],
Maxwell’s equations in the frequency domain are recast as a linear eigenproblem, with
the frequency being the eigenvalue. The eigenstate is then expanded in a plane wave
basis (i.e. a Fourier series) truncated to a given order. The problem is thus turned into
a finite generalized eigenproblem, with the eigenvector given by the basis coefficients.
This matrix eigenproblem can be finally solved by standard linear algebra techniques
[47] or more efficient algorithms [56].

Strictly speaking, Bloch’s theorem applies to perfectly periodic lattices. For two
-dimensional lattices, this implies that one should assume the crystal to be translation-
ally invariant along the third direction. However, this limitation may be circumvented
by the so-called supercell method [150]. This method allows to compute the band struc-
ture of photonic crystral slabs and waveguides. Fig. 2.8 shows the supercell which may
be used for the photonic crystal waveguide in Fig. 2.1(b). Within the supercell approxi-
mation, the supercell is periodically replicated in all the three dimensions and the band
structure of this artificial three-dimensional lattice is computed. The supercell consists
of a single lattice constant 𝑎 along the 𝑧-direction, along which the waveguide is in-
deed periodic. The dimensions along the 𝑥- and 𝑦-direction should instead be chosen
so as to ensure a significant decay of the guided modes towards the boundaries. This
condition can be easily met, since the guided modes are strongly localized to the line-
defect. With these choices, the eigenmodes of the artificial three-dimensional lattice
well approximate those of the line-defect waveguide.

Figure 2.9: (a) Band structure of the line-defect waveguide TE-like modes. The blue
lines represent a subset of the continuum of slab modes. (b) Band corresponding to the
fundamental guided mode.
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Parameters Values
Lattice constant 𝑎 [nm] 438
Slab refractive index 𝑛slab 3.17

Hole radius 𝑟 0.25a
Slab thickness ℎslab [nm] 250

Cladding refractive index 𝑛clad 1

Table 2.1: Line-defect waveguide simulation parameters

Throughout this thesis, we employ the MIT-Photonic-Bands (MPB) implementa-
tion of the plane wave expansion method to compute the dispersion relation and Bloch
modes of a line-defect waveguide within the supercell approximation [56]. The sim-
ulation parameters reflect the photonic crystal lasers of [178] and are summarized in
Tab. 2.1. Fig. 2.9(a) shows the band structure of the TE-like modes. The guided modes
are in red, with the fundamental mode denoted by the solid line. The blue lines rep-
resent a subset of the continuum of slab modes. Fig. 2.9(b) is a zoom on the band cor-
responding to the fundamental guided mode, which is the dispersion relation we need
for our analysis. As explained in Sec. 2.4, our formulation requires the forward- and
backward-propagating Bloch modes. For this reason, we compute the band structure in
the left-hand side of the second Brillouin zone (i.e. 𝑘𝑧 ∈ [𝜋/𝑎, 2𝜋/𝑎]), where the group
velocity is positive and the corresponding Bloch mode is thus forward-propagating.
The backward-propagating mode is then obtained as the complex conjugate, as we will
also see in Sec. 2.3.

2.2.2 Bloch modes
MPB provides the Bloch modes in a fully vectorial form (that is, 𝑥, 𝑦 and 𝑧 component)
and with three-dimensional spatial dependence, namely

E±(r) = e±(r)𝑒±𝑖𝑘𝑧𝑧 (2.2)

Here, E+ (E−) is the electric field of the forward-propagating (backward-propagating)
guided mode and r is the position vector. The envelopes e± are 𝑧 periodic, with the
period given by the lattice constant 𝑎. 𝑘𝑧 is the wavenumber along the 𝑧-direction. The
Bloch modes are normalized, at each frequency, such that

∫𝑉
𝜖0𝑛2

𝑏(r)|e+(r)|2𝑑𝑉 = 1 (2.3)

Here, 𝑉 is the volume of the supercell and 𝑛𝑏 the background refractive index, with
𝑛𝑏 = 𝑛slab (𝑛𝑏 = 𝑛clad) in the slab (cladding). As explained in Sec. 2.1.2, for a qualitative
understanding of the radiation loss in LN cavities, it suffices to consider the lateral field
component along the longitudinal direction. Therefore, in the following we drop the
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vectorial notation and implicitly refer to the lateral field component along the center-
line of the waveguide. This line is denoted by 𝑥 = 𝑦 = 0 in Fig. 2.8(b), with 𝑦 = 0
corresponding to the middle of the slab along the vertical direction.

Figure 2.10: Bloch modes of line-defect waveguides. (a) Magnitude and (b) phase of the
lateral electric field component of the forward-propagating Bloch mode in a unit cell.
Each color corresponds to a different value of the wavenumber. The mode is evaluated
along the centerline of the waveguide, indicated as 𝑥 = 𝑦 = 0 in Fig. 2.8(b).

Fig. 2.10 shows (a) the magnitude and (b) phase of the forward-propagating Bloch
mode in a unit cell at different values of thewavenumber. Fig. 2.10 highlights that, as the
wavenumber approaches the band edge at 𝜋/𝑎, 1) the peak-to-peak amplitude increases
and 2) the phase linearly varies with 𝑧 over a larger and larger portion of the unit cell.
These features are common to Bloch modes of one-dimensional Bragg gratings [183].
Moreover, whichever the frequency, the phase is zero at the input and output of the
unit cell. Being periodic, the Bloch modes can be expanded in a Fourier series

𝑒+(𝑧) = ∑
𝑞

𝑏𝑞𝑒+𝑖𝑞 2𝜋
𝑎 𝑧 (2.4)

The spatial harmonics 𝑏𝑞 are reported in Fig. 2.11(a) for the modes in Fig. 2.10, with
the colours being the same as therein. The harmonics with 𝑞 other than −1 and 0 are
negligible. Therefore, we may express 𝑒+ as

𝑒+(𝑧) = 𝑏0 + 𝑏−1𝑒−𝑖 2𝜋
𝑎 𝑧 (2.5)

Furthermore, as a result of the variation in the peak-to-peak amplitude (see Fig. 2.10(a))
and the linear 𝑧−dependence of the phase (see Fig. 2.10(b)), the magnitude of 𝑏−1 ap-
proaches the spatial average 𝑏0 as the wavenumber moves towards the band edge. This
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Figure 2.11: (a) Magnitude of the spatial Fourier harmonics of the modes in Fig. 2.10,
with the colours being the same as therein. The 𝑥−axis reports the order 𝑞 of the har-
monics. (b) Magnitude of the ratio between the spatial harmonic of order −1 and the
average.

is emphasized by Fig. 2.11(b), showing the magnitude of the ratio |𝑏−1/𝑏0| versus the
wavenumber.

The physical interpretation of this behaviour is straightforward. Upon insertion of
Eq. (2.5) into Eq. (2.2), the forward-propagating Bloch mode reads

𝐸+(𝑧) = 𝑏0𝑒+𝑖𝑘𝑧𝑧⏟
FW

+ 𝑏−1𝑒−𝑖(
2𝜋
𝑎 −𝑘𝑧)𝑧

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
BW

(2.6)

In other terms, a Bloch mode results (as expected [140, 65]) from the interference of
a forward (FW) and backward (BW) component, whose relative strength corresponds
to the ratio 𝑏−1/𝑏0. If the mode as a whole is forward-propagating, then the forward
component is stronger, i.e. |𝑏−1/𝑏0| < 1. In the limit |𝑏−1/𝑏0| = 1, the backward and
forward component balance out. Thus, the net velocity at which the mode as a whole
propagates, which is the group velocity, is zero and the mode is a standing wave. This
is the reason why |𝑏−1/𝑏0| tends to unity as 𝑘𝑧 approaches the band edge.

The ratio 𝑏−1/𝑏0 encodes the composition of the Bloch mode, which depends on the
waveguide geometry and detuning from the band edge. For instance, in the case of
one-dimensional Bragg gratings, the ratio is directly related to 1) the grating coupling
coefficient and 2) detuning of the operation frequency from the Bragg frequency (see
Eq. (6.41) in [23]).
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2.3 Resonance condition
In this chapter, we model and analyze passive LN cavities as effective Fabry-Perot res-
onators [70]. In this section, we derive the resonance condition. Fig. 2.12 illustrates

Figure 2.12: LN cavity, with N denoting the number of missing holes.

this type of cavity, with conventional photonic bandgap mirrors. These mirrors are
broadband and generally have high reflectivity [70]. The left (right) mirror reflection
coefficient is 𝑟𝐿 (𝑟𝑅) and 𝐿 is the cavity length. The figure also indicates the choice of
the unit cell reference planes which we adopt throughout this thesis, with 𝑎 being the
lattice constant. In light of the considerations in Sec. 2.1.2, we only consider the lateral
electric field component along the centerline of the cavity [118]. This line is indicated by
𝑥 = 𝑦 = 0 in Fig. 2.12, with 𝑦 = 0 corresponding to the middle of the slab along the ver-
tical direction. We expand the field in the basis of the two guided counter-propagating
Bloch modes

𝐸(𝑧) = 𝑐+(𝑧)𝑒+(𝑧) + 𝑐−(𝑧)𝑒−(𝑧) (2.7)

with 𝑒± being the forward- (+) and backward-propagating (−) Bloch modes and 𝑐± the
corresponding expansion coefficients. In the absence of optical gain and disorder, the
Bloch modes are only coupled at the mirrors. In this case, one finds

𝐸(𝑧) = ̃𝐹 𝑒+𝑖𝑘𝑧𝑧𝑒+(𝑧) + ̃𝐵𝑒−𝑖𝑘𝑧𝑧𝑒−(𝑧) (2.8)

where while ̃𝐹 ( ̃𝐵) is the amplitude of the forward (backward) Bloch mode. We set the
point 𝑧 = 0 at the centre of the cavity. Therefore, the left (right) mirror is located at
𝑧 = −𝐿/2 (𝑧 = 𝐿/2) and the boundary conditions read

̃𝐹 𝑒+𝑖𝑘𝑧
𝐿
2 𝑒+ (

𝐿
2 ) 𝑟𝑅 = ̃𝐵𝑒−𝑖𝑘𝑧

𝐿
2 𝑒− (

𝐿
2 ) (2.9a)

̃𝐵𝑒−𝑖𝑘𝑧(− 𝐿
2 )𝑒− (−𝐿

2 ) 𝑟𝐿 = ̃𝐹 𝑒+𝑖𝑘𝑧(− 𝐿
2 )𝑒+ (−𝐿

2 ) (2.9b)
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The backwardmode 𝑒− is the complex conjugate of 𝑒+ [120, 141]. By using this property,
the boundary conditions can be recast as

̃𝐹 [𝑒+𝑖𝑘𝑧
𝐿
2 𝑒+𝑖𝜙+(

𝐿
2 )𝑟𝑅] − ̃𝐵 [𝑒−𝑖𝑘𝑧

𝐿
2 𝑒−𝑖𝜙+(

𝐿
2 )

] = 0 (2.10a)

̃𝐹 [𝑒−𝑖𝑘𝑧
𝐿
2 𝑒𝑖𝜙+(− 𝐿

2 )
] − ̃𝐵 [𝑒+𝑖𝑘𝑧

𝐿
2 𝑒−𝑖𝜙+(− 𝐿

2 )𝑟𝐿] = 0 (2.10b)

where 𝜙+ is the phase of 𝑒+. The resonance condition is that Eqs. (2.10a) and (2.10b)
have a solution other than the trivial solution ̃𝐹 = ̃𝐵 = 0. By enforcing the determinant
of the coefficient matrix to be zero, we obtain

𝑟𝐿𝑟𝑅𝑒+2𝑖[𝜙+(
𝐿
2 )−𝜙+(− 𝐿

2 )]𝑒+2𝑖𝑘𝑧𝐿 = 1 (2.11)

With our choice of a unit cell (see Fig. 2.8(b)), 𝜙+ is zero at the unit cell input and output,
as shown in Fig. 2.10(b). This implies that, with our choice of the reference planes for
the cavity length 𝐿 (see Fig. 2.12), one finds

𝜙+(±𝐿/2) = 0 (2.12)

if 𝐿 consists of an integer number of unit cells. In this case, if the phase of the left and
right mirror is equal to either zero or 𝜋, from Eq. (2.11) one obtains

𝑘𝑧 − 𝜋
𝑎

= 𝑚 𝜋
𝐿

(2.13)

with 𝑚 being an integer. Eq. (2.13) governs the detuning of the wavenumber 𝑘𝑧 from
the band edge for the longitudinal resonant mode of order 𝑚.

Importantly, FDTD simulations of passive LN cavities have revealed that the res-
onant modes do obey Eq. (2.13) to good approximation [118]. Therefore, we take this
agreement as a strong indication of the fact that the phase of a photonic bandgap mirror
at the reference plane in Fig. 2.12 may be approximated with either zero or 𝜋. In Sec. 2.4,
we suggest that zero is the right approximation.

2.4 Resonant modes
Equipped with the understandings of the previous sections, we now examine the spatial
dependence of the electric field of a resonant mode. This dependence is shown to agree
with the FDTD simulations of [118].

First of all, we assume that an integer number of periods of the Bloch modes 𝑒±
fits into the cavity length 𝐿 as denoted in Fig. 2.12. Secondly, we assume the mirrors to
have 1) frequency-independent reflection coefficients and 2) zero penetration length. In
practice, the field is evanescent within the mirrors, with a frequency-dependent decay
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constant [143]. However, here we are only interested in the field spatial dependence
within the cavity length 𝐿, which is enough to reproduce the main findings of [118].
We briefly comment in Sec. 2.5.2 on the impact of a non-zero penetration length. Under
these simplifying assumptions and by usage of Eq. (2.7), the electric field within the
cavity may be expressed as

𝐸(𝑧) = 𝑤(𝑧,𝐿) [ ̃𝐹 𝑒+𝑖𝑘𝑧𝑧𝑒+(𝑧) + ̃𝐵𝑒−𝑖𝑘𝑧𝑧𝑒−(𝑧)] (2.14)

Here, the window function 𝑤(𝑧,𝐿) accounts for the field confinement and is defined as

𝑤(𝑧,𝐿) = {
1, |𝑧| ≤ 𝐿/2
0, |𝑧| > 𝐿/2

(2.15)

By using Eq. (2.12), the boundary condition at the right mirror from Eq. (2.10a) can be
recast as

̃𝐵 = ̃𝐹 𝑒+𝑖𝑘𝑧𝐿𝑟𝑅 (2.16)

We denote the wavenumber 𝑘𝑧 of a resonant mode as 𝑘2 and insert the expansion of
Eq. (2.5) into Eq. (2.14), leading to

𝐸(𝑧) = 𝑤(𝑧,𝐿) [ ̃𝐹 (𝑏0𝑒+𝑖𝑘2𝑧 + 𝑏−1𝑒−𝑖 2𝜋
𝑎 𝑧𝑒+𝑖𝑘2𝑧

)

+ ̃𝐵 (𝑏∗
0𝑒−𝑖𝑘2𝑧 + 𝑏∗

−1𝑒+𝑖 2𝜋
𝑎 𝑧𝑒−𝑖𝑘2𝑧

)]
(2.17)

where ∗ denotes the complex conjugate. By defining the wavenumber

𝑘1 = 2𝜋
𝑎

− 𝑘2 (2.18)

and by usage of Eqs. (2.17) and (2.16), the electric field of a resonant mode can be recast
as

𝐸(𝑧) = ̃𝐹 𝑤(𝑧,𝐿) [(𝑏0𝑒+𝑖𝑘2𝑧 + 𝑏−1𝑒−𝑖𝑘1𝑧) + (𝑏∗
0𝑒−𝑖𝑘2𝑧 + 𝑏∗

−1𝑒+𝑖𝑘1𝑧) 𝑟𝑅𝑒+𝑖𝑘2𝐿] (2.19)

while the resonance condition from Eq. (2.13) provides

𝑘2𝐿 = (𝑚 + 𝑁) 𝜋 (2.20)

with 𝑁 being the number of unit cells. We note that with our choice of the reference
planes for the cavity length 𝐿 (see Fig. 2.12), an LN cavity consists of 𝑁 unit cells.

2.4.1 LN cavity with N odd
We start by assuming that 𝑁 is odd. In this case, one finds from Eq. (2.20)

𝑒+𝑖𝑘2𝐿 = {
+ 1, for 𝑚 odd
− 1, for 𝑚 even

(2.21)
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Figure 2.13: (a) LN cavity with 𝑁 = 15 and (b) spatial dependence in arbitrary units
of the fundamental mode. The mode is shown between the reference planes delimiting
the cavity length 𝐿 in (a).

Figure 2.14: Spatial dependence in arbitrary units of the fundamental mode in an LN
cavity with 15 unit cells. The figure is reproduced from [118]. According to the refer-
ence system used therein, the field component is the lateral one.

We assume the right mirror reflection coefficient 𝑟𝑅 to have unitary magnitude, which
is a reasonable approximation for photonic bandgap mirrors. Concerning the phase, we
take it to be equal to zero. We discuss in Sec. 2.4.3 the implications of a phase equal to
𝜋.
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Since 𝑁 is odd, the centre of the cavity at 𝑧 = 0 is aligned with a maximum in the
magnitude of the Blochmode 𝑒+(𝑧). In this case, one finds the spatial harmonic 𝑏−1 to be
real and positive. The spatial average 𝑏0 is also found to be real and positive irrespective
of 𝑁 being either odd or even. In light of these considerations, from Eq. (2.19) one finds

𝐸(𝑧) =
{

2 ̃𝐹 𝑤(𝑧,𝐿) [|𝑏0| cos(𝑘2𝑧) + |𝑏−1| cos(𝑘1𝑧)] , for 𝑚 odd

2𝑖 ̃𝐹 𝑤(𝑧,𝐿) [|𝑏0| sin(𝑘2𝑧) − |𝑏−1| sin(𝑘1𝑧)] , for 𝑚 even
(2.22)

The expressions are consistent with those found in [118] through fitting with FDTD
simulations. In particular, 𝐸(𝑧) is even (odd) with respect to the centre of the cavity if
the order 𝑚 of the resonant mode is odd (even).

As an example, Fig. 2.13 shows (a) an LN cavity with 𝑁 = 15 and (b) the spatial
dependence in arbitrary units of 𝐸(𝑧) for the fundamental mode (i.e. with 𝑚 = 1).
The field is simply computed through Eqs. (2.22) and thus only shown between the
reference planes delimiting the cavity length 𝐿, where the equation applies. For the
sake of comparison, we also include Fig. 2.14, which is reproduced from [118]. It shows
the lateral component of the electric field in an LN cavity with 15 unit cells, obtained
therein through FDTD simulations.

2.4.2 LN cavity with N even

Figure 2.15: (a) LN cavity with 𝑁 = 16 and (b) spatial dependence in arbitrary units
of the fundamental mode. The mode is shown between the reference planes delimiting
the cavity length 𝐿 in (a).
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We now assume that 𝑁 is even. In this case, one finds from Eq. (2.20)

𝑒+𝑖𝑘2𝐿 = {
− 1, for 𝑚 odd
+ 1, for 𝑚 even

(2.23)

Similarly to Sec. 2.4.1, the right mirror reflection coefficient is assumed to be unitary.
Since 𝑁 is even, the centre of the cavity at 𝑧 = 0 is aligned with a minimum in the

magnitude of the Bloch mode 𝑒+(𝑧). In this case, the spatial harmonic 𝑏−1 is found to
be real and negative. Therefore, from Eq. (2.19) one finds

𝐸(𝑧) =
{

2𝑖 ̃𝐹 𝑤(𝑧,𝐿) [|𝑏0| sin(𝑘2𝑧) + |𝑏−1| sin(𝑘1𝑧)] , for 𝑚 odd

2 ̃𝐹 𝑤(𝑧,𝐿) [|𝑏0| cos(𝑘2𝑧) − |𝑏−1| cos(𝑘1𝑧)] , for 𝑚 even
(2.24)

which are consistent with [118]. Specifically, 𝐸(𝑧) is odd (even) with respect to the
centre of the cavity if the order 𝑚 of the resonant mode is odd (even).

As an example, Fig. 2.13 shows (a) an LN cavity with 𝑁 = 16 and (b) the spatial
dependence in arbitrary units of 𝐸(𝑧) for the fundamental mode (i.e. with 𝑚 = 1). The
field is simply computed through Eqs. (2.24).

2.4.3 Phase of photonic bandgap mirrors
As anticipated in relation to Eq. (2.13) in Sec. 2.3, the phase of a photonic bandgap mir-
ror at the reference plane in Fig. 2.12 can be considered to be either zero or 𝜋 to good
approximation. In Sec. 2.4.1 and Sec. 2.4.2, we have assumed this phase to be zero and
shown that the resulting spatial dependence of the 𝑚-th resonant mode in an LN cavity
is consistent with that found in [118].

Assuming the phase of 𝑟𝑅 to be 𝜋 would invert the parity of the mode with respect
to the centre of the cavity. In this case, the parity would be inconsistent with the FDTD
simulations of [118]. Specifically, for 𝑁 being odd, the mode would be odd (even) if 𝑚
is odd (even). Similarly, for 𝑁 being even, the mode would be even (odd) if 𝑚 is odd
(even). We view this result as a strong hint that the phase of a photonic bandgap mirror
at the reference plane in Fig. 2.12 is indeed zero to a good approximation under the
assumptions of our modelling framework.

2.5 Fundamental mode
In this section, we focus on the fundamental resonantmode and examine its distribution
in the reciprocal space (simply called 𝑘-space in the following), that is the spatial Fourier
transform. On this basis, we discuss how the radiation loss scales with the cavity length.
The same analysis can be easily applied to higher-order modes.
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2.5 – Fundamental mode

2.5.1 Spatial dependence
The fundamental resonant mode is that with the lowest frequency, that is with 𝑚 = 1.
From Eqs. (2.22) and (2.24), the spatial dependence reads

𝐸(𝑧) =
{

2 ̃𝐹 𝑤(𝑧,𝐿) [|𝑏0| cos(𝑘2𝑧) + |𝑏−1| cos(𝑘1𝑧)] , for 𝑁 odd

2𝑖 ̃𝐹 𝑤(𝑧,𝐿) [|𝑏0| sin(𝑘2𝑧) + |𝑏−1| sin(𝑘1𝑧)] , for 𝑁 even
(2.25)

It is clear from Eq. (2.25) that 𝐸(𝑧) results from the interference of two pairs of plane

Figure 2.16: Fundamental resonant mode. (left) Normalized wavevector 𝑘2. (right)
Magnitude of the ratio between the spatial harmonic 𝑏−1 and the spatial average 𝑏0.

waves, withwavevectors±𝑘1 and±𝑘2. The amplitude of the planewaveswithwavevec-
tor ±𝑘2 (±𝑘1) is the magnitude of the spatial average 𝑏0 (the spatial harmonic 𝑏−1).
Therefore, the ratio |𝑏−1/𝑏0| represents the relative strength of one pair of plane waves
as compared to the other. As the number of unit cells is varied, the resonance fre-
quency changes and the ratio |𝑏−1/𝑏0| adjusts itself accordingly. This is emphasized by
Fig. (2.16), which displays 𝑘2 (left) and |𝑏−1/𝑏0| (right) versus the number of unit cells.

From Eqs. (2.13) and (2.18), the wavevectors 𝑘1 and 𝑘2 read

𝑘1 = 𝜋/𝑎 − 𝜋/𝐿 (2.26)
𝑘2 = 𝜋/𝑎 + 𝜋/𝐿 (2.27)

As 𝐿 increases, both 𝑘1 and 𝑘2 move towards the band edge. Correspondingly, as out-
lined in Sec. 2.2.2, |𝑏−1| tends to |𝑏0| and the fundamental mode gradually turns into
DFB-like according to the definition proposed in [118]. This definition stems from the
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fact that the mode distribution in a DFB laser is determined by two pairs of wavevectors
[23]. On the contrary, the shorter the cavity is, the more a single pair of plane waves
(that with wavevectors ±𝑘2) dominates over the other. Therefore, the fundamental
mode turns into FP-like. Indeed, in a Fabry-Perot (FP) laser the mode distribution is
determined by a single pair of plane waves.

Figure 2.17: Ratio corresponding to |𝑏−1/𝑏0| computed in [118] through fitting with
FDTD simulations of the fundamental resonant mode. Reproduced from [118].

As a comparison, Fig. 2.17 shows the ratio corresponding to |𝑏−1/𝑏0| computed in
[118] for the fundamental resonant mode. The ratio is obtained therein through fitting
with FDTD simulations. It is also reported for cavities shorter than 5 unit cells. How-
ever, in these cases, the cavity resonant frequency does not lie on the dispersion relation
of the associated line-defect waveguide [118]. For this reason, from now on we restrict
our analysis to cavities longer than 5 unit cells. By comparing Fig. 2.16 (right axis) with
Fig. 2.17 for cavities longer than 5 unit cells, good qualitative agreement is found. This
outlines that the analysis carried out in this chapter can capture the main findings of
[118]. We emphasize that our approach is not obviously intended as a substitute for
FDTD simulations, but rather as an effective tool for elucidating the essential physics
of the field distribution in LN cavities and possibly guiding systematic, more rigorous
simulations.
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2.5 – Fundamental mode

Figure 2.18: Components of the 𝑘-space distribution fromEq. (2.28). The blue (red) solid
line is for the sinc function centred at +𝑘1 (+𝑘2). The blue (red) dotted line corresponds
to the sinc function centred at −𝑘1 (−𝑘2). The black solid line is the total spectrum. The
black dashed line delimits the light cone. The cavity consists of nine unit cells.

2.5.2 𝑘-space distribution
Having shed light on the spatial dependence of the fundamental mode, we now move
to its 𝑘-space distribution. From Eq. (2.25), the spatial Fourier transform of 𝐸(𝑧) reads

𝐸(𝜁) = ̃𝐹 [|𝑏0|𝑊 (𝜁 − 𝑘2) + |𝑏0|𝑊 (𝜁 + 𝑘2)
+ |𝑏−1|𝑊 (𝜁 − 𝑘1) + |𝑏−1|𝑊 (𝜁 + 𝑘1)] , for 𝑁 odd

(2.28)

𝐸(𝜁) = ̃𝐹 [|𝑏0|𝑊 (𝜁 − 𝑘2) − |𝑏0|𝑊 (𝜁 + 𝑘2)
+ |𝑏−1|𝑊 (𝜁 − 𝑘1) − |𝑏−1|𝑊 (𝜁 + 𝑘1)] , for 𝑁 even

(2.29)

where 𝜁 is the spatial angular frequency and 𝑊 (𝜁) the spatial Fourier transform of
𝑤(𝑧,𝐿)

𝑊 (𝜁) = 𝐿
sin (𝜁𝐿/2)

𝜁𝐿/2
= 𝐿sinc(

𝜁𝐿
2𝜋 ) (2.30)

As seen in Sec. 2.1.2, for a given cavity length, the so-called light cone or leaky region is
defined as [3]

|𝜁| < (
�̄�
𝑐 ) 𝑛clad (2.31)

where 𝑛clad is the cladding refractive index (in our case, 𝑛clad = 1) and �̄� is the angular
frequency of the resonant mode. The spatial frequency components of the field outside
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the light cone are confined to the slab in the vertical direction by total internal reflec-
tion. On the other hand, the frequency components within the light cone couple to the
continuum of radiative modes. We select as an example a cavity with nine unit cells
and plot in Fig. 2.18 the various components of the mode spectrum from Eq. (2.28). The
blue (red) solid line is for the sinc function centred at +𝑘1 (+𝑘2), while the blue (red)
dotted line corresponds to that centred at −𝑘1 (−𝑘2). The total spectrum is the black
line. Only the positive frequencies are shown due to the symmetry of the spectrum.

Figure 2.19: Light cone power fraction computed by Eq. (2.32) as a function of the size
of the cavity.

We define the light cone power fraction as the relative fraction of the electric field
intensity within the light cone

𝜂 =
∫+𝜁0

−𝜁0
|𝐸(𝜁)|2𝑑𝜁

∫+∞
−∞ |𝐸(𝜁)|2𝑑𝜁

(2.32)

where 𝜁0 = �̄�/𝑐 is the upper limit of the light cone for a given cavity length. By com-
puting the light cone power fraction as a function of the cavity length, one obtains an
approximatemeasure of the scaling of the radiation loss with the size of the cavity [178].
The absolute radiation loss rate and, therefore, the Q-factor, may be quantified through
more sophisticated approaches [145], but this falls outside the scope of this thesis. The
result is illustrated in Fig. 2.19. The light cone power fraction features some local max-
ima. Overall, it drastically diminishes as the size of the cavity is increased. Depending
on the magnitude of the ratio 𝑏−1/𝑏0 between the Bloch modes spatial harmonics, the
various components of the field 𝑘-space distribution (see Eqs. (2.28) and (2.29)) may de-
structively interfere with more or less effectiveness within the light cone. This is the
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mechanism behind the local maxima in Fig. 2.19, which we analyze with greater detail
in Sec. 2.5.3.

Figure 2.20: Squared magnitude of the electric field 𝑘-space distribution in dB normal-
ized to its maximum. The cavity consists of (a) 5, (b) 8, (c) 11, (d) 14, (e) 17 and (f) 20
unit cells. The dashed, vertical line indicates the upper limit of the light cone for each
cavity.

The general reduction of the light cone power fraction with increasing cavity length
is due to the 𝑘-space distribution of the electric field being shifted outside the light
cone. This is emphasized by Fig. 2.20, depicting |𝐸(𝜁)|2 in dB normalized to its max-
imum value, with the number of the cavity unit cells equal to (a) 5, (b) 8, (c) 11, (d)
14, (e) 17 and (f) 20. The spectrum is computed through Eqs. (2.28) and (2.29) and only
shown for positive frequencies because of its symmetry. The dashed, vertical line de-
notes the upper limit of the light cone for each cavity. As the cavity becomes longer,
1) 𝑘1 approaches to 𝜋/𝑎 in compliance with Eq. (2.26) and 2) the width of each of the
sinc functions in Eqs. (2.28) and (2.29) is reduced, owing to the well-known uncertainty
principle of the Fourier transform. As a result, the field spectrum departs from the light
cone and the light cone power fraction generally decreases.

The dependence of the light cone power fraction on the cavity size reflects that re-
ported in [178], which was obtained through a different approach (briefly summarized
in the end of Sec. 2.1.3). For the sake of comparison, we include Fig. 2.21, which is re-
produced from [178]. The blue line is the light cone power fraction for the fundamental
mode in the absence of disorder, which is the case we are examining. The difference
in the absolute values as compared to Fig. 2.19 may be caused by discrepancies in the
Bloch modes spatial profiles, as we further speculate in Sec. 2.5.4.

39



Passive Photonic Crystal Cavities

Figure 2.21: Light cone power fraction as a function of the size of the cavity for the
fundamental modeM1 and the second-order modeM2. The blue line is without disorder
related to fabrication imperfections. Reproduced from [178].

We conclude this section with a few comments on the impact of the field penetra-
tion length within the mirrors, which we have neglected. A smoother decay of the
window function 𝑤(𝑧,𝐿) in Eq. (2.25) at the edges of the cavity would reduce the high-
frequency components of its Fourier transform 𝑊 (𝜁). Ultimately, for a given cavity
length, this may limit the fraction of the electric field wavevector components within
the light cone in compliance to Eqs. (2.28) and (2.29). However, one should also consider
that the destructive interference among the various replicas of 𝑊 (𝜁) also plays a role
in determining the light cone power fraction, as discussed in Sec. 2.5.3. Therefore, sys-
tematic investigations should be carried out to assess the impact of the field penetration
length, which might be the subject of future work.

2.5.3 Local maxima in the light cone power fraction
In the following, we are interested in unveiling the origin of the localmaxima in Fig. 2.19.
These maxima are also found in [178], as evidenced by Fig. 2.21 (blue line).

For this purpose, we force the ratio |𝑏−1/𝑏0| to a fixed value and compute the re-
sulting light cone power fraction. The results are shown in Fig. 2.22, where the ratio is
set to 1 (blue), 0.6 (red) and 0.4 (yellow). For the sake of comparison, the black line is
the light cone power fraction in Fig. 2.19, for which the ratio |𝑏−1/𝑏0| is that reported
in Fig. 2.16. We refer to the black line as to the intrinsic light cone power fraction. If
|𝑏−1/𝑏0| is fixed to unity, the light cone power fraction is larger than the intrinsic one,
but it still overall decreases with increasing cavity length. On the other hand, smaller
values of |𝑏−1/𝑏0| appear to strongly modify the dependence of the light cone power
fraction on the size of the cavity. In these cases, the light cone power fraction decreases
(increases) as the cavity becomes longer for short (long) cavities. Therefore, the figure
outlines the key role played by the Bloch modes spatial harmonics in the scaling of the
light cone power fraction (and so the radiation loss) with the size of the cavity.

For a deeper understanding of the results in Fig. 2.22, a closer inspection is required
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Figure 2.22: Light cone power fraction computed by Eq. (2.32) as a function of the size
of the cavity. Each color denotes a different value of the ratio |𝑏−1/𝑏0|, which is forced
to 1 (blue), 0.6 (red) and 0.4 (yellow). The black line is the light cone power fraction in
Fig. 2.19, for which the ratio |𝑏−1/𝑏0| is the intrinsic one, reported in Fig. 2.16.

Figure 2.23: Definition of 𝑝-th and 𝑛-th order side lobes of 𝑊 (𝜁) from Eq. (2.30). The 𝑝-
th order (𝑛-th order) side lobes are numbered in order of increasingly positive (negative)
detuning from the peak. As an example, the cavity length is set to nine unit cells.
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of the various components of the mode 𝑘-space distribution in Eqs. (2.28) and (2.29). To
facilitate the analysis, we introduce some definitions. Let us consider the sinc function
𝑊 (𝜁) from Eq. (2.30). In the following, we denote as 𝑝-th order (𝑛-th order) side lobes
those lying at higher (lower) frequencies with respect to the peak. This is illustrated in
Fig. 2.23. The letter 𝑝 (𝑛) reflects the positive (negative) detuning of a given side lobe
from the peak.

Armedwith these definitions, we recall Fig. 2.18. This figure highlights a key feature
of the 𝑘-space distribution, that is the destructive interference between the side lobes
of the sinc functions denoted in blue and red. As noted in [118], such interference
stems from 1) the spectral positions of the zeroes of a sinc function and 2) the detuning
between +𝑘1 and +𝑘2 (and, similarly, −𝑘1 and −𝑘2). Indeed, the zeroes of the pair of
sinc functions centred at +𝑘1 and +𝑘2 are located at 𝜁𝑎/(2𝜋) = 𝑘𝑖𝑎/(2𝜋) + 𝑛/𝑁, with
𝑖 = 1, 2 and 𝑛 = ±1, ±2, etc.. On the other hand, the detuning (𝑘2 − 𝑘1)𝑎/(2𝜋) is
equal to 1/𝑁 from Eqs. (2.26) and (2.27). This guarantees that the zeroes of the two sinc
functions are aligned such that the interfering side lobes have opposite sign. A similar
reasoning applies to the other pair of sinc functions.

Figure 2.24: Fourier transform of the electric field computed by Eq. (2.28) for a cavity
with nine unit cells. Each color denotes a different value of the ratio |𝑏−1/𝑏0|, which is
forced to 1 (blue), 0.6 (red) and 0.4 (yellow). The black line coincides with that shown
in Fig. 2.18 and corresponds to the intrinsic value of the ratio.

However, as compared to [118], here we emphasize another key feature. For each
pair of interfering side lobes, one should consider their order, as defined in Fig. 2.23.
Fig. 2.24 shows the total spectrum 𝐸(𝜁), with the cavity length being nine unit cells.
Each colour indicates a different value of the ratio |𝑏−1/𝑏0|, which is set to 1 (blue),
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0.6 (red) and 0.4 (yellow). The black line coincides with that shown in Fig. 2.18 and
corresponds to the intrinsic value of the ratio. Since the ratio |𝑏−1/𝑏0| is not larger than
unity, the side lobes of 𝐸(𝜁), as the ratio is increased, have smaller and smaller intensity
(in absolute value) at frequencies outside the light cone. In fact, at these frequencies
a side lobe of the sinc function centred at +𝑘2, with order 𝑝, destructively interferes
with a side lobe of the sinc function centred at +𝑘1, with order (𝑝 + 1) (see Fig. 2.18).
The situation is different at frequencies close to or within the light cone. Here, 𝐸(𝜁)
features side lobes whose absolute intensity does not monotonically vary with the ratio
|𝑏−1/𝑏0|, as evidenced by Fig. 2.24. In fact, a side lobe of the sinc function centred at
+𝑘2, with order (𝑛 − 1), destructively interferes with a side lobe of the sinc function
centred at +𝑘1, with order 𝑛. The former sinc has a peak amplitude equal to |𝑏0|, while
the peak amplitude of the latter is |𝑏−1|, with |𝑏0| being larger than |𝑏−1|. However, for
a sinc function of given peak amplitude, a side lobe of order 𝑛 has a larger intensity (in
absolute value) than one with order (𝑛 − 1) (see Fig. 2.23). As a result, depending on the
ratio |𝑏−1/𝑏0|, the destructive interference between the side lobes within the light cone
can be more or less effective. For a given cavity length, an optimum value of this ratio
exists, minimizing the light cone power fraction (see Fig. 2.22).

On the other hand, as the cavity length is increased, the total spectrum overall tends
to depart from the light cone, as outlined in Sec. 2.5.2 and exemplified by Fig. 2.20. This
shift tends to reduce the light cone power fraction. Therefore, the local maxima in
Fig. 2.19 stem from the trade-off between this shift and the effectiveness, at a given
cavity length, of the side lobe destructive interference within the light cone. We also
note that the local maxima are more prominent for short cavities (see Fig. 2.19). This is
due to the fact that in short cavities a given variation in the size of the cavity results in
a larger variation of the ratio |𝑏−1/𝑏0| (see Fig. 2.16).

It should be also emphasized that the light cone power fraction for |𝑏−1/𝑏0| = 1
(see Fig. 2.22) closely resembles that reported in [178] without disorder (see Fig. 2.21,
blue line). This matching points out a possible reason for the difference in the absolute
values between our result in Fig. 2.19 and the corresponding one in [178]. The latter
was indeed obtained through an effective index approach, which might have neglected
the frequency dependence of the Bloch modes spatial profiles.

2.5.4 Disorder-induced radiation loss: a possible interpretation
In light of Sec. 2.5.3, in the following we briefly speculate on a possible, simple interpre-
tation of the impact of disorder in LN cavities. Essentially, we suggest that the optimum
cavity length minimizing the light cone power fraction of the fundamental mode as
found in [178] may stem from the trade-off of two factors. On the one hand, a disorder-
induced disruption of the side lobe destructive interference within the light cone. On
the other hand, the electric field 𝑘-space distribution being shifted outside the light cone
with increasing cavity length. In particular, we note that our results in Fig. 2.22 with a
forced value of the ratio |𝑏−1/𝑏0| (yellow and red line) somehow mirror that reported
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in [178] (see Fig. 2.21, red line) in the presence of disorder.
Two considerations are due. Firstly, as shown in [145], a given mode of the actual

structure (i.e. with disorder) originates from the coupling of the Bloch modes of the
ideal structure (i.e. without disorder) with different wavevectors and even belonging to
different bands. In light of this consideration, one might imagine that a given disorder
realization randomly distorts the spatial profiles of the Bloch modes 𝑒±(𝑧) and not just
the corresponding amplitudes 𝑐±(𝑧) (see Eq. (2.7)). As a result of this spatial distortion,
the 𝑘-space distribution of 𝑒±(𝑧) would be altered. In particular, a given disorder real-
ization might essentially translate into a random value of the ratio |𝑏−1/𝑏0|. Secondly,
it should be emphasized that results reported in Fig. 2.21 in the presence of disorder
are obtained from an ensemble average over a certain number of disorder realizations.
Therefore, one might view the red line in Fig. 2.21 as resulting from an ensemble aver-
age of Eq. (2.32), with a random value of the ratio |𝑏−1/𝑏0| being forced for each disorder
realization. As already evidenced in the end of Sec. 2.2.2, we note that, at least in one-
dimensional Bragg gratings, the ratio |𝑏−1/𝑏0| is directly linked to the grating coupling
coefficient and detuning of the operation frequency from the Bragg frequency [23].
Although these quantities are only defined for ideal (i.e. disorder-free) periodic struc-
tures, to first approximation one might simply view disorder as affecting the coupling
coefficient and/or detuning from the Bragg frequency. In fact, disorder locally adds or
removes dielectric. As a consequence, disorder would end up changing the value of the
ratio |𝑏−1/𝑏0| as compared to that of the ideal structure.

Figure 2.25: Fourier transform of the electric field computed by Eqs. (2.28) or (2.29) for
an LN cavity with 𝑁 equal to 10 (blue), 15 (red) and 20 (yellow). Each dashed, vertical
line delimits the light cone for a given 𝑁, with the same code of colours (the vertical
lines practically overlap). The ratio |𝑏−1/𝑏0| is forced to 0.6.

44



2.5 – Fundamental mode

To emphasize the impact of a given value of this ratio, we report in Fig. 2.25 the
spatial Fourier transform 𝐸(𝜁) of the fundamental resonant mode of an LN cavity, with
𝑁 equal to 10 (blue), 15 (red) and 20 (yellow). Depending on 𝑁, the spectrum is com-
puted by Eqs. (2.28) or (2.29). As an example, the ratio |𝑏−1/𝑏0| is forced to 0.6, which
minimizes the light cone power fraction for 𝑁 = 10 (see Fig. 2.22). Each dashed, verti-
cal line in Fig. 2.25 delimits the light cone for a given 𝑁, with the light cone boundary
computed through Eq. (2.31). For each 𝑁, the cavity resonance frequency determining
the light cone is that of the ideal (i.e. disorder-free) cavity. This is clearly an approxima-
tion, because in practice the resonance frequency is also influenced by disorder [145,
178]. Similarly, we assume for simplicity the wavenumbers 𝑘1 and 𝑘2 to be those of
the ideal structure and we compute them via Eqs. (2.26) and (2.27). In practice, they
might also vary due to disorder, thus changing the position of the various sinc func-
tions which make up the electric field 𝑘-space distribution (see Fig. 2.18). Under these
simplifying assumptions, the relative fraction of 𝐸(𝜁) within the light cone increases
as the cavity becomes longer, as evidenced by Fig. 2.25. This is caused by the disrup-
tion of the side lobe destructive interference, which we have thoroughly discussed in
Sec. 2.5.3. For 𝑁 ≥ 10, this disruption outweighs the benefit of the spectrum 𝐸(𝜁) being
shifted outside the light cone as 𝑁 increases. As a result, the light cone power fraction
monotonically increases with increasing 𝑁 for For 𝑁 ≥ 10 (see Fig. 2.22).

For the sake of completeness, we note that the disruption of the side lobe destructive
interference may only prevail for |𝑏−1/𝑏0| being smaller than unity. Indeed, by forcing
|𝑏−1/𝑏0| to values larger than unity, we have found the light cone power fraction de-
creasing overall with increasing cavity length (with a series of local maxima, similar
to the blue line in Fig. 2.22). Therefore, a key assumption here is that disorder should
lead to a large enough reduction in |𝑏−1/𝑏0|. In addition, it should be recalled that a re-
cent work [15] has investigated the impact of disorder in passive and active LN cavities
through FDTD simulations. Disorder has been modelled therein by randomly shifting
the centre of each hole. For active cavities, we refer to Sec. 4.4.1. In the case of passive
cavities, the Q-factor has been found to be marginally affected by disorder. Therefore,
the investigations on passive cavities carried out in [15] equally challenge the interpre-
tation discussed in the current section and that presented in [178]. This certainly calls
for further scrutiny. For instance, a possibility is that a specific type of disorder other
than that considered in [15] could result in a proper reduction of the ratio |𝑏−1/𝑏0|.

The simplified interpretation which we have discussed is obviously just presented
as an hypothesis. It should be assessed by systematic investigations, which are outside
the scope of this thesis, but might be the subject of future work. However, if found
to be correct, this picture would emphasize the key role of the side lobe destructive
interference in suppressing the light cone power fraction. In this case, disorder may be
viewed as disturbing this beneficial interference, leading to the increase of the radiation
loss beyond a certain cavity length.
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2.6 Conclusions
In summary, we have presented a transparent and efficient modelling framework for
analyzing the resonantmodes of passive LN cavities. These are photonic crystal cavities
with 𝑁 missing holes based on line-defect waveguides, as shown in Fig. 2.12.

In Sec. 2.2, we have discussed dispersion relation and Bloch modes of passive line-
defect photonic crystal waveguides. We compute them by the plane wave eigensolver
MIT-Photonic-Bands (MPB) [56]. In Sec. 2.4, we have derived simple analytical expres-
sions for the resonant modes, which agree with those reported in [118]. However, the
expressions reported therein are obtained by fitting with FDTD simulations. As com-
pared to [118], here we have shown that themodes spatial dependence naturally follows
from the expansion of the electric field in the two counter-propagating Bloch modes of
the waveguide on which the cavity is based.

In Sec. 2.5, we have focused on the fundamental resonant mode. Specifically, in
Sec. 2.5.1 we have clarified the physical meaning of the amplitudes of the two pairs of
plane waves which determine the mode distribution. The relative strength of these
plane waves corresponds to the ratio |𝑏−1/𝑏0| between the two dominant spatial har-
monics of the Bloch modes of the waveguide. As the cavity length is increased, the
resonance frequency moves towards the band edge and the ratio |𝑏−1/𝑏0| correspond-
ingly changes, as summarized by Fig. 2.16. As a result, the resonant mode turns from
FP-like into DFB-like, as outlined in [118]. Our analysis has directly traced back this
mode change to the frequency dependence of the Bloch modes spatial profiles, thus
elucidating the physics. We have then focused on the scaling of the light cone power
fraction with the size of the cavity. In Sec. 2.5.2, we have shown that the light cone
power fraction strongly diminishes as the size of the cavity is increased, as illustrated
by Fig. 2.19. This suggests a similar scaling for the radiation loss. On this regard, our
result reflects those obtained in [178] through a different approach.

The following subsections further elaborate on the key role played in this scaling
by the Bloch modes spatial harmonics. Sec. 2.5.4 reveals that the spatial and frequency
dependence of the Bloch modes influence the local maxima in the light cone power
fraction as a function of the cavity length. In particular, for proper values of the ra-
tio |𝑏−1/𝑏0|, the light cone power fraction decreases (increases) as the cavity becomes
longer for short (long) cavities, as shown in Fig. 2.22. At a given cavity length, the de-
gree of suppression of the electric field wavevector components within the light cone
depends on the effectiveness of the destructive interference among the sinc functions
which make up the field 𝑘-space distribution. This interference is directly controlled
by the ratio |𝑏−1/𝑏0|, as illustrated in Fig. 2.24. The local maxima stem from the trade-
off between the effectiveness of this interference and the field spectrum being shifted
outside the light cone as the cavity length is increased.

In light of these considerations, in Sec. 2.5.4 we have speculated on the impact of
disorder due to unavoidable fabrication imperfections. By comparing the results of
Fig. 2.22 with those reported in [178] in the presence of disorder, we have advanced an
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hypothesis. According to our hypothesis, disorder may be viewed as directly affecting
the Bloch modes spatial profiles, thus changing the ratio |𝑏−1/𝑏0|. Specifically, a given
disorder realizationmay be viewed as resulting in a random value of |𝑏−1/𝑏0|. If |𝑏−1/𝑏0|
is smaller than unity, the light cone power fraction may increase with the size of the
cavity beyond a certain cavity length, as evidenced by Fig. 2.22 and Fig. 2.25. Therefore,
disorder may be viewed as disrupting the destructive interference within the light cone
among the sinc functions which make up the field 𝑘-space distribution.

Finally, we note that the method we have presented in this chapter should not ob-
viously be intended as a full substitute for more rigorous approaches, such as FDTD
simulations. It should be rather viewed as a picklock to clarify the essential physics of
the field distribution in passive LN cavities and then guide systematic, more rigorous
investigations. In particular, we outline the advantage of our method in terms of ef-
ficiency as compared to FDTD simulations. Indeed, a systematic investigation on the
optimization of the Q-factor can be performed as a function of the cavity length at the
cost of fully solving Maxwell’s equations only once (that is, on the supercell of the
line-defect waveguide). On the other hand, the FDTD method requires to fully solve
Maxwell’s equations for each cavity length.
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Chapter 3

Active Photonic Crystal Waveguides

In this chapter, we deal with the impact of material gain on the slow-light propagation
in active photonic crystal waveguides. In Sec. 3.1, we introduce the research context of
slow-light, with a focus on photonic crystal waveguides. Sec. 3.2 and Sec. 3.3 are de-
voted to a thorough discussion of the modelling framework which we have employed,
with detailed mathematical derivations being left to AppendixA and Appendix B. In
Sec. 3.4 we cover the impact of material gain and refractive index perturbations on the
waveguide dispersion relation, while in Sec. 3.5 we focus on the impact on optical prop-
agation and power flow. Detailed mathematical derivations regarding this section are
provided in Appendix C. In Sec. 3.6, we discuss the use of slow-light in compact semi-
conductor optical amplifiers, with an emphasis on the impact of the linewidth enhance-
ment factor. In Sec. 3.7, we briefly suggest a possible, efficient strategy to model the
impact of fabrication imperfections. Finally, conclusions are drawn in Sec. 3.8.

3.1 Introduction and motivation
The group velocity 𝑣𝑔 is the speed at which the time-domain envelope of a pulse prop-
agates in a dispersive medium with refractive 𝑛. It is given by 𝑣𝑔 = 𝑐/𝑛𝑔, where 𝑐 is the
vacuum light speed and 𝑛𝑔 the group index defined by [140]

𝑛𝑔 = 𝑛(𝜔0) + 𝜔0
𝑑𝑛
𝑑𝜔|𝜔0

(3.1)

Here, 𝜔0 is the central frequency of the pulse and higher-order dispersion terms are
ignored. Eq. (3.1) reveals that the group velocity can be controlled via the refractive
index dispersion. If one ensures 𝑣𝑔 ≪ 𝑐, then slow-light is accomplished and light
pulses are significantly delayed.

The refractive index dispersion can be of two types. The first one is material dis-
persion, which may be exploited in many fundamentally different ways [13]. Among
these, we cite electromagnetically induced transparency (EIT) [28], usually in a gas of

49



Active Photonic Crystal Waveguides

atoms at cryogenic temperatures [45]. This is a quantum interference phenomenon by
which a medium can be made transparent in a narrow frequency window via proper
photo-excitation. In this window, strong material dispersion leading to slow-light con-
currently arises. However, the feasibility of this approach in on-chip room-temperature
applications is extremely challenging. Furthermore, due to the narrow frequency win-
dow, only slowly-varying pulses can be delayed without distortion.

Figure 3.1: (a, c) Scanning electronmicroscope image and (b, d) schematic band diagram
and group index spectrum for (a, b) a silicon photonic-wire waveguide and (c, d) a
photonic crystal waveguide. Reproduced from [9].

The other type of dispersion is structural dispersion, that is dispersion of the effec-
tive refractive index of a guidedmode within a waveguide. This is the type of dispersion
on which we focus in the following. Structural dispersion is usually negligible in con-
ventional dielectric waveguides, where the group index does not deviate significantly
from the effective refractive index. In these waveguides, 𝑛𝑔 is usually around 3.5. How-
ever, by increasing the refractive index contrast between core and cladding, the group
index may be also increased, as in silicon photonic-wire waveguides [134]. These are
ridge-type waveguides with a silicon core and a cladding made of air or silicon dioxide,
as shown by the scanning electron microscope image in Fig. 3.1(a). A schematic repre-
sentation of the band diagram and group index spectrum is reported in Fig. 3.1(b). In
this case, 𝑛𝑔 can be as high as 5 or 6. A much larger group index can be achieved in
photonic crystal waveguides, which we have already introduced in Sec. 2.1. Fig. 3.1(c)
shows an electron microscope image of such a waveguide, while Fig. 3.1(d) provides a
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schematic representation of the band diagram and group index spectrum. Close to the
band edge, the group index ideally diverges to infinity.

There is a number of motivations to pursue slow-light propagation. A first moti-
vation is realizing optical buffers, which can delay and temporarily store information
packets in the optical domain directly. This strategy is convenient in terms of energy
efficiency and bandwidth because avoids prior conversion to the electrical domain [66].
As compared to current solutions, which are based on long optical fibres, optical buffers
exploiting slow-light propagation may be much more compact and thus suited to pho-
tonic integrated circuits. A second motivation is that the light-matter interaction is

Figure 3.2: Illustration of spatial compression and intensity increase of a pulse after
entering the slow light regime under the assumption of negligible group velocity dis-
persion. Reproduced from [65].

enhanced by slow-light. Linear effects, such as gain and thermo- or electro-optic tun-
ing of refractive index, are enhanced in direct proportion to 𝑛𝑔. Nonlinear effects, such
as optical Kerr effect, scale like 𝑛2

𝑔 [65]. Essentially, these enhancements stem from
two factors. Firstly, the slower propagation of light makes the interaction time longer.
Secondly, if the group velocity dispersion is negligible, a light pulse undergoes spa-
tial compression when entering the slow-light regime from a conventional waveguide.
This is illustrated by Fig. 3.2, which is reproduced from [65]. The spatial compression
occurs because the front of the pulse enters the slow-light regime first as compared to
the back. If no energy is lost at the interface, then the pulse intensity increases so as to
accommodate the same amount of energy in a smaller volume. As a result of the en-
hanced light-matter interaction, devices such as switches, amplifiers or lasers become
more energy-efficient and potentially more compact, with clear benefits in terms of
integration density.

However, slow-light in photonic crystal waveguides is usually accompanied by strong
group velocity dispersion, which distorts optical pulses. Two main strategies exist to
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avoid pulse distortion. The first one is using dispersion-compensated slow-light de-
vices, which essentially combine two photonic crystal waveguideswith opposite disper-
sion characteristics [98, 125]. The second strategy relies on the so-called zero-dispersion
slow-light devices. Photonic crystal waveguides can be modified such that the disper-
sion relation becomes a straight band over a certain frequency range. This dispersion
engineering can be accomplished, for instance, by tailoring the diameter of the holes ad-
jacent to the waveguide core [34, 68]. Coupled-resonators optical waveguides (CROWs)
[182] are other notable zero-dispersion slow-light devices which are not necessarily
based on photonic crystals. A CROW is a cascade of coupled high-Q resonators. As a
result of the coupling between adjacent resonators, a transmission band arises where
propagation of guided modes is allowed. At the centre of the transmission band, the
group velocity dispersion is zero. CROWS based on different types of resonators have
been demonstrated, such as microrings on silicon [176] or photonic crystal heterostruc-
ture cavities [114]. For an excellent review of CROWs, we refer to [99]. Thorough
reviews on the use of slow-light in photonic crystals can be found in [65, 9, 113].

3.1.1 Slow-light gain enhancement

Figure 3.3: Measured net gain coefficient of active photonic crystal waveguides with
varying lattice constant 𝑎. Reproduced from [29].

As already mentioned, the gain coefficient per unit length is enhanced by slow-light
propagation. An application of this phenomenon to laserswas envisioned in [25], where
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a so-called photonic band edge laser was proposed. Essentially, they suggested to re-
place the uniform gain medium in a vertical-cavity surface-emitting laser (VCSEL) with
an active medium consisting of alternating gain layers having large refractive index
contrast. However, the slow-light enhancement of the gain coefficient was originally
pointed out in [174] around 20 years earlier, within the context of DFB lasers. As shown
in [174], the gain per unit length of a guided Bloch mode in a periodic medium is en-
hanced, under the same pumping conditions, as compared to that of a guided mode in
a uniform medium. The enhancement factor is given by the ratio between the phase
velocity in the uniform medium and the group velocity in the periodic medium. This
factor is currently known as slow-down factor in the context of photonic crystals. Intu-
itively, the gain enhancement results from a longer effective length due to the multiple
back-and-forth scattering. Importantly, a fundamental question is also addressed in
[174] on the impact of slow-light on the gain per unit time, that is 𝑃 −1(𝑑𝑃 /𝑑𝑡), with
𝑃 being the optical power. The gain per unit time is unaffected by slow-light, as later
stated in the context of photonic crystals [12, 178] and nanolasers [105]. It should be
also emphasized that a large group index does not necessarily translate into an en-
hancement of gain. Indeed, the evolution with frequency of the shape of the guided
mode must be also taken into account. For instance, as shown in [103], an increase of
the group index in translationally invariant, weakly-guiding optical fibres is perfectly
counterbalanced by a decrease of the optical confinement factor. As a result, in this
case the gain per unit length remains unaffected by slow-light.

Recently, the slow-light enhancement of gain has been experimentally verified in
active photonic crystal waveguides [29]. This is summarized by Fig. 3.3, which is repro-
duced from [29]. As the lattice constant 𝑎 is increased, the band edge is red-shifted and
the spectral region of gain enhancement correspondingly moves. The gain decrease
at longer wavelengths is ascribed to various phenomena, such as carrier depletion due
to amplified spontaneous emission, disorder-induced scattering loss and gain-induced
limitation of the slow-down factor. The latter is addressed in [41]. Specifically, it is
shown therein that the inclusion of gain significantly alters the dispersion relation of
periodic media (such as CROWs, Bragg stacks and photonic crystal waveguides) in the
slow-light region, resulting in a reduction and spectral broadening of the group index.
This is exemplified by Fig. 3.4, which is reproduced from [41]. However, it should be
emphasized that the analysis of [41] applies to Blochmodes of active periodic structures
which are assumed to be infinitely long. In practice, the impact of a back-reflected Bloch
mode due to the finite device length must be taken into account, as pointed out in [19].
This effect is thoroughly discussed in the following sections.

3.1.2 Disorder-induced loss
A critical limitation to the use of slow-light is represented by scattering losses induced
by unavoidable fabrication imperfections, which has received a significant attention
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Figure 3.4: Group index of an active photonic crystal waveguide. 𝑛′′ is the refractive
index imaginary part, being proportional to the material gain. Reproduced from [41].

from the research community. For a comprehensive review of this issue in conven-
tional waveguides, photonic crystal waveguides and CROWs, including both theory
and experiments, we refer to [93]. In the following, we briefly recall the salient points
regarding photonic crystal waveguides.

Fabrication imperfections which inevitably affect real devices are generally indi-
cated as disorder. In photonic crystal waveguides, they can be, for instance, roughness
at the hole boundary or displacement of holes from the position of the ideal periodic
lattice, on the order of few nanometers. Disorder induces two types of loss, as iden-
tified in [50]. The first one consists in radiation loss, whereby a fraction of power of
the guided mode is scattered out-of-plane and coupled to radiation modes. The second
type is backscattering loss. Essentially, a guided mode propagating in a given direction
is partly reflected by the waveguide imperfections, thus losing power due to coupling
with guided, counter-propagating modes.

In [50], theoretical expressions for the radiation and backscattering loss are derived.
These expressions provide incoherent ensemble average loss coefficients per unit cell.
They predict the average loss that one may expect when averaging the transmission
spectra of many nominally identical structures consisting of a single unit cell. In light
of this initial study, an approximate scaling rule for disorder-induced losses has been
proposed. According to this, radiation and backscattering loss scale, respectively, in
a linear and quadratic fashion with the group index 𝑛𝑔 of the ideal (i.e. disorder-free)
structure [117], if the group index is sufficiently low.

The main limitations to this scaling rule are two. Firstly, it ignores the evolution
of the mode shape with group index, which may result in underestimating the actual
loss [124]. Experiments have been carried out on dispersion-engineered waveguides,
modified such that they exhibit a flat group index in a given frequency range. In spite of
the constant group index, backscattering loss has been found to sharply increase [93],
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outlining the inconsitency with the approximate scaling rule. Intuitively, this feature
stems from the weaker lateral confinement of the Bloch modes in the slow-light region.
As a result, the field more strongly interacts with the holes adjacent to the line-defect,
thus experiencing a larger backscattering loss.

Figure 3.5: Real space images of the infrared field radiated at the top surface of a pho-
tonic crystal waveguide at different wavelengths. Reproduced from [72].

The second limitation is that the scaling rule, as already mentioned, is based on
an incoherent ensemble average. Several experiments have revealed that transmission
spectra of photonic crystal waveguides exhibit strong oscillations close to the band
edge. As pointed out in [91], these oscillations are not due to spurious reflections at
the waveguide termination facets, but intrinsically related to disorder. They cannot
be explained by incoherent scattering models [50, 124], which neglect the multiple-
scattering occurring deep in the slow-light region. In the multiple-scattering regime
(also known as diffusive regime), light is scattered multiple times before exiting the
waveguide and interference effects among the various bascattered contributions may
severely impact the field propagation. The effect is dramatically illustrated by Fig. 3.5.
The figure shows the real space image of the field radiated at the top surface of a pho-
tonic crystal waveguide and is obtained experimentally [72]. At shorter wavelengths
(i.e. lower group index), the field pattern is almost uniform throughout the waveguide
length. However, as the wavelength approaches the band edge and the group index
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increases, the multiple-scattering of light becomes more and more relevant. As a result,
the field pattern tends to become highly non-uniform and localized states may even ap-
pear at frequencies below the ideal band edge, where propagation should in theory be
inhibited. In the multiple scattering regime, coherent scattering models are necessary
[90, 123, 122], which can accurately describe the transmission spectrum of real photonic
crystal waveguides in the proximity of the band edge.

Being aware of the complexity and challengens of an accurate description of disorder-
induced losses in photonic crystal waveguides is obviously important. However, it
should be emphasized that, at a given group index 𝑛𝑔 and level of disorder, the impact
of multiple-scattering effects scales with the waveguide length. For short waveguides,
the average dampening of power transmission is captured to a good approximation by
Beer-Lambert law, i.e. 𝑃 (𝐿) = 𝑃0𝑒−(𝛼rad+𝛼back)𝐿, with 𝑃0 being the input power, 𝐿 the
waveguide length and 𝛼rad (𝛼back) the radiation (backscattering) loss coefficient [124].
For 𝐿 not longer than 50 𝜇m, the approximation is acceptable for 𝑛𝑔 up to around 60 and
dramatically improves with decreasing 𝑛𝑔 and 𝐿. In this thesis, we focus on the impact
of material gain, the possible applications being compact slow-light semiconductor op-
tical amplifiers (see Sec. 3.6) and photonic crystal lasers (see Chapter 4). The values of
𝐿 which we consider do not exceed 50 𝜇m and are significantly smaller than this limit
in the case of lasers. Therefore, we expect multiple-scattering effects to be negligible in
lasers, where radiation losses due to the small size of the cavity probably play a major
role (see Sec. 2.5.4). In the case of slow-light amplifiers, we also expect disorder-induced
multiple-scattering to be not too severe within the aforementioned limits for 𝑛𝑔 and 𝐿.
Furthermore, as we thoroughly discuss in Sec. 3.6, multiple-scattering due to the gain
itself represents a significant limitation to the device performance.

In light of these considerations, in this thesis we model disorder-induced scatter-
ing losses through a phenomenological approach based on the aforementioned scaling
rule, which represents a good starting point [117], and leave to future work possible
refinements. In particular, we note that the coupled-Bloch-mode equations which we
introduce in Sec. 3.2 to describe the impact of gain are closely related to the coherent
scattering model of [122]. We refer to Sec. 3.7 for further details on this analogy and
future perspectives of a simple, but efficient modelling of disorder-induced multiple-
scattering. We also note that the scattering matrix formulation which we introduce in
Sec. 3.5 is natutally suited to being combined with other rigorous descriptions of disor-
der [90].

3.1.3 Motivation of this chapter
The main motivation behind the analysis carried out in this chapter is developing an
efficient modelling framework to account for the impact of material gain in active pho-
tonic crystal waveguides and lasers.

As discussed above, the group index in photonic crystal waveguides may greatly ex-
ceed that of conventional, ridge-type waveguides. One of the advantages of slow-light
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is enhancing the gain per unit length. Experimentally verified [29], this gain enhance-
ment enables the realization of shorter optical amplifiers with promising applications
to photonic integrated circuits [87], as well as shorter lasers [178]. However, a funda-
mental limitation is imposed by the gain itself [41, 19], as already, briefly mentioned.

To properly describe the slow-light enhancement of gain, we start from the coupled-
Bloch-mode equations presented in [19]. However, these equations are therein solved
numerically, thus not providing important insight on the coupling mechanism. There-
fore, a first part of our analysis is devoted to dissecting the physics of these equations.
The outcome is an efficient framework, which elucidates the impact of a generally com-
plex refractive index perturbation on the optical propagation in active photonic crystal
waveguides. This framework is applied to the analysis of semiconductor photonic crys-
tal optical amplifiers, offering new insights on the impact of the linewidth enhancement
factor [139]. The same framework is then utilized in Chapter 4 to analyze slow-light ef-
fects in various photonic crystal lasers.

3.2 Coupled-Bloch-mode equations
In this section, we introduce the coupled-Bloch-mode (CBM) equations which we have
employed to study active photonic crystal waveguide and lasers throughout this thesis.

In the spirit of coupled-mode theory [181, 46], the electromagnetic state of a pho-
tonic crystal line-defect waveguide with a complex refractive index can be represented
as [19]

[
E(r)
H(r)]

= 𝑐+(𝑧) [
e+(r)
h+(r)]

+ 𝑐−(𝑧) [
e−(r)
h−(r)]

(3.2)

In this formulation, the material gain (or absorption) induced by carrier density is
viewed as a perturbation to a reference line-defect waveguidewith purely real refractive
index. In Eq. (3.2), 𝑧 is the propagation coordinate and r the position vector. e+ (e−)
is the forward-propagating (backward-propagating) electric field of the guided Bloch
mode at the angular frequency 𝜔; similarly, h± are the magnetic fields. These modes are
𝑧 periodic, with the period given by lattice constant 𝑎. The amplitudes 𝑐± generally de-
pend on the perturbation, as well as on 𝑧 and 𝜔. They are given by 𝑐±(𝑧) = 𝜓±(𝑧)𝑒±𝑖𝑘𝑧𝑧,
where 𝑘𝑧 is the (real) wavenumber of the reference waveguide, while 𝜓± are slowly-
varying spatial envelopes.

At a given 𝜔, by neglecting nonlinear effects, one may derive two coupled differen-
tial equations [19]

𝜕𝜓+(𝑧)
𝜕𝑧

= 𝑖𝜅11(𝑧)𝜓+ + 𝑖𝜅12(𝑧)𝑒−2𝑖𝑘𝑧𝑧𝜓− (3.3a)

−
𝜕𝜓−(𝑧)

𝜕𝑧
= 𝑖𝜅21(𝑧)𝑒+2𝑖𝑘𝑧𝑧𝜓+ + 𝑖𝜅11(𝑧)𝜓− (3.3b)

57



Active Photonic Crystal Waveguides

which we call coupled-Bloch-mode (CBM) equations. A detailed derivation of these
equations and associated coupling coefficients is provided in AppendixA. In the fol-
lowing, we recall the main features. The self- (𝜅11) and cross-coupling coefficients (𝜅12
and 𝜅21) are given by

𝜅𝑥(𝑧) = (
𝜔
𝑐 ) 𝑆 [𝑖 (𝑛𝑖 − 𝑖Δ𝑛′′

𝑏 ) Γcarrier
𝑥 (𝑧) + Δ𝑛′

𝑏Γindex
𝑥 (𝑧)] (3.4)

with 𝑥 = 11, 12, 21. 𝑆 = 𝑛𝑔/𝑛slab is the slow-down factor, with 𝑛𝑔 being the group
index of the reference waveguide and 𝑛slab the slab refractive index. 𝑛𝑖 is the imaginary
refractive index controlled by carrier density in the active layers of quantum wells or
quantum dots and Δ𝑛′′

𝑏 the associated real refractive index perturbation. The active
layers are assumed to undergo spatially uniform pumping. By assuming the material
gain to depend linearly on carrier density, Δ𝑛′′

𝑏 may be quantified as

Δ𝑛′′
𝑏 = 𝛼𝐻𝑛𝑖 (3.5)

with 𝛼𝐻 being the linewidth enhancement factor [23]. Δ𝑛′
𝑏 accounts instead for any

other source of refractive index perturbation (e.g. structural, thermal or electro-optic).
The normalized coupling coefficients Γcarrier

𝑥 are

Γcarrier
11 (𝑧) =

𝑎 ∫𝐴 𝜖0𝑛2
slab|e+(r)|2𝐹 uniform

carrier (r)𝑑𝐴

∫𝑉 𝜖0𝑛2
𝑏(r)|e+(r)|2 𝑑𝑉

(3.6a)

Γcarrier
12 (𝑧) =

𝑎 ∫𝐴 𝜖0𝑛2
slab [e−(r) ⋅ e∗

+(r)] 𝐹 uniform
carrier (r)𝑑𝐴

∫𝑉 𝜖0𝑛2
𝑏(r)|e+(r)|2 𝑑𝑉

(3.6b)

with Γcarrier
21 = (Γcarrier

12 )
∗ and ∗ denoting the complex conjugate. Here, 𝑉 is the volume

of a supercell and 𝐴 the cross-section area at position 𝑧. 𝐹 uniform
carrier (r) is a function taking

into account the spatial distribution of the active material within the active waveg-
uide as if the active layers entirely filled the slab along the direction orthogonal to the
slab. The concept is clarified by Fig. 3.6. Fig. 3.6(a) depicts the reference waveguide,
with the reference system adopted throughout this thesis. We denote the 𝑥-direction
(𝑦-direction) as lateral (vertical). The 𝑧-direction is instead the longitudinal direction.
Fig. 3.6(b) and (c) illustrate a cross-section and top view of the active waveguide, with
the active layers being limited to the line-defect. This implementation reflects photonic
crystal lasers based on line-defect waveguides with a buried heterostructure active re-
gion [88, 160]. Finally, Fig. 3.6(d) shows the active waveguide in the fictitious case of
the material gain assumed to be homogeneous throughout the slab along the vertical di-
rection. 𝐹 uniform

carrier (r) is unitary within the active region in Fig. 3.6(d) and zero elsewhere.
It should be also mentioned that in many of the currently demonstrated active photonic
crystal structures [119, 121, 29], the active layers stretch throughout the slab in the lat-
eral direction, as we discuss in Sec. 3.2.1. In these structures, the population inversion
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3.2 – Coupled-Bloch-mode equations

Figure 3.6: (a) Reference photonic crystal waveguide. (b,c) Active photonic crystal
waveguide. (d) Fictitious active waveguide with homogenized active region.

extends beyond the line-defect region, owing to the large spot of the optical pump or
lack of a structure for lateral carrier confinement. In this case (not shown in Fig. 3.6),
𝐹 uniform
carrier (r) is unitary within the slab and zero within holes and cladding. In any case, as

mentioned above, we assume the active layers to undergo spatially uniform pumping.
Therefore, Γcarrier

11 and Γcarrier
12 are 1) frequency-dependent and 2) 𝑧 periodic, with the pe-

riod given by the lattice constant 𝑎. This is due to the frequency dependence and spatial
periodicity of the Bloch modes of the reference waveguide. Furthermore, it should be
emphasized that Γcarrier

11 is real, while Γcarrier
12 is generally a complex coefficient.

The actual distribution of the active material along the vertical direction is embed-
ded into the imaginary refractive index 𝑛𝑖. Indeed, 𝑛𝑖 reflects themodal gain coefficient
𝑔0 = Γ𝑦𝑔mat, with

𝑛𝑖 = −1
2 (

𝑐
𝜔) Γ𝑦𝑔mat (3.7)

Here, 𝑔mat is the material gain (spatially limited to the active layers) and Γ𝑦 the optical
confinement factor within the active layers along the vertical direction. As quantified in
AppendixA, this confinement factor is independent of 𝜔 and 𝑧 to a good approximation.
For a single active layer being 8 nm thick, limited to the line-defect as in Fig. 3.6(b)
and placed in the middle of the slab, Γ𝑦 is around 4%. This approach is convenient
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because, for a given reference waveguide, the normalized coupling coefficients are only
computed once. One can then account for any number of active layers by appropriately
scaling Γ𝑦.

The normalized coupling coefficients Γindex
11 and Γindex

12 are obtained, respectively,
from Eqs. (3.6a) and (3.6b) by replacing 𝐹 uniform

carrier (r) with 𝐹Δ𝑛′
𝑏
(r). Similarly, one finds

Γindex
21 = (Γindex

12 )
∗
. The distribution function 𝐹Δ𝑛′

𝑏
(r) reflects the possible local tuning

of refractive index, with 𝐹Δ𝑛′
𝑏

= 1 (𝐹Δ𝑛′
𝑏

= 0) where the refractive index has been tuned
(elsewhere). For simplicity, we assume this tuning, if present, to be limited to the slab
and to be spatially uniform along 𝑧. Therefore, Γindex

11 and Γindex
12 are also 𝑧 periodic, as

well as frequency-dependent.
Unless otherwise specified, throughout this thesis we assume for simplicity the ma-

terial gain to be spectrally flat. However, as shown in AppendixA, incorporating a
frequency-dependent material gain is straightforward.

3.2.1 Normalized coupling coefficients
In the following, we focus on the frequency and spatial dependence of the normalized
coupling coefficients given by Eqs. (3.6a) and (3.6b). We discuss two possible implemen-
tations of the active region, that is 1) active layers extending through out the slab in the
lateral direction and 2) active layers limited to the line-defect.

Figure 3.7: Active photonic crystal waveguide with the active layers (a) extending
throughout the slab in the lateral direction (all-active waveguide) and (b,c) limited to
the line-defect (buried heterostructure active region).
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The two structures are shown in Fig. 3.7(a) and (b) respectively. As already men-
tioned, that in Fig. 3.7(a) reflects the majority of currently demonstrated active photonic
crystal structures based on line-defect waveguides. These structures are often optically
pumped [119, 29, 177], although not necessarily [121]. We denote this type of waveg-
uide as all-active. On the other hand, the structure in Fig. 3.7(b) reflects photonic crystal
lasers based on line-defect waveguides with a buried heterostructure (BH) active region,
which improves the energy efficiency. This type of structure has been demonstrated
both under optical [88] and electrical pumping [160]. For simplicity, throughout this
thesis we assume the BH, if present, to almost completely fill the line-defect between
the innermost holes, as shown in Fig. 3.7(b) and (c). In practice, the exact measures of
the BH in the lateral direction obviously depend on the specific, practical realization.
However, we expect these deviations not to alter our conclusions and to only lead to
minor, quantitative changes.

Figure 3.8: Dispersion relation of the reference waveguide for the fundamental guided
TE-like mode. The inset shows a top view of the waveguide. The unit cell reference
planes along the longitudinal direction are also indicated, with 𝑧in corresponding to the
input, 𝑧mid to the centre and 𝑧out to the output.

Fig. 3.8 shows the dispersion relation of the reference waveguide for the fundamen-
tal guided TE-like mode. The simulation parameters are summarized in Tab. 2.1. The
dispersion relation and Bloch modes of the reference waveguide have been computed
by the plane wave eigensolver MIT-Photonic-Bands (MPB), as explained in Sec. 2.2.1.
The inset depicts a top view of the waveguide and the unit cell reference planes along
the longitudinal direction are also indicated. The input (output) is denoted by 𝑧in (𝑧out),
while 𝑧mid corresponds to the centre.
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Figure 3.9: Normalized coupling coefficients over a unit cell of (a) and (b) an all-active
waveguide and (c) and (d) a waveguide with a BH active region. (a) and (c) report the
self-coupling coefficient, (b) and (d) the magnitude of the cross-coupling coefficient.
Each colour corresponds to a different value of the wavenumber, as indicated by the
legend in (a).

Fig. 3.9 illustrates the normalized coupling coefficients of (a) and (b) an all-active
waveguide and (c) and (d) a waveguide with a BH active region. The self-coupling
coefficient Γcarrier

11 is shown in (a) and (c), themagnitude of the cross-coupling coefficient
Γcarrier

12 in (b) and (d). They are reported over a unit cell. Each colour corresponds to a
different value of the wavenumber, as indicated by the legend in (a). We note that the
spatial average of |Γcarrier

12 | builds up when the wavenumber moves towards the band
edge, with the increase beingmore pronounced in the all-active waveguide. At the band
edge, Γcarrier

11 and |Γcarrier
12 | practically coincide. The increase in the average of |Γcarrier

12 |
is a key feature, on which we will return afterwards.

The frequency and spatial dependence of the self-coupling coefficient can be better
understood by visualizing the squared magnitude of the electric field. For this purpose,
Fig. 3.10 shows |e+(r)|2 on the waveguide cross-section at two different frequencies,
corresponding to (a) and (c) 𝑘𝑧𝑎/(2𝜋) = 0.54 and (b) and (d) 𝑘𝑧𝑎/(2𝜋) = 0.62. The
longitudinal coordinate is set to (a) and (b) the input and (c) and (d) centre of a unit
cell. The vertical (horizontal) white lines define the holes (semiconductor slab). The
vertical green lines delimit the lateral extension of the BH active region, if present.
When plotting |e+(r)|2 at a given frequency, we have normalized it to its maximum
value over the whole supercell volume. As the frequency approaches the band edge, the
mode tends to spread in the lateral direction, with the broadening beingmore prominent
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3.2 – Coupled-Bloch-mode equations

Figure 3.10: Squared magnitude of the electric field |e+(r)|2 on the waveguide cross-
section at (a) and (b) 𝑧 = 𝑧in and (c) and (d) 𝑧 = 𝑧mid (see the inset of Fig. 3.8.) The
normalized wavenumber 𝑘𝑧𝑎/(2𝜋) is (a) and (c) 0.54 and (b) and (d) 0.62. The vertical
(horizontal) white lines define the holes (semiconductor slab). The vertical green lines
delimit the lateral extension of the BH active region, if present. In these plots, we have
normalized |e+(r)|2 at a given frequency to its maximum value over the whole supercell
volume.

at the centre of the unit cell as compared to the input. As a result, in the case of a
BH active region, the relative fraction of |e+(r)|2 within the active region diminishes
as compared to the total distribution over the supercell volume. Therefore, the self-
coupling coefficient is generally reduced, with a stronger reduction at the centre of the
unit cell (see Fig. 3.9(c)). On the other hand, in the case of an all-active waveguide,
the self-coupling coefficient decreases (increases) at the input (centre) of a unit cell as
the frequency approaches the band edge (see Fig. 3.9(a)). This is due to the smaller
(larger) fraction of |e+(r)|2 within the holes as compared to the total distribution over
the supercell volume.

As already mentioned, the coupling coefficients are periodic. Therefore, they can
be expanded in a Fourier series

Γcarrier
𝑥 (𝑧) = ∑

𝑞
Γcarrier

𝑥,𝑞 𝑒+𝑖𝑞 2𝜋
𝑎 𝑧 (3.8)

with 𝑥 = 11, 12, 21. The magnitude of the spatial harmonics is reported in Fig. 3.11, in
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Figure 3.11: Magnitude of the spatial harmonics of the normalized coupling coefficients
of (a) and (b) an all-active waveguide and (c) and (d) a waveguide with a BH active
region. The spatial harmonics of the self-coupling coefficient are in (a) and (c), those
of the cross-coupling coefficient in (b) and (d). Each colour corresponds to a different
value of the wavenumber, as indicated by the legend in (a).

the case of (a) and (b) an all-active waveguide and (c) and (d) a waveguide with a BH
active region. Each colour corresponds to a different value of the wavenumber, as indi-
cated by the legend in (a). The frequency dependence of the spatial harmonics follows
a similar trend in the two structures. In the self-coupling coefficient (see Fig. 3.11(a) and
(c)), all harmonics other than the spatial average (𝑞 = 0) are negligible. In the cross-
coupling coefficient Γcarrier

12 (see Fig. 3.11(b) and (d)), the first-order harmonic (𝑞 = 1)
is the dominant one. Furthermore, its intensity as compared to the average strongly
increases as the wavenumber approaches the band edge. This behaviour reflects the
variation of the magnitude of Γcarrier

12 (see Fig. 3.9(b) and (d)) and its phase.
This phase is shown in Fig. 3.12 in the case of an all-active waveguide and (b) a

waveguide with a BH active region. The two plots are almost the same. We note that
the phase of Γcarrier

12 approximately varies with 𝑧 in a linear fashion, with a total phase
shift of 2𝜋. Moreover, the closer the wavenumber is to the band edge and the more
linear the phase becomes. Therefore, the first-order harmonic of the cross-coupling
coefficient is proportional to the spatial average of its magnitude and turns out to be
real and negative to a good approximation. In fact, on the basis of Fig. 3.12, one may
approximate the phase of Γcarrier

12 with 2𝜋
𝑎 𝑧 − 𝜋 and find

Γcarrier
12,𝑞=1 = 1

𝑎 ∫𝑎
Γcarrier

12 (𝑧)𝑒−𝑖 2𝜋
𝑎 𝑧 ≈ 𝑒−𝑖𝜋⟨|Γcarrier

12 (𝑧)|⟩ (3.9)
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Figure 3.12: Phase of the normalized cross-coupling coefficient of (a) an all-active
waveguide and (b) a waveguide with a BH active region plotted over a unit cell. Each
colour corresponds to a different value of the wavenumber, as indicated by the legend
in (a).

where ⟨⟩ indicates the spatial average. Since this average increases as the wavenum-
ber approaches the band edge (see Fig. 3.9(b) and (d)), the magnitude of the first-order
harmonic consequently builds up.

The peculiar frequency dependence of the spatial harmonics of the coupling coef-
ficients originates from the compresence of the two in-plane electric field components.
Indeed, as reviewed in Chapter 2, TE-like modes in line-defect photonic crystal waveg-
uides possess two main electric field components. They are the longitudinal and lateral
component. In contrast, TE-like modes in conventional ridge-type waveguides only
have a single main component, that is the lateral one. To assess the impact of this ad-
ditional longitudinal component, we focus on the waveguide with a BH active region.
For this structure, we have computed the coupling coefficients by only considering ei-
ther the lateral or longitudinal component. The magnitude of the spatial harmonics
is reported in Fig. 3.13. In (a) and (c) only the longitudinal component has been taken
into account. In (b) and (d) we have only considered the lateral component. Each colour
corresponds to a different value of the wavenumber, as indicated by the legend in (a). In
the self-coupling coefficient (see Fig. 3.13(a) and (b)), the spatial average is the dominant
harmonic irrespective of the field component which is taken into account. However,
two additional harmonics (𝑞 = ±1) are also present, whose relative strength as com-
pared to the spatial average depends on the field componentwhich is considered (aswell
as on frequency). Furthermore, we note that the spatial average increases (decreases)
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Figure 3.13: Magnitude of the spatial harmonics of the normalized coupling coefficients
of a waveguide with a BH active region. The coupling coefficients are computed by only
considering the (a) and (c) longitudinal and (b) and (d) lateral component of the electric
field. The spatial harmonics of the self-coupling coefficient are in (a) and (b), those of
the cross-coupling coefficient in (c) and (d). Each colour corresponds to a different value
of the wavenumber, as indicated by the legend in (a).

as the wavenumber approaches the band edge if one only considers the longitudinal
(lateral) field component. On the other hand, when both components are accounted
for, the average of the normalized self-coupling coefficient decreases towards the band
edge (see Fig. 3.11(c)). In the cross-coupling coefficient, the situation is more intricate.
Three harmonics are generally relevant, corresponding to 𝑞 = 0, 1, 2. If we only ac-
count for the longitudinal component (see Fig. 3.13(c)), the first-order harmonic (𝑞 = 1)
is the dominant one. The more the wavenumber approaches the band edge, the larger
the ratio becomes between the first-order harmonic and either of the other two har-
monics. However, such increase is much weaker as compared to the case when the
lateral field component is also taken into account (see Fig. 3.11(d)). On the other hand,
if we only account for the lateral component (see Fig. 3.13(d)), the first-order harmonic
is not necessarily the dominant one. In particular, as the wavenumber departs from the
band edge, the spatial average (𝑞 = 0) strongly builds up as compared to the first-order
harmonic. This increase is much stronger as compared to the case when the longitudi-
nal field component is also taken into account (again, see Fig. 3.11(d)). We have verified
that similar considerations apply to the case of an all-active waveguide. In light of these
considerations, we ascribe the frequency dependence and relative strength of the vari-
ous spatial harmonics of the coupling coefficients to the combined effect of the lateral
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and longitudinal electric field component.

Figure 3.14: Top view of a supercell. When evaluating the coupling coefficients, the
major contributions of the lateral (longitudinal) electric field component originate from
the blue line (red lines).

The physics of this behaviour can be further elucidated by simple, analytical con-
siderations, elaborated in the following. We wish to derive rough, analytical estimates
of the integrals in Eqs. (3.6a) and (3.6b). As evident from Fig. 2.7(b), the lateral electric
field component is approximately uniform within the waveguide along the lateral di-
rection. Furthermore, the field is well confined to the slab in the vertical direction, due
to the high refractive index contrast between slab and air cladding. Therefore, as illus-
trated by Fig. 3.14, we may approximate the lateral component by evaluating it along
the centerline of the waveguide, namely

𝑒𝑥,+(r) ≈ 𝑒𝑥,+(𝑥 = 0, 𝑦 = 0, 𝑧) ≜ 𝑒𝑥,+(𝑧) (3.10)

Here, the subscript x highlights that this is the lateral component. Furthermore, based
on Eq. (2.5), one finds

𝑒𝑥,+(𝑧) ≈ 𝑏𝑥,0 + 𝑏𝑥,−1𝑒−𝑖 2𝜋
𝑎 𝑧 (3.11)

where 𝑏𝑥,0 and 𝑏𝑥,−1 are, respectively, the spatial average and first-order harmonic of
𝑒𝑥,+(𝑧). By choosing the reference plane 𝑧 = 0 at the interface between two unit cells,
one finds 𝑏𝑥,0 (𝑏𝑥,−1) to be real and positive (real and negative), as discussed in Sec. 2.4.2.
In particular, 𝑏𝑥,−1 tends to 𝑏𝑥,0 as the frequency approaches the band edge. This sig-
nifies a transition from a moving to a standing wave, as explained in Sec. 2.2.2. At the
band edge, one finds 𝑏𝑥,−1 = −|𝑏𝑥,0|. Therefore, at this frequency, we may approximate
the contribution of the lateral field component entering the integrals in Eqs. (3.6a) and
(3.6b) as

|𝑒𝑥,+(r)|2 ≈ 2|𝑏𝑥,0|2 − |𝑏𝑥,0|2𝑒+𝑖 2𝜋
𝑎 𝑧 − |𝑏𝑥,0|2𝑒−𝑖 2𝜋

𝑎 𝑧 (3.12a)

𝑒𝑥,−(r) [𝑒𝑥,+(r)]
∗ ≈ |𝑏𝑥,0|2 − 2|𝑏𝑥,0|2𝑒+𝑖 2𝜋

𝑎 𝑧 + |𝑏𝑥,0|2𝑒+𝑖 4𝜋
𝑎 𝑧 (3.12b)
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It is worth emphasizing that Eqs. (3.12a) and (3.12a) are consistent, respectively, with
Fig. 3.13(b) and (d). We shall now analyze the contribution of the longitudinal electric
field component. As evident from Fig. 2.7(a), this component is zero along the centerline
of the waveguide and changes its sign when moving along the lateral direction. In this
case, we may write

𝑒𝑧,+(r) ≈ 𝑒𝑧,+(𝑥 = ±√3𝑎/4, 𝑦 = 0, 𝑧) ≜ 𝑒𝑟,𝑙
𝑧,+(𝑧) (3.13)

with 𝑒𝑙
𝑧,+(𝑧) = −𝑒𝑟

𝑧,+(𝑧). Here, the subscript z highlights that this is the longitudinal
component. Furthermore, the subscripts r and l denote, respectively, the position on the
right (𝑥 = +√3𝑎/4) and left (𝑥 = −√3𝑎/4) of the centerline (see Fig. 3.14). From MPB
simulations (not shown here for the sake of brevity), it turns out that only two spatial
harmonics are relevant, as previously found for the lateral component. Specifically, we
may write

𝑒𝑟
𝑧,+(𝑧) ≈ 𝑏𝑟

𝑧,0 + 𝑏𝑟
𝑧,−1𝑒−𝑖 2𝜋

𝑎 𝑧 (3.14)

By choosing, again, the reference plane 𝑧 = 0 at the interface between two unit cells,
one finds that 𝑏𝑟

𝑧,0 and 𝑏𝑟
𝑧,−1 are purely imaginary. At the band edge, one finds 𝑏𝑟

𝑧,−1 =
𝑏𝑟

𝑧,0, with 𝑏𝑟
𝑧,0 = |𝑏𝑟

𝑧,0|𝑒+𝑖𝜋/2. Again, this signifies a transition from a moving to a stand-
ing wave. In light of these considerations, at the band edge we may write

|𝑒
𝑟,𝑙
𝑧,+(r)|

2
≈ 2 |𝑏

𝑟,𝑙
𝑧,0|

2
+ |𝑏

𝑟,𝑙
𝑧,0|

2
𝑒+𝑖 2𝜋

𝑎 𝑧 + |𝑏
𝑟,𝑙
𝑥,0|

2
𝑒−𝑖 2𝜋

𝑎 𝑧 (3.15a)

𝑒𝑟,𝑙
𝑧,−(r) [𝑒𝑟,𝑙

𝑧,+(r)]
∗

≈ − |𝑏
𝑟,𝑙
𝑧,0|

2
− 2 |𝑏

𝑟,𝑙
𝑧,0|

2
𝑒+𝑖 2𝜋

𝑎 𝑧 − |𝑏
𝑟,𝑙
𝑧,0|

2
𝑒+𝑖 4𝜋

𝑎 𝑧 (3.15b)

Therefore, the contributions stemming from 𝑒𝑟
𝑧,+(𝑧) and 𝑒𝑙

𝑧,+(𝑧) add up with the same
sign when evaluating the integrals in Eqs. (3.6a) and (3.6b). It should be emphasized
that Eqs. (3.15a) and (3.15b) are consistent, respectively, with Fig. 3.13(a) and (c).

By using Eqs. (3.12a) and (3.15a) and recalling the definition of the self-coupling
coefficient from Eq. (3.6a), we may write

|e+(r)|2 ≈ |𝑒𝑥,+(r)|2 + |𝑒
𝑟,𝑙
𝑧,+(r)|

2
≈ 4|𝑏𝑥,0|2 ∝ Γcarrier

11,𝑞=0 (3.16)

where we have assumed |𝑏𝑥,0| ≈ |𝑏
𝑟,𝑙
𝑧,0| and neglected the vertical electric field compo-

nent (which is much smaller than the other two components for TE-like modes). Simi-
larly, by using Eqs. (3.12b) and (3.15b) and recalling the definition of the cross-coupling
coefficient from Eq. (3.6b), we obtain

e−(r) ⋅ e∗
+(r) ≈ 𝑒𝑥,−(r) [𝑒𝑥,+(r)]

∗ + 𝑒𝑟,𝑙
𝑧,−(r) [𝑒𝑟,𝑙

𝑧,+(r)]
∗

≈ −4|𝑏𝑥,0|2𝑒+𝑖 2𝜋
𝑎 𝑧 ∝ Γcarrier

12,𝑞=1𝑒+𝑖 2𝜋
𝑎 𝑧

(3.17)
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Eqs. (3.16) and (3.17) evidence that, at the band edge, one should expect Γcarrier
12,𝑞=1 =

−|Γcarrier
11,𝑞=0|, which is indeed what we have found. Overall, these simple considerations

emphasize that the physics of coinciding self- and cross-coupling coefficients at the
band edge is a transition from a moving to a standing wave.

3.3 Reduced coupled-Bloch-mode equations
On the basis of Sec. 3.2.1 (and, specifically, of the results in Fig. 3.11), we may expand
the coupling coefficients in a Fourier series and only retain the spatial average (first-
order harmonic) in the expansion of the self-coupling coefficient Γcarrier

11 (cross-coupling
coefficient Γcarrier

12 ). Furthermore, since Γcarrier
21 is the complex conjugate of Γcarrier

12 , one

finds Γcarrier
21,−𝑞 = (Γcarrier

12,𝑞 )
∗
. Therefore, we may only retain the harmonic with order

𝑞 = −1 in the expansion of the cross-coupling coefficient Γcarrier
21 . By doing so, from

Eqs. (3.3a) and (3.3b) we obtain

𝜕𝜓+(𝑧)
𝜕𝑧

= 𝑖𝜅FF𝜓+ + 𝑖𝜅FB𝑒+𝑖2𝛿𝑧𝜓− (3.18a)

−
𝜕𝜓−(𝑧)

𝜕𝑧
= 𝑖𝜅BF𝑒−𝑖2𝛿𝑧𝜓+ + 𝑖𝜅FF𝜓− (3.18b)

which we call reduced coupled-Bloch-mode (CBM) equations. The self- (𝜅FF) and cross-
coupling coefficients (𝜅FB and 𝜅BF) are given by

𝜅𝑥 = (
𝜔
𝑐 ) 𝑆 [𝑖 (𝑛𝑖 − 𝑖Δ𝑛′′

𝑏 ) Γ𝑥 + Δ𝑛′
𝑏Γindex

𝑥 ] (3.19)

with 𝑥 = FF, FB, BF. Here, one finds ΓBF = (ΓFB)
∗ and Γindex

BF = (Γindex
FB )

∗
. To simplify

the notation, we have denoted by ΓFF (ΓFB) the spatial average (first-order harmonic)
of Γcarrier

11 (Γcarrier
12 ). Similarly, we have denoted by Γindex

FF (Γindex
FB ) the spatial average

(first-order harmonic) of Γindex
11 (Γindex

12 ). On this regard, we have assumed either of two
possible implementations for the distribution function 𝐹Δ𝑛′

𝑏
(r) of the local refractive in-

dex tuning. A first possibility is a spatially uniform refractive index tuning within the
slab and no tuning within holes and cladding. In this case, 𝐹Δ𝑛′

𝑏
(r) has the same form

as 𝐹 uniform
carrier (r) in an all-active waveguide. A second possibility is a spatially uniform

refractive index tuning within the waveguide region corresponding to the line-defect
and no tuning elsewhere. In this case, 𝐹Δ𝑛′

𝑏
(r) coincides with 𝐹 uniform

carrier (r) in a waveg-
uide with a BH active region. In either case, we can apply to the normalized coupling
coefficients due to refractive index tuning the same considerations made in Sec. 3.2.1 on
those due to active material. Therefore, we can neglect all harmonics in the expansion
of Γindex

11 (Γindex
12 ) other than the spatial average (first-order harmonic). Finally, we note
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that 𝛿 in Eqs. (3.18a) and (3.18b) is the detuning from the band edge

𝛿 = 𝑞 𝜋
𝑎

− 𝑘𝑧, with 𝑞 = 1 (3.20)

When expanding the cross-coupling coefficients Γcarrier
12 and Γindex

12 , we have discarded
the spatial harmonics with order 𝑞 ≠ 1 and justified the approximation on the basis of
the relative strength of the first-order harmonic as compared to the others. However, in
light of Fig. 3.11(b) and (d), one might question the validity of this approximation when
the wavenumber is far from the band edge. In fact, in this case the spatial average
(𝑞 = 0) may be comparable with the first-order harmonic. However, we emphasize that
an additional reason to discard the harmonics with 𝑞 ≠ 1 in the expansion of the cross-
coupling coefficient is that they would result in larger values of the detuning 𝛿 (see
Eq. (3.20)). For a given intensity of the cross-coupling coefficient, the larger this detun-
ing is and the weaker the interaction becomes between the amplitude of the forward-
(𝜓+) and backward-propagating mode (𝜓−). This is indeed the basis on which the same
approximation is justified in the coupled-mode theory of one-dimensional gratings [79]
and DFB lasers [23, 4]. Therefore, we consider our approximation to be acceptable even
when the wavenumber is far from the band edge.

Figure 3.15: Normalized self-coupling coefficient ΓFF (blue) and magnitude of the nor-
malized cross-coupling coefficient ΓFB (red) of (a) an all-active waveguide and (b) a
waveguide with a BH active region.

Fig. 3.15 shows the normalized self-coupling coefficient ΓFF (blue) of (a) an all-active
waveguide and (b) a waveguide with a BH active region. The magnitude of the normal-
ized cross-coupling coefficient ΓFB is also shown (red). In an all-active waveguide, the
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3.3 – Reduced coupled-Bloch-mode equations

normalized self-coupling coefficient is almost independent of frequency. On the other
hand, as a result of the broadening of the electric field squared magnitude in the lat-
eral direction (see Fig. 3.10), in a waveguide with a BH active region the normalized
self-coupling coefficient decreases towards the band edge. Moreover, in either type of
waveguide, a strong cross-coupling coefficient builds up close to the band edge. As
thoroughly discussed in Sec. 3.2.1, this is due to the increase in ⟨|Γcarrier

12 (𝑧)|⟩, as well as
to the linear 𝑧 dependence of the phase of Γcarrier

12 (𝑧).

Figure 3.16: (left) Magnitude of the self-coupling coefficient 𝜅FF (solid) and cross-
coupling coefficient 𝜅FB (dotted) of a waveguide with a BH active region. Each colour
denotes a value of the modal gain Γ𝑦𝑔mat, corresponding to 25 (blue), 50 (red) and 100
(yellow) cm−1. The linewidth enhancement factor is assumed to be zero and no other
source of refractive index perturbation is considered. (right) Group index of the refer-
ence waveguide.

Fig. 3.16 shows (left) the magnitude of the coupling coefficients of a waveguide with
a BH active region and (right) the group index 𝑛𝑔 of the reference waveguide. The 𝑥-
axis reports the normalized wavenumber of the reference waveguide. The self-coupling
(cross-coupling) coefficient 𝜅FF (𝜅FB) is denoted by solid (dotted) line. The modal gain
Γ𝑦𝑔mat is set to 25 (blue), 50 (red) and 100 (yellow) cm−1. For simplicity, the linewidth
enhancement factor 𝛼𝐻 is assumed to be zero and any other source of refractive index
perturbation is neglected. The figure emphasizes that the frequency dependence of
the self-coupling coefficient is essentially controlled by 𝑛𝑔. Furthermore, the cross-
coupling coefficient becomes increasingly comparable to the self-coupling coefficient as
the wavenumber approaches the band edge. The relative strength of 𝜅FB as compared
to 𝜅FF is controlled by the normalized coupling coefficients in Fig. 3.15(b). Our results
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are consistent with [94], where the build-up of a huge cross-coupling coefficient was
already pointed out. However, as compared to [94], we have discussed the physical
origin of this behaviour in Sec. 3.2.1.

3.4 Dispersion relation
In this section, we analyze the dispersion relation of a line-defect waveguidewith gener-
ally complex refractive index. Throughout this thesis, we generally denote this waveg-
uide as perturbed. If the waveguide contains active material, we may alternatively de-
note it as active, with the two definitions being interchangeable.

In Appendix B, we provide a detailed derivation of the dispersion relation. In the
following, we only recal the main features. The electromagnetic state of the perturbed
waveguide can be represented as

[
E(r)
H(r)]

= ̃𝐹
[
ẽ+(r)

̃h+(r)]
𝑒+𝑖�̃�𝑧𝑧 + ̃𝐵

[
ẽ−(r)
h̃−(r)]

𝑒−𝑖�̃�𝑧𝑧 (3.21)

Here, the electric (magnetic) fields ẽ± and (h̃±) are the Bloch modes of the perturbed
waveguide

ẽ±(r) = e±(r) + 𝑟±𝑒∓𝑖 2𝜋
𝑎 𝑧e∓(r) (3.22a)

h̃±(r) = h±(r) + 𝑟±𝑒∓𝑖 2𝜋
𝑎 𝑧h∓(r) (3.22b)

with ̃𝐹 and ̃𝐵 being the amplitudes. The Bloch modes of the perturbed waveguide
result from the interference of the forward- and backward-propagating Bloch modes
of the reference waveguide, with 𝑟+ and 𝑟− determining the strength of the backward
component as compared to the forward one and viceversa. The wavenumber �̃�𝑧 is
generally complex and given by

�̃�𝑧 = 𝛽eff − 𝑖
2

𝑔eff (3.23)

where the effective propagation constant 𝛽eff and net modal gain 𝑔eff are

𝛽eff = Re{𝜆+} + 𝜋
𝑎

(3.24a)

𝑔eff = −2Im{𝜆+} (3.24b)

Here, 𝜆+ is given by

𝜆+ = ±√(𝜅FF − 𝛿)2 − 𝜅FB𝜅BF (3.25)

Eqs. (3.24a) and (3.24b) represent the dispersion relation of the active waveguide. The
sign of the square root in Eq. (3.25) is selected such that the mode with amplitude ̃𝐹 is
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forward-propagating. In the presence of optical gain or absorption, this implies that
Im{𝜆+} and Im{𝜅FF} must have the same sign. With a certain abuse of notation and
for the sake of simplicity, we always refer to 𝑔eff as the effective ”gain”, even in the
presence of a purely real refractive index perturbation (i.e. in the absence of gain or ab-
sorption). In this case, it remains understood that 𝑔eff simply has the physical meaning
of imaginary part of the complex wavenumber �̃�𝑧 and cannot be greater than zero.

Figure 3.17: Block diagram of an active photonic crystal waveguide.

The coefficients 𝑟± in Eqs. (3.22a) and (3.22b) are

𝑟+ = −
𝜅BF

(𝜅FF − 𝛿) + 𝜆+
(3.26a)

𝑟− = −
𝜅FB

(𝜅FF − 𝛿) + 𝜆+
(3.26b)

In Appendix C, we have elucidated their physical meaning by deriving the block dia-
gram in Fig. 3.17. Each block is described by a transmission matrix. By cascading all
the blocks, one obtains the transmission matrix of the active waveguide in the basis of
the Bloch modes of the reference waveguide. Λ is the transmission matrix in the basis
of the Bloch modes of the active waveguide

Λ =
[

𝑒+𝑖𝜆+𝐿 0
0 𝑒−𝑖𝜆+𝐿]

(3.27)

with 𝐿 being the waveguide length. While propagating, these modes remain uncou-
pled, because Λ is diagonal. The matrix Φ 𝑀 accounts for the mismatch (i.e. change
of basis) between the Bloch modes of the active waveguide and those of the reference
waveguide (used as original basis) at the right end. Similarly, 𝑀−1 takes into account
the mismatch at the left end. These matrices play the role of equivalent dielectric inter-
faces between the active waveguide and the reference waveguide, which is supposed to
extend on either side (cf. Fig. 3.6(c)). The expressions of these matrices are derived in
Appendix C. Here, it is important to note that 𝑟+ can be interpreted (within a phase shift
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of 𝜋) as the reflection coefficient of the equivalent right interface indicated in Fig. 3.17.
This is the reflection coefficient which the forward-propagating Bloch mode of the ac-
tive waveguide ”sees” at the right end. Similarly, 𝑟− is (within a phase shift of 𝜋) the
reflection coefficient of the equivalent left interface. This is the reflection coefficient
which the backward-propagating Bloch mode of the active waveguide ”sees” at the left
end.

It is instructive to derive the dispersion relation in the limiting case of negligible
cross-coupling coefficients. This is the case when the operation frequency is far from
the band edge, as evident from Fig. 3.15. For simplicity, we assume that there is no
source of refractive index perturbation other than due to carrier density. In this case,
by forcing 𝜅FB = 𝜅BF = 0 in Eq. (3.25), one finds

𝛽eff = 𝑘𝑧 − 𝑆ΓFFΓ𝑦𝑔mat𝛼𝐻/2 (3.28a)

𝑔eff = 𝑆ΓFFΓ𝑦𝑔mat (3.28b)

These equations represent the dispersion relation in the absence of distributed feedback
(DFB). In particular, Eq. (3.28b) describes the conventional slow-light enhancement of
modal gain by the slow-down factor [29, 178]. As we show in the following sections,
our modelling framework based on Eq. (3.21) is more general, as it takes into account in
a self-consistent manner the intrinsic limitation to gain enhancement imposed by the
gain itself [41, 19].

We also consider the limiting case of a purely real refractive index perturbation and
negligible distributed feedback. In this case, again by forcing 𝜅FB = 𝜅BF = 0 in Eq. (3.25),
one finds

𝛽eff = 𝑘𝑧 + (𝜔/𝑐)𝑆ΓFFΔ𝑛′
𝑏 (3.29a)

𝑔eff = 0 (3.29b)

In Sec. 3.4.1, we directly compare these equations against results of MPB simulations
and show that the inclusion of cross-coupling is essential to reproduce the stopband
induced by the refractive index variation.

3.4.1 Real refractive index perturbation
We start by considering a purely real refractive index perturbation Δ𝑛′

𝑏, thus assuming
𝑛𝑖 = Δ𝑛′′

𝑏 = 0 (see Eq. (3.19)). In this case, we can compare the effective propagation
constant from Eq. (3.24a) with that computed by MPB in the case of the slab refractive
index being 𝑛slab + Δ𝑛′

𝑏. As an example, we assume the refractive index perturbation to
be homogeneous throughout the slab, as in [137]. This implies that Γindex

FF and Γindex
FB in

Eq. (3.19) coincide with those shown in Fig. 3.15(a).
Fig. 3.18(a) shows the dispersion relation versus frequency computed by MPB for

𝑛slab = 3.17 (black) and 𝑛slab = 3.17 + Δ𝑛′
𝑏, with Δ𝑛′

𝑏 = −10−3 (dotted, blue). As the
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Figure 3.18: Comparison between CBM analysis and MPB in the case of a purely real
refractive index perturbation assumed to be homogeneous throughout the slab. (a)
Dispersion relation versus frequency computed by MPB for 𝑛slab = 3.17 (black) and
𝑛slab = 3.17 + Δ𝑛′

𝑏, with Δ𝑛′
𝑏 = −10−3 (dotted, blue). Normalized effective propa-

gation constant computed by Eq. (3.24a) (solid, red) and Eq. (3.29a) (dotted, red) with
Δ𝑛′

𝑏 = −10−3. The reference waveguide for the CBM analysis is that with 𝑛slab = 3.17.
The top 𝑥-axis reports the normalized wavenumber of this reference waveguide. (b)
Effective gain computed by Eq. (3.24b) (solid, red) and Eq. (3.29b) (dotted, red) with
Δ𝑛′

𝑏 = −10−3.

slab refractive index decreases, the band edge shifts to higher frequencies. This shift is
fully captured by our modelling frameword with inclusion of the distributed feedback,
that is Eq. (3.24a) (solid, red). This is clearly not the case if the distributed feedback is
neglected, i.e. Eq. (3.29a) is used (dotted, red). The band edge shift is accompanied by
the formation of a stopband. Throughtout this stopband, 𝛽eff is equal to 𝜋/𝑎, while 𝑔eff is
negative, signifying that the Blochmodes are evanescent. This is outlined by Fig. 3.18(b),
which illustrates 𝑔eff computed by Eq. (3.24b) (solid, red). On the contrary, Eq. (3.29b),
which neglects the distributed feedback, predicts that 𝑔eff is identically equal to zero
(dotted, red). We note that MPB does not provide the imaginary part of the wavenum-
ber (i.e. 𝑔eff) because it solves Maxwell’s equations as an eigenproblem by treating the
frequency as the eigenvalue (see Sec. 2.2.1 in Chapter 2). In other terms, the wavenum-
ber is assumed to be real and the frequency range where no solution is found (i.e. the
photonic bandgap) corresponds to thewavenumber being complex and the Blochmodes
being evanescent. Therefore, 𝑔eff has to be negative within the stopband induced by the
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refractive index perturbation, where no solution is found by MPB. Overall, this exam-
ple emphasizes the importance of the distributed feedback in the slow-light region and
supports the goodness of our modelling framework.

3.4.2 Complex refractive index perturbation
As a second step, in addition to the real refractive index perturbation, we consider the
presence of material gain. Similarly to Sec. 3.4.1, we assume both the refractive index
perturbation and material gain to be homogeneous throughout the slab. For simplicity,
the linewidth enhancement factor is assumed to be zero. Unless otherwise specified,
the distributed feedback is taken into account.

Figure 3.19: (a) Normalized effective propagation constant and (b) effective group in-
dex in the case of a complex refractive index perturbation assumed to be homoge-
neous throughout the slab. Each colour corresponds to a given value of the modal
gain Γ𝑦𝑔mat, as indicated by the legend in (b). The black line is the group index of the
reference waveguide. The real refractive index perturbation is Δ𝑛′

𝑏 = −10−3 and the
linewidth enhancement factor is assumed to be zero. The top 𝑥-axis reports the nor-
malized wavenumber of the reference waveguide.

Fig. 3.19 shows (a) the normalized effective propagation constant and (b) effective
group index versus frequency. The effective group index is defined as 𝑐(𝑑𝛽eff/𝑑𝜔), with
𝑐 being the vacuum light speed. Each colour denotes a given value of the modal gain
Γ𝑦𝑔mat, as indicated by the legend in (b). The black line is instead the group index of
the reference waveguide. The real refractive index perturbation is Δ𝑛′

𝑏 = −10−3 as in
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Sec. 3.4.1. The top 𝑥-axis reports the normalized wavenumber of the reference waveg-
uide. In the absence of gain, the effective group index diverges at the frequency to
which the band edge has been shifted by the refractive index perturbation. However,
as the gain grows, the slope of the effective propagation constant with respect to fre-
quency steeply diminishes close to the band edge. Consequently, the group index is
strongly reduced and gradually broadens over frequency. This reduction and spectral
broadening of the group index induced by material gain is consistent with predictions
of non-perturbative approaches [41] and supports the effectiveness of our modelling
framework.

Figure 3.20: Effective gain with distributed feedback (solid) and without it (dotted)
in the case of a complex refractive index perturbation assumed to be homogeneous
throughout the slab. Each colour corresponds to a given value of the modal gain Γ𝑦𝑔mat,
as indicated by the legend. The real refractive index perturbation is Δ𝑛′

𝑏 = −10−3 and
the linewidth enhancement factor is assumed to be zero. The top 𝑥-axis reports the
normalized wavenumber of the reference waveguide.

Fig. 3.20 shows the effective gain computed by taking into account the distributed
feedback (solid) and neglecting it (dotted). The latter corresponds to forcing 𝜅FB =
𝜅BF = 0 in Eq. (3.24b), which results in Eq. (3.28b). This equation predicts the con-
ventional gain enhancement in direct proportion to the group index of the reference
waveguide (that is the black line in Fig. 3.19(b)). If the modal gain Γ𝑦𝑔mat is greater
than zero, a frequency range exists, in dependence of the modal gain, where the effec-
tive gain is significantly larger with the distributed feedback taken into account. We
may provide an intuitive interpretation for this feature. Essentially, the refractive index
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perturbation pushes to higher frequencies the band edge and, concurrently, the slow-
light enhancement of gain. By this line of reasoning, one might be tempted to think
that the effective gain, at a given value of the modal gain Γ𝑦𝑔mat, is enhanced in direct
proportion to the effective group index. However, this is not actually the case, as a
comparison of Fig. 3.19(b) and Fig. 3.20 clearly reveals. Therefore, we highlight that the
impact of a complex refractive index perturbation on the effective gain is more intricate
than a simple scaling by the effective group index. Instead, it should be taken into ac-
count through Eq. (3.24b). As a measure of the enhancement of the effective gain with

Figure 3.21: Ratio between the effective gain and the modal gain Γ𝑦𝑔mat in the case of a
complex refractive index perturbation assumed to be homogeneous throughout the slab.
The real refractive index perturbation is Δ𝑛′

𝑏 = −10−3 and the linewidth enhancement
factor is assumed to be zero. The ratio is evaluated at 𝑘𝑧𝑎/(2𝜋) = 0.5195, that is around
the band edge of the active waveguide.

respect to the modal gain Γ𝑦𝑔mat, we report their ratio in Fig. 3.21. The ratio is com-
puted at 𝑘𝑧𝑎/(2𝜋) = 0.5195, that is around the band edge of the active waveguide (see
Fig. 3.19(a)). As the modal gain grows, the ratio steeply decreases, emphasizing that the
slow-light enhancement of gain is intrinsically limited by the gain itself. Again, this
result is consistent with predictions of non-perturbative approaches [41]. However, as
compared to [41], in Sec. 3.5 we demonstrate that the effective gain is not an exhaus-
tive figure of merit. In fact, a larger effective gain does not necessarily imply more
transmitted power.

It is also instructive to examine the reflection coefficients 𝑟± from Eqs. (3.26a) and
(3.26b). Fig. 3.22 shows their magnitude. In the absence of gain, the magnitude is uni-
tary within the stopband. In Sec. 3.5, we directly relate this feature to the power flowing
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Figure 3.22: Magnitude of the reflection coefficients 𝑟± in the case of a complex refrac-
tive index perturbation assumed to be homogeneous throughout the slab. Each colour
corresponds to a given value of the modal gain Γ𝑦𝑔mat, as indicated by the legend. The
real refractive index perturbation is Δ𝑛′

𝑏 = −10−3 and the linewidth enhancement fac-
tor is assumed to be zero. The top 𝑥-axis reports the normalized wavenumber of the
reference waveguide.

along the waveguide. If the frequency is detuned from the stopband, the magnitude of
𝑟± steeply decreases, because the distributed feedback becomes increasingly less effec-
tive. This is due to the smaller cross-coupling coefficients, as well as the larger detuning
𝛿. This feature suggests that, under these conditions, the impact of the equivalent in-
terfaces in Fig. 3.17 may be neglected. As the modal gain grows, the magnitude of 𝑟±
decreases within the stopband and only slightly increases at higher frequencies, where
the impact of the distributed feedback remains limited.

As a final example, we discuss the impact of the linewidth enhancement factor 𝛼𝐻.
For this purpose, we assume Δ𝑛′

𝑏 = 0, such that the only perturbation is that induced
by carrier density. Similarly to the previous examples, we assume the perturbation
to be homogeneous throughout the slab. Fig. 3.23 shows (a) the normalized effective
propagation constant and (b) effective gain with the modal gain Γ𝑦𝑔mat being 50 cm−1.
The linewidth enhancement factor is 0 (blue), 1.5 (red) and 3 (yellow). As 𝛼𝐻 increases,
so does the magnitude of the real refractive index perturbation Δ𝑛′′

𝑏 induced by carrier
density. Therefore, the band edge shifts to higher frequencies, as Δ𝑛′′

𝑏 becomes more
and more negative. Concurrently, the effective gain 𝑔eff at a given frequency increases,
because the slow-light enhancement of gain is pushed to higher frequencies. We explore
the implications of these features in Sec. 4.4, when analyzing the oscillation condition
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Figure 3.23: (a) Normalized effective propagation constant and (b) effective gain with
the modal gain Γ𝑦𝑔mat being 50 cm−1 and the linewidth enhancement factor 𝛼𝐻 equal
to 0 (blue), 1.5 (red) and 3 (yellow). The perturbation is assumed to homogeneous
throughout the slab and the real refractive index perturbation Δ𝑛′

𝑏 is equal to zero. The
top 𝑥-axis in (a) reports the normalized wavenumber of the reference waveguide.

of photonic crystal lasers with photonic bandgap mirrors.
However, the linewidth enhancement factor not only enhances the effective gain,

but it also results in a larger mismatch at the equivalent interfaces in Fig. 3.17. This
is outlined by Fig. 3.24, showing the magnitude of the reflection coefficients 𝑟±. The
modal gain Γ𝑦𝑔mat is 50 cm−1 and 𝛼𝐻 is equal to 0 (blue), 1.5 (red) and 3 (yellow). As
𝛼𝐻 increases, the magnitude of the cross-coupling coefficients grows. Consequently,
in compliance with Eqs. (3.26a) and (3.26b), the magnitude of 𝑟± at a given frequency
increases as well. The implications of this enhanced distributed feedback induced by the
linewidth enhancement factor are discussed in Sec. 3.6, dealing with slow-light optical
amplification.

We may also consider the complex refractive index perturbation to be spatially lim-
ited to the line-defect, as in waveguides with a BH active region. In this case, we have
only found a minor, quantitative change of the results. This is because the dispersion
relation and reflection coefficients 𝑟± are essentially controlled by the relative strength
of the normalized cross-coupling coefficient ΓFB as compared to the normalized self-
coupling coefficient ΓFF. As evidenced by Fig. 3.15, this relative strength is similar if the
perturbation is assumed to be homogeneous throughout the slab (Fig. 3.15(a)) or limited
to the line-defect (Fig. 3.15(b)). Therefore, the considerations which we have made on
the dispersion relation and reflection coefficients 𝑟± equally apply to both cases.
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Figure 3.24: Magnitude of the reflection coefficients 𝑟± with the modal gain Γ𝑦𝑔mat
being 50 cm−1 and the linewidth enhancement factor 𝛼𝐻 equal to 0 (blue), 1.5 (red)
and 3 (yellow). The perturbation is assumed to homogeneous throughout the slab and
the real refractive index perturbation Δ𝑛′

𝑏 is equal to zero. The top 𝑥-axis reports the
normalized wavenumber of the reference waveguide.

3.5 Optical propagation and power flow
In this section, we focus on the optical propagation and power flow, which we derive
in detail in Appendix B. In the following, we recall the main expressions. Furthermore,
we recall from Appendix C the scattering matrix by which optical propagation may be
described.

The amplitudes 𝑐±(𝑧) (see Eq. (3.2)) can be conveniently expressed as

𝑐+(𝑧) = 𝑒+𝑖 𝜋
𝑎 𝑧

( ̃𝐹 𝑒+𝑖𝜆+𝑧 + 𝑟− ̃𝐵𝑒−𝑖𝜆+𝑧) (3.30a)

𝑐−(𝑧) = 𝑒−𝑖 𝜋
𝑎 𝑧

(𝑟+ ̃𝐹 𝑒+𝑖𝜆+𝑧 + ̃𝐵𝑒−𝑖𝜆+𝑧) (3.30b)

with the amplitudes ̃𝐹 and ̃𝐵 depending on the boundary conditions. The net power
flow 𝑃 (𝑧) at position 𝑧 may be expressed in two equivalent manners. The first expres-
sions is

𝑃 (𝑧) = |𝑐+(𝑧)|2𝑃0⏟⏟⏟⏟⏟⏟⏟
𝑃+(𝑧)

− |𝑐−(𝑧)|2𝑃0⏟⏟⏟⏟⏟⏟⏟
𝑃−(𝑧)

(3.31)

where 𝑃0 is the power carried by the forward-propagating Bloch mode of the reference
waveguide

𝑃0 =
𝑣𝑔

2𝑎 ∫𝑉
𝜖0𝑛2

𝑏(r)|e+(r)|2 𝑑𝑉 (3.32)
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with 𝑣𝑔 being the group velocity. In Eq. (3.31), the forward- (𝑃+) and backward-propagating
power (𝑃−) are coupled and generally not monotonic with position 𝑧. Importantly, they
are proportional to the squared magnitude of the amplitudes 𝑐±(𝑧).

As an alternative, by inserting Eqs. (3.30a) and (3.30b) into Eq. (3.31), we may equiv-
alently express the net power flow as

𝑃 (𝑧) = ̃𝑃+(𝑧) − ̃𝑃−(𝑧) + ̃𝑃cross(𝑧) (3.33)

The first two contribution are the forward- (+) and backward-propagating power (−)
of the Bloch modes of the perturbed waveguide

̃𝑃+(𝑧) = | ̃𝐹 |2𝑒𝑔eff𝑧 (1 − |𝑟+|2) 𝑃0 (3.34a)
̃𝑃−(𝑧) = | ̃𝐵|2𝑒−𝑔eff𝑧 (1 − |𝑟−|2) 𝑃0 (3.34b)

These contributions are obviously monotonic with position 𝑧 and exponentially in-
crease with the effective net modal gain 𝑔eff. However, they are also scaled down by the
factor (1 − |𝑟±|2). Depending on 𝑟±, this factor might even be zero (see Fig. 3.22). The
third contribution is the cross power

̃𝑃cross(𝑧) = 2Re{ ̃𝐹 ̃𝐵∗𝑒2𝑖𝛽eff𝑧𝑒−𝑖 2𝜋
𝑎 𝑧(𝑟∗

− − 𝑟+)} 𝑃0 (3.35)

This contribution is periodic with position 𝑧. The spatial period is equal to 𝜋/𝛿eff, with
the effective detuning 𝛿eff being

𝛿eff = 𝜋
𝑎

− 𝛽eff (3.36)

The cross power arises because the Bloch modes of the perturbed waveguide are gen-
erally not power orthogonal (see Sec. B.3.2 in Appendix B). In addition, in dependence
of 𝑟±, the cross power is not necessarily negligible as compared to the other two con-
tributions. The important insight of Eq. (3.33) is that a larger 𝑔eff does not necessarily
imply more power. In fact, the impact of the reflection coefficients 𝑟±, as well as the
cross power, should be also taken into account, as we show in the following.

Finally, we recall from Appendix C that the amplitudes 𝑐± of the Bloch modes en-
tering and exiting the perturbed waveguide may be related by the scattering matrix 𝑆,
that is

[
𝑐−(0)
𝑐+(𝐿)]

= 𝑆 [
𝑐+(0)
𝑐−(𝐿)]

(3.37)

Here, 𝑧 = 0 (𝑧 = 𝐿) is the input (output) of the perturbed waveguide. The elements of
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the scattering matrix are [139]

𝑆11 =
− (𝑒+2𝑖𝜆+𝐿 − 1) 𝑟+

1 − 𝑟+𝑟−𝑒+2𝑖𝜆+𝐿 𝑒−𝑖 2𝜋
𝑎 𝐿 (3.38a)

𝑆12 = 𝑆21 =
(1 − 𝑟+𝑟−)𝑒+𝑖𝜆+𝐿

1 − 𝑟+𝑟−𝑒+2𝑖𝜆+𝐿 𝑒+𝑖 𝜋
𝑎 𝐿 (3.38b)

𝑆22 =
− (𝑒+2𝑖𝜆+𝐿 − 1) 𝑟−

1 − 𝑟+𝑟−𝑒+2𝑖𝜆+𝐿 𝑒+𝑖 2𝜋
𝑎 𝐿 (3.38c)

The squared magnitude of 𝑆12 (or 𝑆21) represents the power transmitted to one end
normalized to the power injected from the other side. Similarly, the squared magnitude
of 𝑆11 (𝑆22) is the power reflected at the input (output) normalized to the power injected
from the input (output).

3.5.1 Distributed feedback effects

Figure 3.25: Illustration of coupling between the amplitudes of the forward- and
backward-propagating Bloch modes of a reference waveguide induced by a complex
refractive index perturbation in a region of length 𝐿.

In the following, we consider a typical scattering experiment, illustrated by Fig. 3.25.
A region of length 𝐿 of the reference waveguide, denoted as ”perturbed region”, con-
tains a complex refractive index perturbation. The input power is injected from the
left-hand side, at 𝑧 = 0. The perturbation induces coupling between the amplitudes
of the forward- and backward-propagating Bloch modes of the reference waveguide.
As a result, the input power is partly transmitted at 𝑧 = 𝐿 (undergoing amplification,
if the perturbed region provides optical gain) and partly reflected back at 𝑧 = 0. We
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assume the perturbation to be limited to the line-defect, as in waveguides with a BH
active region. This experiment corresponds to the boundary conditions

𝑐+(𝑧 = 0) = 𝑐0+
(3.39a)

𝑐−(𝑧 = 𝐿) = 0 (3.39b)

By applying these conditions to Eqs. (3.30a) and (3.30b), one finds

̃𝐹 =
𝑐0+

1 − 𝑟+𝑟−𝑒+2𝑖𝜆+𝐿 (3.40a)

̃𝐵 =
−𝑟+𝑐0+

𝑒+2𝑖𝜆+𝐿

1 − 𝑟+𝑟−𝑒+2𝑖𝜆+𝐿 (3.40b)

We may directly relate 𝑐0+
to the input power 𝑃in = 𝑃+(𝑧 = 0). In this case, from

Eq. (3.31) we obtain

|𝑐0+
| =

√
𝑃in

𝑃0
(3.41)

Here, we note that the constraint on the input power does not fix the phase of 𝑐0+
(that

is, the phase of the forward-propagating field at the waveguide input). For simplicity,
we assume this phase to be zero.

In the following, we investigate the spatial evolution of the forward- and backward-
propagating power from Eq. (3.31) under various circumstances. By using Eqs. (3.30a)
and (3.30b), one finds

|𝑐+(𝑧)|2 = | ̃𝐹 |2 𝑒𝑔eff𝑧 + |𝑟−|2| ̃𝐵|2 𝑒−𝑔eff𝑧 + 2Re{ ̃𝐹 ̃𝐵∗ 𝑟∗
− 𝑒−2𝑖𝛿eff𝑧} (3.42a)

|𝑐−(𝑧)|2 = |𝑟+|2| ̃𝐹 |2 𝑒𝑔eff𝑧 + | ̃𝐵|2 𝑒−𝑔eff𝑧 + 2Re{ ̃𝐹 ̃𝐵∗ 𝑟+ 𝑒−2𝑖𝛿eff𝑧} (3.42b)

The forward- and backward-propagating power may undergo spatial oscillations, with
a period given by 𝜋/𝛿eff (see Eq. (3.36)). This spatial period depends not only on the
frequency, but also on the perturbation itself, as governed by the effective propagation
constant. The oscillations originate from the beating of the forward- and backward-
propagating Bloch modes of the active waveguide.

Real refractive index perturbation

We start by considering a purely real refractive index perturbation Δ𝑛′
𝑏 = −10−3 in a

region of length 𝐿 = 20𝑎. Fig. 3.26 shows the forward-propagating (blue), backward-
propagating (red) and net (black) power flow computed by Eq.(3.31). They are reported
in units of the input power 𝑃in. As discussed in Sec. 3.4.1, the perturbation leads to
the formation of a stopband. The frequency to which the plots refer corresponds to
𝑘𝑧𝑎/(2𝜋) = 0.51 and lies right within the stopband, where the Bloch modes are evanes-
cent. As a result, the forward (backward) power exponentially decays (grows) in the
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Figure 3.26: Forward-propagating (blue), backward-propagating (red) and net (black)
power flow computed by Eq. (3.31) in the case of a purely real refractive index pertur-
batio. The perturbation is Δ𝑛′

𝑏 = −10−3 and is limited to the line-defect. The frequency
corresponds to 𝑘𝑧𝑎/(2𝜋) = 0.51 and lies within the stopband induced by the perturba-
tion. The length of the perturbed waveguide is 𝐿 = 20𝑎. The power flows are in units
of the input power 𝑃in.

positive (negative) 𝑧-direction. Since there is neither gain, nor loss, the forward power
diminishes by exactly the same amount by which the backward power grows. Fur-
thermore, the net power entering the waveguide at 𝑧 = 0 is conserved all along the
perturbed region, as expected. On this regard, it should be emphasized that this net
power is exactly equal to the cross power from Eq. (3.35). In fact, since the magnitude
of 𝑟± is unitary within the stopband (see Fig. 3.22), the two power contributions from
Eqs. (3.34a) and (3.34b) are identically equal to zero, irrespective of 𝑔eff. On the other
hand, 𝛽eff is equal to 𝜋/𝑎 within the stopband, which results in the cross power being
constant with 𝑧. This example highlights the physical meaning of the stopband and
the important role of the cross power from Eq. (3.35). Furthermore, we notice that the
forward- and backward-propagating power do not oscillate in space. In fact, 𝛽eff = 𝜋/𝑎
leads to 𝛿eff = 0.

It is also instructive to inspect the transmistted power as a function of frequency.
The left axis in Fig. 3.27 shows the power transmission |𝑆21|2 computed by Eq. (3.38b).
The perturbation and length of the perturbed waveguide are the same as in Fig. 3.26.
The right axis displays the effective propagation constant normalized to 𝜋/𝐿. As the
frequency approaches the stopband, the power transmission steeply drops, due to the
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Figure 3.27: Power transmission (left) and effective propagation constant normalized to
𝜋/𝐿 (right) versus frequency in the case of a purely real refractive index perturbation.
The perturbation is Δ𝑛′

𝑏 = −10−3 and is limited to the line-defect. The length of the
perturbed waveguide is 𝐿 = 20𝑎. The black bullets correspond to frequencies where
complete transmission is achieved, with the dashed, black lines being guides to the eye.
The top 𝑥-axis reports the normalized wavenumber of the reference waveguide.

build-up of a huge reflection. On the other hand, at high frequencies, the power trans-
mission is large, owing to the negligible interaction between the forward and backward
wave. At certain frequencies, even complete transmission is achieved. The usage of the
Bloch modes as a basis provides a compact expression for these frequencies. They are
those for which 𝛽eff𝐿/𝜋 is an integer, as evidenced by the black bullets in Fig. 3.27. In
one-dimensional dielectric layeredmedia, this relation between the Blochmodes propa-
gation constant and frequencies of complete transmission is a well-known phenomenon
and can be understood as a form of tunnelling [140].

Complex refractive index perturbation

In the following, we consider a complex refractive index perturbation, to elucidate the
role of the effective gain in the presence of material gain. To emphasize the distributed
feedback effects, we assume the length of the perturbed region in Fig. 3.25 to be 100
lattice constants.

We start by assuming Δ𝑛′
𝑏 = −10−3, as well as the presence of material gain. The

linewidth enhancement factor is assumed to be zero. Fig. 3.28 shows (a) the forward-
and (b) backward-propagating power computed by Eq. (3.31). The modal gain Γ𝑦𝑔mat
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Figure 3.28: (a) Forward- and (b) backward-propagating power computed by Eq. (3.31)
in the case of a complex refractive index perturbation limited to the line-defect. The
real refractive perturbation is Δ𝑛′

𝑏 = −10−3, while the modal gain Γ𝑦𝑔mat is 50 cm−1.
The linewidth enhancement factor is assumed to be zero. The frequency corresponds
to the normalized wavenumber 𝑘𝑧𝑎/(2𝜋) being 0.51 (blue), 0.52 (red), 0.53 (yellow) and
0.54 (purple), as indicated by the legend in (b). The dashed, black line denotes the level
of the input power 𝑃in. The length of the perturbed waveguide is 𝐿 = 100𝑎. The power
flows are in units of the input power 𝑃in.

is 50 cm−1. The frequency corresponds to the normalized wavenumber 𝑘𝑧𝑎/(2𝜋) be-
ing 0.51 (blue), 0.52 (red), 0.53 (yellow) and 0.54 (purple), as denoted by the legend in
(b). The dashed, black line indicates the level of the injected power 𝑃in. A number of
features can be noted. At 𝑘𝑧𝑎/(2𝜋) = 0.51, the forward power exponentially decays
from 𝑃in down to zero, although the modal gain is positive. This signifies that the input
power is completely and steeply transferred from the forward to the backward wave by
the strong distributed feedback, which by far outweighs the optical amplification. We
emphasize that this power transfer occurs in spite of the effective gain 𝑔eff being positive
(see Fig. 3.20). Therefore, this is another, clear indication of the fact that the effective
gain is not an exhaustive figure of merit of optical amplification, as already mentioned.
On the other hand, the backward power exponentially grows in the negative 𝑧 direc-
tion, rising above 𝑃in close to waveguide input. This means that the backward wave
is also amplified by the positive modal gain, as well as being fed by the forward wave.
At 𝑘𝑧𝑎/(2𝜋) = 0.52, the forward power is not monotonic with 𝑧, indicating a trade-
off between the optical amplification and transfer of power from the forward to the
backward wave. As compared to the case with 𝑘𝑧𝑎/(2𝜋) = 0.51, the backward power is
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strongly enhanced, just because the forward wave undergoes amplification while trans-
ferring power. As 𝑘𝑧 is further detuned from the band edge, the interaction between the
forward and backward wave gradually dies out. At 𝑘𝑧𝑎/(2𝜋) = 0.53, the optical ampli-
fication prevails over the distributed feedback, since the forward power at 𝑧 = 𝐿 (that
is the transmitted power) is larger than the backward power at 𝑧 = 0 (that is the re-
flected power). At 𝑘𝑧𝑎/(2𝜋) = 0.54, the forward wave propagates almost undisturbed,
since the backward power remains well below the input power 𝑃in. Overall, this ex-
ample outlines the impact of distributed feedback effects on the optical propagation in
active photonic crystal waveguides. Furthermore, it clearly demonstrates that a larger
effective gain 𝑔eff does not necessarily imply more transmitted power. In fact, 𝑔eff at a
positive value of modal gain monotonically decreases as 𝑘𝑧 is detuned from the band
edge (see Fig. 3.20). Nevertheless, the transmitted power does not follow this trend, as
evidenced by Fig. 3.28(a) at 𝑧 = 𝐿.

Figure 3.29: (a) Forward- and (b) backward-propagating power computed by Eq. (3.31)
with the linewidth enhancement factor 𝛼𝐻 being 0 (blue) and 4.5 (red). The modal gain
Γ𝑦𝑔mat is 50 cm−1 and the frequency corresponds to 𝑘𝑧𝑎/(2𝜋) = 0.54. The black, dotted
line in (a) is the forward power with the cross-coupling coefficients forced to zero. The
perturbation is assumed to be limited to the line-defect. The length of the perturbed
waveguide is 𝐿 = 100𝑎. The power flows are in units of the input power 𝑃in.

As a second example, we assume Δ𝑛′
𝑏 = 0 and consider the impact of the linewidth

enhancement factor 𝛼𝐻. Fig. 3.29 shows (a) the forward- and (b) backward-propagating
power computed by Eq. (3.31) with 𝛼𝐻 set to 0 (blue) and 4.5 (red). The black, dotted
line in (a) is the forward power in the absence of distributed feedback, i.e. with the
cross-coupling coefficients forced to zero. The modal gain is Γ𝑦𝑔mat = 50 cm−1 and the
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normalized wavenumber 𝑘𝑧𝑎/(2𝜋) = 0.54. For 𝛼𝐻 = 0, the interaction between the
forward and backward wave is negligible, as the frequency is sufficiently detuned from
the band edge. Therefore, the forward power practically coincides with that computed
in the absence of distributed feedback. On this regard, we note that the forward power
without distributed feedback is independent of 𝛼𝐻. In fact, between 𝛽eff and 𝑔eff, only
the former depends on 𝛼𝐻 (see Eqs.(3.28a) and (3.28b)). Furthermore, since the cross-
coupling coefficients are forced to zero, one finds 𝑟± = 0, resulting in the power 𝑃 (𝑧)
being independent of 𝛼𝐻 (as evident from Eq. (3.33)). As the linewidth enhancement
factor increases, so does the magnitude of the associated real refractive index pertur-
bation Δ𝑛′′

𝑏 . Therefore, for 𝛼𝐻 = 4.5 the distributed feedback is stronger, as evidenced
by the oscillations in the forward and backward power in Fig. 3.29, as well as the much
larger reflected power. In particular, we note that the transmitted power is enhanced by
the larger 𝛼𝐻 (see Fig. 3.29(a) at 𝑧 = 𝐿), but the relative increase in the reflected power
is much higher (see Fig. 3.29(b) at 𝑧 = 0). This important feature stems from the impact
of the linewidth enhancenment factor on the dispersion relation, discussed in Sec. 3.4.2.
In particular, a larger 𝛼𝐻 not only makes the effective gain increase (see Fig. 3.23(b)),
but it also enhances the magnitude of the reflection coefficients 𝑟± (see Fig. 3.24), thus
boosting the distributed feedback. The implications are explored in Sec. 3.6.

3.6 Slow-light optical amplification
In this section, we investigate in detail the impact of slow-light on the reflection and
transmission properties of active photonic crystal waveguides [139]. Owing to the slow-
light enhancement of the gain coefficient, these waveguides are viewed as promising
candidates for compact semiconductor optical amplifiers (SOAs) [97, 29]. Our analy-
sis is restricted to the linear regime, i.e. sub-milliwatt power levels [97], appropriate
for on-chip interconnects. As compared to previous investigations [97, 18], our mod-
elling framework accounts for the impact of the gain-induced distributed feedback and
linewidth enhancement factor. As discussed in Sec. 3.5.1, distributed feedbcak effects
are not negligible in the slow-light regime and are further enhanced by the refractive
index perturbation induced by carrier density. To focus on the impact of material gain,
in the following we neglect any real refractive index perturbation other than due to
carrier density, thus assuming Δ𝑛′

𝑏 = 0.
To account for the adverse impact of disorder on practical devices, we limit our

discussion to modes with group index 𝑛𝑔 up to around 60, which have indeed been
measured in waveguides with active material [133]. Furthermore, we include the scat-
tering loss through a phenomenological approach, by adding a loss contribution to the
self-coupling coefficient, i.e.

𝜅FF = 𝑖 (
𝜔
𝑐 ) 𝑆 (𝑛𝑖 − 𝑖Δ𝑛′′

𝑏 ) ΓFF + 𝑖
2 (𝛼1𝑆 + 𝛼2𝑆2) (3.43)

where 𝛼1 and 𝛼2 account, respectively, for disorder-induced coupling with radiation
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modes and backscattering [117]. We assume 𝛼1 = 5 cm−1 and, for simplicity, 𝛼2 = 0,
since this effect only gives rise to a minor, quantitative change of the results for realistic
[178] values of 𝛼2. We briefly discuss the impact of this parameter in Sec. 3.6.1.

We assume a waveguide with a BH active region and length 𝐿 = 100𝑎, correspond-
ing to 43.8 𝜇m. Furthermore, we consider values of the modal gain Γ𝑦𝑔mat not larger
than 200 cm−1. As discussed in AppendixA, the optical confinement factor Γ𝑦 is around
4% per active layer. For a typical structure with three active layers, this translates into a
maximum material gain around 1600 cm−1, which is reasonable [23]. In the following,
the amplifier reflection and gain are computed as the squared magnitude of 𝑆11 and 𝑆21
from Eqs. (3.38a) and (3.38b) respectively.

Figure 3.30: Amplifier gain (solid) and reflection (dotted) with 𝛼𝐻 = 0. They are plotted:
(a) versus modal gain, Γ𝑦𝑔mat, at 𝜆 ≈ 1575 nm (blue) and 𝜆 ≈ 1581 nm (red); (b) versus
wavelength, 𝜆, at Γ𝑦𝑔mat = 100 cm−1 (blue) and Γ𝑦𝑔mat = 200 cm−1 (red). The dashed,
black line in (a) is the gain with slow-light effects being neglected.

Fig. 3.30 shows the amplifier gain (solid) and reflection (dotted) with the linewidth
enhancement factor 𝛼𝐻 set to zero. They are reported versus (a) the modal gain Γ𝑦𝑔mat
and (b) wavelength 𝜆. The choice 𝛼𝐻 = 0 reflects an active waveguide with ideal
quantum dot layers. Let us focus on Fig. 3.30(a). At 𝜆 ≈ 1575 nm (blue), the ampli-
fier gain monotonically increases with the modal gain, while for 𝜆 ≈ 1581 nm (red) it
achieves a maximum. The appearance of an optimum is explained as resulting from the
build-up of a strong reflection. In fact, the closer 𝜆 is to the band edge, the stronger
the distributed feedback induced by material gain is. This is due to the smaller detun-
ing 𝛿 (see Eqs. (3.18a) and (3.18b)), as well as the relative increase of ΓFB as compared

90



3.6 – Slow-light optical amplification

to ΓFF (see Fig. 3.15(b)). As a reference, the amplifier gain with slow-light effects be-
ing neglected (i.e. 𝑆 = 1, ΓFF = 1 and ΓFB = 0) is also shown (dashed, black). Let
us now turn our attention to Fig. 3.30(b). In a complementary fashion as compared to
Fig. 3.30(a), at Γ𝑦𝑔mat = 100 cm−1 (blue) both amplifier gain and reflection increase as
the wavelength approaches the band edge, because the slow-down factor grows. How-
ever, at Γ𝑦𝑔mat = 200 cm−1 (red) the distributed feedback beyond a certain wavelength
is large enough to induce a steep decrease in the amplifier gain. These results are con-
sistent with previous investigations [19]. However, as compared to [19] we have eluci-
dated and thoroughly discussed in the previous sections the physics of the gain-induced
distributed feedback. Furthermore, we have derived an efficient framework based on
Eqs. (3.38a)-(3.38c) to analyze the reflection and transmission properties of active pho-
tonic crystal waveguides.

Figure 3.31: Amplifier gain (solid) and reflection (dotted) with 𝛼𝐻 = 3. They are plotted:
(a) versus modal gain, Γ𝑦𝑔mat, at 𝜆 ≈ 1575 nm (blue) and 𝜆 ≈ 1581 nm (red); (b) versus
wavelength, 𝜆, at Γ𝑦𝑔mat = 100 cm−1 (blue) and Γ𝑦𝑔mat = 200 cm−1 (red).

To explore the impact of the linewidth enhancement factor, in Fig. 3.31 we assume
𝛼𝐻 = 3, representative of an activewaveguidewith generic quantumwell layers. Again,
we report the amplifier gain (solid) and reflection (dotted) versus (a) the modal gain
and (b) wavelength. As the modal gain grows (see Fig. 3.31(a)), the band edge shifts to
shorter and shorter wavelengths, due to the increasing refractive index perturbation
induced by carrier density. Consequently, the amplifier gain at a given wavelength, in
dependence of the modal gain, may be slightly enhanced by 𝛼𝐻, as already discussed in
relation to Fig. 3.29. However, this enhancement comes at the price of an enhanced re-
flection, due to the combined effect of gain- and index-induced distributed feedback.
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Therefore, the drop in amplifier gain sets in at smaller modal gain values than for
𝛼𝐻 = 0. Similarly (see Fig. 3.31(b)), it occurs, for a given value of modal gain, at wave-
lengths more detuned from the band edge. Furthermore, we note that the distributed
feedback due to material gain induces strong oscillations in the waveguide transmission
and reflection spectra, in a similar fashion as compared to disorder-induced multiple-
scattering [91, 123].

Figure 3.32: (a, b) Amplifier gain and (c, d) reflection with (a, c) 𝛼𝐻 = 0 and (b, d)
𝛼𝐻 = 3 versus wavelength, 𝜆, and modal gain, Γ𝑦𝑔mat.

A complete overview is provided by Fig. 3.32, reporting contour plots of (a, b) ampli-
fier gain and (c, d) reflection with (a, c) 𝛼𝐻 = 0 and (b, d) 𝛼𝐻 = 3 versus wavelength and
modal gain. It is seen that both amplifier gain and reflection diverge for certain com-
binations of wavelength and modal gain. These points correspond to the poles of the
scattering matrix 𝑆 (i.e. 𝑟+𝑟−𝑒+2𝑖𝜆+𝐿 = 1) and therefore to the onset of lasing, which is
genuinely sustained by the Bloch modes gain-induced distributed feedback. The peaks
corresponding to these poles appear to have finite height in Fig. 3.32 only because of
the limited resolution in the wavelength and modal gain. By numerically solving the
equation 𝑟+𝑟−𝑒+2𝑖𝜆+𝐿 = 1, we have verified that these peaks do correspond to combi-
nations of wavelength and modal gain for which lasing is achieved. In Sec. 4.4.2, we
further discuss this feedback-sustained lasing.

The quantification of a maximum amplifier gain depends on the acceptable level of
reflection, which varies with the application. As an example, Fig. 3.33 illustrates the
gain corresponding to the reflection being smaller than −20 dB. The LEF is (a) 𝛼𝐻 = 0,
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Figure 3.33: Amplifier gain in dB with (a) 𝛼𝐻 = 0, (b) 𝛼𝐻 = 1.5, (c) 𝛼𝐻 = 3 and (d)
𝛼𝐻 = 4.5. The coloured area corresponds to the reflection being smaller than −20 dB.

(b) 𝛼𝐻 = 1.5, (c) 𝛼𝐻 = 3 and (d) 𝛼𝐻 = 4.5. As 𝛼𝐻 grows, one has increasingly less
freedom, in terms of wavelength and modal gain, to achieve a certain amplifier gain.
For instance, a maximum gain larger than 11 dB can be achieved with 𝛼𝐻 = 0, but not
greater than 8 dB with 𝛼𝐻 = 4.5. This suggests that, for a given material gain, quantum
dots may be more attractive than quantum wells as active layers.

Finally, some comments are due on the saturation of material gain, which we have
neglected. The estimate of the saturation power of photonic crystal amplifiers with
slow-light effects included is highly non-trivial. As an example, the output saturation
power of the amplifiers analyzed in [97] is estimated between 0.1 and 1mW. However,
a conventional rate equations model is therein employed. In [18], a more sophisticated
model is presented. Such model essentially amounts to combining the coupled-Bloch-
mode equations with a carrier density rate equation. The stimulated emission rate is
directly expressed in terms of the total electric field and carrier-induced polarization
change, but the gain-induced distributed feedback is neglected. With a group index
ranging between 4 and 40, the output saturation power is found to be (approximately)
between 0.1mW and 0.03mW. These values could serve as rough estimates of the
output saturation power. A rigorous assessment of this quantitywould require to follow
the same approach illustrated in [18] without neglecting the distributed feedback. This
is beyond the scope of this thesis, but could be the subject of future work.
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3.6.1 Impact of backscattering loss
As already mentioned, we have set 𝛼2 = 0 because the impact of this parameter is
mostly quantitative, rather than qualitative. A point of attention is that the cross-
coupling coefficient is unaffected by 𝛼2, although this loss parameter is representative
of a backscattering loss. This implies that the power lost by either the forward- or
backward-propagating wave in connection with 𝛼2 is truly lost, rather than recycled
back to the counter-propagating wave (which is of course not the case in practice). A
more consistent modelling approach could be, for instance, combining our coupled-
Bloch-mode equations with the model illustrated in [90]. This possibility is outside
the scope of this thesis, but could be the subject of future work. Another possibility is
briefly illustrated in Sec. 3.7.

In [133], 𝛼2 ≈ 0.5 cm−1 is estimated from measurements on GaAs-based photonic
crystal waveguides, for a range of group index values similar to that which we have
considered. In [178], values of 𝛼2 between 1 and 1.5 cm−1 are suggested for InP-based
photonic crystal waveguides. As an example, we shall consider below 𝛼2 = 1.5 cm−1

and discuss its impact.

Figure 3.34: Amplifier gain (solid) and reflection (dotted) with (a, c) 𝛼𝐻 = 0 and (b,
d) 𝛼𝐻 = 3. They are plotted: (a, b) versus modal gain, Γ𝑦𝑔mat, at 𝜆 ≈ 1575 nm; (c, d)
versus wavelength, 𝜆, at Γ𝑦𝑔mat = 100 cm−1. The loss coefficient 𝛼2 is set to 0 (blue)
and 1.5 cm−1 (green).

Fig. 3.34 shows the amplifier gain (solid) and reflection (dotted) as a function of

94



3.6 – Slow-light optical amplification

(a, b) the modal gain Γ𝑦𝑔mat, with the wavelength 𝜆 ≈ 1575 nm, and (c, d) 𝜆, with
Γ𝑦𝑔mat = 100 cm−1. The backscattering loss 𝛼2 is set to 0 (blue) and 1.5 cm−1 (green),
while the linewidth enhancement factor is (a, c) 𝛼𝐻 = 0 and (b, d) 𝛼𝐻 = 3. At
𝜆 ≈ 1575 nm, the impact of distributed feedback is relatively weak. Consequently,
the amplifier gain approximately goes as 𝑒𝑔eff𝐿, with 𝑔eff = 𝑆ΓFFΓ𝑦𝑔mat − (𝛼1𝑆 + 𝛼2𝑆2).
Therefore, the vertical shift between the solid blue and green line in Fig. 3.34(a) and (b)
is approximately independent of Γ𝑦𝑔mat (being proportional to 𝛼2𝑆2𝐿). Furthermore,
the amplifier reflection is also dampened by 𝛼2, because the power lost by the forward-
propagating wave does not feed the backward-propagating one. With 𝛼𝐻 = 0 and
Γ𝑦𝑔mat = 100 cm−1 (see Fig. 3.34(c)), the distributed feedback is also relatively weak at
any wavelength. For 𝛼2 = 1.5 cm−1, the closer 𝜆 is to the band edge, the larger the
difference is between the blue and green lines, because the slow-down factor increases.
With 𝛼𝐻 = 3 and Γ𝑦𝑔mat = 100 cm−1 (see Fig. 3.34(d)), the distributed feedback close
to the band edge is strong enough to make the gain drop if 𝛼2 = 0. If 𝛼2 = 1.5 cm−1,
the wavelength at which the gain starts diminishing is moved closer to the band edge,
because of the dampening of reflection due to 𝛼2.

Figure 3.35: Amplifier gain (solid) and reflection (dotted) with (a, c) 𝛼𝐻 = 0 and (b,
d) 𝛼𝐻 = 3. They are plotted: (a, b) versus modal gain, Γ𝑦𝑔mat, at 𝜆 ≈ 1581 nm; (c, d)
versus wavelength, 𝜆, at Γ𝑦𝑔mat = 200 cm−1. The loss coefficient 𝛼2 is set to 0 (red) and
1.5 cm−1 (yellow).

This effect is even more evident in Fig. 3.35, reporting the amplifier gain (solid) and
reflection (dotted) as a function of (a, b) Γ𝑦𝑔mat, with 𝜆 ≈ 1581 nm, and (c, d) 𝜆, with
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Γ𝑦𝑔mat = 200 cm−1. Similarly to Fig. 3.34, we consider 𝛼2 = 0 (red) and 𝛼2 = 1.5 cm−1

(yellow), while the linewidth enhancement factor is (a, c) 𝛼𝐻 = 0 and (b, d) 𝛼𝐻 = 3. If
the distributed feedback is relatively weak, the effect of 𝛼2 is just dampening both the
amplifier gain and reflection. This occurs for values of Γ𝑦𝑔mat being sufficiently small or
wavelengths sufficiently detuned from the band edge, with the upper bound on Γ𝑦𝑔mat
and 𝜆 depending on 𝛼𝐻. When the distributed feedback becomes strong enough, the
amplifier gain starts dropping. The effect of 𝛼2 is just shifting to larger values the modal
gain or wavelength which triggers this mechanism. We have also checked that values
of 𝛼2 as large as 3 or 6 cm−1 do not alter the conclusions above.

3.7 Modelling disorder-induced multiple-scattering
In this section, we briefly outline the analogies between the coupled-Bloch-mode equa-
tions which we have utilized and the model discussed by M. Patterson and S. Hughes in
[122], describing coherent, optical propagation in passive photonic crystal waveguides
affected by disorder. In light of these considerations, we suggest an approach to model
disorder by the scattering matrix formulation which we have derived.

The equations presented in [122] exactly coincide with the coupled-Bloch-mode
equations introduced in Sec. 3.2, i.e. Eqs. (3.3a) and (3.3b). The differences between the
two models are only the following ones:

• In [122], the self-coupling coefficient includes a contribution due to coupling with
radiation modes, which we have neglected;

• In [122], the perturbation entering the self- and cross-coupling coefficients is due
to disorder, rather than to material gain. The disorder-induced perturbation is
Δ𝜖(r), corresponding to the difference between the permittivity of the reference,
ideal waveguide (i.e. without disorder) and that of the actual waveguide (i.e. with
disorder). By replacing with Δ𝜖(r) the susceptibility perturbation 𝜒pert(r) in the
cross-coupling coefficients which we have employed (see Eqs.(A.16b)-(A.16c) in
AppendixA), one exactly finds the cross-coupling coefficients of [122]. The same
holds for the self-coupling coefficient, minus the contribution due to coupling
with radiation modes.

As noted in [123], to a first approximation disorder simply adds and removes di-
electric from an unperturbed Bloch mode in a random fashion, thus causing local and
random shifts of the dispersion relation along the waveguide. Therefore, by neglecting
the radiation loss, one may simply model a certain instance of disorder by randomly
dividing the waveguide in a given number of sections and assigning to each section a
random refractive index perturbation Δ𝑛′

𝑏. Each section can be described by the scat-
tering matrix formulation which we have derived (see Eqs. (3.38a)-(3.38c)). Finally, the
scattering matrix of the waveguide as a whole is obtained by cascading those of the
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various sections. Since the field is mostly localized within the line-defect region, we
may assume Δ𝑛′

𝑏 to be spatially limited to the line-defect, similarly to material gain in
the case of a BH active region.

This strategy would allow to model disorder-induced, coherent multiple-scattering
in active photonic crystal waveguides in a simple, but efficient manner. In particular,
it appears to have the following basic ingredients: 1) it naturally accounts for the fre-
quency dependence of the reflection and transmission at a given, disorder-induced scat-
tering site, represented by a random refractive index perturbation (as an example, see
Fig. 3.27); 2) it naturally takes into account the interference between multiple, disorder-
induced reflections; 3) it self-consistely accounts for the presence of active material. As
compared to the inclusion of backscattering loss in the form discussed in Sec. 3.6.1, this
approach would allow to investigate the competition between disorder-induced and
gain-induced multiple-scattering, for which no descriptions, to the best of our knowl-
edge, are documented so far.

3.8 Conclusions
In summary, we have presented and thorougly discussed an efficient framework for
analyzing the reflection and transmission properties of active photonic crystal waveg-
uides. In the following, we recall the salient points.

In Sec. 3.2, we have carefully dissected the coupled-Bloch-mode equations intro-
duced in [19] to model the impact of material gain on the optical propagation. As com-
pared to [19], we have accounted for a generally complex refractive index perturbation.
Furthermore, we have thorougly analyzed the frequency and spatial dependence of the
coupling coefficients. Specifically, we have carried out this analysis for two possible ge-
ometries of the active region and, generally, of the perturbation, even if purely real (see
Fig. 3.9). The first one is a so-called all-active waveguide, with active layers extended
throughout the waveguide along the lateral direction (see Fig. 3.7(a)). The second geom-
etry is a buried heterostructure (BH) active region, with active layers spatially limited
to the line-defect (see Fig. 3.7(b) and (c)). Being periodic, the coupling coefficients can
be expanded in a Fourier series. In either type of active region, we have found that the
cross-coupling coefficient is increasingly dominated by the first-order spatial harmonic
as the frequency approaches the band edge (see Fig. 3.11). This peculiar behaviour is
essentially due to the compresence of the lateral and longitudinal electric field compo-
nents in the TE-like modes of photonic crystal waveguides (see Fig. 3.13).

In light of these considerations, in Sec. 3.3 we have introduced the so-called reduced
coupled-Bloch-mode equations. They contain all the essential physics of the coupled-
Bloch-mode equations, but greatly elucidated. In particular, the optical propagation
is governed by two factors: 1) the detuning from the band edge (see Eq. (3.20)) and 2)
the relative strength of the cross-coupling coefficient as compared to the self-coupling
coefficient (see Fig. 3.15).
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Armed with this tool, in Sec. 3.4 we have derived the dispersion relation and Bloch
modes of the active waveguide. We have also derived a block diagram of the active
waveguide, which further elucidates the physics (see Fig. 3.17). According to this di-
agram, the Bloch modes of the active waveguide are backscattered at the equivalent
dielectric interfaces on either side of the waveguide, with reflection coefficients given
by 𝑟± within a phase shift of 𝜋 (see Eqs. (3.26a) and (3.26b)). These interfaces arise from
the mismatch between the Bloch modes of the active waveguide and those of the ref-
erence waveguide, which is assumed to extend on either side. In the case of a purely
real refractive index perturbation, we have compared our approach against results of
MPB simulations and verified that the former well reproduces the frequency shift of
the dispersion relation (see Fig. 3.18). We have then analyzed the impact of a com-
plex refractive index perturbation, which we have found to be consistent with previous
results [41]. However, as compared to [41] we have clarified that the effective gain
(see Fig. 3.20) does not simply scale with the group index of the active waveguide (see
Fig. 3.19(b)), that is the effective group index. Therefore, this effective group index is
not an exhaustive figure of merit of the slow-light gain enhancement. Moreover, we
have analyzed the impact of the linewidth enhancement factor 𝛼𝐻 on the dispersion
relation. At given values of the modal gain and frequency, the effective gain grows
with 𝛼𝐻 (see Fig. 3.23(b)). However, the magnitude of the reflection coefficients 𝑟± also
increases (see Fig. 3.24), signifying an enhanced backscattering of the Bloch modes of
the active waveguide.

In Sec. 3.5, we have introduced analytical expressions describing the optical prop-
agation and power flow in the active waveguide. In particular, we have discussed two
equivalent formulations of the power flow, which offer alternative and complementary
points of view for the interpretation of simulation results. We have also presented com-
pact expressions for the scattering matrix, describing the multiple-scattering induced
by the complex refractive index perturbation. Equipped with this theoretical frame-
work, we have analyzed the spatial and frequency dependence of the power flow in re-
sponse to power injection from the waveguide input. This analysis sheds further light
on the physical meaning of the effective propagation constant, effective gain and re-
flection coefficients 𝑟±. In particular, a purely real refractive index perturbation causes
a band edge shift, accompanied by oscillations in the power transmission spectrum and
a steep decrease as the frequency approaches the band edge (see Fig. 3.27). The case
of a complex refractive index perturbation emphasizes the non-trivial nature of the in-
duced distributed feedback and clearly reveals that a larger effective gain does not nec-
essarily imply more transmitted power (see Fig. 3.28). In addition, we have found that
the linewidth enhancement factor slightly enhances the transmitted power, but greatly
boosts the backscattered power (see Fig. 3.29).

In Sec. 3.6, we have explored the implications of this last finding in compact slow-
light semiconductor optical amplifiers [139]. We have ignored the saturation of material
gain and restricted our analysis to the linear regime of the amplifier, i.e. sub-milliwat
power levels, appropriate for on-chip interconnects. We have found that the maximum
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amplifier gain is limited by the buildup of a strong reflection, which increases as the
operation wavelength approaches the band edge and/or the material gain grows (see
Fig. 3.30). This is consistent with previous results [19] and confirms that the slow-light
gain enhancement is intrinsically limited by the gain itself. Furthermore, as compared
to [19] we have clarified the impact of the linewidth enhancement factor 𝛼𝐻, which
further hampers the achievement of a given amplifier gain. This implies that devices
with smaller 𝛼𝐻 may offer better performance (see Fig. 3.31 and Fig. 3.33).

Finally, in Sec. 3.7 we have outlined the close analogies between our modelling
framework and the model discussed in [122] for disorder-induced coherent, multiple-
scattering in passive photonic crystal waveguides. We have suggested a simple, but
efficient strategy to model this effect in active photonic crystal waveguides by exploit-
ing our modelling framework.
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Chapter 4

Oscillation condition of photonic
crystal lasers: slow-light effects

In this chapter, we deal with the impact of slow-light on the oscillation condition of
photonic crystal lasers based on line-defect waveguides. In Sec. 4.1, we provide a brief
introduction to photonic crystal lasers and motivations for this chapter. In Sec. 4.2,
we derive the oscillation condition and in Sec. 4.3 we present a block diagram of the
active cavity, which elucidates the role of the gain-induced distributed feedback asso-
ciated with slow-light. The following sections focus on results. Specifically, Sec. 4.4
and Sec. 4.5 cover lasers with, respectively, photonic bandgap mirrors and photonic
heterostructure mirrors. In Sec. 4.6, we investigate the impact of slow-light on the tun-
ing characteristics of a new, recently proposed laser structure, the so-called Fano laser.
Finally, in Sec. 4.7 we draw the conclusions.

4.1 Introduction and motivation
As discussed in Chapter 1, photonic crystal lasers are promising candidates as compact
and energy-efficient light-sources for computercom applications. In Sec. 2.1, we have
discussed the main concepts behind optical guiding and radiation loss in passive line-
defect cavities. In the following, we turn our attention to active photonic crystal cavities
and briefly review the currently most promising solutions. For thorough reviews of
photonic crystal lasers, we refer to [126, 33].

The first demonstration of a photonic crystal laser dates back to around 20 years
ago [119]. The laser was made of an LN cavity with optically pumped quantum well
(QW) layers stretching throughout the slab (a so-called all-active structure, as defined
in Chapter 3). Fig. 4.1 illustrates a cross-section view of this type of laser. We have al-
ready shown this figure in Sec. 2.1, when introducing photonic crystal cavities. As dis-
cussed therein, the field is confined within the plane of periodicity by the photonic band
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Figure 4.1: Photonic crystal laser based on an LN cavity. Reproduced from [119].

gap (distributed Bragg reflection) and vertically by index guiding (total internal reflec-
tion). Since this first demonstration, photonic crystal lasers have attracted significant
research interest, flourishing into a large variety of studies and demonstrations. Ini-
tially, continuous-wave (CW) room-temperature operation was difficult to achieve, due
to heat accumulating in the active region. In the following years, significant progress
has been made and room-temperature CW operation has been demonstrated under op-
tical pumping by using LN cavities with embedded quantum dots [109]. As shown in
the following, current state-of-the-art photonic crystal lasers are not generally based on
LN cavities. However, LN cavities continue to be an attracting platform for fundamen-
tal research, such as investigations of thresholdless operation [161], slow-light effects
[178] and integration on silicon [187].

Figure 4.2: Electrically pumped photonic crystal lasers with carrier injection through
a nanopillar. (a) and (b) are reproduced from [121] and [54] respectively.

A key requirement for integration into photonic circuits is electrical pumping, for
which a few different schemes are currently documented. Owing to the small size of
photonic crystal lasers, the challenge here is fabricating contacts without inducing huge
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optical loss within the metal and ensuring, at the same time, that carriers are efficiently
injected into the active region. One solution is carrier injection through a nanopillar
placed right below the centre of the cavity, as demonstrated in [121]. This was the
first demonstration of an electrically pumped photonic crystal laser. A schematic rep-
resentation is illustrated in Fig. 4.2(a). The cavity is formed by omitting a single hole
in an hexagonal lattice of air holes. The active region consists of QW layers extending
throughout the structure and carrier injection is performed through a vertical hetero-
juction, with electrons (holes) injected from the top electrode (the bottom nanopillar).
The same group later proposed a refined design based on a so-called nanobeam cavity
[54], which is schematically reported in Fig. 4.2(b). In this case, the cavity is induced by
drilling holes in an air-suspended nanobeam, with the hole size gradually varying from
the centre towards the left- and right-hand side of the nanobeam. Again, the injection
scheme is based on a vertical heterojunction. Importantly, a threshold current as low
as 5 𝜇A was measured. However, lasing was only achieved in these studies [121, 54]
under pulsed mode. The main issues hindering CW operation are 1) the degradation
of the Q-factor due to the nanopillar and 2) the lack of lateral carrier confinement in
the active region. Furthermore, integration into photonic circuits appears challenging.
In fact, interfacing with output waveguides has not been demonstrated. The output
power is collected from vertical (i.e. out-of-plane) light scattering, as in conventional
LN cavities.

Figure 4.3: (a) Three-dimensional and (b) cross-section view of an electrically pumped
LEAP laser. (a) and (b) are reproduced from [142] and [85] respectively.

A major breakthrough in the field of photonic crystal lasers has been the introduc-
tion of the so-called lambda-scale-embedded active region photonic crystal laser (LEAP
laser). Initially demonstrated under optical pumping [88], this laser has undergone a
rapid series of improvements, leading to CW lasing under electrical injection at room
temperature. Fig. 4.3 shows (a) a three-dimensional and (b) cross-section view of an
electrically pumped LEAP laser. The figures are reproduced from [142] and [85] re-
spectively. The laser is based on an active photonic crystal line-defect waveguide. The
active region is a buried heterostructure (BH), which we have already introduced in
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Chapter 3 when dealing with active photonic crystal waveguides. It consists of InGaAs
QW layers separated by InGaAsP barrier layers, embedded in InP. Carriers are injected
into the active region by a lateral heterojunction, already demonstrated in previous
studies from a different group [30]. Importantly, the output light is evanescenty cou-
pled from the active region to an in-plane output waveguide (see Fig. 4.3(a)), which is
advantageous in the perspective of device integration. The slab hosting the active re-
gion is an InP air-suspended membrane (see Fig. 4.3(b)), with an InAlAs sacrificial layer
and an InP substrate.

The embedded active region fulfills various functions. Firstly, it forms the laser cav-
ity itself. In fact, the slight refractive index difference between the active region and
surrounding InP induces a photonic heterostructure, ensuring a tight confinement of
photons in the longitudinal direction. In Sec. 2.1, we have reviewed the general princi-
ple of photon confinement in photonic heterostructure cavities. Secondly, as compared
to all-active structures, the BH ensures effective confinement of carriers in the lateral
(as well as vertical) direction, owing to the larger electronic bandgap of InP as com-
pared to the active region. Therefore, the laser injection efficiency is improved, thereby
reducing the threshold current. Thirdly, InP has a much larger thermal conductivity
than InGaAsP. Therefore, heat generated in the active region is more efficiently dissi-
pated as compared to air-bridge structures entirely made of InGaAsP [177]. These and
other technological advances have culminated in the demonstration of oustanding per-
formance [160]. A threshold current as low as 4.8 𝜇A and an output power of a few 𝜇W
have been demonstrated under CW operation at room temperature. In the same work,
a maximum 3dB modulation bandwidth around 12GHz and a minimum energy cost of
4.4 fj/bit have been achieved. These values make the LEAP laser a promising candidate
as a source for computercom applications. For thorough reviews on the LEAP laser, we
refer to [89, 142].

It should be mentioned that recently heterogeneous integration of the LEAP laser
on silicon has been also demonstrated [159]. In this case, the laser active region and
the silicon-on-insulator (SOI) waveguide are stacked vertically and aligned laterally,
with the vertical separation controlling the coupling efficiency. However, the threshold
current was around one order ofmagnitude larger than for LEAP lasers on InP substrate,
outlining the necessity of further improvements.

Another notable demonstration of a photonic crystal laser with electrical injection
has been achieved in [24] under CW room-temperature operation. It is a so-called
hybrid (i.e. heterogeneously integrated) indium phosphide-on-silicon nanolaser diode.
Fig. 4.4(a) and (b) illustrate, respectively, a three-dimensional and cross-section view of
this device. The laser cavity is a one-dimensional photonic crystal obtained by drilling
holes in an InP-based rib waveguide. The lattice constant (i.e. the hole-to-hole dis-
tance) gradually increases from the centre towards the sides of the rib. Carriers are
injected into the active region (denoted by red) through a vertical n-i-p heterojunction.
The n- and p-doped layers are made of InP and InGaAsP respectively, while the active
layers are InGaAsP QWs. The n- and p-contacts are indicated in Fig. 4.4(a). The light
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Figure 4.4: Electrically pumped hybrid indium phosphide-on-silicon nanolaser diode.
(a) Three-dimensional and (b) cross-section view. Reproduced from [24].

emission generated in the active region is evanescently coupled to the SOI waveguide
located below (see Fig. 4.4(b)). Here, the coupling efficiency can be controlled by ad-
justing the width of the silicon waveguide. In fact, this width determines the effective
refractive index of the silicon waveguide, thereby controlling the phase matching con-
dition between the silicon and InP waveguide. The laser structure is encapsulated in
silicon dioxide, which improves the mechanical stability and heat sinking properties.
Another key parameter is the distance (denoted by 𝑑 in Fig. 4.4(a)) between the InP rib
and the p-contacts. This distance results from the trade-off of various requirements.
Essentially, 1) minimizing the electrical resistance encountered by the holes injected
from the p-contact and 2) minimizing the optical loss due to the field absorption within
the metal. From this trade-off, 𝑑 is chosen around 1 𝜇m. As compared to the LEAP
laser in [160], this hybrid nanolaser shows a larger threshold current (around 100 𝜇A).
However, it also emits more power (tens of 𝜇W), owing to the larger slope efficiency.
In addition, it is heterogeneously integrated on silicon. On the other hand, the dynamic
characteristics of this laser [24] have not been explored.

Regarding integration on silicon of photonic crystal lasers, it should be mentioned
the recent demonstration of [187]. In this work, a photonic crystal laser based on an LN
cavity has been epitaxially grown on silicon. Fig. 4.5(a) illustrates the entire epitaxial
structure including the silicon substrate, while Fig. 4.5(b) schematically represents the
laser active region. The active region consists of InAs QDs embedded in InGaAs QWs,
separated by GaAs barrier layers. This device is still far from the state-of-the-art pho-
tonic crystal lasers briefly reviewed above. Indeed, lasing has been only achieved under
optical pumping. Moreover, the output power is collected from out-of-plane light scat-
tering, meaning that the laser is not interfaced with output waveguides. However, the
demonstration of CW operation at room-temperature in a structure epitaxially grown
on silicon certainly constitutes a noteworthy result. Furthermore, it outlines that LN
cavities still represent a vivid research field. Incidentally, we note that the epitaxial
structure in Fig. 4.5 closely reflects the QD lasers on silicon which we study in Chap-
ter 6.
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Figure 4.5: Optically pumped photonic crystal laser epitaxially grown on silicon.
Schematic view of (a) the entire epitaxial structure and (b) laser active region. Repro-
duced from [187].

In spite of reflecting different implementations, the photonic crystal lasers discussed
above share a common feature. The laser cavity is formed by introducing a defect within
an otherwise (ideally) perfect photonic crystal structure. For example, in the LEAP laser
[160] the perfect structure is represented by a line-defect photonic crystal waveguide.
The defect inducing the laser cavity is instead the refractive index modulation intro-
duced by the active region, thereby forming a photonic heterostructure (see Sec. 2.1).
In the hybrid indium phospide-on-silicon nanolaser diode [24], the perfect structure
is a one-dimensional photonic crystal obtained from a rib waveguide by drilling holes
with a fixed lattice constant. The defect is induced by modulating the lattice constant
from the centre towards the right- and left-hand side of the rib. In light of this con-
sideration, the lasers reviewed above can be collectively denoted by microcavity-based
photonic crystal lasers [126]. To a first approximation, these lasers can be viewed as
effective Fabry-Perot resonators for the Bloch modes of the region corresponding to the
defect [70].

As anticipated in Chapter 1, it should be mentioned that another category of pho-
tonic crystal lasers exists, which we briefly recall in the following lines. These lasers
can be generally labeled as slow-light based photonic crystal lasers or DFB-like photonic
crystal lasers [126]. Essentially, the lasing operation is achieved by usage of modes of a
photonic crystal structure with low group velocity and is sustained by the strong dis-
tributed feedback throughout the periodic lattice. A further classification is possible,
by distinguishing DFB-like photonic crystal lasers for surface and in-plane emission.
The former [11, 36, 135] predominantly emit light in the direction orthogonal to the
plane of the photonic crystal lattice. In the latter, most of the light remains instead con-
fined within the plane of periodicity. In particular, this in-plane emission can be either
achieved in a perfectly periodic lattice [69] or in line-defect photonic crystal waveguides
[1, 60, 43]. As already mentioned, these DFB-like photonic crystal lasers are outside the
scope of this thesis, with a single exception. For this case, we refer to Sec. 4.4.2.

106



4.2 – Oscillation condition

4.1.1 Motivation of this chapter
In this chapter, we focus on specific types of microcavity-based photonic crystal lasers.
In particular, as shown in Chapter 3, line-defect photonic crystal waveguides support
significant slow-light, with possible enhancement of optical gain [29]. This effect could
be exploited for the realization of lasers with shorter cavity length or lower threshold
gain [105].

However, slow-light in microcavity-based photonic crystal lasers has not received
much attention beyond the conventional picture [105, 178] of a simple reduction of the
mirror loss. In particular, as thoroughly discussed in Chapter 3, slow-light operation in
active photonic crystal waveguides does not automatically ensure gain enhancement,
since a gain-induced distributed feedback sets in [19, 139]. Therefore, it appears natural
to investigate the impact of the same effect in the case of microcavity-based photonic
crystal lasers.

With this motivation in mind, in this chapter we extend to the case of photonic
crystal lasers based on line-defect waveguides the theoretical framework developed in
Chapter 3.

4.2 Oscillation condition
In this section, we derive the oscillation condition of photonic crystal lasers based on
line-defect waveguides. Slow-light effects are accounted for through the model thor-
oughly discussed in Chapter 3.

In the following, we follow the approach illustrated in [157] for DFB lasers. From
Eq. (3.21), the electric field in the active region reads

𝐸(𝑧) = 𝑒+𝑖 𝜋
𝑎 𝑧

[ ̃𝐹 𝑒+𝑖𝜆+𝑧 + 𝑟− ̃𝐵𝑒−𝑖𝜆+𝑧] 𝑒+(𝑧)

+ 𝑒−𝑖 𝜋
𝑎 𝑧

[𝑟+ ̃𝐹 𝑒+𝑖𝜆+𝑧 + ̃𝐵𝑒−𝑖𝜆+𝑧] 𝑒−(𝑧)
(4.1)

Here, we are considering for simplicicity the electric field to be a scalar quantity. 𝐸(𝑧)
in Eq. (4.1) may correspond to the electric field lateral component along the centerline
of the cavity, as discussed in Sec. 2.3. The quantities appearing in Eq. (4.1) have been
already introduced in Chapter 3, but are briefly reviewed for the sake of convenience.
𝑒± are the forward (+) and backward (-) Bloch modes of a reference waveguide with
purely real refractive index. ̃𝐹 ( ̃𝐵) is the amplitude of the forward (backward) Bloch
mode of the active waveguide, with 𝜆+ being the complex propagation constant from
Eq. (3.25). 𝑟± are computed by Eqs. (3.26a) and (3.26b). They are coefficients determining
the composition of the Bloch modes of the active waveguide in terms of those of the
reference waveguide, in compliance with Eqs.(3.22a) and (3.22b). Finally, 𝑎 is the lattice
constant.

We denote by 𝑟𝐿 (𝑟𝑅) the left (right) mirror reflection coefficient in the basis of the
Blochmodes of the referencewaveguide. Depending on the specific type of cavity, these
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reflection coefficients have different forms, as discussed in the following sections. We
assume the left (right) mirror to be placed at 𝑧 = 0 (𝑧 = 𝐿) and consequently express
the boundary conditions as

𝑟𝑅𝑒+𝑖 𝜋
𝑎 𝐿

[ ̃𝐹 𝑒+𝑖𝜆+𝐿 + 𝑟− ̃𝐵𝑒−𝑖𝜆+𝐿] 𝑒+(𝐿)

= 𝑒−𝑖 𝜋
𝑎 𝐿

[𝑟+ ̃𝐹 𝑒+𝑖𝜆+𝐿 + ̃𝐵𝑒−𝑖𝜆+𝐿] 𝑒−(𝐿)
(4.2a)

𝑟𝐿 [𝑟+ ̃𝐹 + ̃𝐵] 𝑒−(0) = [ ̃𝐹 + 𝑟− ̃𝐵] 𝑒+(0) (4.2b)

By making use of the fact that 𝑒− is the complex conjugate of 𝑒+ [120, 141], Eqs. (4.2a)
and (4.2b) can be reformulated as

(𝑟+ − 𝑟𝐹) 𝑒+2𝑖𝜆+𝐿 ̃𝐹 + (1 − 𝑟𝐹 𝑟−) ̃𝐵 = 0 (4.3a)

(1 − 𝑟+𝑟𝐵) ̃𝐹 + (𝑟− − 𝑟𝐵) ̃𝐵 = 0 (4.3b)

where 𝑟𝐹 and 𝑟𝐵 are given by

𝑟𝐹 = 𝑟𝑅𝑒+𝑖 2𝜋
𝑎 𝐿𝑒+2𝑖𝜙+(𝐿) (4.4a)

𝑟𝐵 = 𝑟𝐿𝑒−2𝑖𝜙+(0) (4.4b)

and 𝜙+ is the phase of 𝑒+. For the laser to oscillate, a solution other than the trivial
̃𝐹 = ̃𝐵 = 0 must exist. By enforcing the determinant of the coefficient matrix to be

zero, we obtain the oscillation condition

𝑟𝐵 − 𝑟−
1 − 𝑟+𝑟𝐵⏟⏟⏟⏟⏟

𝑟𝐿𝑒𝑞

𝑟𝐹 − 𝑟+
1 − 𝑟−𝑟𝐹⏟⏟⏟⏟⏟

𝑟𝑅𝑒𝑞

𝑒+2𝑖𝜆+𝐿 = 1 (4.5)

Eq. (4.5) can be interpreted as the oscillation condition of a Fabry-Perot laser where
the left (right) mirror reflection coefficient is 𝑟𝐿𝑒𝑞

(𝑟𝑅𝑒𝑞
) and the (complex) propagation

constant is 𝜆+. Unless otherwise specified, we assume for simplicity that the active
region consists of an integer number of unit cells and embed any possible deviation
into the phase of 𝑟𝐿 or 𝑟𝑅. In this case, one finds 𝜙+(0) = 𝜙+(𝐿) = 0 [136], as discussed
in Sec. 2.2.2. Eq. (4.5) can be separated into magnitude and phase, leading to

𝑔eff = 1
𝐿
ln

(
1

|𝑟𝐿𝑒𝑞
||𝑟𝑅𝑒𝑞

|)
(4.6a)

2 (𝛽eff − 𝜋
𝑎 ) 𝐿 + 𝜙𝐿𝑒𝑞

+ 𝜙𝑅𝑒𝑞
= 2𝜋𝑚 (4.6b)

where 𝜙𝐿𝑒𝑞
(𝜙𝑅𝑒𝑞

) is the phase of 𝑟𝐿𝑒𝑞
(𝑟𝑅𝑒𝑞

) and 𝑚 is an integer. 𝛽eff and 𝑔eff are the
effective propagation constant and net modal gain of the Bloch modes of the active
waveguide. In contrast to conventional Fabry-Perot lasers, the amplitude and phase
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conditions are strongly coupled by the gain-induced distributed feedback, even in the
ideal case of zero linewidth enhancement factor. In particular, the material gain does
not only couple 𝛽eff and 𝑔eff. Indeed, through 𝑟+ and 𝑟−, the equivalent mirrors also
depend on the threshold gain and oscillation frequency in a non-trivial manner.

If the threshold gain is small enough and/or the oscillation frequency sufficiently
detuned from the band edge, the impact of the distributed coupling is negligible. In this
limiting case, one finds 𝑟± ≈ 0, as outlined in Sec. 3.4. Therefore, 𝑟𝐿𝑒𝑞

(𝑟𝑅𝑒𝑞
) is reduced

to 𝑟𝐿 (𝑟𝑅). Furthermore, 𝛽eff is reduced to 𝑘𝑧 −𝑆ΓFFΓ𝑦𝑔mat𝛼𝐻/2 and 𝑔eff to 𝑆ΓFFΓ𝑦𝑔mat−
(𝛼1𝑆 + 𝛼2𝑆2), with 𝑆 being the slow-down factor. As discussed in Sec. 3.6, here 𝛼1
and 𝛼2 account, respectively, for disorder-induced coupling with radiation modes and
backscattering [117]. The amplitude and phase condition are only coupled through the
linewidth enhancement factor 𝛼𝐻 and Eqs. (4.6a) and (4.6b) are reduced to

ΓFFΓ𝑦𝑔mat = 𝛼1 + 𝛼2𝑆 + 1
𝑆𝐿

ln(
1

|𝑟𝐿||𝑟𝑅|) (4.7a)

2 (𝑘𝑧 − 1
2

𝑆ΓFFΓ𝑦𝑔mat𝛼𝐻 − 𝜋
𝑎 ) 𝐿 + 𝜙𝐿 + 𝜙𝑅 = 2𝜋𝑚 (4.7b)

where 𝜙𝐿 (𝜙𝑅) is the phase of 𝑟𝐿 (𝑟𝑅). These equations describe the oscillation condi-
tion of a Fabry-Perot laser with effective gain (or, equivalently, mirror loss) enhanced
(reduced) by the slow-down factor [178]. Here, we emphasize that Eqs.(4.6a) and (4.6b)
are more general, as they also account for the gain-induced distributed feedback.

4.3 Block diagram of the active cavity

Figure 4.6: Reference plane for the internal reflection coefficient 𝑟int

An equivalent approach to express the oscillation condition is computing the com-
plex loop gain of the laser cavity at a given reference plane and enforcing it to be unitary.
This formulation requires that the field inside the cavity has to reproduce itself after a
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roundtrip. If we assume the reference plane to be between the active region and the
right mirror (see Fig. 4.6), the oscillation condition reads

𝑟int𝑟𝑅 = 1 (4.8)

where 𝑟int is the effective reflection coefficient for the backward-propagating field at the
reference plane. This internal reflection coefficient encompasses both the left mirror 𝑟𝐿
and roundtrip gain, with the latter including the gain-induced distributed feedback in
the active region.

To better understand the impact of distributed feedback on the oscillation condi-
tion, in this section we analyze how the internal reflection coefficient 𝑟int depends on
frequency and gain. For this purpose, it is useful to derive a block diagram of the active
cavity, which further elucidates the physics.

4.3.1 Block diagram
In Sec. 3.4, we have already discussed a convenient block diagram (see Fig. 3.17) to de-
scribe the optical propagation in an active photonic crystal waveguide. This diagram is
derived in detail in Sec. C.3.

Figure 4.7: Block diagram of a photonic crystal laser. The internal reflection coefficient
𝑟int is indicated.

Therefore, we can readily replace the active region in Fig. 4.6 with the block diagram
from Fig. 3.17. By doing so, we obtain the convenient representation in Fig. 4.7. Here,
𝑇𝐿 (𝑇𝑅) is the left (right) mirror transmission matrix in the basis of the Bloch modes of

the reference waveguide. The left and right mirror reflection coefficient are 𝑟𝐿 and 𝑟𝑅
respectively. We denote by 𝑆𝑙𝑖𝑗

(𝑆𝑟𝑖𝑗
) the scattering parameters of the equivalent left

(right) interface in Fig. 4.7, with 𝑖, 𝑗 = {1,2}. These parameters are derived in Sec. C.3.
We use those expressions by assuming that the active region consists of an integer

110



4.3 – Block diagram of the active cavity

number of unit cells. As a result, the reflection coefficient 𝑟𝐿𝑒𝑞
of the equivalent left

mirror reads

𝑟𝐿𝑒𝑞
= 𝑆𝑙22

+
𝑆𝑙12

𝑟𝐿𝑆𝑙21

1 − 𝑟𝐿𝑆𝑙11

=
𝑟𝐿 − 𝑟−

1 − 𝑟𝐿𝑟+
(4.9)

Similarly, one finds the reflection coefficient 𝑟𝑅𝑒𝑞
of the equivalent right mirror

𝑟𝑅𝑒𝑞
= 𝑆𝑟11

+
𝑆𝑟21

𝑟𝑅𝑆𝑟12

1 − 𝑟𝑅𝑆𝑟22

=
𝑟𝑅 − 𝑟+
1 − 𝑟−𝑟𝑅

(4.10)

Under the assumption of 𝐿/𝑎 being an integer, the expressions of 𝑟𝐿𝑒𝑞
and 𝑟𝑅𝑒𝑞

from
Eq. (4.5) consistently coincide with those from Eqs. (4.9) and (4.10).

4.3.2 Internal reflection coefficient
The cascade of blocks denoted by ”active region” in Fig. 4.7 is described by the scattering
parameters from Eqs. (3.38a)-(3.38c) (see Sec. 3.5). Here, we denote these parameters by
𝑆act𝑖𝑗 , with 𝑖, 𝑗 = {1,2}. With this notation, the internal reflection coefficient 𝑟int reads

𝑟int = 𝑆act22
+

𝑆act12
𝑟𝐿𝑆act21

1 − 𝑟𝐿𝑆act11

(4.11)

Unless otherwise specified, the general approach we follow in this thesis is solving the
oscillation condition 𝑟int𝑟𝑅 = 1 with 𝑟int given by Eq. (4.11). This approach is equiv-
alent to solving Eqs. (4.6a) and (4.6b) derived in Sec. 4.2, the difference only being the
reference plane at which the complex loop gain is computed. Indeed, by evaluating the
loop gain at the plane where 𝑟𝑅𝑒𝑞

is defined (see Fig. 4.7), the oscillation condition in
the form of Eq. (4.5) is readily obtained. The two approaches provide alternative lines
of reasoning for interpreting the results in the following sections.

Eq. (4.11) can be considerably simplified if the active region consists of an integer
number of unit cells. In this case, one finds

𝑟int =
𝑟− + 𝑟𝐿𝑒𝑞

𝑒2𝑖𝜆+𝐿

1 − (−𝑟+)𝑟𝐿𝑒𝑞
𝑒2𝑖𝜆+𝐿 (4.12)

As an example, Fig. 4.8 illustrates 𝑟int in (a) magnitude and (b) phase for different values
of the modal gain Γ𝑦𝑔mat. The bottom 𝑥-axis reports the wavenumber 𝑘𝑧 of the refer-
ence waveguide normalized to the lattice constant 𝑎, while the top 𝑥-axis in (a) shows
the group index 𝑛𝑔 of the reference waveguide. The solid (dotted) line is with (without)
gain-induced distributed feedback and the length of the active region is 𝐿 = 6.57 𝜇m,
corresponding to 15 unit cells. We have assumed 𝑟𝐿 = 1, 𝛼1 = 5 cm−1, 𝛼2 = 0, 𝛼𝐻 = 1.5
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Figure 4.8: Internal reflection coefficient 𝑟int as a function of the normalized wavenum-
ber of the reference waveguide in (a) magnitude and (b) phase. The different colors
denote different values of the modal gain Γ𝑦𝑔mat. The solid (dotted) line is with (with-
out) gain-induced distributed feedback. The length of the active region is 𝐿 = 6.57 𝜇m,
corresponding to 15 unit cells. The top 𝑥-axis in (a) reports the group index of the ref-
erence waveguide.

and the optical gain to be limited to the line-defect, as allowed by the buried heterostruc-
ture (BH) technology [160]. The parameters of the referencewaveguide are summarized
in Tab. 2.1 in Sec. 2.2.1.

Without distributed feedback, the magnitude of the internal reflection coefficient
steadily increases as 𝑘𝑧 approaches the band edge, as dictated by the growing group
index 𝑛𝑔. Indeed, as anticipated in connection with Eqs. (4.7a) and (4.7b), neglecting
the distributed feedback implies 𝑟± = 0 and, consequently, 𝑟𝐿𝑒𝑞

= 𝑟𝐿, 𝛽eff = 𝑘𝑧 −
𝑆ΓFFΓ𝑦𝑔mat𝛼𝐻/2 and 𝑔eff = 𝑆ΓFFΓ𝑦𝑔mat − (𝛼1𝑆 + 𝛼2𝑆2), with 𝑆 being the slow-down
factor. Therefore, in this case one easily finds from Eq. (4.12) a strong and monotonic
increase towards the band edge in the magnitude of 𝑟int (if 𝛼2 is zero and ΓFFΓ𝑦𝑔mat
larger than 𝛼1). From the numerical point of view, this increase in only limited by the
numerical computation of (𝑑𝑘𝑧/𝑑𝜔)−1 at the band edge, which provides a finite value
for 𝑛𝑔, however large.

On the contrary, if one includes the distributed feedback, the trend is non-monotonic
and decreasing towards the band edge for 𝑘𝑧 greater than a given value, depending on
the gain. The location of the maximum depends on the impact of the distributed feed-
back in a complicated manner, as governed by Eq. (4.12). Nevertheless, we can recog-
nize some general features. Overall, the feedback intensifies as 𝑘𝑧 approaches the band
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edge and/or the modal gain Γ𝑦𝑔mat grows, as discussed in Chapter 3. The stronger the
feedback becomes, the more detuned from the band edge the value of 𝑘𝑧 is at which
the magnitude of 𝑟int starts diminishing. Furthermore, the number and intensity of the
resonant peaks (see, e.g., the red and yellow lines in Fig. 4.8(a)) also increase with the
feedback strength. The resonant peaks are caused by the resonant term appearing in
the denominator of Eq. (4.12). This terms stems from the reflection which the Bloch
modes of the active region undergo at the equivalent right interface (that is −𝑟+), as
well as from the general dependence on frequency and gain of the equivalent left mir-
ror reflection coefficient. This mirror accounts for the mismatch between the Bloch
modes of the active region and those of the reference waveguide at the left equivalent
interface (see Fig. 4.7).

Figure 4.9: Maps showing conditions under which the relative error in the magnitude
of the internal reflection coefficient 𝑟int is smaller (yellow) and larger (blue) than 10 %.
This is the error which one would commit as compared to the full model by neglecting
the distributed feedback. The cavity length corresponds to (a, b) 15 unit cells and (c, d)
7 unit cells. The linewidth enhancement factor is equal to (a, c) 1.5 and (b, d) 4.5. The
right 𝑦-axis in (a, c) reports the detuning from the band edge.

The relative error which one would commit as compared to the full model by ne-
glecting the distributed feedback clearly depends on the feedback strength. This varies
with detuning from the band edge and modal gain, but it also depends, for instance, on
the cavity length and linewidth enhancement factor. As an example, Fig. 4.9 illustrates
when the error is smaller (yellow) and larger (blue) than 10 %, as a function of detuning
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from the band edge and modal gain. The cavity is (a, b) 15 and (c, d) 7 lattice constants
long, while the linewidth enhancement factor is equal to (a, c) 1.5 and (b, d) 4.5. At
given values of detuning and modal gain, the longer the cavity is and the more relevant
the distributed feedback becomes, thus restricting the ranges of detuning and modal
gain where neglecting the distributed feedback would be acceptable. A similar trend
is found when the linewidth enhancement factor is increased. This is expected, since
the carrier-induced refractive index perturbation enhances the backscattered power, as
discussed in Chapter 3.

Figure 4.10: Internal reflection coefficient 𝑟int as a function of the normalizedwavenum-
ber of the reference waveguide in (a) magnitude and (b) phase. The different colors
denote different values of the left mirror phase 𝜙𝐿. The modal gain is Γ𝑦𝑔mat = 10 cm−1

and the length of the active region 𝐿 = 6.57 𝜇m, corresponding to 15 unit cells. The
top 𝑥-axis in (a) reports the group index of the reference waveguide.

Close to the band edge, the trend in the internal reflection coefficient also strongly
depends on 1) the phase of the cross-coupling coefficient (entering 𝑟+ and 𝑟−) and 2)
the phase of the left mirror, 𝜙𝐿. The former is determined by the phase of ΓFB. As
outlined by Eq. (3.9) in Sec. 3.2, the phase of ΓFB is approximately equal to 𝜋 according
to our choice of the unit cell reference planes. Concerning the phase of the left mirror,
Fig. 4.10 shows, as an example, (a) the magnitude and (b) phase of the internal reflection
coefficient close to the band edge for 𝜙𝐿 equal to 0 (blue), 𝜋/2 (red) and 𝜋 (yellow). The
modal gain is Γ𝑦𝑔mat = 10 cm−1 and the other parameters are the same as in Fig. 4.8.
As 𝜙𝐿 changes from zero to 𝜋, the resonant peak moves closer to the band edge. At
the same time, the value of 𝑘𝑧 at which the phase of 𝑟int is an integer multiple of 2𝜋
shifts to the same direction. This suggests that, by engineering the phase of the left
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mirror (as well as that of the right mirror), one may leverage the resonance and possibly
optimize the threshold gain. This possibility is briefly explored in Sec. 4.4 (see Fig. 4.14),
but systematic investigations are outside the scope of this thesis. Unless otherwise
specified, in the following we assume 𝜙𝐿 to be zero. This assumption is supported by
the analysis carried out in Chapter 2 (see, in particular, Sec. 2.4.3). The implications of
a non-zero value for the left mirror phase are relevant in the study of the Fano laser
tuning characteristics in Sec. 4.6.2 and are discussed therein.

To conclude this section, some comments are appropriate on the internal reflection
coefficient as compared to the group index of the active waveguide, analyzed in Chap-
ter 3. It is important to note how the trend in the amplitude of the internal reflection
coefficient somehow resembles the gain-induced reduction and spectral broadening of
the group index of the active waveguide [41, 137], to which it can be intuitively and
qualitatively correlated. With regard to this, see, for instance, Fig. 3.4 in Sec. 3.1.1 or
Fig. 3.19(b) in Sec. 3.4.2. The physical argument, in this case, would be that of an effec-
tive slow-down factor, scaling with the group index of the active waveguide. On this
basis, one could be tempted to consider the impact of gain in the slow-light regime to
be well described by this effective slow-down factor. However, the appearance of mul-
tiple resonances in the magnitude of 𝑟int (see Fig. 4.8(a)) and the strong coupling with
the phase (see Fig. 4.8(b) and Fig. 4.10(b)) clearly indicate that the impact of gain in the
slow-light region is actually more intricate and generally requires to take into account
the nature of the active cavity as summarized by Fig. 4.7. This confirms that the effective
group index (i.e. the group index of the active waveguide) is not an exhaustive figure of
merit of slow-light gain enhancement, as already, thoroughly discussed in Chapter 3.

4.4 Lasers with photonic bandgap mirrors

Figure 4.11: Laser with photonic bandgap mirrors.

Armed with the understandings of the previous sections, we can now move to the
solution of the oscillation condition for various types of photonic crystal lasers based
on line-defect waveguides. In this section we focus on conventional line-defect lasers
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with photonic bandgapmirrors, as that shown in Fig. 4.11. These mirrors are broadband
and generally have high reflectivity [70].

In the following, we assume for the reference waveguide the parameters in Tab. 2.1
in Sec. 2.2.1. The slab refractive index 𝑛slab is set to 3.17, representative of the InP
platform. The lattice constant 𝑎 is 438 nm, with the hole radius being 0.25𝑎. The slab
is 250 nm thick and assumed to be suspended in air. Unless otherwise specified, the
other parameters are 𝑟𝐿 = 1, 𝛼𝐻 = 1.5, 𝛼1 = 5 cm−1 and 𝛼2 = 0. The impact of the loss
coefficient 𝛼2 is discussed in Sec. 4.4.1. Furthermore, we assume the optical gain to be
limited to the line-defect and we consider different values of the right mirror reflection
coefficient.

Figure 4.12: Oscillation condition of lasers with photonic bandgap mirrors. (a) Modal
gain Γ𝑦𝑔mat, (b) wavenumber and (c) wavelength at the lasing threshold of the various
longitudinal modes with 𝑟𝑅 = 0.99. Each color corresponds to a different longitudinal
mode. The solid (dotted) line is with (without) the gain-induced distributed feedback.
The solid and dotted lines in (b) and (c) practically overlap.

We start by considering the case 𝑟𝑅 = 0.99 [178]. Fig. 4.12 shows (a) the modal
gain Γ𝑦𝑔mat, (b) wavenumber and (c) wavelength at the lasing threshold of the various
longitudinal modes, with each color corresponding to a different mode. The modes are
numbered according to the threshold gain, the lowest order mode being that with the
smallest gain. The solid (dotted) lines are obtained by taking into account (neglecting)
the gain-induced distributed feedback. A number of features can be noted.

First of all, without distributed feedback the lasing mode is M0, which is very close
to the band edge. On the contrary, if one takes the distributed feedback into account,M0
is missing and the lasing mode isM1. In the following lines, we focus on all modes other
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thanM0. For these modes, the impact of distributed feedback appears to be limited, be-
cause they are far from the band edge. Indeed, the solid and dotted lines in Fig. 4.12(b)
and (c) practically overlap. In this case, the wavenumber simply obeys Eq. (4.7b). This
equation dictates that, for a given mode order 𝑚, an increase in the cavity length should
be compensated by a smaller detuning of 𝑘𝑧 from 𝜋/𝑎 in order to continue to fulfill the
phase condition. This easily explains why the oscillation frequency moves towards the
band edge, as experimentally observed [178] and predicted by finite-difference time-
domain simulations [15]. Regarding the threshold gain, the strong decrease with in-
creasing cavity length is due to the slow-light reduction of the mirror loss, as prescribed
by Eq. (4.7a). As already evidenced, this equation reflects a Fabry-Perot laser with effec-
tive modal gain enhanced by the slow-down factor. The simple increase in the cavity
length plays a minor role in reducing the threshold gain. In fact, the threshold gain
decrease is limited in the case of M0, whose lasing wavelength is practically constant.

Figure 4.13: Oscillation condition of lasers with photonic bandgap mirrors. (a) Magni-
tude and (b) phase of the internal reflection coefficient at the lasing threshold of mode
M0 for the laser in Fig. 4.12 with 15 lattice constants. The solid (dotted) line is with
(without) the gain-induced distributed feedback. The horizontal, dashed line indicates
the level 1/𝑟𝑅, while the vertical line denotes the wavenumber at the oscillation fre-
quency.

We now turn our attention to M0 to better understand why this mode is missing if
distributed feedback is taken into account. As an example, we select the cavity with
15 lattice constants. Fig. 4.13 shows (a) the magnitude and (b) phase of the internal
reflection coefficient at the lasing threshold of mode M0 with (solid line) and without
(dotted line) distributed feedback. The horizontal, dashed line indicates the level 1/𝑟𝑅,
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while the vertical line denotes the wavenumber at the oscillation frequency. This figure
highlights that, in the presence of distributed feedback, 1) the magnitude of 𝑟int strongly
decreases towards the band edge and 2) the phase condition cannot be fulfilled. On
the other hand, without distributed feedback magnitude and phase condition allow for
lasing close to the band edge. In this case, the detuning of the lasing frequency from
the band edge is only due to the non-zero linewidth enhancement factor, as understood
from Eq. (4.7b).

Figure 4.14: Oscillation condition of lasers with photonic bandgap mirrors. (a) Modal
gain Γ𝑦𝑔mat and (b) wavenumber at the lasing threshold of modeM1 (blue) andM2 (red)
versus the phase of the left mirror, with the cavity being 7 lattice constants long. The
magnitude of the leftmirror reflection coefficient is fixed to unity, while the right mirror
reflection coefficient is 𝑟𝑅 = 0.99. The black markers are the solutions of the oscillation
condition in the absence of distributed feedback.

We emphasize that the reason for the absence of lasing close to the band edge in the
presence of distributed feedback is not simply the fact that the phase condition cannot
be fulfilled. Instead, the reason is the impossibility to simultaneously and efficiently
fulfil the phase and magnitude condition, owing to their strong coupling caused by the
distributed feedback. To corroborate this interpretation, we report in Fig. 4.14 (a) the
modal gain and (b) wavenumber at the lasing threshold of modeM1 (blue) andM2 (red)
versus the phase of the leftmirror. Themagnitude of the leftmirror reflection coefficient
is fixed to unity, while the right mirror reflection coefficient is 𝑟𝑅 = 0.99. The cavity is 7
lattice constants long. As usually done throughout this thesis, the modes are numbered
according to the threshold gain, with M1 being the lasing mode. The black markers
are the solutions of the oscillation condition in the absence of distributed feedback. It
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is seen that, by properly tuning the left mirror phase, one can indeed push the lasing
frequency towards the band edge. Without distributed feedback, this tuning results in
a trivial, monotonic decrease of the threshold gain. On the contrary, in the presence of
distributed feedback, only initially the threshold gain decreases as the lasing frequency
approaches the band edge. Below a given detuning, the distributed feedback is more
and more relevant and the threshold gain starts increasing, until lasing far from the
band edge becomes more convenient. This mode hopping corresponds to the crossing
of the blue and red lines in Fig. 4.14(a). The optimum mirror phase stems from a non-
trivial trade-off between two effects. On the one hand, the slow-light reduction of the
mirror loss. On the other hand, the feedback-induced reduction of the round-trip gain
close to the band edge. This reduction also depends, at given frequency and detuning,
on the value of the left mirror phase. The origin of the optimum is further explained

Figure 4.15: Magnitude of the internal reflection coefficient versus the wavenumber.
Cavity length, right mirror andmagnitude of the leftmirror reflection coefficient are the
same as in Fig. 4.14. The different colors denote different values of the left mirror phase
𝜙𝐿, with 𝜙𝐿/(2𝜋) = 0.35 being the optimum phase of Fig. 4.14. In all cases, the modal
gain is fixed to the value of the minimum threshold gain of modeM1 in that figure. The
horizontal, dashed line indicates the level 1/𝑟𝑅. The vertical, blue (red) line denotes the
lasing frequency of mode M1 in Fig. 4.14 for 𝜙𝐿 = 0 (𝜙𝐿/(2𝜋) = 0.35). The vertical,
yellow line indicates the lasing frequency of mode M2 in Fig. 4.14 for 𝜙𝐿/(2𝜋) = 0.8.

by Fig. 4.15, showing the magnitude of 𝑟int with the modal gain being the optimum
threshold gain of mode M1 in Fig. 4.14. Cavity length, right mirror and magnitude of
the left mirror reflection coefficient are the same as therein. The different colors denote
different values of the left mirror phase 𝜙𝐿, with 𝜙𝐿/(2𝜋) = 0.35 being the optimum
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phase of Fig. 4.14. The horizontal, dashed line indicates the level 1/𝑟𝑅, corresponding to
lasing. The vertical, blue (red) line denotes the lasing frequency of modeM1 for 𝜙𝐿 = 0
(𝜙𝐿/(2𝜋) = 0.35). The vertical, yellow line indicates the lasing frequency of mode M2
for 𝜙𝐿/(2𝜋) = 0.8. Fig. 4.15 emphasizes that, depending on the left mirror phase, the
distributed feedback may strongly reduce the round-trip gain at the lasing frequency,
thus forcing the modal gain to grow in order to achieve lasing. This is the case, e.g., for
𝜙𝐿/(2𝜋) = 0.8. Overall, Fig. 4.14 and Fig. 4.15 demonstrate that an intrinsic limitation
to lasing close to the band edge is posed by the gain-induced distributed feedback. It
should be emphasized, though, that in practice disorder due to unavoidable fabrication
imperfections would also jeopardize the possibility of lasing in the slow-light region
(see Sec. 4.4.1). From an experimental point of view, distinguishing between the two
effects would probably not be trivial.

Figure 4.16: Oscillation condition of lasers with photonic bandgap mirrors. (a) Modal
gain Γ𝑦𝑔mat and (b) wavelength at the lasing threshold of mode M1 with (solid) and
without (dotted) gain-induced distributed feedback versus the right mirror reflection
coefficient. The colors denote different cavity lengths, with 5 (blue), 10 (red) and 20
(yellow) unit cells.

It is interesting to investigate the impact of distributed feedback in the case of higher
threshold gain, as one would expect it to become more and more relevant as the gain
increases. For this purpose, Fig. 4.16 illustrates (a) the modal threshold gain Γ𝑦𝑔mat and
(b) correspondingwavelength formodeM1 versus the rightmirror reflection coefficient.
In principle, this coefficient can be varied, for instance, by tuning the radius and/or
position of the hole at the interface between the waveguide and the mirror [144, 2].
The solid (dotted) line is with (without) gain-induced distributed feedback. The cavity
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consists of 5 (blue), 10 (red) and 20 (yellow) unit cells. As 𝑟𝑅 decreases, the threshold
gain grows and the wavelength departs from the slow-light region. The distributed
feedback does not have a great influence on the wavelength, as evident from Fig. 4.16(b).
Therefore, the wavelength shift can be simply understood from Eq. (4.7b) and is due to
the non-zero linewidth enhancement factor. On the oher hand, the distributed feedback
appears to reduce the threshold gain. The reason for this reduction is not trivial and
deserves closer inspection.

Figure 4.17: Oscillation condition of lasers with photonic bandgap mirrors. (a) and
(c) Modal gain Γ𝑦𝑔mat and (b) and (d) wavelength at the lasing threshold of mode M1
with (solid) andwithout (dotted) gain-induced distributed feedback versus the linewidth
enhancement factor. The right mirror reflection coefficient is (a) and (b) 𝑟𝑅 = 0.99 and
(c) and (d) 𝑟𝑅 = 0.6. The cavity length is 8.76 𝜇m, corresponding to 20 unit cells.

Thus, we select as an example the cavity with 20 lattice constants. In Fig. 4.17,
we report for mode M1 (a) and (c) the threshold gain and (b) and (d) corresponding
wavelength versus the linewidth enhancement factor 𝛼𝐻. The solid (dotted) line is
with (without) distributed feedback. The right mirror reflection coefficient is (a) and
(b) 𝑟𝑅 = 0.99 and (c) and (d) 𝑟𝑅 = 0.6. Without distributed feedback, the wavelength
is gradually detuned from the slow-light region as 𝛼𝐻 increases. Therefore, the gain
correspondingly grows, owing to the diminishing slow-down factor. On the contrary,
a larger 𝛼𝐻 reduces the threshold gain in the presence of distributed feedback, with the
relative reduction enhanced by a smaller 𝑟𝑅. We emphasize that this occurs in spite of
the wavelength shifting to the same direction with and without distributed feedback.
Therefore, the non-zero linewidth enhancement factor appears to be responsible for
the reduction of threshold gain enabled by distributed feedback and emphasizes the
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non-trivial nature of this phenomenon.

Figure 4.18: (a) Effective netmodal gain, (b) effective propagation constant and (c) phase
of the equivalent right mirror for 𝛼𝐻 = 0 (blue) and 𝛼𝐻 = 4.5 (red) in the presence of
the gain-induced distributed feedback. The cavity length is 8.76 𝜇m, corresponding
to 20 unit cells. The modal gain is Γ𝑦𝑔mat = 34.93 cm−1, corresponding to the lasing
threshold for 𝛼𝐻 = 4.5 and 𝑟𝑅 = 0.6.

An interpretation is possible in light of Eqs. (4.6a) and (4.6b). Essentially, in the
presence of distributed feedback and for a given value of the modal gain Γ𝑦𝑔mat, the net
effective modal gain 𝑔eff increases with the linewidth enhancement factor, as already
discussed in Sec. 3.4.2. The larger 𝑔eff enables lasing with a smaller value of Γ𝑦𝑔mat in
compliance with Eq. (4.6a). As an example, Fig. 4.18 depicts 𝑔eff with distributed feed-
back for 𝛼𝐻 = 0 (blue) and 𝛼𝐻 = 4.5 (red). The cavity length corresponds to 20 unit
cells and the modal gain to the lasing threshold for 𝛼𝐻 = 4.5 and 𝑟𝑅 = 0.6. On the
other hand, the peculiar impact of distributed feedback on the phase condition (see
Eq. (4.6b)) dictates that the wavelength should depart from the band edge. Indeed, the
decrease in the effective propagation constant 𝛽eff at a given frequency with increasing
𝛼𝐻 is counteracted by the increase in the phase of the equivalent right mirror 𝜙𝑅𝑒𝑞

. This
mechanism is exemplified by Fig. 4.18(b) and (c), illustrating (b) the normalized effective
propagation constant and (c) phase of the equivalent right mirror.

To summarize, the larger the linewidth enhancement factor, the greater the reduc-
tion of threshold gain enabled by distributed feedback. This result genuinely stems from
Eqs. (4.7a) and (4.7b), which we have derived, and cannot be reproduced by Eqs.(4.6a)
and (4.6b). It reveals that the gain-induced distributed feedback may be beneficial un-
der certain circumstances, although the impact is negligible for realistic values of the
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right mirror reflection coefficient (𝑟𝑅 ≈ 0.99). Furthermore, this result is somehow in
contrast with our previous discussion in Chapter 3 on slow-light amplifiers. In fact,
in Sec. 3.6 we have shown that, for a given material gain, amplifiers based on active
photonic crystal waveguides with smaller linewidth enhancement factor 𝛼𝐻 may offer
better performance [139]. However, in that context one is interested in achieving a rea-
sonable amplifier gain with negligible distributed reflection. Therefore, the amplifier is
chosen to be much longer as compared to the laser cavities which we are considering
in this chapter. Consequently, the amplifier gain at a given wavelength may indeed be
enhanced by 𝛼𝐻, as already noted in Sec. 3.6. However, as a result of the long device
length, the benefit is outperformed by the build-up of a huge reflection, which renders
larger values of 𝛼𝐻 detrimental rather than beneficial.

4.4.1 Impact of disorder

Figure 4.19: Oscillation condition of lasers with photonic bandgap mirrors. Measured
threshold pump power density versus cavity length. Reproduced from [178].

In [178], quantum dot photonic crystal lasers with photonic bandgap mirrors have
been characterized. A peculiar scaling of threshold gain as a function of cavity length
has been reported and ascribed to the impact of disorder-induced losses due to unavoid-
able fabrication imperfections [178]. Specifically, an optimum cavity length has been
found, which minimizes the threshold gain. This is illustrated in Fig. 4.19, which is re-
produced from [178]. Furthermore, the wavelength of the lasing mode has been found
to move towards the band edge in a continuous fashion with increasing cavity length,
similarly to Fig. 4.12(c). Therefore, in the following we briefly investigate the impact of
disorder.

As outlined in Sec. 3.6, 𝛼1 and 𝛼2 are phenomenological parameters which account
for disorder-induced losses due to out-of-plane scattering and backscattering respec-
tively [117]. We assume 𝛼2 = 1.5 cm−1 [178] and 𝑟𝑅 = 0.99 and solve the oscillation
condition for the various longitudinal modes. For each mode, Fig. 4.20 reports (a) the
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Figure 4.20: Oscillation condition of lasers with photonic bandgap mirrors in the pres-
ence of disorder. (a) Modal gain Γ𝑦𝑔mat and (b) wavelength at the lasing threshold of the
various longitudinal modes with 𝑟𝑅 = 0.99 and 𝛼2 = 1.5 cm−1. Each color corresponds
to a different longitudinal mode.

modal gain Γ𝑦𝑔mat and (b) wavelength at the lasing threshold with gain-induced dis-
tributed feedback included. Neglecting the distributed feedback has no impact, reveal-
ing that it does not play a role in this case. Therefore, the results can be interpreted
on the basis of Eqs. (4.7a) and (4.7b). The modes are numbered such that M1 possesses
the smallest threshold gain, with higher order modes having increasingly larger gain.
In contrast to Fig. 4.12(a), the threshold gain of M1 does not monotonically decrease as
the cavity becomes longer. It features instead a succession of local minima, with each
minimum stemming from the trade-off between slow-light enhancement of disorder-
induced backscattering loss and slow-light reduction of the mirror loss. Indeed, these
contributions scale, respectively, in direct and inverse proportion to the slow-down fac-
tor (see Eq. (4.7a)). However, as the cavity length increases, the phase condition pushes
thewavelength closer to the band edge (see Eq. (4.7b)). Therefore, the lasingwavelength
around a gain minimum and beyond a certain cavity length discontinuously jumps far-
ther from the slow-light region, where lasing becomes more convenient (see the blue
markers in Fig. 4.20(b)). This feature highlights that the phenomenological model of
disorder based on 𝛼2 cannot fully capture the experimental findings of [178], where no
mode jump was observed.

To assess if the gain-induced distributed feedback may influence the solution of the
oscillation condition with a non-zero value of 𝛼2, we report in Fig. 4.21 (a) the modal
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Figure 4.21: Oscillation condition of lasers with photonic bandgap mirrors in the pres-
ence of disorder. (a) Modal gain Γ𝑦𝑔mat and (b) wavelength of the lasing mode with
𝛼2 = 1.5 cm−1. The colors denote different values of the right mirror reflection coeffi-
cient 𝑟𝑅. The solid (dotted) line is with (without) gain-induced distributed feedback.

gain Γ𝑦𝑔mat and (b) wavelength of the lasing mode with 𝛼2 = 1.5 cm−1 and different val-
ues of 𝑟𝑅. The solid (dotted) line is with (without) gain-induced distributed feedback.
Firstly, we note that lasing close to the band edge (i.e. mode M0) is forbidden even
without distributed feedback, owing to the strong disorder-induced losses. Secondly,
as 𝑟𝑅 decreases, the distributed feedback becomes more and more relevant. Eventually,
the scaling of threshold gain with cavity length in the presence of distributed feedback
becomes monotonic and no discontinuous jump in the lasing wavelength is observed.
On the contrary, without distributed feedback discontinuous jumps in the lasing wave-
length occur irrespective of how small 𝑟𝑅 is. We have verified that larger values of 𝛼2
and/or smaller values of 𝑟𝑅 do not qualitatively alter this framework. This suggests that
a competition exists between the gain-induced distributed feedback and the mechanism
of disorder-induced loss governed by 𝛼2, with the former eventually prevailing if the
threshold gain is large enough.

To conclude, it should be mentioned that the interpretation of the experimental re-
sults of [178] is currently controversial. In fact, a recent investigation [15] employing
a self-consistent Maxwell-Bloch model of quantum dot photonic crystal lasers has not
come up with a definite conclusion. As already mentioned in Sec. 2.5.4, finite-difference
time-domain simulations of passive cavities in [15] have not found a strong dependence
of the quality factor on disorder. This clearly challenges the role of disorder as a major
cause for the optimum in Fig. 4.19. On the other hand, the simulations of [15] in the
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presence of optical gain have not been able to fully reproduce the experimental find-
ings of [178]. The inhomogeneous broadening of the quantum dot ensemble [146] has
been taken into account. Various, possible positions for the frequency corresponding
to the gain peak have been considered. Furthermore, simulations have been carried out
with and without disorder. Nonetheless, the threshold gain has been essentially found
to reach a plateau for long cavity lengths and no clear optimum has been observed.
Therefore, we note that the sole inhomogeneous broadening of the quantum dot en-
semble cannot explain the experimental findings of [178], as already noted therein.

4.4.2 Feedback-sustained lasing

Figure 4.22: Laser with matched output waveguides.

From the principle point of view, it is interesting to investigate whether the sole
gain-induced distributed feedback can sustain lasing with reasonable threshold gain.
In Sec. 3.6, we have already noted that proper combinations of wavelength and modal
gain may lead to feedback-sustained lasing (see Fig. 3.32). However, the active region
in that case was longer as compared to the laser cavities investigated in the current
chapter.

In the following, we examine the structure in Fig. 4.22, with 𝐿 between 5 and 20
lattice constants. The optical gain is assumed to be limited to the line-defect. The left
(right) mirror reflection coefficient 𝑟𝐿 (𝑟𝑅) is set to zero. From Eq. (4.5), the oscillation
condition with 𝑟𝐿 = 𝑟𝑅 = 0 reads

𝑟+𝑟−𝑒+2𝑖𝜆+𝐿 = 1 (4.13)

This equation corresponds to an effective Fabry-Perot resonator with complex propa-
gation constant 𝜆+ and a left (right) facet with reflection coefficient 𝑟− (𝑟+). Eq. (4.13)
intuitively explains why we could expect lasing even for 𝑟𝐿 = 𝑟𝑅 = 0. Ideally, 𝑟𝐿 and
𝑟𝑅 are zero if 1) perfect refractive index matching is achieved at the interface with the
active region and 2) the waveguides at either side of the active region are matched at
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the output. In practice, identically zero reflection coefficients cannot be achieved. How-
ever, various solutions have been proposed to approach the second condition, such as
simple tapers [166] or more elaborated adapters [51]. Remarkably, the latter solution
enables efficient coupling with conventional ridge waveguides even for extremely low
group velocities.

Figure 4.23: Oscillation condition of lasers with matched output waveguides. (a) Modal
gain Γ𝑦𝑔mat and (b) wavenumber at the lasing threshold of the lasing mode (blue) and
second-order mode (red) for the laser in Fig. 4.22. The loss coefficient 𝛼2 is set to 0
(solid), 1.5 cm−1 (dash-dotted) and 6 cm−1 (dotted). (c) Transmission and (d) reflection
spectra of the laser in Fig. 4.22 with the active region consisting of 20 unit cells and the
loss coefficient 𝛼2 set to 0.

Fig. 4.23 illustrates (a) the modal gain Γ𝑦𝑔mat and (b) wavenumber at the lasing
threshold for the laser in Fig. 4.22. We have assumed 𝛼1 = 5 cm−1 and 𝛼𝐻 = 1.5. Only
the lasing (blue) and second-order mode (red) are reported. The different line styles
correspond to different values of the disorder-induced backscattering loss, with 𝛼2 = 0
(solid), 1.5 cm−1 (dash-dotted) and 6 cm−1 (dotted). The right 𝑦-axis in Fig. 4.23(b) re-
ports the group index 𝑛𝑔 of the reference waveguide. The figure highlights that long
cavities can indeed achieve lasing with reasonable values of threshold gain and, impor-
tantly, group index. Indeed, group indices up to around 100 [112] or even larger [170]
have been measured, albeit on silicon rather than InP. The threshold gain is consider-
ably higher as compared to the structures with photonic bandgap mirrors. However,
the output coupling efficiency is also much larger, being (ideally) unitary on either side.

As already noted in Sec. 3.6, the onset of lasing is accompanied by peaks in the laser
transmission and reflection spectra. Fig. 4.23(c) and (d) show, respectively, the laser
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transmission (|𝑆12|2) and reflection (|𝑆11|2), versus the modal gain Γ𝑦𝑔mat and normal-
ized wavenumber. The active region is 20 lattice constants long and the loss coefficient
𝛼2 is set to 0. The position of the peaks in the transmission and reflection spectra is
consistent with the modal gain and wavenumber at the lasing threshold reported, re-
spectively, in Fig. 4.23(a) and (b). This clearly confirms that the peaks do correspond to
the onset of lasing.

4.5 Lasers with photonic heterostructure mirrors
As already discussed in Sec. 2.1.1, a so-called photonic heterostructure is a connection
in series of two or more photonic crystal waveguides with different photonic bandgaps
[154]. The photonic band gap can be engineered by different techniques, such as tuning
the lattice constant [155, 143], the waveguide width [162] or the slab refractive index
[115]. In particular, the latter is the physical principle behind the effective longitudinal
confinement of photons in LEAP lasers [160]. Specifically, a smaller (larger) refractive
index results in blue-shift (red-shift) of the waveguide band edge.

Figure 4.24: Laser with photonic heterostructure mirrors based on refractive index
modulation.

Inspired by this principle, in this sectionwe investigate the laser structure in Fig. 4.24
[137], consisting of four sections with slightly different values of the slab refractive in-
dex along the line-defect. By going from the left side to the right side, the first section
is passive and has the smallest refractive index, thus acting as a left, broad-band mirror.
The second section has a larger refractive index as compared to the first and includes
the active region. The third section is passive, with a larger or smaller refractive index
as compared to the active section. This third section connects the active region with
the output waveguide, thus acting as a right, buffer mirror. Finally, the fourth section
is the output waveguide, with the largest refractive index. According to the refractive
index of the buffer mirror, we identify two configurations, namely Type I and Type II,
as shown in Fig. 4.25. For each section, the pass-band (stop-band) frequency region is
denoted in blue (red). As compared to the active section, the buffer mirror has a smaller
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Figure 4.25: Laser with photonic heterostructure mirrors. (a) Type I and (b) Type II
photonic heterostructure. As compared to the active section, the buffer mirror has a
smaller (larger) refractive index in Type I (Type II).

(larger) refractive index for Type I (Type II). We note that Type I is similar to the con-
figuration on which LEAP lasers are based (see Fig. 4.3(a)). The difference is that in a
LEAP laser a single refractive index variation is present, with the active region hav-
ing a smaller refractive index than the surroundings. Furthermore, in a LEAP laser the
waveguide collecting the output power is not placed in line with the active region it-
self, but is laterally shifted. In the following, we solve the laser oscillation condition
upon variation of the buffer mirror length, to emphasize how differently the two con-
figurations behave in terms of threshold gain and output coupling efficiency. A similar
investigation is carried out in [148] by finite-difference time-domain simulations, with
qualititavely similar results. In that case, the heterostructure is formed by modulating
the waveguide width.

We consider the output waveguide to be the reference waveguide of our modelling
framework, for which we assume the parameters in Tab. 2.1 in Sec. 2.2.1. With respect
to this waveguide, the other sections are viewed as perturbed, in the real and/or imag-
inary part of the slab refractive index. For the perturbed sections, we assume similar
parameters as compared to [137]. The perturbation to the real part is Δ𝑛𝑟 = −0.002
(Δ𝑛𝑟 = −0.001) for the left mirror (active region). The left mirror (active region) length
is 13.14 𝜇m (4.38 𝜇m), corresponding to 30 (10) lattice constants. The loss coefficients
are 𝛼1 = 5 cm−1 and 𝛼2 = 0. Concerning the buffer mirror, the refractive index pertur-
bation is Δ𝑛𝑟 = −0.002 (Δ𝑛𝑟 = −0.0005) for a Type I (Type II) heterostructure, while
the length is varied from 5 to 30 lattice constants. For the linewidth enhancement fac-
tor of the active region, we assume 𝛼𝐻 = 0 as in [137]. A larger value of 𝛼𝐻 would lead
to the same qualitative results, provided that one also adjusts accordingly the refractive
index perturbations of the various sections.

Fig. 4.26 shows (a) the power reflectivity and (b) phase of a buffer mirror being 30
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Figure 4.26: (a) Power reflectivity and (b) phase of the buffer mirror in Fig. 4.24 for a
Type I (blue) and Type II (red) photonic heterostructure. The mirror is assumed to be
30 lattice constants long.

lattice constants long. The blue (red) line is for a Type I (Type II) heterostructure. As
discussed in Sec. 3.4.1, the negative refractive index perturbation blue-shifts the band
edge of thewaveguide dispersion relation and induces a stopband, where the reflectivity
is high. The larger the absolute perturbation is, the wider the stopband becomes and
the higher the reflectivity.

For each section, the scattering parameters are computed by Eqs. (3.38a)-(3.38c) (see
Sec. 3.5). The results on the oscillation condition are summarized in Fig. 4.27, reporting
(a) the modal gain Γ𝑦𝑔mat, (b) wavenumber and (c) wavelength at the lasing thresh-
old versus the length of the buffer mirror. The blue (red) line is for Type I (Type II)
heterostructure. Higher-order modes are not reported, since they have a much larger
threshold gain. For the Type I heterostructure, the lasing process is dominated by the
reflections from the mirrors, with both of them generally providing high reflectivity. As
the buffer becomes longer, its reflectivity increases and the laser threshold gain is mono-
tonically reduced. On the other hand, the gain-induced distributed feedback strongly
affects the lasing process for the Type II heterostructure, leading to the non-monotonic
variation in the threshold gain as a function of the buffer length. In the following lines,
we briefly examine this peculiarity with greater detail.

First of all, we note that the buffer mirror reflectivity for the Type II heterostruc-
ture is generally low, as understood from Fig. 4.26. Overall, this explains the larger
threshold gain as compared to Type I (see Fig. 4.27(a)). The larger gain enhances the
distributed feedback in the active region, leading to a strong and narrow resonance
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Figure 4.27: Oscillation condition of lasers with photonic heterostructure mirrors. (a)
Modal gain Γ𝑦𝑔mat, (b) wavenumber and (c) wavelength at the lasing threshold for a
Type I (blue) and Type II (red) photonic heterostructure versus the length of the buffer
mirror.

peak in the spectrum of the internal reflection coefficient 𝑟int, as defined in Fig. 4.24. As
the buffer length changes, its reflectivity generally remains low. Therefore, its impact
on the threshold gain variation is negligible. However, the variation in the phase of
the buffer reflection coefficient forces the laser frequency to adjust itself accordingly,
in order to continue to fullfil the phase condition. The non-monotonic variation in the
threshold gain stems from the oscillation frequency changing around the resonance
peak of the internal reflection coefficient. Depending on the position of the oscillation
frequency relative to the resonance peak, the threshold gain can either decrease or in-
crease as the buffer length is varied. In fact, the variation in the oscillation frequency
is limited (see Fig. 4.27(b) and (c)), but the resonance is narrow. As an example, Fig. 4.28
shows themagnitude of the internal reflection coefficient in the case of the buffer length
equal to (a) 10 and (b) 20 lattice constants. For each case, the various colors denote dif-
ferent values of the modal gain Γ𝑦𝑔mat. To show the evolution of the internal reflection
coefficient from below the lasing threshold up to the threshold itself, blue, red an yellow
correspond, respectively, to 80%, 90% and 100% of the threshold gain.

The Type II configuration has a larger threshold gain as compared to Type I, but
also a greater output coupling efficiency, as already noted in [148]. Fig. 4.29 shows the
power output coupling efficiency versus the length of the buffer mirror for the Type
I (blue) and Type II (red) heterostructure. It has been computed as the power trans-
mission through the buffer mirror at the lasing threshold. It is clear that the coupling
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Figure 4.28: Magnitude of the internal reflection coefficient for a Type II heterostructure
and the buffer being (a) 10 and (b) 20 lattice constants long. For a given buffer length,
the blue, red an yellow line correspond, respectively, to 80%, 90% and 100% of the
threshold gain. The black, vertical line denotes the oscillation frequency and the bullet
the lasing point.

Figure 4.29: Power output coupling efficiency for a Type I (blue) and Type II (red)
photonic heterostructure versus the length of the buffer mirror.
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efficiency is generally higher for the Type II heterostructure and only slightly degrades
as the buffer becomes longer. On the contrary, it strongly decreases for the Type I
heterostructure, due to the steep increase in the reflectivity of the buffer mirror.

4.6 Fano laser
In this section, we investigate a new, recently proposed laser structure, the so-called
Fano laser. A comprehensive review of the theory and current experimental status can
be found in [102].

Figure 4.30: Schematic representation of a Fano laser.

The essence of this laser is the mirror, realized through coupling of the waveguide
with a nanocavity located adjacently. A schematic representation is shown in Fig. 4.30.
The Fano resonance is a general wave interference phenomenon [32, 96, 75]. The Fano
mirror reflection does not arise from a discontinuity in refractive indices, but rather
from the interference between two light paths: the direct waveguide path and the in-
direct waveguide-nanocavity-waveguide path. Around the nanocavity resonance fre-
quency, the interference of these two paths is destructive. As a result, a narrowband
reflection spectrum arises.

The current implementation of the Fano laser is based on the photonic crystal plat-
form [184]. Therefore, the opportunities offered by the photonic crystal technology are
combined with the rich physics of the Fano mirror. A comprehensive review of various
optical signal processing applications exploiting the Fano resonance on the photonic
crystal platform (thus not limited to lasers) is presented in [10]. Among the intriguing
properties of the Fano laser (still to be fully explored), we cite ultrafast frequency mod-
ulation [100, 129], increased stability against external optical feedback [131], as well as
passive [184] and active Q-switching [128].
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To understand these features, it is of interest to examine the oscillation condi-
tion and tuning characteristics of the laser, i.e. in dependence of the cavity length or
nanocavity resonance frequency. This is useful for both general design purposes and
more specific applications. For instance, the Fano laser can be modulated via the mir-
ror, by dynamically changing the nanocavity resonance frequency. The response of the
threshold gain and oscillation frequency to variations of the nanocavity resonance fre-
quency gives important indications on the on- and off-state of the laser (and transition
from one to the other) in switching applications.

The current Fano laser models do not account for waveguide dispersion and, con-
sequently, slow-light effects. In particular, a major assumption is that the Bloch modes
travelling in the laser cavity are only coupled at the mirrors [132], thus neglecting the
gain-induced distributed feedback associated with slow-light. The assumption is valid
if the laser operates far from the band edge of the waveguide dispersion relation. This
can be ensured by designing the nanocavity such that its resonance frequency lies far
enough from the slow-light region.

However, there is a number of reasons to investigate how slow-lightwould affect the
Fano laser characteristics. As for conventional line-defect lasers, the enhancement of
the modal gain per unit length would positively impact on the device compactness and
energy efficiency. Furthermore, owing to the extreme sensitivity of the oscillation con-
dition to variations of the cavity length and/or nanocavity resonance frequency [132,
102], the additional strong coupling of the amplitude and phase conditions introduced
by slow-light is likely to influence both the static and dynamic characteristics of the
laser. For instance, slow-light would change the photon lifetime, which in turn would
affect the relaxation resonance frequency and damping rate. An additional example
is the likely effect on the tuning range required to switch on and off the laser in Q-
switching applications.

The necessary starting point to assess the nature of such effects (and leverage them,
if possible) is studying the Fano laser oscillation condition with proper inclusion of
slow-light. This section presents the preliminary work carried out on this regard in
collaboration with T. Rasmussen and J. Mørk during my stay at DTU Fotonik from
January, 2020 to July, 2020.

4.6.1 Fano mirror
The Fano mirror can be modeled by temporal coupled-mode theory [46, 31]. The most
general implementation of the Fano mirror on the photonic crystal platform may in-
clude a blocking air hole in the waveguide below the nanocavity (a so-called PTE, par-
tially transmitting element) [185]. This PTE renders the mirror spectrum asymmetric
with respect to the nanocavity resonance frequency, which can be useful in various
applications [10, 128]. By displacing the PTE from the mirror plane, the parity of the
resonance can also be controlled, thus blue- or red-shifting the reflection maximum as
compared to the minimum.

134



4.6 – Fano laser

In the following, we focus on the simplest implementation, without a PTE. In this
case, one finds [100]

𝑟𝑅(𝜔) =
−𝛾𝑐

𝑖(𝜔𝑐 − 𝜔) + 𝛾𝑇
(4.14)

Here, 𝜔𝑐 is the nanocavity resonance frequency and 𝛾𝑐 the coupling rate between nanocav-
ity and waveguide, while 𝛾𝑇 is the total decay rate of the field in the nanocavity

𝛾𝑇 = 𝛾𝑐 + 𝛾𝑣 + 𝛾𝑝 (4.15)

This rate accounts for coupling with the waveguide (𝛾𝑐), vertical out-of-plane scattering
loss (𝛾𝑣) and possible coupling to other ports (𝛾𝑝), if present. For each coupling rate, the
corresponding Q-factor is defined as 𝑄𝑥 = 𝜔𝑐/(2𝛾𝑥), with 𝑥 = 𝑇, 𝑐, 𝑣, 𝑝. From Eq. (4.14),
the maximum reflectivity is

|𝑟𝑅max
| =

𝛾𝑐
𝛾𝑇

=
𝑄𝑇
𝑄𝑐

(4.16)

and achieved at 𝜔𝑐. Therefore, it is clear that the peak reflectivity approaches unity for
𝑄𝑐 ≪ 𝑄𝑇. Since the waveguide can be strongly coupled to the nanocavity by reducing
the distance between the two, this condition can be easily realized in practice.

Figure 4.31: (a) Power reflectivity and (b) phase for a Fano mirror with 𝑄𝑣 = 100000
and 𝑄𝑝 = 15000 and different values of 𝑄𝑐 versus detuning from the resonance fre-
quency. The assumed resonant wavelength is 𝜆𝑐 = 1571 nm.

The inclusion of another output port above the nanocavity, a so-called cross-port
(not shown in Fig. 4.30), is not strictly necessary, but useful if one desires to improve
the laser differential quantum efficiency [102]. In fact, if the laser operates around the
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nanocavity resonance frequency and no cross-port is included (i.e. 𝛾𝑝 = 0), the Fano
mirror reflection is high and low power is coupled out to the waveguide below the
nanocavity, the so-called through-port. If instead the cross-port is included, the total
quality factor of the nanocavity is reduced somewhat, but the reduction is negligible if
one ensures 𝑄𝑐 ≪ 𝑄𝑣,𝑄𝑝. The cross-port differential quantum efficiency is approxi-
mately proportional to [102]

𝜂 =
𝑄𝑣

𝑄𝑣 + 2𝑄𝑝
(4.17)

and can be easily maximized by simply ensuring 𝑄𝑝 ≪ 𝑄𝑣. Therefore, one obtains the
practical design rule 𝑄𝑐 ≪ 𝑄𝑝 ≪ 𝑄𝑣.

Fig. 4.31 shows (a) the power reflectivity and (b) phase of a Fano mirror with 𝑄𝑣 =
100000 and 𝑄𝑝 = 15000 and different values of 𝑄𝑐. These are typical Fano mirror
parameters [129]. As the coupling between nanocavity and waveguide weakens, the
peak reflectivity decreases and the mirror bandwidth shrinks. Indeed, from Eq. (4.14)
the full width at half maximum (FWHM) of the power reflectivity is given by 2𝛾𝑇/(2𝜋),
thus diminishing with decreasing 𝛾𝑐. For the sake of convenience, 𝛾𝑇 is denoted in the
following as the Fano mirror linewidth.

4.6.2 Tuning characteristics

Figure 4.32: Fano laser implementation on the photonic crystal platform including the
cross-port. The active region is denoted in red.

Fig. 4.32 shows the implementation of the Fano laser concept on the photonic crystal
platform. The active region is denoted in red and limited to the line-defect part of the
waveguide. The left mirror is a conventional photonic bandgap mirror.

In the following, we solve the laser oscillation condition upon variation of the cavity
length 𝐿 and nanocavity resonance frequency 𝜔𝑐 with slow-light effects included and
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the right mirror reflection coefficient 𝑟𝑅 given by Eq. (4.14). We follow the approach
of [132] and assume that the laser oscillates at a reference frequency 𝜔𝑟 when 1) the
nanocavity resonance frequency 𝜔𝑐 coincides with 𝜔𝑟 and 2) the cavity length 𝐿 is set
to a reference value 𝐿𝑟. Therefore, for given 𝐿𝑟 and 𝜔𝑟, the left mirror phase 𝜙𝐿 is
chosen such that a longitudinal mode lies at 𝜔𝑟 for the cold cavity. Then, we let either
𝜔𝑐 or 𝐿 vary and solve for each value the oscillation condition.

To appreciate the impact of slow-light, we proceed in stages and make comparisons
with the current modeling approaches [132, 129], which 1) neglect the gain-induced dis-
tributed feedback and 2) assume a fixed value for the group index. For this purpose, we
consider the waveguide complex propagation constant with 𝛼2 set to zero and without
distributed feedback

̃𝛽eff(𝜔, 𝑔mat) = 𝑘𝑧(𝜔) − 𝑖
2

𝑛𝑔(𝜔)
𝑛slab

[ΓFF(𝜔)Γ𝑦𝑔mat(1 − 𝑖𝛼𝐻) − 𝛼1] (4.18)

By Taylor-expanding 𝑘𝑧 to first order around 𝜔𝑟 and evaluating 𝑛𝑔 at 𝜔𝑟, we obtain

̃𝛽𝑟(𝜔, 𝑔mat) = 𝑘𝑧(𝜔𝑟) +
𝜔 − 𝜔𝑟

𝑐
𝑛𝑔(𝜔𝑟) − 𝑖

2
𝑛𝑔(𝜔𝑟)
𝑛slab

[ΓFF(𝜔𝑟)Γ𝑦𝑔mat(1 − 𝑖𝛼𝐻) − 𝛼1] (4.19)

which employs fixed values for the group index and confinement factor ΓFF. The dif-
ference as compared to [132, 129] is just that these values are directly evaluated from
the waveguide dispersion relation and not set a priori. In the following, Eq. (4.19) is our
benchmark without slow-light.

Unless otherwise specified, we assume |𝑟𝐿| = 1, 𝛼1 = 5 cm−1, 𝛼2 = 0 and 𝛼𝐻 = 1.5.
The reference wavelength 𝜆𝑟 is 1571 nm, corresponding to a moderate group index 𝑛𝑔
around 20. The reference cavity length is 𝐿𝑟 = 8.76 𝜇m, corresponding to 20 unit cells.
The Q-factors defining the Fano mirror are 𝑄𝑣 = 100000 , 𝑄𝑝 = 15000 and 𝑄𝑐 = 780.

Tuning the resonance frequency

The photonic crystal platform provides several options to tune the nanocavity reso-
nance frequency. The design parameters determining the resonance frequency are the
membrane thickness, the hole radius, the lattice constant, the cavity geometry and the
local refractive index [55]. In particular, the refractive index can be tuned by differ-
ent approaches, such as thermally [170], electrically [44] or optically. Optical control
through an out-of-plane excitation is well documented in the literature. In essence, by
focusing an optical pulse on the nanocavity, the refractive index undergoes a nonlinear
change. Such change is due to, e.g., plasma dispersion from excitation of free carriers
by two photon absorption [35, 162] or optical Kerr effect. The latter is usually weaker,
but can be strongly enhanced by embedding a bow-tie pattern inside the nanocavity,
leading to extreme field confinement [48, 173]. Excitation schemes based on in-plane
optical pulses have been also suggested [128], with clear benefits in terms of device
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Figure 4.33: Nanocavity resonance frequency change normalized to the Fano mirror
linewidth versus relative refractive index change.

integration. The relative refractive index change, Δ𝑛/𝑛, necessary to induce a variation
Δ𝜔 in the nanocavity resonance frequency, 𝜔𝑟, can be estimated as [35]

Δ𝑛
𝑛

= Δ𝜔
𝜔𝑟

=
Δ𝜔/𝛾𝑇
2𝑄𝑇

(4.20)

Fig. 4.33 shows the change in the nanocavity resonance frequency, normalized to the
Fano mirror linewidth, as a function of the relative refractive index change. The Q-
factor 𝑄𝑇 approximately amounts to 736, as resulting from the values of 𝑄𝑣, 𝑄𝑝 and
𝑄𝑐.

In the following, we set the cavity length 𝐿 to the reference length 𝐿𝑟 and solve the
oscillation condition upon tuning of the resonance frequency. In the following figures,
the 𝑥-axis reports the detuning of 𝜔𝑐 from 𝜔𝑟, normalized to the Fano mirror linewidth
𝛾𝑇. The modes are numbered in order of increasing threshold gain and denoted by
different colors.

Firstly, we neglect slow-light and solve the oscillation condition by using Eq. (4.19)
for the waveguide complex propagation constant. Fig. 4.34 shows (a) the modal gain
Γ𝑦𝑔mat and (b) effective detuning of 𝜔𝑐 from the oscillation frequency 𝜔𝑠, normalized
to the Fano mirror linewidth. Both the lasing mode (in blue) and second-order mode
(in red) are reported. A number of features can be noted. The modal gain shows a
succession of minima, occurring where 𝜔𝑐 (and thus the Fano mirror peak) aligns with
a longitudinal mode of the laser cavity. The spacing of these modes is determined by
the free spectral range of the cold cavity (within a small correction due to the linewidth
enhancement factor). Since the group index is fixed, the minima are equally spaced.
This is confirmed by Fig. 4.34(b), showing that the minima do correspond to zero effec-
tive detuning. The gain and effective detuning are periodic, with the same periodicity.
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Figure 4.34: Frequency tuning characteristics of Fano lasers without slow-light effects.
(a) Modal gain Γ𝑦𝑔mat and (b) effective detuning of the nanocavity resonance frequency
𝜔𝑐 from the oscillation frequency 𝜔𝑠, normalized to the Fano mirror linewidth 𝛾𝑇. The
𝑥-axis reports the detuning of the nanocavity resonance frequency from the reference
frequency, normalized to the mirror linewidth. The lasing mode M1 is in blue, the
second-order mode M2 in red.

As 𝜔𝑐 departs from a gain minimum, the threshold gain increases, because the oscil-
lation frequency is detuned from the mirror peak. However, the gain increases more
strongly in one detuning direction as compared to the other. The asymmetry is due to
the non-zero linewidth enhancement factor and can be understood from the following
argument [129]. As the oscillation frequency is detuned from the mirror peak and the
gain grows, the contribution to the phase condition associated with the linewidth en-
hancement factor 𝛼𝐻 always has the same sign, irrespective of the detuning direction.
On the contrary, since the Fano mirror phase is an anti-symmetric function of detuning
(see Fig. 4.31(b)), its contribution can either enhance that resulting from 𝛼𝐻 or partially
compensate for it. Consequently, the oscillation frequency will be forced to a larger or
smaller detuning from the mirror peak (see Fig. 4.34(b)), with a corresponding higher or
lower gain (see Fig. 4.34(a)). Finally, we note that the lasing mode is always the closest
to the Fano mirror peak and nearly tracks the nanocavity resonance frequency within
few mirror linewidths, as evident from Fig. 4.34(b).

We can now make a step forward and include the group index dispersion, but still
neglecting the gain-induced distributed feedback. This amounts to using Eqs. (4.7a)
and (4.7b) as amplitude and phase condition respectively. Fig. 4.35 shows (a) the thresh-
old gain and (b) effective detuning for the lasing mode (in blue) and two higher-order
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Figure 4.35: Frequency tuning characteristics of Fano lasers with group index disper-
sion, but without gain-induced distributed feedback. (a) Modal gain Γ𝑦𝑔mat and (b) effec-
tive detuning of the nanocavity resonance frequency 𝜔𝑐 from the oscillation frequency
𝜔𝑠, normalized to the Fano mirror linewidth. The lasing mode M1 is in blue. M2 (red)
and M3 (yellow) are higher-order modes. The lasing mode without slow-light effects
from Fig. 4.34 is also shown (dotted, black line).

modes. Additional modes do exist, but are not shown for the sake of clarity. The dotted,
black line is the lasing mode without slow-light effects (from Fig. 4.34). The inclusion
of the full waveguide dispersion triggers a strong competition among the various lon-
gitudinal modes, resulting in relevant differences as compared to Fig. 4.34. First of all,
the lasing mode is not necessarily the least detuned from the Fano mirror peak. In
particular, since the group index strongly increases towards the slow-light region, the
amplitude condition suggests that the lasing mode may even not be the closest to the
mirror peak, but the closest to the band edge (if the phase condition can be simultane-
ously fulfilled). This is indeed the case for a wide range of detuning values (all those for
which the blue markers in Fig. 4.35(b) are far from zero effective detuning). Secondly,
the level of the gain minima, irrespective of their location, decreases as 𝜔𝑐 moves to
lower frequencies. In fact, the deeper 𝜔𝑠 falls into the slow-light region and the larger
the enhancement of the modal gain per unit length is. We also note that the gain min-
ima are not equally spaced. The spacing shrinks as 𝜔𝑐 approaches the band edge, owing
to the decrease of the free spectral range. Finally, it should be highlighted how the so-
lution without slow-light effects fundamentally captures the response ofM2 around the
reference frequency (which makes sense), but cannot reproduce the competition with
the other modes, especially close to the band edge.
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Figure 4.36: Frequency tuning characteristics of Fano lasers with group index disper-
sion and gain-induced distributed feedback. (a) Modal gain Γ𝑦𝑔mat and (b) effective
detuning of the nanocavity resonance frequency 𝜔𝑐 from the oscillation frequency 𝜔𝑠,
normalized to the Fano mirror linewidth. The lasing mode M1 is in blue. M2 (red) and
M3 (yellow) are higher-order modes. The lasing mode without slow-light effects from
Fig. 4.34 is also shown (dotted, black line).

We are now ready to include the gain-induced distributed feedback in addition to
group index dispersion, that is using Eqs. (4.6a) and (4.6b) for the amplitude and phase
condition respectively. The results are summarized in Fig. 4.36, showing (a) the thresh-
old and (b) effective detuning. For the sake of clarity, the first three modes are only
shown. The solid, black line is the lasing mode without slow-light effects from Fig. 4.34.
As compared to Fig. 4.35, a striking difference can be noticed. The lasing mode is al-
ways the closest to the band edge, rather than to the Fano mirror peak. This result is
somewhat counterintuitive. In fact, from the discussions on the impact of distributed
feedback on lasers with photonic bandgap mirrors in Sec. 4.4 (see, in particular, Fig. 4.12
and Fig. 4.13), one would probably expect the distributed feedback to inhibit the mode
deep in the slow-light region. However, the difference here is that we have finely tuned
the phase of the left mirror 𝜙𝐿 to align a longitudinal mode of the cold cavity with
the Fano mirror peak. As a side effect, owing to the distributed feedback, the non-zero
value of 𝜙𝐿 results in a resonant peak in the magnitude of the internal reflection coef-
ficient 𝑟int. On this regard, see the brief discussion in Sec. 4.3.2 in relation to Fig. 4.10.
Around this resonance, the amplitude and phase condition can be simultaneously ful-
filled, leading to mode M1 in Fig. 4.36. This example emphasizes the non-trivial nature
of distributed feedback.
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Figure 4.37: Frequency tuning characteristics of Fano lasers with group index disper-
sion and without adjustment of the left mirror phase. (a) and (b) Modal gain Γ𝑦𝑔mat
and (c) and (d) wavenumber 𝑘𝑧 at the lasing threshold of mode M1 (blue), M2 (red) and
M3 (yellow). (a) and (c) are with distributed feedback, (b) and (d) without it. The solid,
black line in (c) and (d) is 𝑘𝑧 evaluated at the nanocavity resonance frequency 𝜔𝑐.

However, one should consider that the group index 𝑛𝑔 corresponding to modeM1 in
Fig. 4.36 is extremely large (around 1000) and such huge values have not been reported
experimentally. In addition, it is not clear how the fine tuning of the left mirror phase
leading to modeM1 could be accomplished in practice. Finally, it should be emphasized
that if the application requires to control the laser via the Fano mirror, lasing on mode
M1 is obsviously undesirable. For these reasons, it is interesting to investigate the case
without adjustment of the left mirror phase (similarly to Sec. 4.4) by leaving the other
parameters unchanged. This is in fact the case of practical interest.

Therefore, we report in Fig. 4.37 the frequency tuning characteristics with group
index dispersion included and 𝜙𝐿 set to zero. Fig. 4.37 (a) and (c) include the gain-
induced distributed feedback, which is instead neglected in (b) and (d). Fig. 4.37(a) and
(b) show the modal gain Γ𝑦𝑔mat at the lasing threshold of mode M1 (blue), M2 (red)
and M3 (yellow). The corresponding wavenumber 𝑘𝑧 is depicted in Fig. 4.37(c) and (d),
while the solid, black line is 𝑘𝑧 evaluated at the nanocavity resonance frequency. Since
the left mirror phase is not adjusted, the reference frequency has no special role in
this case and no gain minimum occurs when 𝜔𝑐 is around 𝜔𝑟 (see Fig. 4.37(a) and (b)).
However, all the minima correspond to lasing close to the Fano mirror peak, as evident
from Fig. 4.37(c) and (d). Furthermore, we note that oscillation close to the band edge
is indeed suppressed by the distributed feedback. On the contrary, lasing close to the
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band edge can still occur if the distributed feedback is neglected. We also note that
the distributed feedback generally improves the gain margin, defined as the difference
between the threshold gain of M2 and M1.

Figure 4.38: Frequency tuning characteristics of Fano lasers with group index disper-
sion, gain-induced distributed feedback andwithout adjustment of the leftmirror phase.
(a) Modal gain Γ𝑦𝑔mat and (b) wavenumber 𝑘𝑧 at the lasing threshold of modeM1 (blue),
M2 (red) and M3 (yellow). The bottom 𝑥-axis reports the nanocavity resonance fre-
quency 𝑓𝑐 = 𝜔𝑐/(2𝜋). The top 𝑥-axis in (a) shows instead the group index 𝑛𝑔. The
lasing mode without slow-light effects from Eq. (4.19) is also included (dotted, black
line), with the reference frequency for the Taylor expansion set to around 190.6THz.
The solid, black line in (b) is 𝑘𝑧 evaluated at the nanocavity resonance frequency.

To summarize, we report again in Fig. 4.38 the frequency tuning characteristics with
group index dispersion, gain-induced distributed feedback and without adjustment of
the left mirror phase. This time, the bottom 𝑥-axis shows the absolute value of the
nanocavity resonance frequency in THz, while the top 𝑥-axis in (a) reports the group
index 𝑛𝑔. Fig. 4.38(a) illustrates the modal gain Γ𝑦𝑔mat at the lasing threshold of mode
M1 (blue), M2 (red) and M3 (yellow). Similarly, Fig. 4.38(b) shows the wavenumber 𝑘𝑧
at the lasing threshold of these three modes. The solid, black line in (b) is instead 𝑘𝑧
evaluated at the nanocavity resonance frequency. Furthermore, in both Fig. 4.38(a) and
(b) we have included the lasing mode without slow-light effects from Eq. (4.19) (dot-
ted, black line). In this case, the reference frequency for the Taylor expansion is set
to around 190.6THz, corresponding to one of the gain minima. Fig. 4.38 compares the
”full” model, given by Eqs. (4.6a) and (4.6b), with the ”approximate” model, based on
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Eq. (4.19). The latter essentially corresponds to the modelling approach so far docu-
mented in the literature [129]. The threshold gain features a succession of minima, with
each minimum corresponding to the alignment of the nanocavity resonance frequency
(i.e. the Fano mirror peak) with a mode of the laser cavity. As expected, the two models
agree well close to the reference frequency used for the Taylor expansion. However,
Eqs. (4.6a) and (4.6b) generally reveal a much stronger competition between the lasing
mode and higher-order modes. As a result of this competition, a much smaller detuning
from a gain minimum than predicted by Eq. (4.19) is sufficient to induce lasing far from
the Fano mirror peak. In particular, the competition intensifies as the nanocavity res-
onance frequency is detuned towards the slow-light region. Therefore, operation with
moderate slow-light may be advantageous, because the threshold gain would benefit
from the slow-light reduction of mirror loss. However, operation deep in the slow-light
region should be avoided if one wishes to control the laser via the Fano mirror.

Tuning the cavity length

The cavity length is usually changed in integer steps of the photonic crystal lattice
constant. However, it should be emphasized that the electric field has a non-zero pen-
etration depth within the left mirror. In addition, perfect control of the phase of none
of two mirrors is achievable in practice. Therefore, in the following we allow fractional
variations of 𝐿 in terms of the photonic crystal lattice constant as in [129] and interpret
𝐿 as an effective cavity length.

We set 𝜔𝑐 to 𝜔𝑟 and solve the oscillation condition upon tuning of the cavity length.
In the following figures, the 𝑥-axis reports the cavity length 𝐿 normalized to the refer-
ence cavity length 𝐿𝑟. Again, the modes are numbered in order of increasing threshold
gain and denoted by different colors.

First of all, we neglect slow-light effects, thus using Eq. (4.19) for the waveguide
complex propagation constant. Fig. 4.39 summarizes the results which one obtains in
this case. The lasing mode is in blue, the second-order (third-order) mode in red (yel-
low). Fig. 4.39(a) reports the modal threshold gain Γ𝑦𝑔mat, which shows a succession
of minima similarly to Fig. 4.34(a). As the cavity length is varied, the oscillation fre-
quency has to change as well, in order to continue to fulfill the phase condition. The
gain minima occur whenever the oscillation frequency aligns with the nanocavity reso-
nance frequency, where the Fano mirror reflectivity is maximum. This is confirmed by
Fig. 4.39(b), reporting the effective detuning of the nanocavity resonance frequency 𝜔𝑐
from the oscillation frequency 𝜔𝑠, normalized to the Fano mirror linewidth. The asym-
metry in the response arises from the non-zero linewidth enhancement factor, similarly
to what observed above in connection with the frequency tuning characteristics. We
also note that the threshold gain at each minimum decreases with increasing cavity
length, which is hard to see on the figure due to the scale. Finally, it should be empha-
sized the extreme sensitivity of the response to length tuning [129]. A variation of 1%
of 𝐿 with respect to 𝐿𝑟 is enough to more than double the threshold gain as compared
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Figure 4.39: Length tuning characteristics of Fano lasers without slow-light effects. (a)
Modal gain Γ𝑦𝑔mat and (b) effective detuning of the nanocavity resonance frequency 𝜔𝑐
from the oscillation frequency 𝜔𝑠, normalized to the Fano mirror linewidth 𝛾𝑇. The 𝑥-
axis reports the ratio between the cavity length and reference cavity length. The lasing
mode is in blue, the second-order (third-order) mode in red (yellow).

to one minimum.
We now include the group index dispersion, but still neglect the distributed feed-

back. Fig. 4.40 depicts (a) the threshold and (b) effective detuning of 𝜔𝑐 from 𝜔𝑠. The
dotted, black line is the lasing mode without slow-light effects from Fig. 4.39. Similarly
to Fig. 4.35, the modes deep into the slow-light region strongly compete for lasing with
that close to the Fano mirror peak. As 𝐿 departs from 𝐿𝑟, the detuning of the oscillation
frequency from the mirror peak (required to fulfill the phase condition) may become
so large that lasing close to the band edge is instead more convenient. If lasing occurs
there, the threshold gain strongly diminishes with increasing 𝐿. This is because the
oscillation frequency gradually moves closer to the band edge and the mirror loss is
increasingly reduced by slow-light (similarly to what happens for lasers with photonic
bandgap mirrors). As expected, the mode competition is not captured by the black,
dotted line.

We finally also include the gain-induced distributed feedback. The results are il-
lustrated in Fig. 4.41, with (a) threshold gain and (b) effective detuning. The lasing
mode without slow-light effects (dotted, black line) only captures the response around
the Fano mirror peak. Interestingly, the mode competition appears even more com-
plicated than in Fig. 4.36. Indeed, the response shows several additional branches (see
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Figure 4.40: Length tuning characteristics of Fano lasers with group index dispersion,
but without gain-induced distributed feedback. (a) Modal gain Γ𝑦𝑔mat and (b) effective
detuning of the nanocavity resonance frequency 𝜔𝑐 from the oscillation frequency 𝜔𝑠,
normalized to the Fano mirror linewidth. The lasing mode M1 is in blue. M2 (red) and
M3 (yellow) are higher-order modes. The lasing mode without slow-light effects from
Fig. 4.39 is also shown (dotted, black line).

Fig. 4.41(a)), with local gain minima other than those reproduced without slow-light ef-
fects. The threshold gain variation around each of these additional minima corresponds
to changes in the oscillation frequency far away from the mirror peak (see Fig. 4.41(b)).
Therefore, these minima cannot be ascribed to variations in the Fano mirror reflec-
tivity. On the contrary, they stem from lasing around narrow resonances due to the
gain-induced distributed feedback. Therefore, they appear to be a peculiar slow-light
effect, which deserves closer inspection.

As an example, we select one of these branches with gain minima far away from the
mirror peak and report it in Fig. 4.42, with (a) modal gain and (b) normalized effective
detuning. Any other branch would only lead to quantitative changes, with the qualita-
tive analysis being the same. We note how the excursion of the oscillation frequency
along the branch (see Fig. 4.42(b)) is quite limited. Interestingly, a slight increase in the
cavity length is sufficient to approximately double the threshold gain (see Fig. 4.42(a)).
To better understand this behaviour, we depict in Fig. 4.43 the amplitude of the cavity
complex loop gain, with the cavity length set to the three values denoted by arrows
in Fig. 4.42. The different colors correspond to 𝐿 equal to 𝐿1 (blue), 𝐿2 (red) and 𝐿3
(yellow). The modal gain Γ𝑦𝑔mat corresponds to the lasing threshold for 𝐿 = 𝐿1. The
black, vertical line denotes the oscillation frequency for this value of cavity length and
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Figure 4.41: Length tuning characteristics of Fano lasers with group index dispersion
and gain-induced distributed feedback. (a) Modal gain Γ𝑦𝑔mat and (b) effective detuning
of the nanocavity resonance frequency𝜔𝑐 from the oscillation frequency𝜔𝑠, normalized
to the Fano mirror linewidth. The lasing mode M1 is in blue. M2 (red) and M3 (yellow)
are higher-order modes. The lasing mode without slow-light effects from Fig. 4.39 is
also shown (dotted, black line).

the bullet the lasing point, where the loop gain is unitary. The figure reveals that a cav-
ity length increase reduces the intensity of the resonance peak around the oscillation
frequency for a given value of modal gain. Thus, the modal gain for which 𝐿1 achieves
lasing is insufficient to make 𝐿2 or 𝐿3 lase. In fact, the loop gain does not reach unity
in these two cases. Consequently, the modal gain is forced to grow in order to fullfil the
oscillation condition, which explains the increase in Fig. 4.42(a). The slight variation in
the oscillation frequency (see Fig. 4.42(b)) is dictated by the necessity to simultaneously
fulfill the condition on the phase of the complex loop gain (for simplicity, not shown
here). This slow-light effect is somehow analogous to the non-monotonic variation of
threshold gain which we have discussed in Sec. 4.5, in the case of the Type II photonic
heterostructure (see Fig. 4.27 in Sec. 4.5). In that case, as a result of tuning of the buffer
mirror length, the oscillation frequency moves around a resonance caused by the gain-
induced distributed feedback. Thus, an optimum buffer length exists which minimizes
the threshold gain.

Finally, it should be emphasized that the intricate charateristics of Fig. 4.41, with
multiple and possibly non-monotonic gain branches far away from the Fano mirror
peak, appear to be a genuine distributed feedback effect, irrespective of the phase of
the left mirror. Indeed, without adjustment of the left mirror phase, i.e. by setting
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Figure 4.42: Length tuning characteristics of Fano lasers with group index dispersion
and gain-induced distributed feedback. (a) Modal gain and (b) normalized effective de-
tuning (right) and absolute oscillation frequency (left) for one of the branches in Fig. 4.41
with oscillation frequency far from the Fano mirror peak. The arrows denote the values
of cavity length for which the complex loop gain in Fig. 4.43 is shown.

𝜙𝐿 = 0, we have only found quantitative, but not qualitative changes.

4.7 Conclusions
To summarize, we have investigated the impact of slow-light and gain-induced dis-
tributed feedback on the oscillation condition of photonic crystal lasers based on line-
defect waveguides. This analysis extends to lasers the theoretical framework developed
in Chapter 3.

In the presence of slow-light, the oscillation condition is described by Eqs. (4.6a)
and (4.6b), derived in Sec. 4.2. These equations account for the gain-induced distributed
feedback intrinsically associated with slow-light. Thus, they generalize Eqs. (4.7a) and
(4.7b), which are conventionally employed to model the oscillation condition of slow-
light photonic crystal lasers [178].

Equivalently, the oscillation conditionmay be expressed by Eq. (4.8) in Sec. 4.3, where
the internal reflection coefficient 𝑟int is generally given by Eq. (4.11). This is the reflec-
tion coefficient of the backward-propagating Bloch mode at the reference plane be-
tween the active region and right mirror (see Fig. 4.6). Therefore, 𝑟int encompasses both
the left mirror reflection coefficient and roundtrip gain, with the latter including the
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Figure 4.43: Length tuning characteristics of Fano lasers with group index dispersion
and gain-induced distributed feedback. Amplitude of the cavity complex loop gain,
with the cavity length set to 𝐿1 (blue), 𝐿2 (red) and 𝐿3 (yellow) indicated in Fig. 4.42(a).
The modal gain Γ𝑦𝑔mat corresponds to the lasing threshold of the cavity with 𝐿 = 𝐿1.
This modal gain is insufficient to make 𝐿2 or 𝐿3 lase. The black, vertical line denotes
the oscillation frequency for 𝐿 = 𝐿1 and the bullet the lasing point.

gain-induced distributed feedback in the active region. As a result, the internal reflec-
tion coefficient shows a complicated dependence on frequency and gain, with a strong
coupling between amplitude and phase (see Fig. 4.8). Deep into the slow-light region,
the magnitude shows multiple resonances and eventually decreases if the group index
is sufficiently high. This behaviour reflects the block diagram of the laser cavity in
Fig. 4.7.

In Sec. 4.4, we have investigated lasers with photonic bandgap mirrors. As the cav-
ity length increases, the oscillation wavelength moves towards the band edge and the
threshold gain strongly decreases, mainly because of the slow-light reduction of the
mirror loss (see Fig. 4.12). The distributed feedback suppresses the mode closest the
band edge, which would otherwise be the lasing one (see Fig. 4.13 and Fig. 4.14). Fur-
thermore, larger values of the linewidth enhancement factor, 𝛼𝐻, may significantly re-
duce the threshold gain if the distributed feedback is strong enough (see Fig. 4.17). In
fact, the effective net modal gain, 𝑔eff, may be enhanced, at a given frequency, by larger
values of 𝛼𝐻, under the same pumping conditions (see Fig. 4.18). Therefore, on the one
hand quantum dots may offer better performance in slow-light semiconductor optical
amplifiers (as discussed in Sec. 3.6), where the goal is achieving a reasonable amplifier
gain with minimum backreflection. On the other hand, quantum wells may contribute
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to reduce the threshold gain in lasers with photonic bandgap mirrors. In Sec. 4.4.1, we
have studied the impact of disorder. Indeed, an optimum cavity length which mini-
mizes the threshold gain has been found in [178] (see Fig. 4.19). This optimum has been
ascribed therein to disorder due to unavoidable fabrication imperfections. We have
modelled the disorder-induced backscattering loss by a phenomenological approach
[117, 178], already introduced in Sec. 3.6. This approach, irrespective of whether or
not the distributed feedback is included, cannot fully capture the experiments of [178]
(see Fig. 4.20). On the other hand, as we have briefly discussed, the interpretation of
those experimental findings currently remains controversial [15]. Finally, in Sec. 4.4.2
we have studied the oscillation condition in the event that the left and right mirror re-
flection coefficient are zero. We have shown that lasingmay be possible with reasonable
threshold gain if the active region is long enough (see Fig. 4.23). In this case, lasing is
entirely sustained by the gain-induced distributed feedback.

In Sec. 4.4, we have focused on the laser in Fig. 4.24 [137]. In this laser, the left
and right mirror are photonic heterostructure mirrors, induced by a refractive index
structural modulation. We have investigated two possible configurations in dependence
of the length of the buffer mirror. The two configurations, namely Type I and Type II,
differ in the refractive index change of the buffer mirror relative to the active region (see
Fig. 4.25). Interestingly, for Type II an optimum buffer length has been found, which
minimizes the threshold gain (see Fig. 4.27). The optimum stems from the oscillation
frequency changing around a resonance of the internal reflection coefficient 𝑟int (see
Fig. 4.28). Therefore, this optimum is a peculiar distributed feedback effect.

In Sec. 4.6, we have discussed the impact of slow-light on the tuning characteristics
of Fano lasers [102]. This laser is essentially formed by an open waveguide coupled
to a nanocavity. The Fano mirror arises from the destructive interference around the
nanocavity resonance frequency between two light paths: the direct waveguide path
and the indirect waveguide-nanocavity-waveguide path. Current models of Fano lasers
[132, 129] completely neglect slow-light effects. Firstly, we have discussed the case of
frequency tuning. In this case, the oscillation condition is solved as a function of the
nanocavity resonance frequency, as illustrated in Fig. 4.38. The threshold gain features
a succession of minima, with each minimum occurring when the resonance frequency
aligns with a longitudinal mode of the laser cavity. This case is of practical interest as
the laser may be modulated via the mirror [129, 128]. As compared to current mod-
els, the inclusion of slow-light and gain-induced distributed feedback reveals a strong
competition among the various longitudinal modes, which intensifies as the group in-
dex increases. As a result, lasing may even occur away from the Fano mirror peak.
Therefore, operation too deep into the slow-light region should be avoided. However,
moderate slow-light may beneficial to reduce the threshold gain. Secondly, we have an-
alyzed the length tuning characteristics. In this case, the oscillation condition is solved
as a function of the cavity length, which may be of interest for design purposes. In the
presence of slow-light and gain-induced distributed feedback, the threshold gain shows
an intricate behaviour (see Fig. 4.41), revealing the extreme sensitivity of the oscillation
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condition to length tuning. This reflects somehow the sensitivity of the frequency tun-
ing characteristics to the left mirror phase, which we have also discussed.

Overall, these features emphasize that cavity length and phases of both mirrors
should be well controlled to pursue operation of Fano lasers in the slow-light region. In
addition, we also expect changes in the left and rightmirror phase to affect the threshold
gain of lasers with photonic bandgap mirrors, as suggested by Fig. 4.14. This sensitiv-
ity stems from the influence of the mirror phase on the internal reflection coefficient,
as evidenced by Fig. 4.15. Therefore, pursuing experiments with systematic tuning of
the mirror phases might be interesting in the slow-light region, even for lasers with
photonic bandgap mirrors.
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Chapter 5

Rate equation model of photonic
crystal lasers with slow-light

In this chapter, we derive a rate equation model of photonic crystal lasers which self-
consistently accounts for slow-light and gain-induced distributed feedback. The start-
ing point is the laser oscillation condition, thoroughly discussed in Chapter 4 for various
types of photonic crystal lasers based on line-defect waveguides. The field rate equa-
tion and carrier rate equation, presented in Sec. 5.1 and Sec. 5.2 respectively, are general,
meaning that no particular assumption is made on the left and right mirror. Thus, the
approach presented in this chapter may be extended to self-consistently account for
slow-light effects in photonic crystal Fano lasers. In Sec. 5.3, we focus on lasers with
photonic bandgap mirrors. We derive analytical expressions for the static and small-
signal characteristics and present some preliminary results. Finally, in Sec. 5.4 we draw
the conclusions.

5.1 Field rate equation

Figure 5.1: Reference plane for the internal reflection coefficient 𝑟int
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Fig. 5.1 shows the schematic drawing of a laser cavity, already introduced in Sec. 4.3.
From Eq. (3.2) in Sec. 3.2, we may express the electric field in the frequency-domain as

E(r,𝜔) = 𝑐+(𝑧,𝜔)e+(r,𝜔) + 𝑐−(𝑧,𝜔)e−(r,𝜔) (5.1)

Here, e± are the forward- (+) and backward-propagating (−) electric field of the guided
Bloch mode of a reference waveguide with purely real refractive index. As explained in
Sec. 3.2, the active waveguide on which the laser cavity is based is viewed as perturbed
as compared to this reference waveguide. The perturbation is represented by the mate-
rial gain induced by carrier density. The Bloch fields e± are 𝑧 periodic, with the period
given by the lattice constant 𝑎. The complex amplitudes 𝑐±(𝑧) reflect the spatial depen-
dence which the Bloch fields acquire within the laser cavity. On the left hand side of
the right mirror (see Fig. 5.1), the boundary conditions are

𝑐−(𝐿,𝜔) = 𝑐+(𝐿,𝜔)𝑟𝑅 (5.2a)
𝑐−(𝐿,𝜔) = 𝑐+(𝐿,𝜔)/𝑟int (5.2b)

Here, 𝐿 is the length of the active region and 𝑟𝑅 the right mirror reflection coefficient,
while 𝑟int is the internal reflection coefficient discussed in Sec. 4.3.2. Around the lasing
threshold, we may expand 1/𝑟int in a first-order Taylor series [167]

1
𝑟int(𝜔,𝑁)

≈ 1
𝑟int(𝜔𝑠,𝑁𝑠)

−
(

𝜕𝑟int
𝜕𝜔 )|(𝜔𝑠,𝑁𝑠)

𝑟2
int(𝜔𝑠,𝑁𝑠)

(𝜔 − 𝜔𝑠)

−
(

𝜕𝑟int
𝜕𝑁 )|(𝜔𝑠,𝑁𝑠)

𝑟2
int(𝜔𝑠,𝑁𝑠)

(𝑁 − 𝑁𝑠)

(5.3)

where 𝜔𝑠 and 𝑁𝑠 are, respectively, the oscillation angular frequency and threshold car-
rier density. By inserting Eq. (5.3) into Eq. (5.2b), one finds

𝑟int(𝜔𝑠,𝑁𝑠)𝑐+(𝐿,𝜔) +
{

𝑖 [𝑖 (𝜔 − 𝜔𝑠)] (
𝜕𝑟int
𝜕𝜔 )|(𝜔𝑠,𝑁𝑠)

− (𝑁 − 𝑁𝑠) (
𝜕𝑟int
𝜕𝑁 )|(𝜔𝑠,𝑁𝑠)}

𝑐+(𝐿,𝜔) = 𝑟2
int(𝜔𝑠,𝑁𝑠)𝑐−(𝐿,𝜔)

(5.4)

In the time-domain, the forward- and backward-propagating fields at 𝑧 = 𝐿 are defined
as the inverse Fourier transform of the amplitudes 𝑐±(𝐿,𝜔), namely

ℰ±(𝐿, 𝑡) = 1
2𝜋 ∫

+∞

−∞
𝑐±(𝐿,𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔 (5.5)
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Since ℰ±(𝐿, 𝑡) is a real quantity, one finds 𝑐+(𝐿,−𝜔) = [𝑐+(𝐿,𝜔)]
∗. Thus, ℰ±(𝐿, 𝑡)

may be expressed as

ℰ±(𝐿, 𝑡) = Re{ℰ±
𝒜(𝐿, 𝑡)} = 1

2
ℰ+

𝒜(𝐿, 𝑡) + 𝑐.𝑐. (5.6)

with 𝑐.𝑐. denoting the complex conjugate. Here, the complex, time-domain fieldℰ±
𝒜(𝐿, 𝑡)

is given by

ℰ±
𝒜(𝐿, 𝑡) = 1

𝜋 ∫
+∞

0
𝑐±(𝐿,𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔 (5.7)

By multiplyng both sides of Eq. (5.4) by the unitary step function and subsequently
taking the inverse Fourier transform, we obtain

𝑟int(𝜔𝑠,𝑁𝑠)ℰ+
𝒜(𝐿, 𝑡) + 𝑖 (

𝜕𝑟int
𝜕𝜔 )|(𝜔𝑠,𝑁𝑠) [

−
𝑑ℰ+

𝒜(𝐿, 𝑡)
𝑑𝑡

− 𝑖𝜔𝑠ℰ+
𝒜(𝐿, 𝑡)

]

− (𝑁 − 𝑁𝑠) (
𝜕𝑟int
𝜕𝑁 )|(𝜔𝑠,𝑁𝑠)

ℰ+
𝒜(𝐿, 𝑡) = 𝑟2

int(𝜔𝑠,𝑁𝑠)ℰ−
𝒜(𝐿, 𝑡)

(5.8)

We shall now assume that the laser oscillates in a single longitudinal mode, with a
slowly-varying time-domain envelope 𝒜 +(𝑡), namely

1
2

ℰ±
𝒜(𝐿, 𝑡) = 𝒜 ±(𝑡)𝑒−𝑖𝜔𝑠𝑡 (5.9)

By inserting Eq. (5.9) into Eq. (5.8) and letting the carrier density𝑁 to be time-dependent,
one finds

𝑑𝒜 +(𝑡)
𝑑𝑡

= 𝑖𝜁 [𝑁(𝑡) − 𝑁𝑠] 𝒜 +(𝑡) + 𝛾𝐿 [𝒜 −(𝑡)𝑟int(𝜔𝑠,𝑁𝑠) − 𝒜 +(𝑡)] (5.10)

Here, 𝜁 and 𝛾𝐿 are

𝜁 = (
𝜕𝑟int/𝜕𝑁
𝜕𝑟int/𝜕𝜔 )|(𝜔𝑠,𝑁𝑠)

(5.11a)

𝛾𝐿 = 𝑖
𝑟int(𝜔𝑠,𝑁𝑠)

(𝜕𝑟int/𝜕𝜔)|(𝜔𝑠,𝑁𝑠)

(5.11b)

It is instructive to explicitly derive 𝜁 and 𝛾𝐿 for a conventional Fabry-Perot laser [167].
In this case, the forward and backward field are only coupled at the mirrors and the
internal reflection coefficient reads 𝑟int = 𝑟𝐿𝑒2𝑖𝛽𝐿𝑒(Γ𝑔mat−𝛼𝑖)𝐿. Here, 𝑟𝐿 is the left mir-
ror reflection coefficient, which is assumed to be non-dispersive. 𝛽 is the propagation
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constant and 𝑔mat the material gain, while Γ and 𝛼𝑖 are the optical confinement factor
and modal intrinsic loss respectively. In this case, consistently with [167], one finds

𝜁 = − 𝑖
2

𝐺𝑁
1 − 𝑖𝛼𝐻

1 − 𝑖
2𝐺𝜔

(5.12a)

𝛾𝐿 = 1
2𝐿
𝑣𝑔 (1 − 𝑖

2𝐺𝜔)
(5.12b)

Here, 𝛼𝐻 is the linewidth enhancement factor and 𝑣𝑔 the group velocity at the oscillation
frequency, while 𝐺𝑁 and 𝐺𝜔 are given by

𝐺𝑁 = 𝑣𝑔
𝜕 (Γ𝑔mat − 𝛼𝑖)

𝜕𝑁 |
(𝜔𝑠,𝑁𝑠)

(5.13a)

𝐺𝜔 = 𝑣𝑔
𝜕 (Γ𝑔mat − 𝛼𝑖)

𝜕𝜔 |
(𝜔𝑠,𝑁𝑠)

(5.13b)

If the net modal gain dispersion at the lasing threshold is negligible, then 𝛾𝐿 is equal to
1/𝜏in [129], with 𝜏in = 2𝐿 / 𝑣𝑔 being the roundtrip time. In addition, one finds

𝜁 ′ = −1
2

𝛼𝐻𝐺𝑁 (5.14a)

𝜁 ′′ = −1
2

𝐺𝑁 (5.14b)

where 𝜁 ′ and 𝜁 ′′ are, respectively, the real and imaginary part of 𝜁.
On the other hand, if the forward and backward field undergo distributed coupling

(such as in conventional DFB lasers), 𝜁 and 𝛾𝐿 should be computed via Eqs. (5.11a) and
(5.11b), which are more general. In particular, in this case there is no obvious definition
of a roundtrip time and 𝛾𝐿 is a kind of complex roundtrip frequency [167].

Some comments are due on limitations to the applicability of Eq. (5.10). Since the
equation is based on a Taylor expansion around the lasing threshold, the accuracy
worsens as the frequency and carrier density depart from the expansion point. This
means that large-signal dynamics are not well described. In particular, the maximum
frequency variation is limited by the roundtrip time, namely 𝜔−𝜔𝑠 ≪ 1/𝜏in [127]. This
can be easily understood by assuming the left mirror to be non-dispersive, as well as
neglecting both the gain-induced distributed feedback and modal gain dispersion (i.e.
𝐺𝜔 = 0). In this case, one may expand in a first-order Taylor series the sole argument
of the exponential in the expression of 𝑟int [131], instead of expanding 1/𝑟int as a whole.
Thus, one finds that 𝒜 +(𝑡) evolves in steps of the rountrip time [131]. Therefore, it
simply follows from Nyquist sampling theorem that the maximum bandwidth of 𝒜 +(𝑡)
is limited by the inverse of the sampling time, i.e. the inverse of the roundtrip time.
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5.1 – Field rate equation

Physically, this means that the frequency deviation from the expansion point should
be much smaller than the laser free spectral range. Deep into the slow-light region of
photonic crystal lasers, the roundtrip time may significantly increase, thus jeopardizing
the applicability of Eq. (5.10). To roughly give some numbers, for a typical cavity length
𝐿 = 6.5 𝜇m, the roundtrip time would be around 150 fs for a group index 𝑛𝑔 of 3.5 and
it would increase up to around 4 ps for 𝑛𝑔 = 100.

To overcome the limitation imposed by the rountrip time, an artificial, multi-section
discretization scheme has been proposed [130]. Essentially, the laser active region is
spatially discretized in various nodes (i.e. sub-sections), separated one from another by
a distance Δ𝐿. The field at each node is updated as the field from the previous node
arrives. The time step by which the field at each node is updated is given by Δ𝐿/𝑣𝑔,
which is the time it takes the field to travel from one node to the other. Therefore, one
can improve the temporal resolution by just increasing the number of points in space
where the field is tracked. It should be emphasized, though, that this scheme can be
derived only if the following conditions are met simultaneously: 1) the expression of
𝑟int has the form of 𝑟𝐿𝑒2𝑖𝛽𝐿𝑒(Γ𝑔mat−𝛼𝑖)𝐿, i.e. the distributed feedback is neglected; 2) the
modal gain dispersion is neglected, i.e. 𝐺𝜔 = 0; 3) the left mirror is assumed to be
non-dispersive. Otherwise, one cannot derive a simple iterative equation whereby the
field is updated in steps of the roundtrip time (on which the multi-section scheme of
[130] is ultimately based). This means that the multi-section scheme cannot be used if
one accounts for slow-light and gain-induced distributed feedback. It should be noted
that even the simple inclusion of slow-light would be problematic. In fact, as a result of
the slow-light gain enhancement, one could not assume 𝐺𝜔 = 0, as the effective modal
gain would be strongly dispersive (see Eq. (5.23) in Sec. 5.2.1). Furthermore, if one takes
the distributed feedback into account, there is no obvious definition of a rountrip time
[167] (as already noted above). Therefore, one should come up with other discretization
schemes, a task which is beyond the scope of this thesis.

However, these considerations do not imply that Eq. (5.10) is useless. On the con-
trary, it can be used to determine the small-signal response (see Sec. 5.3.2 and Sec. 5.3.3)
and, in general, dynamics with limited deviation from the lasing threshold. The caveat
is that large-signal dynamics and ultra-fast dynamics are not well described. Future
work could be devoted to overcome this limitation.

5.1.1 Broadband right mirror
If the right mirror is frequency-independent, from Eq. (5.2a) one finds

𝒜 −(𝑡) = 𝑟𝑅𝒜 +(𝑡) (5.15)
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This is a valid approximation in the case of lasers with photonic bandgapmirrors, which
are broadband (as discussed in Sec. 4.4). By inserting Eq. (5.15) into Eq. (5.10) and ex-
ploiting the fact that 𝑟𝑅𝑟int(𝜔𝑠,𝑁𝑠) is equal to unity, we obtain

𝑑𝒜 +(𝑡)
𝑑𝑡

= 𝑖𝜁 [𝑁(𝑡) − 𝑁𝑠] 𝒜 +(𝑡) (5.16)

It should be emphasized that if the right mirror is not broadband, Eq. (5.10) should be
used. In this case, an additional equation is necessary which couples 𝒜 +(𝑡) and 𝒜 −(𝑡)
by accounting for the right mirror frequency dependence. Formally, this equation is
obtained by taking the inverse Fourier transform of Eq. (5.2a). In the case of Fano lasers,
it can be simply derived from the rate equation of the field inside the nanocavity located
adjacently to the laser cavity, as shown in [132]. Since in Sec. 5.3 we focus on lasers with
photonic bandgapmirrors, wewill not further discuss this additional field rate equation.

5.2 Carrier rate equation
Similarly to [167], we ignore the spatial distribution of the carrier density and describe
it via the following rate equation

𝑑𝑁(𝑡)
𝑑𝑡

= 𝜂𝑖
𝐽(𝑡)
𝑞𝑑

− 𝑅 [𝑁(𝑡)] −
𝑅st(𝑡)
𝑉act

(5.17)

Here, the carrier density 𝑁 is the number of carriers normalized to the volume of the
active region, 𝑉act. 𝜂𝑖 is the injection efficiency, 𝐽 is the current density, 𝑞 is the electron
charge and 𝑑 the active region thickness. 𝑅 [𝑁(𝑡)] is the spontaneous recombination
rate per unit volume, accounting for radiative and non-radiative recombination. 𝑅st(𝑡)
is the stimulated emission rate, defined as the number of carriers per unit time under-
going stimulated recombination.

5.2.1 Stimulated emission rate
The stimulated recombination rate 𝑅st(𝑡) in photonic crystal lasers is derived in detail
in AppendixD. Essentially, it is derived by integrating over the laser cavity the local
stimulated emission rate, which is directly proportional to the electric field squared
magnitude in Eq. (5.1). The derivation accounts for slow-light and gain-induced dis-
tributed coupling. In the following, we briefly review the final result.

Fig. 5.2 shows the block diagram of a photonic crystal laser in the presence of slow-
light and gain-induced distributed coupling. This diagram has been already discussed
in Sec. 4.3.1. 𝑇𝐿 (𝑇𝑅) is the left (right) mirror transmission matrix in the basis of the

Bloch modes of the reference waveguide. The left and right mirror reflection coefficient
are 𝑟𝐿 and 𝑟𝑅 respectively. For a detailed discussion on the group of blocks denoted by
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5.2 – Carrier rate equation

Figure 5.2: Block diagram of a photonic crystal laser with slow-light and gain-induced
distributed coupling.

”active region”, we refer to Sec. C.3. Here, it is sufficient to know that Λ is the trans-
mission matrix in the basis of the Bloch modes of the active waveguide. Owing to the
gain-induced distributed feeback associated with slow-light, equivalent dielectric in-
terfaces originate at the left- and right-hand side of the active region. These interfaces
account for the mismatch between the Bloch modes of the active waveguide and those
of the reference waveguide. As a result, the Bloch modes of the active waveguide expe-
rience an equivalent right (left) mirror reflection coefficient 𝑟𝑅𝑒𝑞

(𝑟𝐿𝑒𝑞
). By assuming the

material gain to be linear with the carrier density, the stimulated emission rate reads

𝑅st(𝑡) =
8𝑊𝑒
ℏ𝜔𝑠 (

𝑐
𝑛slab) Γ𝑦𝑔𝑁 [𝑁(𝑡) − 𝑁tr]

𝜉
𝑎 |𝒜 +(𝑡)|

2 (5.18)

where 𝑔𝑁 = 𝜕𝑔mat/𝜕𝑁 is the differential gain and 𝑁tr the transparency carrier density.
Here, 𝑐 is the vacuum light speed, 𝑛slab is the slab refractive index and 𝑎 the photonic
crystal lattice constant, while Γ𝑦 accounts for the vertical optical confinement in the
active layers (see Eq. (A.38a) in Sec. A.3.1). 𝑊𝑒 is the time-averaged electric field energy
stored in a supercell at the oscillation frequency

𝑊𝑒 = 1
4 ∫𝑉

𝜖0𝑛2
𝑏(r)|e±(r,𝜔𝑠)|2 𝑑𝑉 (5.19)

with 𝑉 being the volume of the supercell and 𝑛𝑏 the background refractive index. 𝜉 is
a parameter reflecting the spatial distribution of the electric field squared magnitude,
|E(r)|2, at the lasing threshold. It should be emphasized that the electric field squared
magnitude is directly computed from Eq. (5.1). Thus, 𝜉 not only accounts for the lon-
gitudinal spatial dependence of the amplitudes, 𝑐±(𝑧), but also for the transverse and
longitudinal spatial dependence of the Bloch modes, e±(r). Specifically, 𝜉 reads

𝜉 = 𝜉exp + 𝜉cos (5.20)
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with 𝜉exp and 𝜉cos given by

𝜉exp = ΓFF [1 + |𝑟±|2 − 2
|ΓFB|
ΓFF

|𝑟±| cos (𝜙±)]
(1 − |𝑟𝐿𝑒𝑞

||𝑟𝑅𝑒𝑞
|) (|𝑟𝐿𝑒𝑞

| + |𝑟𝑅𝑒𝑞
|)

𝑔eff|𝑟𝐿𝑒𝑞
| |1 + 𝑟𝑅𝑒𝑞

𝑟−|
2

(5.21a)

𝜉cos = ΓFF [2|𝑟±| cos (𝜙±) −
|ΓFB|
ΓFF

(1 + |𝑟±|2)]

|𝑟𝑅𝑒𝑞
| [sin(𝜙𝐿𝑒𝑞) + sin(𝜙𝑅𝑒𝑞)]

𝛿eff |1 + 𝑟𝑅𝑒𝑞
𝑟−|

2

(5.21b)

Here, ΓFF and ΓFB are, respectively, the normalized self- and cross-coupling coefficient
discussed in Sec. 3.3 (see, in particular, Fig. 3.15 in Sec. 3.3). 𝑟+ (𝑟−) is, within a phase
shift of 𝜋, the reflection coefficient of the sole right (left) equivalent dielectric interface,
as discussed in Sec. 3.4 (see Fig. 3.17 in Sec. 3.4). 𝜙± is the phase of 𝑟±, while 𝜙𝐿𝑒𝑞

(𝜙𝑅𝑒𝑞
)

is the phase of 𝑟𝐿𝑒𝑞
(𝑟𝑅𝑒𝑞

). The effective detuning 𝛿eff is given by 𝜋
𝑎 −𝛽eff, while 𝑔eff is the

effective net modal gain. Here, 𝛽eff and 𝑔eff are the effective propagation constant and
effective net modal gain of the Bloch modes of the active waveguide (see Sec. 3.4). We
note that all quantities in Eqs. (5.21a) and (5.21b) are evaluated at the lasing threshold.

It is instructive to elaborate on the stimulated emission rate in the absence of gain-
induced distributed feedback. In this case, one finds ΓFB = 0 and 𝑟± = 0, as the equiva-
lent dielectric interfaces in Fig. 5.2 simply disappear. Therefore, 𝜉cos is identically equal
to zero, while 𝑟𝐿𝑒𝑞

and 𝑟𝑅𝑒𝑞
are reduced, respectively, to 𝑟𝐿 and 𝑟𝑅. Thus, 𝜉exp is reduced

to

𝜉exp = ΓFF
(1 − |𝑟𝐿||𝑟𝑅|) (|𝑟𝐿| + |𝑟𝑅|)

𝑔eff|𝑟𝐿|
(5.22)

By neglecting the disorder-induced backscattering loss, the effective net modal gain
reads

𝑔eff = 𝑆 (ΓFFΓ𝑦𝑔mat𝑠 − 𝛼1) (5.23)

Here, 𝑆 = 𝑛𝑔/𝑛slab is the slow-down factor, with 𝑛𝑔 being the group index of the refer-
ence waveguide. 𝑔mat𝑠 is the material gain at the lasing threshold, while 𝛼1 accounts for
disorder-induced loss due to coupling with radiation modes [117]. It should be empha-
sized that 𝑔eff in Eq. (5.23) is evaluated at the lasing threshold. Consequently, it is equal

to the mirror loss 1
𝐿 ln(

1
|𝑟𝐿||𝑟𝑅|) (see Eq. (4.7a)). Therefore, the stimulated emission rate

turns out to be unaffected by the slow-light reduction of the group velocity, consistently
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with [178, 101]. It is convenient to introduce the quantity

Φ(𝑡) =
8𝑊𝑒
ℏ𝜔𝑠

𝑆
ΓFF

𝜉
𝑎 |𝒜 +(𝑡)|

2

= 1
2

1
ℏ𝜔𝑠

(1 − |𝑟𝐿||𝑟𝑅|) (|𝑟𝐿| + |𝑟𝑅|)

𝑎 |𝑟𝐿| (ΓFFΓ𝑦𝑔mat𝑠 − 𝛼1)
|𝒜 +(𝑡)|

2
∫𝑉

𝜖0𝑛2
𝑏(r)|e±(r,𝜔𝑠)|2 𝑑𝑉

(5.24)

With this definition, Eq. (5.18) is reduced to

𝑅st(𝑡) = (
𝑐
𝑛𝑔 ) ΓFFΓ𝑦𝑔𝑁 [𝑁(𝑡) − 𝑁tr] Φ(𝑡) (5.25)

Formally, this is the familiar expression of the stimulated emission rate employed in
conventional rate equation models [23], with Φ(𝑡) clearly playing the role of the photon
number. Furthermore, the total optical confinement factor is ΓFFΓ𝑦. In order to exactly
mimic the formulation of [23], we may define the mode volume

𝑉Φ =
𝑉act

ΓFFΓ𝑦
(5.26)

Therefore, the normalized stimulated emission rate 𝑅st(𝑡)/𝑉act in Eq. (5.17) becomes

�̄�st(𝑡) =
𝑅st(𝑡)
𝑉act

= (
𝑐
𝑛𝑔 ) 𝑔𝑁 [𝑁(𝑡) − 𝑁tr]

Φ(𝑡)
𝑉Φ

(5.27)

with Φ(𝑡)/𝑉Φ being the photon density.

5.3 Lasers with photonic bandgap mirrors
In the following, we focus on lasers with photonic bandgap mirrors. In this case, the
laser is described by Eqs. (5.16) and (5.2). It is convenient to separate the slowly-varying
envelope 𝒜 +(𝑡) into magnitude and phase

𝒜 +(𝑡) = |𝒜 +(𝑡)|𝑒−𝑖𝜙(𝑡) (5.28)

By inserting Eq. (5.28) into Eq. (5.16), we obtain

𝑑|𝒜 +(𝑡)|
𝑑𝑡

= −𝜁 ′′ [𝑁(𝑡) − 𝑁𝑠] |𝒜 +(𝑡)| (5.29a)

𝑑𝜙(𝑡)
𝑑𝑡

= −𝜁 ′ [𝑁(𝑡) − 𝑁𝑠] (5.29b)

where 𝜁 ′ and 𝜁 ′′ are, respectively, the real and imaginary part of 𝜁.
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5.3.1 P-I characteristic
In the steady-state, the carrier density rate equation reads

0 = 𝜂𝑖
𝐽
𝑞𝑑

− 𝑅 [𝑁𝑠] −
𝑅st

𝑉act
(5.30)

where the stimulated emission rate is

𝑅st =
8𝑊𝑒
ℏ𝜔𝑠 (

𝑐
𝑛slab) Γ𝑦𝑔𝑁 [𝑁𝑠 − 𝑁tr]

𝜉
𝑎 |𝒜

+
𝜔𝑠|

2
(5.31)

Below threshold, we assume |𝒜 +
𝜔𝑠

| = 0 (spontaneous emission coupled to the lasing
mode is neglected). By setting 𝑅st = 0 in Eq. (5.30), we find the threshold current
density

𝐽th =
𝑞𝑑
𝜂𝑖

𝑅 [𝑁𝑠] (5.32)

Above threshold, by combining Eq. (5.31) and Eq. (5.30), one finds

|𝒜
+
𝜔𝑠|

2
=

𝑅st
8𝑊𝑒
ℏ𝜔𝑠 (

𝑐
𝑛slab) Γ𝑦𝑔𝑁 [𝑁𝑠 − 𝑁tr]

𝜉
𝑎

=
𝜂𝑖𝑉act

𝑞𝑑
𝐽 − 𝐽th

8𝑊𝑒
ℏ𝜔𝑠 (

𝑐
𝑛slab) Γ𝑦𝑔𝑁 [𝑁𝑠 − 𝑁tr]

𝜉
𝑎

(5.33)

To compute the output power, firstly we recall from Sec. 3.5 (see, in particular, Eqs. (3.31)
and (3.32)) that the forward-propagating power on the left-hand side of the right mirror
is 𝑃 +(𝑧 = 𝐿) = |𝑐+(𝐿)|2𝑃0, with 𝑃0 = 2𝑊𝑒𝑣𝑔/𝑎. Secondly, we note that 𝒜 +

𝜔𝑠
= 1

2𝑐+(𝐿)
(see AppendixD). Therefore, the forward-propagating power on the left-hand side of
the right mirror may be expressed as

𝑃 +(𝑧 = 𝐿) =
8𝑊𝑒𝑣𝑔

𝑎 |𝒜
+
𝜔𝑠|

2
(5.34)

From here, the power exiting the right mirror reads

𝑃out = (1 − |𝑟𝑅|2)𝑃 +(𝑧 = 𝐿)

= 𝜂𝑖
ℏ𝜔𝑠

𝑞
𝑣𝑔

(𝑐/𝑛slab)
1 − |𝑟𝑅|2

Γ𝑦𝑔𝑁 [𝑁𝑠 − 𝑁tr] 𝜉 (𝐼 − 𝐼th)
(5.35)

where 𝐼 = (𝑉act/𝑑)𝐽 is the current and 𝐼th the threshold current. The slope efficiency
is given by

SE =
𝑞

ℏ𝜔𝑠

𝑑𝑃out

𝑑𝐼
= 𝜂𝑖

𝑣𝑔

(𝑐/𝑛slab)
1 − |𝑟𝑅|2

Γ𝑦𝑔𝑁 [𝑁𝑠 − 𝑁tr] 𝜉
(5.36)
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It is instructive to elaborate on the slope efficiency in the absence of gain-induced
distributed feedback and disorder-induced backscattering loss. In this case, by recalling
that 𝜉 = 𝜉exp and inserting Eqs. (5.22) and (5.23) into Eq. (5.36), one finds

SE = 𝜂𝑖
𝛼𝑚

𝛼𝑚 + 𝛼𝑖

(1 − |𝑟𝑅|2) |𝑟𝐿|

(1 − |𝑟𝐿||𝑟𝑅|) (|𝑟𝐿| + |𝑟𝑅|)
(5.37)

where the mirror (intrinsic) loss 𝛼𝑚 (𝛼𝑖) is

𝛼𝑚 = 1
𝑆𝐿

ln(
1

|𝑟𝐿||𝑟𝑅|) (5.38a)

𝛼𝑖 = 𝛼1 (5.38b)

To derive Eq. (5.37), we have alsomade use of Eq. (4.7a) from Sec. 4.2, which provides the
threshold modal gain. Eq. (5.37) reveals that, in the absence of gain-induced distributed
feedback, slow-light reduces the slope efficiency. In the presence of gain-induced dis-
tributed feedback, the impact is generally non-trivial, as Eq. (5.36) should be used.

5.3.2 Intensity modulation response
To analyze the laser under small-signal conditions, we follow the approach of [23].
For this purpose, inspired by Eqs. (5.24) and (5.27), we generally define the number of
photons as

Φ(𝑡) =
8𝑊𝑒
ℏ𝜔𝑠

𝑆
ΓFF

𝜉
𝑎 |𝒜 +(𝑡)|

2 (5.39)

regardless of whether or not the gain-induced distributed feedback is accounted for. By
this definition, Eqs. (5.29a) and (5.17) become

𝑑Φ(𝑡)
𝑑𝑡

= 𝐺𝑁eq [𝑁(𝑡) − 𝑁𝑠] Φ(𝑡) (5.40a)

𝑑𝑁(𝑡)
𝑑𝑡

= 𝜂𝑖
𝐼(𝑡)
𝑞𝑉act

− 𝑅 [𝑁(𝑡)] − 𝑣𝑔𝑔𝑁 [𝑁(𝑡) − 𝑁tr]
Φ(𝑡)
𝑉Φ

(5.40b)

where the parameter 𝐺𝑁eq
is given by

𝐺𝑁eq
= −2𝜁 ′′ (5.41)

and 𝑉Φ = 𝑉act/ (ΓFFΓ𝑦) is the mode volume (already defined in Eq. (5.26)). We note
that these definitions of photon number and mode volume are somewhat arbitrary in
the presence of distributed feedback and are simply introduced for the sake of analogy
with conventional rate equationmodels. For instance, one may also conceive a different
proportionality factor linking the number of photons to |𝒜 +(𝑡)|

2. However, the modu-
lation response is independent of this proportionality factor and thus uniquely defined
(as shown below by Eq. (5.47)).
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The parameter 𝐺𝑁eq
replaces 𝐺𝑁 = 𝑣𝑔Γ𝑔𝑁 from Eq. (5.13a), which would show up

in the case of conventional [23] rate equation models. On the one hand, 𝐺𝑁eq
accounts

somehow for the effective differential gain. In addition to the differential gain 𝑔𝑁, this
effective differential gain also reflects the non-linear dependence of the effective net
modal gain on carrier density, stemming from the gain-induced distributed feedback.
Yet, this is not the whole story. In fact, 𝐺𝑁eq

is basically the imaginary part of 𝜁, which
generally accounts for the differential dependence of the internal reflection coefficient
on both carrier density and frequency (see Eq. (5.11a)). In particular, even in the simple
case of a conventional Fabry-Perot laser, the imaginary part of 𝜁 not only reflects the
differential gain, but also the net modal gain dispersion at the oscillation frequency, if
present (see Eqs. (5.12a) and (5.13b)). In the case of photonic crystal lasers in the slow-
light region, the effective net modal gain is certainly dispersive, mainly because of the
strong frequency dependence of the group index. This is the case even if one neglects
the gain-induced distributed feedback, by forcing to zero the cross-coupling coefficients
(see, for instance, Eq. (3.28b) in Sec. 3.4). In the presence of distributed feedback, things
are even more complicated and the frequency dependence of the internal reflection
coefficient is highly non-trivial (see, in particular, Fig. 4.8 in Sec. 4.3.2).

To simplify the calculations, we model the spontaneous carrier recombination rate
via a carrier lifetime 𝜏𝑠, namely

𝑅 [𝑁(𝑡)] = 𝑁(𝑡)
𝜏𝑠

(5.42)

We now assume that the injected current sinusoidally vary with time at an angular
frequency �̃�, with a small peak-to-peak amplitude, 𝐼1, as compared to the bias point,
𝐼bias. Under small-signal conditions, photons and carriers respond similarly. Thus, one
finds [23]

𝐼(𝑡) = 𝐼bias + 𝐼1𝑒𝑖�̃�𝑡 (5.43a)

Φ(𝑡) = Φbias + Φ1𝑒𝑖�̃�𝑡 (5.43b)

𝑁(𝑡) = 𝑁𝑠 + 𝑁1𝑒𝑖�̃�𝑡 (5.43c)

where Φbias is the number of photons at the bias point, while Φ1 is the corresponding
perturbation. 𝑁1 is the perturbation to the threshold carrier density 𝑁𝑠. By inserting
Eqs. (5.43a)-(5.43c) into Eqs. (5.40a) and (5.40b) and neglecting second-order perturba-
tion terms, we obtain the linear system

[

𝛾NNeq
+ 𝑖�̃� 𝛾NPeq

− 𝛾PNeq
𝛾PPeq + 𝑖�̃�] [

𝑁1
Φ1 ] = 𝜂𝑖

𝐼1
𝑞𝑉act [

1
0] (5.44)
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where the matrix elements are

𝛾NNeq
= 1

𝜏𝑠
+ 𝑣𝑔𝑔𝑁

Φbias

𝑉Φ
(5.45a)

𝛾NPeq =
𝑣𝑔𝑔𝑁 (𝑁𝑠 − 𝑁tr)

𝑉Φ
(5.45b)

𝛾PNeq
= −2𝜁 ′′Φbias (5.45c)

𝛾PPeq = 0 (5.45d)

The element 𝛾PPeq is identically equal to zero because we have neglected the sponta-
neous emission coupled to the lasing mode, as well as the gain compression [23]. By
solving the linear system, one finds the photon perturbation

Φ1(�̃�) = 𝜂𝑖
𝐼1

𝑞𝑉act

𝛾PNeq

𝜔2
𝑅eq

𝐻eq(�̃�) (5.46)

where 𝜔𝑅eq
is the relaxation resonance (angular) frequency, while 𝐻eq(�̃�) defines the

intensity modulation response

𝐻eq(�̃�) =
Φ1(�̃�)

Φ1(�̃� → 0)
=

𝜔2
𝑅eq

𝜔2
𝑅eq

− �̃�2 + 𝑖�̃�𝛾eq
(5.47)

Here, 𝛾eq is the damping rate. The relaxation resonance frequency and damping rate
are given by

𝜔𝑅eq
= √𝛾NPeq𝛾PNeq

+ 𝛾NNeq
𝛾PPeq =

√√√

⎷

𝑣𝑔𝑔𝑁 (Φbias/𝑉Φ)
𝜏𝑝eq

(5.48a)

𝛾eq = 𝛾NNeq
+ 𝛾PPeq = Keq [𝜔2

𝑅eq
/(4𝜋2)] + 1

𝜏𝑠
(5.48b)

Here, the equivalent photon lifetime 𝜏𝑝eq is

𝜏𝑝eq = 1
𝐺𝑁eq (𝑁𝑠 − 𝑁tr)

(5.49)

The equivalent K-factor, Keq, is related to the equivalent photon lifetime by

Keq = 4𝜋2𝜏𝑝eq (5.50)

With these definitions, the 3-dB direct modulation bandwidth can be computed from
the relaxation resonance frequency and damping rate via the usual [23] relationship
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(see Eq. (1.10) in Sec. 1.2). In particular, the K-factor is an important parameter, as it
determines the maximum possible bandwidth [23]

𝑓3dBmax
= √2 2𝜋

Keq
(5.51)

It is instructive to directly express the relaxation resonance frequency as a function of
the injected current. For this purpose, by using Eqs. (5.39) and (5.33), one may express
the photon number at the bias point as

Φbias = 𝜂𝑖
1

𝑣𝑔ΓFFΓ𝑦𝑔𝑁 (𝑁𝑠 − 𝑁tr)

𝐼 − 𝐼th
𝑞

(5.52)

which, upon insertion into Eq. (5.48a), provides

𝜔𝑅eq
=

√
1

𝜏𝑝eq

𝑁𝑠
𝑁𝑠 − 𝑁tr

𝐼/𝐼th − 1
𝜏𝑠

(5.53)

This equation reveals that, if the threshold carrier density is sufficiently larger than
the transparency carrier density, the relaxation resonance frequency, at a given ratio
between the injected current and threshold current and for a given carrier lifetime, is
essentially determined by the equivalent photon lifetime.

Photon lifetime

A few words are due on the definition of a photon lifetime. In the presence of slow-
light and neglecting the disorder-induced backscattering loss, the photon lifetime is
conventionally defined as [105, 178]

𝜏𝑝 = 1

(
𝑐

𝑛𝑔 ) [
1
𝐿 ln(

1
|𝑟𝐿||𝑟𝑅|) + 𝛼1 (

𝑛𝑔
𝑛slab)]

= 1

(
𝑐

𝑛slab) Γ𝑔mat𝑠

(5.54)

where Γ is the optical confinement factor. This definition is basically a statement that
the slow-light enhancement of the gain per unit length equivalently manifests itself as
a reduction of the cavity loss per unit time (i.e. a longer photon lifetime). From this
definition, the Q-factor is obtained as

𝑄 = 𝜏𝑝𝜔𝑠 (5.55)

Here, we note that the equivalent photon lifetime from Eq. (5.49) is more general. In
particular, Eq. (5.49) is reduced to Eq. (5.54) if 1) the gain-induced distributed feedback
and 2) the dispersion of the effective net modal gain are neglected. In other words,

166



5.3 – Lasers with photonic bandgap mirrors

Symbol Parameters Values
𝑎 Photonic crystal lattice constant [nm] 438

𝑛slab Slab refractive index 3.17
𝑛clad Cladding refractive index 1

𝑟 Hole radius [𝑎] 0.25
ℎslab Slab thickness [nm] 250
𝑟𝐿 Left mirror reflection coefficient 1
𝑟𝑅 Right mirror reflection coefficient 0.6
𝛼1 Disorder-induced radiation loss [cm−1] 5
𝛼2 Disorder-induced backscattering loss [cm−1] 0
𝛼𝐻 Linewidth enhancement factor 1.5
𝜏𝑠 Effective carrier lifetime [ns] 0.5
𝑑 Active region thickness [nm] 18
𝑤 Active region width [nm] 500
𝜂𝑖 Injection efficiency 0.4
Γ𝑦 Vertical optical confinement factor 12%
𝑔𝑁 Differential gain [cm2] 10−16

𝑁tr Transparency carrier density [cm−3] 1018

𝑉𝑏0
Built-in bias voltage [V] 0.6

Table 5.1: Parameters for the rate equation analysis of photonic crystal lasers with
photonic bandgap mirrors. The active region is a buried heterostructure.

one should assume ΓFB = 0, as well as 𝜕ΓFF/𝜕𝜔 = 0 and 𝜕𝑛𝑔/𝜕𝜔 = 0. Under these
conditions, one finds

𝜁 ′′ = −1
2

𝜕𝑔eff/𝜕𝑁
𝜕𝛽eff/𝜕𝜔

= −1
2 (

𝑐
𝑛slab) ΓFFΓ𝑦𝑔𝑁 (5.56)

From here, 𝐺𝑁eq
in Eq. (5.41) is reduced to (𝑐/𝑛slab)ΓFFΓ𝑦𝑔𝑁. Thus, 𝜏𝑝eq in Eq. (5.49) is

reduced to 𝜏𝑝 in Eq. (5.54) with Γ = ΓFFΓ𝑦.

Preliminary results

In the following, we present some preliminary results. The parameters which we have
employed are summarized in Tab. 5.1. The parameters of the reference waveguide are
the same assumed throughout this thesis (already summarized in Tab. 2.1 in Sec. 2.2.1
and included in Tab. 5.1 for the sake of convenience). For the laser, we assume a buried
heterostructure active region. In addition, we note that the active region thickness and
vertical optical confinement factor listed in Tab. 2.1 globally account for all the active
layers.

Fig. 5.3 shows (a) modal gain Γ𝑦𝑔mat, (b) wavelength, (c) normalized self-coupling
coefficient and (d) Q-factor at the lasing threshold of modeM1 with (solid) and without

167



Rate equation model of photonic crystal lasers with slow-light

Figure 5.3: Threshold characteristics of photonic crystal lasers with photonic bandgap
mirrors as a function of the cavity length. (a) Modal gain Γ𝑦𝑔mat, (b) wavelength, (c)
normalized self-coupling coefficient and (d) Q-factor at the lasing threshold of mode
M1 with (solid) and without (dotted) gain-induced distributed feedback. The right axis
in (b) shows the group index of the reference waveguide.

(dotted) gain-induced distributed feedback, as a function of cavity length. From our
discussion in Sec. 4.4, we recall that in the absence of gain-induced distributed feed-
back, M1 is not the lasing mode, as M0 possesses a smaller threshold gain (see Fig. 4.12
in Sec. 4.4). In the presence of gain-induced distributed feedback, M0 is instead sup-
pressed (see Fig. 4.13 in Sec. 4.4) and M1 is indeed the lasing mode. Therefore, for a fair
comparison, we apply the rate equationmodel to modeM1, regardless of whether or not
the gain-induced distributed feedback is taken into account. As discussed in Sec. 4.4, the
threshold modal gain Γ𝑦𝑔mat is slightly smaller in the presence of distributed feedback
(see Fig. 5.3(a)), as the non-zero linewidth enhancement factor improves the effective
net modal gain (see Fig. 4.17 and Fig. 4.18 in Sec. 4.4). The oscillation wavelength is
almost the same with and without distributed feedback (see Fig. 5.3(b)). As a result,
the normalized self-coupling coefficient ΓFF is almost unaffected by distributed feed-
back (see Fig. 5.3(c)). As discussed in Sec. 3.2 and Sec. 3.3, ΓFF accounts for the optical
confinement in the active region as if the active layers uniformly extended throughout
the slab along the vertical direction. In the case of a buried heterostructure active re-
gion, ΓFF decreases as the wavelength moves deeper into the slow-light region, owing
to the lateral spreading of the Bloch modes (see Fig. 3.10 in Sec. 3.2.1 and Fig. 3.15(b) in
Sec. 3.3). This explains why ΓFF decreases with increasing cavity length. The vertical
optical confinement is instead taken into account via Γ𝑦. As discussed in Sec. A.3.1, Γ𝑦
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is weakly dependent on frequency as compared to ΓFF and thus assumed to be fixed. In
the absence of distributed feedback, the Q-factor is obtained from Eqs. (5.54) and (5.55),
with the optical confinement factor Γ in Eq. (5.54) being set to ΓFFΓ𝑦. An open point is
how the Q-factor should be defined in the presence of distributed feedback, which is
not unambiguous. Therefore, we omit this case in Fig. 5.3(d).

Figure 5.4: P-I characteristic of photonic crystal lasers with photonic bandgap mirrors
with (solid) and without (dotted) gain-induced distributed feedback. The cavity length
is equal to 10 (blue), 15 (red) and 20 (yellow) lattice constants.

The threshold carrier density is obtained from the value of Γ𝑦𝑔mat at the lasing
threshold by knowing Γ𝑦, differential gain 𝑔𝑁 and transparency carrier density. Sub-
sequently, the threshold current is computed. Fig. 5.4 shows the output power versus
injected current with the cavity length being 10 (blue), 15 (red) and 20 (yellow) lattice
constants. These values correspond to 4.38 𝜇m, 6.57 𝜇m and 8.76 𝜇m respectively. The
solid (dotted) line is with (without) gain-induced distributed feedback. The distributed
feedback improves the threshold current, owing to the smaller threshold gain, while
the slope efficiency is almost unaffected. For the same cavity lengths, Fig. 5.5(a) shows
the 3dB modulation bandwidth as a function of the ratio between injected current and
threshold current, with (solid) and without (dotted) gain-induced distributed feedback.
The distributed feedback slightly improves the bandwidth, owing to the smaller equiv-
alent photon lifetime 𝜏𝑝eq . This is reported in Fig. 5.5(b) versus cavity length. In this
respect, it should be emphasized that, in spite of the reduced threshold carrier density,
𝜏𝑝eq (see Eq. (5.49)) is indeed smaller in the presence of distributed feedback. This is
because the distributed feedback also enhances the value of 𝐺𝑁eq

, as we have verified.
Therefore, 𝐺𝑁eq

appears to be a key parameter. A point of attention here is that, even
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Figure 5.5: Small-signal characteristics of photonic crystal lasers with photonic
bandgap mirrors with (solid) and without (dotted) gain-induced distributed feedback.
(a) 3dB modulation bandwidth as a function of the ratio between injected current and
threshold current with the cavity length being 10 (blue), 15 (red) and 20 (yellow) lattice
constants. (b) Equivalent photon lifetime versus cavity length.

in the absence of distributed feedback, 𝜏𝑝eq is not reduced to 𝜏𝑝. This is because, as dis-
cussed above, the two definitions are only equivalent if one assumes 𝜕ΓFF/𝜕𝜔 = 0 and
𝜕𝑛𝑔/𝜕𝜔 = 0, as well as ΓFB = 0.

Finally, Fig. 5.6 shows the energy cost as a function of the modulation bandwidth
with the cavity length being 10 (blue), 15 (red) and 20 (yellow) lattice constants. The
energy cost is computed via Eq. (1.14) in Sec. 1.2, by neglecting for simplicity the series
electrical resistance. Owing to the larger modulation bandwidth and smaller threshold
current, the gain-induced distributed feedback (solid line) appears to reduce the energy
cost as compared to the case when it is neglected (dotted line). In addition, we note that,
regardless of whether or not the distributed feedback is accounted for, the optimum
bandwidth which minimizes the energy cost increases as the cavity becomes shorter.
This is due to the larger threshold carrier density (see Eq. (1.18) in Sec. 1.2).

5.3.3 Frequency modulation response
By starting from the phase rate equation, namely Eq. (5.29b), one can also derive the
frequency modulation response. The instantaneous frequency is defined as

𝜈(𝑡) =
𝜔𝑠
2𝜋

+ 1
2𝜋

𝑑𝜙(𝑡)
𝑑𝑡

(5.57)
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Figure 5.6: Energy cost of photonic crystal lasers with photonic bandgap mirrors with
(solid) and without (dotted) gain-induced distributed feedback. The cavity length is
equal to 10 (blue), 15 (red) and 20 (yellow) lattice constants.

Under small-signal conditions, 𝜈(𝑡) responds to the time-harmonic current modulation
as

𝜈(𝑡) = 𝜈bias + 𝜈1𝑒𝑖�̃�𝑡 (5.58)

Here, the frequency at the bias point, 𝜈bias, is 𝜔𝑠/(2𝜋), while the frequency chirp, 𝜈1𝑒𝑖�̃�𝑡,
is 1

2𝜋𝑑𝜙/𝑑𝑡. By inserting the frequency chirp, aswell as the carrier density fromEq. (5.43c),
into Eq. (5.29b), one finds

𝜈1 = −
𝜁 ′

2𝜋
𝑁1 (5.59)

The carrier density perturbation, 𝑁1, is obtained by solving the linear system in Eq. (5.44).
Thus, one finds the frequency modulation response

𝑞𝜈1(�̃�)
𝐼1

= − 1
2𝜋

𝜂𝑖𝜁 ′

𝑉act

𝛾PPeq + 𝑖�̃�

𝜔2
𝑅eq

𝐻eq(�̃�) (5.60)

This equation extends the conventional expression of the frequency modulation re-
sponse [23] by accounting for slow-light and gain-induced distributed feedback. Here,
it should be emphasized that 𝜁 ′ is generally different from zero even in the ideal case
of a zero linewidth enhancement factor. If one neglects 1) the gain-induced distributed
feedback and 2) the dispersion of the effective net modal gain, 𝜁 ′ is reduced to

𝜁 ′ =
𝜕𝛽eff/𝜕𝑁
𝜕𝛽eff/𝜕𝜔

= −1
2 (

𝑐
𝑛slab) 𝛼𝐻ΓFFΓ𝑦𝑔𝑁 (5.61)
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In this case, one finds the conventional expression of the frequency modulation re-
sponse. As a future perspective, it could be interesting to investigate the impact of
slow-light on the frequency chirp as predicted by Eq. (5.60).

5.4 Conclusions
To summarize, we have derived a rate equation model of photonic crystal lasers which
self-consistently accounts for slow-light and gain-induced distributed feedback.

The starting point is the laser oscillation condition, thoroughly discussed in Chap-
ter 4. Specifically, the model consists of a field rate equation coupling the amplitudes of
the forward- and backward-propagating fields (see Eq. (5.10)) and a carrier rate equation
(see Eq. (5.17)). The field rate equation is derived from a first-order Taylor expansion
of the oscillation condition around the lasing threshold, by following the approach of
[167]. The stimulated emission rate (see Eq. (5.18)) coupling the field and carrier rate
equation is derived in detail in AppendixD, by integrating over the laser cavity the
local stimulated emission rate. Therefore, the stimulated emission rate in Eq. (5.18) ef-
fectively accounts for the longitudinal and transverse spatial dependence of the electric
field in the laser cavity, given by Eq. (5.1). An additional field rate equation should be
included within the model if the right mirror is frequency-dependent. Formally, this
equation is given by the inverse Fourier transform of the right mirror boundary con-
dition (see Eq. (5.2a)). In the case of Fano lasers, it can be derived as shown in [132].
Therefore, the rate equation model presented in this chapter may be extended to Fano
lasers to investigate the impact of slow-light.

We have applied the model to lasers with photonic bandgap mirrors, which are
broadband. Therefore, no additional field rate equation is required in this case. We
have obtained analytical expressions for the P-I characteristic (see Eq. (5.35)), the inten-
sity modulation response (see Eq. (5.47)) and the frequency modulation response (see
Eq. (5.60)). In particular, the intensity modulation response retains the familiar expres-
sion of conventional [23] rate equation models, with equivalent relaxation resonance
frequency and damping rate. These can be expressed in terms of an equivalent photon
lifetime (see Eq. (5.49)). This equivalent photon lifetime depends on the threshold car-
rier density and a small-signal parameter, 𝐺𝑁eq

. This parameter reflects the differential
dependence of the internal reflection coefficient on both carrier density and frequency,
as discussed in Sec. 5.3.2. Preliminary results show that the gain-induced distributed
feedback may improve, albeit slightly, threshold current (see Fig. 5.4), 3dB modulation
bandwidth (see Fig. 5.5(a)) and energy cost (see Fig. 5.6).

Further investigations would be certainly required to explore if the impact of the
gain-induced distributed feedback may be more significant. In lasers with photonic
bandgap mirrors, this could be the case, for instance, in dependence of the linewidth
enhancement factor. In fact, as the linewidth enhancement factor increases, the dis-
tributed feedback may considerably reduce the threshold modal gain (see Fig. 4.17 in
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Sec. 4.4). In addition, as discussed in Sec. 4.3.2, the internal reflection coefficient strongly
depends on the phase of the left mirror. Tuning of this phase would certainly affect
both the static and small-signal characteristics. Exploring the frequency modulation
response could be also interesting, to assess the impact of slow-light on the frequency
chirp.
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Chapter 6

QD lasers on silicon: impact of
carrier transport

In this chapter, we deal with quantum dot lasers epitaxially grown on silicon. To de-
scribe the laser operation, we employ a drift-diffusion transport model, augmented with
conventional rate equations for photons and carriers in the quantum dot layers. These
rate equations for carriers govern the intersubband transitions involved into simulta-
neous ground-state and excited-state lasing. The model is described in Sec. 6.2, while
results are presented in Sec. 6.3. In particular, we focus on three mechanisms affecting
the laser operation. In Sec. 6.3.1, we analyze the impact of threading dislocations on the
laser threshold current. In Sec. 6.3.2, we show that the asymmetric transport of carriers
explains the ground-state power quenching above the excited-state lasing threshold.
In Sec. 6.3.3, we investigate the physics behind an optimum p-type modulation doping
which minimizes the ground-state threshold current. Finally, in Sec. 6.4 we draw the
conclusions.

6.1 Introduction and motivation
Energy-efficient and low-cost silicon photonics technologies for CMOS-compatible op-
tical interconnects are a very attractive solution for low-power, high-speed data links
in data centres and supercomputers. In this context, quantum dot (QD) laser diodes,
already considered the most promising lasers for optical communications [107], are
attracting strong interest for direct epitaxial growth on silicon. This monolithic inte-
gration [17, 147, 76] is the ultimate solution to minimize the complexity and cost of
the fabrication process and improve the integration density of the silicon photonic in-
tegrated circuit.

However, the mismatch in the lattice constant and thermal expansion coefficients
causes the generation of threading dislocations (TDs), which act as non-radiative re-
combination centres and degrade the laser performance. As an example, Fig. 6.1 shows
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Figure 6.1: Electron microscope image showing the interaction between a threading
dislocation (TD) and QD layers. Reproduced from [17].

an electronmicroscope image of a threading dislocation interactingwith QD layers. De-
spite the significant progress made recently [110, 172, 77, 58], the achievable TD density
is still around 105 − 106 cm−2. At such high densities, quantum well (QW) lasers either
show very poor performances or do not even lase [78]. On the contrary, quantum dots
(QDs) have proved to be more tolerant to TDs, due to 3D carrier localization within the
QDs [37, 80]. Apart from this feature, QD lasers on silicon share several similarities

Figure 6.2: Optical spectrum measured for a QD laser epitaxially grown on silicon:
(I) above the GS threshold, (II) just above the ES threshold, and (III) well-above the ES
threshold. Reproduced from [49].

with ordinary QD laser diodes on GaAs. Among these, we cite the double state lasing
from both ground state (GS) and excited state (ES) and the fast hole thermalization in
the QD confined states of the valence band [84, 21]. A detrimental effect related to dou-
ble state emission is the GS power quenching taking place above the ES threshold [38,
63, 49]. Fig. 6.2 exemplies this phenomenon for a QD laser epitaxially grown on silicon
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[49], by showing the optical spectrum measured (I) above the GS threshold, (II) just
above the ES threshold, and (III) well-above the ES threshold. The hole thermalization,

Figure 6.3: Threshold current density measured for a QD laser epitaxially grown on
silicon with varying p-type modulation doping density. Reproduced from [186].

which increases the laser threshold and reduces the differential gain, is usually cured
via p-type modulation doping [151, 64, 73], which has been recently employed also for
QD lasers on silicon [186]. Experimental results [186] have demonstrated that an op-
timum doping level exists, as an excessive doping can degrade the GS optical power
and threshold current. Fig. 6.3 shows the threshold current density measured [186] for
a QD laser epitaxially grown on silicon with varying p-type modulation doping den-
sity. This effect is a matter of debate and has been attributed to different phenomena,
such as the enhanced free carrier absorption [64] or the increase in the defect-assisted
recombination with the doping level [186].

6.1.1 Motivation of this chapter
To achieve deeper understanding of the device operation, modelling can be an instru-
mental platform. In this context, most of the literature relies on lumped rate equations
describing the interaction of carriers and photons in each energy state. Although such
approaches provide an appropriate picture of the intersubband interactions, they re-
duce the model of the separate-confinement heterostructure (SCH) to phenomenologi-
cal capture terms [80, 38], neglecting carrier transport and electrostatic effects. On the
contrary, in this chapter we present an investigation based on a drift-diffusion model
[39, 16, 40], with the aim at providing a more solid interpretation.
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Figure 6.4: Schematic representation of the epitaxial structure of the studied QD lasers,
similar to those in [57, 52]. The growth direction is from the bottom to the top.

In particular, the model is applied to characterize the continuous wave (CW) perfor-
mance of QD lasers on silicon with InAs/GaAs self-assembled QDs emitting at 1.3𝜇m.
We focus on three issues: 1) the impact of TDs on the laser P-I characteristic; 2) the role
of carrier transport in the barrier states in reproducing the simultaneous GS and ES
lasing and competition; and 3) the existence of an optimum p-type modulation doping
which minimizes the laser threshold current.

6.2 Method

6.2.1 Device under study
A schematic drawing of the epitaxial structure of the investigated QD lasers is illus-
trated in Fig. 6.4. The structure is similar to others reported in the literature [57, 52]. In
these devices, the layers grown immediately above the silicon substrate act as buffers
and dislocation filters reducing the density of TDs in the n-type cladding and SCH re-
gion. The n-type electrical contact is positioned on top of a GaAs n-doped buffer layer,
thus avoiding carrier injection through the much more defective layers located below.
For this reason, we have not simulated transport through the silicon substrate and buffer
and we have assumed that electrons are directly injected through the 500 nm n-doped
GaAs layer. The active region includes five layers of InAs QDs each grown in a 11.5 nm-
thick In0.15Ga0.85As QW, thus forming a dot-in-a-well (DWELL) structure. In each of
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the 37.5 nm-thick GaAs spacers separating a DWELL layer from another, the central
10 nm-thick region can either be intrinsic or p-type doped.

6.2.2 Model

Figure 6.5: Band diagram at thermodynamic equilibrium, with the conduction band
(blue), the valence band (red) and the Fermi level (dashed, black). The dotted, vertical
lines delimit the SCH region.

The simulation framework consists of an in-house developed [165] Poisson-drift-
diffusion system augmented with carrier and photon rate equations of the localized
states. The code requires as input a detailed description of the layer stack (material com-
position, doping) and QD characteristic parameters, listed in Tab. 6.1. These parameters
have been taken from previous studies [38] or extracted from literature experimental
data representative of QD lasers on silicon.

Fig. 6.5 shows the calculated energy band diagram under thermodynamic equilib-
rium for the device sketched in Fig. 6.4, with 𝑥 being the growth direction. The carrier
continuity equations are formulated within a drift-diffusion-Poisson formalism as:

𝜕𝑛
𝜕𝑡

= 1
𝑞

𝜕𝐽𝑛
𝜕𝑥

− 𝑈B − ∑
𝑖

(𝑅B→WL,𝑖
𝑛,CAP − 𝑅WL,𝑖→B

𝑛,ESC ) 𝛿(𝑥 − 𝑥𝑖) (6.1a)

𝜕2𝜙
𝜕𝑥2 = −

𝑞
𝜖 [

𝑝 − 𝑛 + 𝑁 + ∑
𝑘,𝑖

(𝑝𝑘,𝑖 − 𝑛𝑘,𝑖) 𝛿(𝑥 − 𝑥𝑖)]
(6.1b)

here, 𝐽𝑛 is the electron current density, 𝑈B is the net band-to-band recombination rate
including Shockley-Read-Hall (SRH) and radiative processes and 𝑁 is the net doping.
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Parameters Values
Δ𝐸𝑘

𝑛 , 𝑘 = WL,ES,GS [meV] 177.7, 30, 41.1 [38]
Δ𝐸𝑘

𝑝 , 𝑘 = WL,ES,GS [meV] 166.3, 25, 25 [38]
𝜏B→WL

𝑛,CAP , 𝜏WL→ES
𝑛,CAP , 𝜏ES→GS

𝑛,CAP [ps] 0.1, 1, 1 [116]
𝜏B→WL

𝑝,CAP , 𝜏WL→ES
𝑝,CAP , 𝜏ES→GS

𝑝,CAP [ps] 0.1, 0.1, 0.1 [116]
𝜏𝑘
rad, 𝑘 = WL,ES,GS [ns] 1, 1, 1 [80, 16]
𝜏𝑘

𝑛,SRH, 𝑘 = ES,GS [ns] 1, 1 [80, 16]
𝜏𝑘

𝑝,SRH, 𝑘 = ES,GS [ns] 1, 1 [80, 16]
QD sheet density 𝑁QD,𝑖 [cm−2] 4.9 × 1010

GS (ES) degeneracy 𝜇GS (𝜇ES) 2 (4)
Gain coefficient 𝐺GS

0 (𝐺ES
0 ) [cm−1] 433 (779.4)

Electron (hole) effective mass 𝑚∗
𝑛 (𝑚∗

𝑝) [𝑚0] 0.054 (0.49)
Optical confinement factor Γ𝑖 ∼ 2%

Intrinsic loss 𝛼𝑖 [cm−1] 5
Waveguide width [𝜇m] 3.5

Facet reflection coefficient 0.32
Spontaneous emission factor 𝛽sp 10−4

Group index 3.56
GaAs 𝐷𝑛, 𝐷𝑝 [cm2s−1] 221, 10

In0.15Ga0.85As 𝐷𝑛, 𝐷𝑝 [cm2s−1] 181, 10
Temperature [K] 300

Table 6.1: QD laser simulations parameters

𝑅B→WL,𝑖
𝑛,CAP and 𝑅WL,𝑖→B

𝑛,ESC are, respectively, the capture and escape rates between the barrier
and the 𝑖-th QD layer (located in the node 𝑥𝑖). For the sake of brevity, drift-diffusion and
carrier rate equations are reported here for electrons only, but a similar set of equations
is implemented also for holes.

Fig. 6.6 illustrates the model employed for the dynamics in each QD layer. The rate
equations governing the electron dynamics in the 𝑖-th QD layer are

𝜕𝑛𝑘,𝑖

𝜕𝑡
= (𝑅𝑘+1,𝑖→𝑘,𝑖

𝑛,CAP − 𝑅𝑘,𝑖→𝑘+1,𝑖
𝑛,ESC ) (6.2)

− (𝑅𝑘,𝑖→𝑘−1,𝑖
𝑛,CAP − 𝑅𝑘−1,𝑖→𝑘,𝑖

𝑛,ESC ) − 𝑈 𝑘,𝑖 − 𝑅𝑘,𝑖
st

where 𝑈 𝑘,𝑖 accounts for SRH and radiative recombination and 𝑅𝑘,𝑖
st is the stimulated

recombination rate. 𝑅𝑘,𝑖→𝑘−1,𝑖
𝑛,CAP and 𝑅𝑘−1,𝑖→𝑘,𝑖

𝑛,ESC are the capture and escape rates between
the states 𝑘-th and (𝑘 − 1)-th, with 𝑘 = B,WL,ES and (𝑘 − 1) = WL,ES,GS, computed
as in [39, 165], where WL indicates the wetting layer state including both the 2D well
states and the upper continuum of the QDs. The capture rate depends on the capture
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Figure 6.6: Schematic representation of the QD energy states and intersubband transi-
tions.

time (𝜏𝑘→𝑘−1
𝑛,CAP ) from the state with higher energy (𝑘) to the state with lower energy

(𝑘−1), whereas the escape rate is dependent on the escape time that leads the system to
equilibrium in the absence of any injection current or recombination rate [39]. These
equations put in relation the 3D carrier volume densities (𝑛, 𝑝) with the electrostatic
potential 𝜙 and the carrier sheet densities (𝑛𝑘,𝑖, 𝑝𝑘,𝑖) of the 𝑘-th QD energy level of the
𝑖-th QD layer.

The net recombination rate 𝑈 𝑘,𝑖 is given by 𝑈 𝑘,𝑖 = 𝑈 𝑘,𝑖
rad + 𝑈 𝑘,𝑖

SRH. Here, 𝑈 𝑘,𝑖
rad is the

net radiative recombination rate modelled as

𝑈 𝑘,𝑖
rad = 𝐵𝑘

rad (𝑛𝑘,𝑖𝑝𝑘,𝑖 − 𝑛𝑘0,𝑖𝑝𝑘0,𝑖) (6.3)

where 𝑛𝑘0,𝑖 and 𝑝𝑘0,𝑖 are the electron and hole sheet density in the 𝑘-th energy level

at thermal equilibrium, respectively, and 𝐵𝑘,𝑖
rad is a radiative recombination coefficient

related to the radiative time 𝜏𝑘
rad [39]. The net SRH recombination rate is modelled as

𝑈 𝑘,𝑖
SRH =

𝑛𝑘,𝑖𝑝𝑘,𝑖 − 𝑛𝑘0,𝑖𝑝𝑘0,𝑖

𝜏𝑘
𝑛,SRH (𝑝𝑘,𝑖 + 𝑝𝑘0,𝑖) + 𝜏𝑘

𝑝,SRH (𝑛𝑘,𝑖 + 𝑛𝑘0,𝑖)
(6.4)

where 𝜏𝑘
𝑛,SRH and 𝜏𝑘

𝑝,SRH are SRH lifetimes for electrons and holes, respectively. The
SRH lifetime in the barrier and DWELL (𝑘 = B, WL) is reduced by the presence of TDs
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according to [180, 6]

1
𝜏𝑛(𝑝),SRH

= 1
𝜏0

𝑛(𝑝),SRH

+
𝜋3𝐷𝑛(𝑝)TDD

4
(6.5)

with 𝜏0
𝑛(𝑝),SRH being the typical (doping-dependent) lifetime of dislocation free GaAs [82]

and TDD the TD density. The WL stimulated emission rate is assumed to be negligible.
The GS and ES stimulated emission rates are given by

𝑅𝑘,𝑖
st = 𝑣𝑔𝐺𝑘

0Γ𝑖 (𝜌𝑘,𝑖
𝑛 + 𝜌𝑘,𝑖

𝑝 − 1) 𝑆𝑘 (6.6)

with 𝑘 = ES,GS. Here, 𝑆𝑘 is the photon density emitted by the GS or ES (𝑘 = GS,ES)
and 𝑣𝑔 the group velocity, while 𝜌𝑘,𝑖

𝑛(𝑝) is the occupation probability of electrons (holes)

𝑘-th energy level of the 𝑖-th QD layer. The coefficient 𝐺𝑘
0 is the saturated material gain

(i.e.: the material gain if the electron and hole 𝑘-th state were fully filled) of the QD
layer. Γ𝑖 is the optical confinement factor of the TE fundamental mode in the 𝑖-th QD
layer and it has been computed from the fundamental TE mode profile of the epitaxial
structure with no optical gain. The rate equation for the photon density 𝑆𝑘 is governed
by:

𝑑𝑆𝑘

𝑑𝑡
= 𝛽sp𝑅𝑘

sp + 𝑣𝑔𝐺mod
𝑘 𝑆𝑘 − 𝑆𝑘

𝜏𝑝
(6.7)

where 𝑅k
sp is the spontaneous emission rate, given by 𝑅𝑘

sp = ∑𝑖 𝑈 𝑘,𝑖
rad. 𝐺mod

𝑘 is the GS
(ES) modal gain, 𝛽sp is the spontaneous emission factor and 𝜏𝑝 is the photon lifetime
[23], which accounts for the intrinsic and mirror loss. The GS and ES modal gain are
given by

𝐺mod
𝑘 = 𝐺𝑘

0 ∑
𝑖

Γ𝑖 (𝜌𝑘,𝑖
𝑛 + 𝜌𝑘,𝑖

𝑝 − 1) (6.8)

= 𝐺𝑘
0 ∑

𝑖
Γ𝑖𝜌

𝑘,𝑖
𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺mod,𝑛
𝑘

+ 𝐺𝑘
0 ∑

𝑖
Γ𝑖𝜌

𝑘,𝑖
𝑝

⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺mod,𝑝
𝑘

−𝐺𝑘
0 ∑

𝑖
Γ𝑖

with 𝑘 = ES,GS. The coefficient 𝐺GS
0 has been estimated to be ∼ 433 cm−1 through

a fitting of the measured modal gain versus current reported in [57] (see Fig. 6.7), re-
sulting in 𝐺GS

0 ∑𝑖 Γ𝑖 ∼ 52.4 cm−1, where Γ𝑖 ∼ 2% . The coefficient 𝐺ES
0 has been set to

1.8 𝐺GS
0 to account for the ES degeneracy. Unless otherwise specified, the main simu-

lation parameters employed in this work are summarized in Tab. 6.1. The separation
between GS and ES energy levels is taken from [38] and corresponds to a difference in
GS and ES recombination energy of 55meV, similar to that reported in [49]. The values
of carrier capture and relaxation times are in line with [116], where ultra-fast hole dy-
namics and picosecond or sub-picosecond electron dynamics have been measured. All
the simulations assume isothermal conditions and ambient temperature.
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Figure 6.7: Calculated GS modal gain versus current density for different levels of
threading dislocation density TDD and experimental gain (circles) from [57].

6.3 Results and discussion

6.3.1 Impact of threading dislocations
We investigate the impact of SRH recombination due to TDs, both in the DWELL and
barrier layers. Fig. 6.7 shows the modal gain of the device under study for different
values of TDD. In the TDD range 5 × 1016 − 1017 cm−3, the calculated gain is similar to
the experimental one in [57]. For a qualitative comparison with experimental results,
we consider a Fabry-Perot laser with mirror loss 𝛼𝑚 = 8.6 cm−1 (corresponding to a
Fabry-Perot cavity length 𝐿 = 1325 𝜇m), to guarantee lasing on the GS only [57].

To disentangle the impact of TDs in the barrier and DWELL layers, Fig. 6.8(a) and
(c) show simulation results when TDs are present in the barrier only, whereas Fig. 6.8(b)
and (d) consider the more realistic situation of similar TDD in the barrier and DWELL
layers. The GS threshold current density (Fig. 6.8(a)) and P − I characteristic (Fig. 6.8(c))
are marginally affected by the lifetime degradation induced by TDs in the barrier layers.

On the other hand, recombination mediated by TDs in the DWELL layers affects the
laser performance significantly. Fig. 6.8(b) shows the threshold current density (blue)
and slope differential efficiency (red) as a function of TDD, taking into account the SRH
lifetime reduction according to Eq. (6.5) both in the barrier and DWELL layers. The
slope efficiency is defined as (𝑞/ℏ𝜔) ⋅ (𝑑𝑃∕𝑑𝐼), with 𝜔 being the GS emission angular
frequency, and it has been evaluated just above the laser threshold. In this case, as
the TDD in the DWELL layers increases, the effective injection efficiency into the QDs
diminishes, causing increased threshold current and reduced slope efficiency. This is
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Figure 6.8: (a) GS threshold current density and (c) optical power as a function of the
bulk threading dislocation densityTDDbulk, for fixedDWELL SRH lifetime (correspond-
ing to TDDWL = 105 cm−2). (b) GS threshold current density and slope efficiency and
(d) optical power as a function of the threading dislocation density in the barrier and
DWELL layers (TDDWL = TDDbulk).

also evident from the light-current characteristics in Fig. 6.8(d) calculated for different
values of TDD. Therefore, the TDs in the DWELL layers are those responsible for the
degradation of the laser performance. Similar scaling of threshold current with TDD
has been observed experimentally in [59], where devices of different generations have
been compared, having TDD in the same range of Fig. 6.8(b) and (d). These results
also support the hypothesis that the degradation mechanisms limiting the long-term
reliability could be correlated to a gradual propagation of TDs towards the DWELL
layers of the device active region [14].

6.3.2 Impact of carrier transport on double-state lasing and GS
power quenching

In this section, we discuss the influence on the CW performance of the asymmetry in
the transport of electrons and holes across the barrier, owing to the different electron
and hole low-field mobility in the GaAs layers. We demonstrate that this asymmetry is
at the basis of the GS power quenching after the ES lasing threshold. For this purpose,
we have set the mirror loss to 𝛼𝑚 = 26.6 cm−1 (corresponding to 𝐿 = 428 𝜇m). In
this case, dual state emission occurs at a reasonable ES threshold current. All results
reported in this section are calculated for a TDD of 5 ⋅ 106cm−2.
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Figure 6.9: GS (solid) and ES (dotted) optical power with (a) 𝜇n = 8500 cm2/(Vs) and
𝜇p = 350 cm2/(Vs) and (b) 𝜇n = 𝜇p = 8500 cm2/(Vs) in the SCH region.

Fig. 6.9(a) shows the optical power emitted on the GS (solid) and ES (dotted) when
the mobility of electrons and holes in the SCH region is set to conventional room tem-
perature values, corresponding to 𝜇n = 8500 cm2/(Vs) and 𝜇p = 350 cm2/(Vs). In this
case, the GS power decreases as the current overcomes the ES threshold and it is com-
pletely quenched at sufficiently high currents. To highlight the impact of the unbalance
of electron and hole mobility, Fig. 6.9(b) shows the GS (solid) and ES (dotted) optical
power by forcing 𝜇n = 𝜇p = 8500 cm2/(Vs). In this case, the GS power is not quenched
when the ES turns on, demonstrating that quenching can be ascribed to the different
mobilities. The same conclusion can be drawn by forcing 𝜇n = 𝜇p = 350 cm2/(Vs)
(not reported in this work), which only causes a larger separation between GS and ES
threshold currents.

The asymmetry in the transport of electrons and holes reflects into the rate at which
carriers are filling the various QD layers. This is emphasized in Fig. 6.10(a), showing
the net capture rate of carriers from the bulk states to the WL with 𝜇n = 8500 cm2/(Vs)
and 𝜇p = 350 cm2/(Vs). Each colour corresponds to a different QD layer, with layer 1
(5) being the closest to the p- (n-) contact. Layers located farthest from the p-contact
are filled by holes at a smaller rate. On the contrary, if electron and hole mobili-
ties are equal, holes are more evenly distributed and all the QD layers are filled at a
similar rate, which increases linearly with the injected current. This is presented in
Fig. 6.10(b), reporting the net capture rate of carriers from the bulk states to the WL
with 𝜇n = 𝜇p = 8500 cm2/(Vs). This last case is in line with the exciton rate equa-
tion approach that, neglecting carrier transport and hole dynamics, was initially used
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Figure 6.10: Net capture rate from the bulk states to theWLwith (a) 𝜇n = 8500 cm2/(Vs)
and 𝜇p = 350 cm2/(Vs) and (b) 𝜇n = 𝜇p = 8500 cm2/(Vs). Layer 1 (5) is the closest to
the p- (n-) contact.

to model double state lasing in QDs [83]. Indeed, the power-current characteristic in
Fig. 6.9(b) mirrors the results which onewould obtain in the exciton approximation [83],
which is unable to reproduce the GS quenching. On the other hand, several experi-
ments have shown that double state lasing is often characterized by the GS quenching,
as reproduced in Fig. 6.9(a) by our transport model with realistic material parameters.
This provides a physical background to the results presented in [38]. In that work, a
phenomenological fitting parameter was ad-hoc introduced to mimic the asymmetric
electron/hole transport.

It should be mentioned that the onset of the GS quenching is characterized by an
optical threshold. By varying the mirror loss in the asymmetric transport case, we have
found that the reduction of the GS power above the ES threshold is only observable for
𝛼𝑚 > 20 cm−1. On the contrary, in the symmetric transport case, regardless of high or
low mobility, the GS power quenching is never reproduced whatever the value of 𝛼𝑚 is.

In order to achieve deeper insight into the dual-state competition, it is convenient
to inspect the overall, separate contributions of electrons (𝐺mod,𝑛

GS ) and holes (𝐺mod,𝑝
GS ) to

the GS modal gain (see Eq. (6.8)). For the sake of brevity, we only discuss explicitly the
case with 𝜇n = 8500 cm2/(Vs) and 𝜇p = 350 cm2/(Vs). As the injected current grows

between the GS and ES threshold current, 𝐺mod,𝑛
GS decreases (see Fig. 6.11(a)) due to the

spectral hole burning of GS electrons that are injected from ES at a slower rate than they
recombine. The electron gain compression due to spectral hole burning is compensated
by the growth of hole contribution to keep the lasing threshold gain. Indeed, 𝐺mod,𝑝

GS
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Figure 6.11: Contribution of (a) electrons and (b) holes to the GS modal gain: solid line
is the overall contribution, whereas colored dashed lines are the contribution of the
different layers (the colour legend is the same as in Fig. 6.10). The vertical lines indicate
the GS and ES threshold currents. (c) GS electrons and (d) holes occupation probability.
The mobility of electrons and holes in the SCH region are 𝜇n = 8500 cm2/(Vs) and
𝜇p = 350 cm2/(Vs) . Layer 1 (5) is the closest to the p- (n-) contact.

increases (see Fig. 6.11(b)), such that the GS modal gain remains clamped. The dashed
curves in Fig. 6.11(a) and (b) quantify how electrons and holes of the various layers
contribute to the overall gain in solid line. We see that only the GS holes of the two
layers closest to the p-side contribute with increasing gain, thereby compensating for
the gain reduction in all the other layers. In contrast, in the case of symmetric mobility
𝜇n = 𝜇p = 8500 cm2/(Vs) we have found that the hole contribution is always increasing
for any current injection.

At the ES threshold current, the ES stimulated emission turns on and starts recom-
bining the ES electrons and holes. This mechanism competes with the relaxation rate
from the ES to the GS. Now, the contribution of the GS holes is not enough to compen-
sate for the electron spectral hole burning. As a consequence, the GS electron popula-
tion has to increase such that 𝐺mod,𝑛

GS can maintain the GS threshold condition. Then,
the net transition rate of electrons from the ES to the GS decreases due to Fermi block-
ing. This rate balances the GS stimulated emission rate until the GS optical power is
eventually quenched [38]. This mechanism can be simply understood by considering
Eq. (6.2) for the GS above the GS lasing threshold, where radiative and non-radiative re-
combination may be neglected as compared to stimulated recombination. In this case,
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Eq. (6.2) under steady-state conditions reads

0 ≈ (𝑅ES,𝑖→GS,𝑖
𝑛,CAP − 𝑅GS,𝑖→ES,𝑖

𝑛,ESC ) − 𝑅GS,𝑖
st (6.9)

The first term on the right-hand side is the net transition rate of electrons from the
ES to the GS in the 𝑖-th QD layer. By summing over the various layers, one obtains
the aforementioned balance between the total net rate and the GS optical power. The
trends in Fig. 6.11(a) and (b) are also supported by the electron and hole GS occupation
probability of the various QD layers. As shown in Fig. 6.11(c) and (d), the GS is almost
completely filled with electrons, whereas it is populated scarcely and unevenly by holes.

In summary, the reduction with increasing current of the hole gain contribution in
the layers closest to the n-side is caused by the slow hole transport and it is therefore an
additional mechanism, besides spectral hole burning, causing gain compression. Spatial
hole burning or other gain compression effects are not directly included in the model,
but could be taken into account by introducing a phenomenological compression fac-
tor parameter [23]. The quantification of the effective gain compression coefficient re-
quires, however, the simulation of the laser intensity modulation response [26], which
is outside the scope of this work.

6.3.3 Impact of p-type modulation doping
In order to analyze the impact of modulation doping on dual state emission, we set the
mirror loss to 𝛼𝑚 = 26.6 cm−1. All results reported in this section are calculated for
TDD = 5 ⋅ 106cm−2.

In this context, the aim of p-type doping is reducing the GS threshold current and
increasing that of the ES, such that the GS power is optimized. To focus on the role
of doping in terms of electrostatics and transport, in the analysis we intentionally ne-
glect possible additional loss due to free carrier absorption caused by the extra holes
in the barrier layers. In addition, we note that the SRH lifetimes calculated accord-
ing to Eq. (6.5) are dominated by the effect of the TDs. In fact, the doping-dependent,
dislocation-free SRH lifetime 𝜏0

𝑛(𝑝),SRH in GaAs [82] is by far larger than 4
𝜋3𝐷𝑛(𝑝)TDD

. On

the other hand, it should be emphasized that Eq. (6.4) inherently includes any change
in the SRH recombination rate due to the enhanced hole density in the WL and barrier
layers induced by the doping.

Modulation doping is implemented by 10 nm thick doped layers, with doping den-
sity 𝑁A, placed as in Fig. 6.4. Fig. 6.12 shows the optical power emitted on the GS (solid)
and ES (dotted) with 𝑁A equal to (a) 0, (b) 5 × 1017 cm−3 and (c) 3 × 1018 cm−3. These
doping levels correspond to 0, 10 and 60 extra holes per QD. Adding 10 extra holes per
QD is beneficial, as the GS power quenching is cured and the GS threshold current is
reduced. However, 60 extra holes turn out to be excessive, as the previous benefits are
partially undermined.

188



6.3 – Results and discussion

Figure 6.12: GS (solid) and ES (dotted) optical power with (a) no p-type modulation
doping and a p-type modulation doping of (b) 5 × 1017 cm−3 and (c) 30 × 1017 cm−3.

Figure 6.13: (a) GS (blue) and ES (red) threshold current density as functions of the
p-type modulation doping density. (b) Total radiative and SRH recombination rates as
functions of p-type modulation doping density calculated at the 𝐽GS

th values in (a).

Fig. 6.13(a) shows the GS (blue) and ES (red) threshold current density, 𝐽GS
th and 𝐽ES

th
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Figure 6.14: (a) GS modal gain versus current density. (b) Holes (𝐺mod,𝑝
GS , dashed) and

electrons (𝐺mod,𝑛
GS , solid) contributions to the GS modal gain.

respectively, as functions of 𝑁A. An optimumdensity of 5×1017 cm−3 exists, as this con-
centration minimizes 𝐽GS

th and maximizes 𝐽ES
th . These results, showing an optical doping

density to minimize the GS threshold current, are consistent with the experiments in
[186]. We have also verified that such an optimum is almost insensitive to the value
of TDD. In [186], it was speculated that the optimum results from a trade-off between
the increase of gain enabled by doping and the increase of non-radiative recombination
caused by doping-induced defects. Regarding this, we have already noted that Eq. (6.5)
is dominated by the effect of the TDs. In addition, the integrated radiative and non-
radiative recombination rates reported in Fig. 6.13(b) versus 𝑁A emphasize that the GS
threshold minimum is strongly correlated to the doping dependence of the radiative
recombination rate. On the other hand, the influence of doping on the SRH recombina-
tion rate turns out to be marginal. As we discuss in the following, the optimum appears
instead as an intrinsic consequence of a non-monotonic dependence of the modal gain
on doping density. In fact, the increase of the hole modal gain contribution with 𝑁A,
due to the larger density of holes, is counteracted at higher 𝑁A values by a decrease of
the electron modal gain contribution, due to electrostatic effects.

We report in Fig. 6.14(a) the modal gain versus current density for three different
doping levels 𝑁A and in Fig. 6.14(b) the separate contributions of electrons and holes
to the modal gain. While the hole contribution to the gain increases (as expected for
p-doping), we observe a decrease of the electron contribution to the GS gain. The bal-
ance between the increased hole contribution and reduced electron contribution makes
the doped samples exhibit a higher or lower total gain — at fixed current injection —
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Figure 6.15: (a) Contribution of electrons (blue) and holes (red) to the GS modal gain
at 𝐽 = 580A ∕ cm2 versus p-doping density and (b) corresponding GS modal gain.

with respect to the undoped sample. As a result, long devices with low threshold gain
(e.g., lower than 15 cm−1 in this example) could not benefit too much from modulation
doping, since their threshold current would be higher.

Fig. 6.15(a) shows the electron and hole contributions to the GS modal gain, 𝐺mod,𝑛
GS

(blue) and 𝐺mod,𝑝
GS (red) respectively, versus 𝑁A, at fixed current density 𝐽 = 580A/cm2.

Since this value is smaller than theminimumGS threshold current density (see Fig. 6.13(a)),
the GS modal gain is not clamped for any of the considered doping levels. In addition,
Fig. 6.15(b) shows the resulting GS modal gain. At low doping densities, the increase
in 𝐺mod,𝑝

GS outweighs the decrease in 𝐺mod,𝑛
GS , such that the GS modal gain grows. At

𝑁A = 5 × 1017 cm−3, the electron and hole contribution balance each other, maximiz-
ing the GSmodal gain. At higher doping concentrations, the drop in 𝐺mod,𝑛

GS is steeper as

compared to the growth in 𝐺mod,𝑝
GS and the GS modal gain is diminished. Therefore, the

existence of an optimum value appears to stem from the impact of p-type modulation
doping on the GS modal gain at a given injected current.

To shed further light on this mechanism, we report in Fig. 6.16(a) the conduction
band energy (solid) and electron quasi-Fermi level (dashed) for the bulk states at 𝐽 =
580A/cm2 and for the same 𝑁A values in Fig. 6.12. The vertical lines delimit the SCH
region. Notice that the multiple peaks observed in the SCH region arise because of
the electric field modulation caused by the thin layers with p-type modulation dop-
ing. As the doping concentration increases, the energy barrier which electrons injected
from the n-contact have to overcome to reach the QD active layer region steadily rises.
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Figure 6.16: (a) Contribution of electrons (blue) and holes (red) to the GS modal gain
at 𝐽 = 580A ∕ cm2 versus p-doping density and (b) corresponding GS modal gain. The
vertical lines delimit the SCH region.

Concurrently, the electron quasi-Fermi level is pushed deeper in the energy gap. As a
consequence, the bulk electrons in the active region diminish progressively, becoming
unavailable to be captured by the QDs. Therefore, 𝐺mod,𝑛

GS in Fig. 6.15(a) steadily de-
creases as the doping increases. On the other hand, the valence band (solid) and hole
quasi-Fermi level (dashed) for the bulk states of the SCH region at 𝐽 = 580A/cm2 are
shown in Fig. 6.16(b). The energy barrier experienced by the holes injected from the
p-contact is not significantly affected by 𝑁A. Therefore, the change of hole density in
the active region is directly related to the sole variation in the concentration of p-type
dopants, which act as a local source of extra holes. However, as the doping grows, holes
almost entirely fill the GS, and 𝐺mod,𝑝

GS in Fig. 6.16(b) gradually saturates.
To corroborate this interpretation, we report in Fig. 6.17 for each QD layer the net

capture rate of carriers from the bulk states to the WL (denoted by 𝑅B→WL
NET ) at 𝐽 =

580A/cm2. In the undoped case, the farther the QD layer is from the p-contact and
the smaller 𝑅B→WL

NET is. Indeed, while diffusing throughout the epitaxial structure upon
injection from the p-contact, holes are progressively captured by the QD layers. As
𝑁A grows, the electrostatic deformation of the band diagram reflects on 𝑅B→WL

NET . For
doping levels higher than 1017 cm−3, the closer the QD layer is to the n-contact and the
larger 𝑅B→WL

NET is. This signifies that most of electrons injected from the n-contact are
blocked by the energy barrier induced by the doping.

The influence of doping on carrier injection also has a significant influence on the
dependence of the SRH recombination rate on injection conditions. As depicted in
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Figure 6.17: Net capture rate from the bulk states to the WL at 𝐽 = 580A/cm2 for each
layer of QDs.

Figure 6.18: Total SRH recombination rate versus voltage at three different doping
levels. The vertical dashed lines indicate the voltage value corresponding to the lasing
threshold.

Fig. 6.18, at low voltages doping basically mitigates the (TD dominated) nonradiative
recombination [16]. However, as carrier injection increases, non-radiative recombina-
tion in the doped samples starts to grow with a higher rate than it does in the undoped
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sample, owing to the higher hole density available in the DWELL layers. The increase
is larger at the intermediate doping level than at the highest one, because in the latter
case electron injection from the n-contact is hindered by the energy barrier induced
by modulation doping. Despite the marked difference in the voltage dependence of
the SRH recombination rate, all the three samples present a similar amount of SRH re-
combination at the lasing thresholds. This highlights that the most relevant factor for
the GS threshold minimization is the change of the radiative recombination rate, and
therefore of the GS modal gain, with doping density.

6.4 Conclusions
In summary, in this chapter we have presented an investigation of the mechanisms
limiting the performance of QD lasers epitaxially grown on silicon, on the basis of a
drift-diffusion transport model including QD carriers and photon rate equations. Over-
coming the traditional lumped formulations based on rate equations, our approach can
simulate the P-I-V characteristics of a dual-state lasing device by starting from the de-
scription of materials, doping, and geometry. In particular, we have illustrated how
carrier transport and electrostatic effects are essential for catching and explaining the
main static characteristics of these lasers.

In Sec. 6.3.1, we have analyzed the impact of threading dislocations (TDs) in the bar-
rier and DWELL layers on the lasing performance. Our analysis pinpoints a dominant
effect of the TDs in the DWELL layers (see Fig. 6.8). This result supports the hypothe-
sis [14] that long-term reliability issues suffered by these lasers can be correlated to a
thermally activated climbing of TDs towards the active region.

In Sec. 6.3.2, we have focused on the ground-state power quenching above the excited-
state lasing threshold. When accounting for transport mechanisms, the reduction in the
GS power naturally emerges as a consequence of the inherently asymmetric transport
of electrons and holes (see Fig. 6.9). This explains the reason why conventional exci-
tonic models cannot reproduce this effect. Furthermore, our analysis provides physical
backgrounds for the usage in lumped rate equation models of phenomenological fitting
parameters mimicking the asymmetric transport [38].

Finally, in Sec. 6.3.3 we have thoroughly investigated the physics behind the exis-
tence of an optimum p-type modulation doping minimizing the GS threshold current.
This effect has recently received attention from the research community of QD lasers
on silicon [186]. In contrast to previous studies [186], our analysis (see Fig. 6.14) reveals
that the optimumdoping level results from the trade-off between: 1) the doping-induced
increase of the hole contribution to the modal gain, and 2) the associated decrease of the
electron contribution (see Eq. (6.8) for the definition of these contributions). Therefore,
the optimum also depends on the threshold gain of the specific sample under study.
The reduction of the electron contribution is due to electrostatic effects, which hinder
the electron injection (see Fig. 6.16).
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Chapter 7

Conclusions and outlook

In this thesis, we have mainly investigated photonic crystal structures based on line-
defect waveguides, with a primary focus on lasers and gain-induced slow-light effects.
Photonic crystal lasers are promising candidates as semiconductor light sources for on-
chip optical interconnects. Slow-light enhances the modal gain per unit length, with
potential applications to shorter andmore energy-efficient lasers. We have also covered
QD lasers epitaxially grown on silicon, which represent an instrumental platform for
exploring the properties of the active material. In fact, QDs are extremely attractive
for epitaxial integration of lasers on silicon, thanks to their high tolerance to threading
dislocations.

Our analysis of photonic crystal structures is directly based on the Bloch modes
and dispersion relation of the underlying line-defect waveguide. In particular, we have
shown how the modal properties of passive photonic crystal cavities naturally follow
from the field expansion in the basis of the two counter-propagating Bloch modes.
These properties include the resonance condition and field distribution, both in the
real and reciprocal space. To describe active structures, we have employed a coupled-
Bloch-mode approach. By this approach, the presence of material gain is viewed as
a weak perturbation to a reference photonic crystal waveguide with purely real re-
fractive index. Therefore, material gain leads to a gain-induced distributed feedback
of the Bloch modes of the reference waveguide. This effect is inherently associated
with slow-light and intrinsically limits the achievable slow-light gain enhancement.
We have derived a scattering matrix formulation, which efficiently describes the opti-
cal propagation in active structures in the presence of slow-light, including distributed
feedback. This formulation generally accounts for complex refractive index perturba-
tions. The perturbation to the real part may be structural or induced by carrier density.
We have shown that amplifiers based on active photonic crystal waveguides may of-
fer better performance if having a smaller linewidth enhancement factor. In fact, the
larger the linewidth enhancement factor is and the more the amplifier reflected power
grows. Therefore, if one is interested in achieving a reasonable amplifier gain with
minimum reflection, the linewidth enhancement factor should be small. Our scattering
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matrix formulation is a flexible and convenient tool to analyze the oscillation condition
of photonic crystal lasers based on line-defect waveguides, with possibly multiple pas-
sive and active sections. We have shown how the gain-induced distributed feedback
suppresses oscillation close to the band edge in lasers with photonic bandgap mirrors.
Moreover, in the presence of significant mirror loss, the larger the linewidth enhance-
ment factor is and the more the distributed feedback may reduce the threshold gain.
This effect stems from the enhancement of the effective net modal gain, enabled by
larger values of the linewidth enhancement factor at a given frequency and for a given
material gain. We have also illustrated, for the first time, the impact of slow-light on the
tuning characteristics of photonic crystal Fano lasers. Moderate slow-light may be ben-
eficial to reduce the threshold gain, but operation too deep into the slow-light region
should be probably avoided. Indeed, slow-light triggers a strong competition between
the mode closest to the Fano mirror peak and the other longitudinal modes of the laser
cavity. By expanding the oscillation condition around the lasing point, we have de-
rived a rate equation model which self-consistently accounts for slow-light in photonic
crystal lasers, including the gain-induced distributed feedback. We have applied the
model to photonic crystal lasers with photonic bandgap mirrors and derived analytical
expressions for the stationary and small-signal characteristics. Regarding the latter, a
key parameter is the equivalent photon lifetime, which effectively reflects the impact of
slow-light and associated distributed feedback on group velocity, optical confinement
factor and differential gain. We have shown that the distributed feedback may improve,
albeit slightly, threshold current, modulation bandwidth and energy cost.

Regarding QD lasers on silicon, we have analyzed their continuous wave operation
by a drift-diffusion transport model, coupled with conventional rate equations for pho-
tons and carriers in the DWELL layers. We have shown that the ground state power
quenching above the excited state lasing threshold under dual state emission is caused
by the asymmetric transport of electrons and holes. In addition, we have discussed how
the existence of an optimum p-type modulation doping, minimizing the ground state
threshold current, stems from the reduction of the electron density. This reduction
is due to electrostatic effects hindering electron injection and counteracts the benefits
from the expected increase of the hole density.

Having summarized the main conclusions, we would like to briefly outline some
future perspectives. These may include systematic numerical and experimental inves-
tigations on how tuning the mirror phases would affect the oscillation condition of
photonic crystal lasers. In fact, in the slow-light regime, the oscillation condition is
strongly influenced by the mirror phases, owing to the gain-induced distributed feed-
back. If a practical way were found to tune the mirror phases, one may pursue an
experimental demonstration of this effect. However, this would also require the tech-
nology to be mature enough to reduce the fabrication disorder below a certain level.
This would be necessary to allow for lasing oscillation close enough to the band edge.
By using the rate equation model which we have derived, one may also explore the
impact of this tuning on the stationary and small-signal characteristics. In this respect,
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a worthy extension could be the application of the model to Fano lasers, to explore the
impact of slow-light effects on the small-signal characteristics. The rate equation model
could be also useful to gain insight on the frequency chirp in the presence of slow-light
in simple line-defect lasers. These few suggestions add up to others already outlined
here and there throughout the thesis. These include, for instance, further investiga-
tions on the impact of disorder-induced radiation losses in photonic crystal cavities or
disorder-induced multiple scattering in active waveguides.
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Appendix A

Coupled-Bloch-mode equations:
derivation

In this appendix, we derive the general form of the coupled-Bloch-mode equations pre-
sented in Chapter 3.

We start by considering a reference waveguide with purely real refractive index. For
this waveguide, Maxwell’s equations in the frequency domain read

∇ × E0(r) = 𝑖𝜔𝜇0H0(r) (A.1a)
∇ × H0(r) = −𝑖𝜔𝜖(r)E0(r) (A.1b)

where 𝜖(r) = 𝜖0𝑛2
𝑏(r) is the dielectric permittivity and 𝑛𝑏(r) the background refractive

index. We then consider the actual waveguide which we are interested to study. This
waveguide is seen as perturbed as compared to the reference waveguide. For the per-
turbed waveguide, Maxwell’s equations read

∇ × E(r) = 𝑖𝜔𝜇0H(r) (A.2a)
∇ × H(r) = −𝑖𝜔𝜖(r)E(r) − 𝑖𝜔Ppert(r) (A.2b)

where Ppert is a perturbing polarization accounting for the perturbation. We now in-
troduce the Lorentz reciprocity theorem [79]

∇ ⋅ (E × H∗
0 + E∗

0 × H) = 𝑖𝜔Ppert ⋅ E∗
0 (A.3)

holding for any two arbitrary sets of fields (E0,H0) and (E,H). We define the vector
F = E × H∗

0 + E∗
0 × H and insert it into the integral identify [120]

∫𝐴
∇ ⋅ F 𝑑𝐴 = 𝜕

𝜕𝑧 ∫𝐴
F ⋅ ̂z 𝑑𝐴 + ∮𝜕𝐴

F ⋅ n 𝑑𝑙 (A.4)

where 𝐴 is a transverse section at posizion 𝑧. The second integral on the right-hand
side (RHS) of Eq. (A.4) is a line integral along the contour of 𝐴. We assume the two sets
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(E0,H0) and (E,H) to be guided fields and we conveniently choose 𝐴 such that the line
integral vanishes. Therefore, Eq. (A.4) is reduced to

𝜕
𝜕𝑧 ∫𝐴

(E × H∗
0 + E∗

0 × H) ⋅ ̂z 𝑑𝐴 = 𝑖𝜔 ∫𝐴
(Ppert ⋅ E∗

0) 𝑑𝐴 (A.5)

By neglecting nonlinear effects, we express the perturbing polarization as

Ppert(r) = 𝜖0𝜒pert(r)E(r) (A.6)

with 𝜒pert being a complex susceptibility perturbation. We now assume the reference
and perturbed waveguide to be photonic crystal waveguides. As a set of fields (E0,H0),
we take the guided Bloch modes of the reference waveguide

[
E0,±(r)
H0,±(r)]

=
[
e0,±(r)
h0,±(r)]

𝑒±𝑖𝑘𝑧𝑧 (A.7)

with + (−) denoting the forward-propagating (backward-propagating) mode and 𝑘𝑧 the
wavevector along the propagation direction 𝑧. The electric (magnetic) fields e0,± (h0,±)
are 𝑧 periodic, with the period given by the lattice constant 𝑎. They are related by
e0,− = e∗

0,+ and similarly for the magnetic fields, with ∗ denoting the complex conju-
gate. Furthermore, they obey the orthogonality relation [94, 120, 141]

1
4 ∫𝐴

(e0,𝜎 × h∗
0,𝜎′ + e∗

0,𝜎′ × h0,𝜎) ⋅ ̂z 𝑑𝐴 = 𝜎𝑃0𝛿𝜎,𝜎′ (A.8)

with 𝛿𝜎,𝜎′ being the Kronecker delta, 𝜎 = ± and 𝜎′ = −𝜎. Here, 𝑃0 is real and posi-
tive and represents the time-averaged power carried by the forward-propagating mode
[120]

𝑃0 =
𝑊𝑒 + 𝑊𝑚

𝑎
𝑣𝑔 (A.9)

with 𝑊𝑒 and 𝑊𝑚 given by

𝑊𝑒 = 1
4 ∫𝑉

𝜕
𝜕𝜔

[𝜔 𝜖(r)] |e0(r)|2 𝑑𝑉 (A.10a)

𝑊𝑚 = 1
4 ∫𝑉

𝜇0|h0(r)|2 𝑑𝑉 (A.10b)

and 𝑣𝑔 being the group velocity. Here, 𝑊𝑒 and 𝑊𝑚 are, respectively, the time-averaged
electric and magnetic energy stored in a supercell, with 𝑉 being the supercell volume.
For Bloch modes, one finds 𝑊𝑒 = 𝑊𝑚 [81]. Therefore, by neglecting material disper-
sion, we obtain

𝑃0 =
𝑣𝑔

2𝑎 ∫𝑉
𝜖0𝑛2

𝑏(r)|e0(r)|2 𝑑𝑉 (A.11)
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Eqs. (A.8) and (A.11) together represent the orthonormality relation to which the Bloch
modes of the reference waveguide are subject. In the limit of a weak perturbation, we
expand the guided fields (E,H) in the perturbed waveguide as [19]

[
E(r)
H(r)]

= 𝜓+(𝑧)
[
E0,+(r)
H0,+(r)]

+ 𝜓−(𝑧)
[
E0,−(r)
H0,−(r)]

(A.12)

with 𝜓±(𝑧) being slowly-varying amplitudes. With these assumptions, Eq. (A.5) leads
to a pair of coupled differential equations for the amplitudes 𝜓±. In fact, by considering
(E0,H0) = (E0,+,H0,+) and inserting it into Eq. (A.5), we obtain

𝜕𝜓+(𝑧)
𝜕𝑧

=
𝑖𝜔𝜖0
4𝑃0 {𝜓+(𝑧) ∫𝐴

𝜒pert(r)|e0(r)|2𝑑𝐴+

+ 𝜓−(𝑧)𝑒−2𝑖𝑘𝑧𝑧
∫𝐴

𝜒pert(r) [e0,−(r) ⋅ e∗
0,+(r)] 𝑑𝐴}

(A.13)

Here, we have made use of Eqs. (A.6) and (A.12), as well as Eq. (A.8). By considering
(E0,H0) = (E0,−,H0,−) and proceeding similarly, we obtain

−
𝜕𝜓−(𝑧)

𝜕𝑧
=

𝑖𝜔𝜖0
4𝑃0 {𝜓+(𝑧)𝑒+2𝑖𝑘𝑧𝑧

∫𝐴
𝜒pert(r) [e0,+(r) ⋅ e∗

0,−(r)] 𝑑𝐴+

+ 𝜓−(𝑧) ∫𝐴
𝜒pert(r)|e0(r)|2𝑑𝐴}

(A.14)

By using Eq. (A.11), we finally recast Eqs. (A.13) and (A.14) as

𝜕𝜓+(𝑧)
𝜕𝑧

= 𝑖𝜅11(𝑧)𝜓+ + 𝑖𝜅12(𝑧)𝑒−2𝑖𝑘𝑧𝑧𝜓− (A.15a)

−
𝜕𝜓−(𝑧)

𝜕𝑧
= 𝑖𝜅21(𝑧)𝑒+2𝑖𝑘𝑧𝑧𝜓+ + 𝑖𝜅11(𝑧)𝜓− (A.15b)

which are the coupled-Bloch-mode equations as derived in [19]. Here, the self-coupling
coefficient (𝜅11) and cross-coupling coefficients (𝜅12 and 𝜅21) are given by

𝜅11 = 1
2 (

𝜔
𝑐 ) 𝑛𝑔

𝑎 ∫𝐴 𝜖0𝜒pert(r)|e0(r)|2𝑑𝐴

∫𝑉 𝜖0𝑛2
𝑏(r)|e0(r)|2 𝑑𝑉

(A.16a)

𝜅12 = 1
2 (

𝜔
𝑐 ) 𝑛𝑔

𝑎 ∫𝐴 𝜖0𝜒pert(r) [e0,−(r) ⋅ e∗
0,+(r)] 𝑑𝐴

∫𝑉 𝜖0𝑛2
𝑏(r)|e0(r)|2 𝑑𝑉

(A.16b)

𝜅21 = 1
2 (

𝜔
𝑐 ) 𝑛𝑔

𝑎 ∫𝐴 𝜖0𝜒pert(r) [e0,+(r) ⋅ e∗
0,−(r)] 𝑑𝐴

∫𝑉 𝜖0𝑛2
𝑏(r)|e0(r)|2 𝑑𝑉

(A.16c)

with 𝑛𝑔 being the group index.
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A.1 Susceptibility perturbation
In this section, we express the susceptibility perturbation 𝜒pert in terms of a complex
refractive index perturbation.

The perturbedwaveguidemay contain activematerial, with carrier density inducing
material gain or absorption. Therefore, the Maxwell’s equation including the curl of the
magnetic field can be generally expressed as

∇ × H(r) = −𝑖𝜔𝜖0 [𝑛𝑏(r) + Δ𝑛𝑏(r) + 𝑖𝑛𝑖(r)]
2 E(r) (A.17)

Here, 𝑛𝑖 is the imaginary refractive index controlled by carrier density. Δ𝑛𝑏 is a real
refractive index perturbation, which we may split into two contributions, namely

Δ𝑛𝑏(r) = Δ𝑛′
𝑏(r)⏟

structural, thermal, etc.

+ Δ𝑛′′
𝑏 (r)⏟

induced by carrier density

(A.18)

Δ𝑛′′
𝑏 is due to carrier density, while Δ𝑛′

𝑏 generally accounts for any other source of
refractive index perturbation (e.g. structural, thermal or electro-optic). By comparing
Eq. (A.17) with Eq. (A.2b), we obtain

𝜒pert(r) ≈ 2𝑛𝑏(r) [Δ𝑛𝑏(r) + 2𝑖𝑛𝑖(r)] (A.19)

where second-order terms have been neglected. To compute the coupling coefficients
in Eqs. (A.16a)-(A.16c), the spatial dependence of the susceptibility perturbation should
be specified. On this regard, we assume the holes drilled in the reference photonic
crystal waveguide to be completely filled with the cladding material. In this case, we
may express the background refractive index as

𝑛𝑏(r) = (𝑛slab − 𝑛clad)𝐹PhC(r) + 𝑛clad (A.20)

Here, 𝑛slab (𝑛clad) is the slab (cladding) refractive index. 𝐹PhC(r) reflects the geometry
of the reference waveguide, with 𝐹PhC = 1 (𝐹PhC = 0) within the slab (within cladding
and holes). The imaginary refractive index 𝑛𝑖(r) and the associated real refractive index
perturbation Δ𝑛′′

𝑏 (r) have the same spatial dependence. We may express it as

𝑛𝑖(r) = 𝑛𝑖𝐹carrier(r) (A.21)

and similarly for Δ𝑛′′
𝑏 (r). Here, 𝐹carrier(r) is the distribution function of the active layers

of quantum wells or quantum dots, which are assumed to undergo spatially uniform
pumping. One finds 𝐹carrier = 1 (𝐹carrier = 0) within the active layers (elsewhere).
Finally, the real refractive index perturbation Δ𝑛′

𝑏(r) generally has a different spatial
dependence, which reflects the local refractive index tuning. We may write it as

Δ𝑛′
𝑏(r) = Δ𝑛′

𝑏𝐹Δ𝑛′
𝑏
(r) (A.22)
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with 𝐹Δ𝑛′
𝑏

= 1 (𝐹Δ𝑛′
𝑏

= 0) where the refractive index has been tuned (elsewhere). For
simplicity, we assume this tuning, if present, to be limited to the slab and to be spatially
uniform along the waveguide propagation direction 𝑧. Under these assumptions, one
finds

𝐹PhC(r)𝐹carrier(r) = 𝐹carrier(r) (A.23a)
𝐹PhC(r)𝐹Δ𝑛′

𝑏
(r) = 𝐹Δ𝑛′

𝑏
(r) (A.23b)

By inserting Eqs. (A.20)-(A.22) into Eq. (A.19) and leveraging Eqs. (A.23a) and (A.23b),
we may conveniently recast the susceptibility perturbation as

𝜒pert(r) = 2𝑛slab [Δ𝑛′
𝑏𝐹Δ𝑛′

𝑏
(r) + 𝑖 (𝑛𝑖 − 𝑖Δ𝑛′′

𝑏 ) 𝐹carrier(r)] (A.24)

By inserting Eq. (A.24) into Eqs. (A.16a)-(A.16c), we finally obtain the coupling coeffi-
cients, as detailed in Sec. A.3.

A.2 Material gain
In this section, we relate to material gain the perturbation induced by carrier density.
The imaginary refractive index 𝑛𝑖 reflects the material gain 𝑔mat by

𝑛𝑖 = −1
2 (

𝑐
𝜔) 𝑔mat (A.25)

In Eq. (A.25), the material gain is assumed for simplicity to be independent of frequency.
However, incorporating a frequency-dependent material gain is straightforward, since
the coupled-Bloch-mode equations are formulated in the frequency domain. This is
shown explicitly in Sec. A.2.1 for a Lorentzian gain spectrum.

The refractive index perturbation induced by carrier density may be simply taken
into account by introducing the linewidth enhancement factor (LEF), as illustrated in
[139]. We denote by 𝑛𝑟 the real part of the slab refractive index in the perturbed waveg-
uide, which depends on the carrier density 𝑁. We expand 𝑛𝑟 around the transparency
carrier density 𝑁tr

𝑛𝑟(𝑁) = 𝑛𝑟(𝑁tr) +
𝑑𝑛𝑟
𝑑𝑁|𝑁tr

(𝑁 − 𝑁tr) (A.26)

By introducing the LEF, 𝛼𝐻 = −(𝑑𝑛𝑟/𝑑𝑁)/(𝑑𝑛𝑖/𝑑𝑁) [23], and assuming 𝑛slab to coincide
with 𝑛𝑟 at the transparency carrier density, Eq. (A.26) can be written as

𝑛𝑟(𝑁) = 𝑛slab − 𝛼𝐻
𝑑𝑛𝑖
𝑑𝑁|𝑁tr

(𝑁 − 𝑁tr) (A.27)

We then assume the material gain to be linear with 𝑁, that is 𝑔mat = 𝑔𝑁(𝑁 − 𝑁tr), with
𝑔𝑁 being the differential gain. Under these assumptions, from Eqs. (A.25) and (A.27)
one easily finds 𝑛𝑟(𝑁) = 𝑛slab + 𝛼𝐻𝑛𝑖(𝑁), which gives

Δ𝑛′′
𝑏 = 𝛼𝐻𝑛𝑖 (A.28)

203



Coupled-Bloch-mode equations: derivation

A.2.1 Lorentz model
As mentioned above, one may also include a frequency-dependent material gain. In the
case of a Lorentzian gain spectrum, the permittivity of the perturbed waveguide within
the active layers reads [149, 154]

̃𝜖(𝜔) = 𝜖0 [
𝑛2
slab +

𝜔2
aΔ𝜖

𝜔2
a − 𝜔2 + 𝑖𝜔Δ𝜔𝑎 ]

(A.29)

where 𝜔𝑎 is the resonance angular frequency, Δ𝜖 the oscilator strength and Δ𝜔𝑎 con-
trols the gain bandwdith. By forcing ̃𝜖 to be equal to 𝜖0(𝑛slab+Δ𝑛′′

𝑏 +𝑛𝑖)2 and neglecting
second-order terms, one finds

Δ𝑛′′
𝑏 (𝜔) = Δ𝜖

𝜔2
𝑎 (𝜔2

a − 𝜔2)

2𝑛slab [(𝜔2
a − 𝜔2)

2 + 𝜔2Δ𝜔2
𝑎]

(A.30a)

𝑛𝑖(𝜔) = Δ𝜖
𝜔2

𝑎 𝜔 Δ𝜔𝑎

2𝑛slab [(𝜔2
a − 𝜔2)

2 + 𝜔2Δ𝜔2
𝑎]

(A.30b)

The oscillator strength depends on the peak material gain by

𝑔peak
mat = −2 (

𝜔
𝑐 ) 𝑛𝑖(𝜔)|𝜔𝑎

(A.31)

By usage of Eq. (A.31), we may conveniently recast Eqs. (A.30a) and (A.30b) as

Δ𝑛′′
𝑏 (𝜔) = −1

2 (
𝑐
𝜔) 𝑔peak

mat
Δ𝑥

1 + (Δ𝑥)2 (A.32a)

𝑛𝑖(𝜔) = −1
2 (

𝑐
𝜔) 𝑔peak

mat
1

1 + (Δ𝑥)2 (A.32b)

where Δ𝑥 is the normalized detuning

Δ𝑥 =
𝜔2

𝑎 − 𝜔2

𝜔Δ𝜔𝑎
(A.33)

A.3 Coupling coefficients
As a result of Eq. (A.24), each coupling coefficient generally consists of two contribu-
tions, depending on 𝐹Δ𝑛′

𝑏
(r) and 𝐹carrier(r) respectively. Without lack of generality, in

the following we assume Δ𝑛′
𝑏 = 0. In this case, one finds

𝜅11(𝑧) = 𝑖(𝜔/𝑐)𝑆 (𝑛𝑖 − 𝑖Δ𝑛′′
𝑏 ) Γ11(𝑧) (A.34a)

𝜅12(𝑧) = 𝑖(𝜔/𝑐)𝑆 (𝑛𝑖 − 𝑖Δ𝑛′′
𝑏 ) Γ12(𝑧) (A.34b)

𝜅21(𝑧) = 𝑖(𝜔/𝑐)𝑆 (𝑛𝑖 − 𝑖Δ𝑛′′
𝑏 ) Γ∗

12(𝑧) (A.34c)
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A.3 – Coupling coefficients

Here, 𝑆 = 𝑛𝑔/𝑛slab is the slow-down factor, while the normalized coupling coefficients
Γ11 and Γ12 are [137, 139]

Γ11(𝑧) =
𝑎 ∫𝐴 𝜖0𝑛2

slab|e0(r)|2𝐹carrier(r)𝑑𝐴

∫𝑉 𝜖0𝑛2
𝑏(r)|e0(r)|2 𝑑𝑉

(A.35a)

Γ12(𝑧) =
𝑎 ∫𝐴 𝜖0𝑛2

slab [e0,−(r) ⋅ e∗
0,+(r)] 𝐹carrier(r)𝑑𝐴

∫𝑉 𝜖0𝑛2
𝑏(r)|e0(r)|2 𝑑𝑉

(A.35b)

If Δ𝑛′
𝑏 if different from zero, each coupling coefficient includes an additional contribu-

tion. This contribution can be readily obtained by replacing 𝑖 (𝑛𝑖 − 𝑖Δ𝑛′′
𝑏 ) with Δ𝑛′

𝑏 in
Eqs. (A.34a)-(A.34c) and 𝐹carrier(r) with 𝐹Δ𝑛′

𝑏
(r) in Eqs. (A.35a) and (A.35b).

We note that Γ11 and Γ12 are 1) frequency-dependent and 2) 𝑧 periodic, with the pe-
riod given by the lattice constant 𝑎. This is due to the frequency dependence and spatial
periodicty of the Bloch modes of the reference waveguide. Furthermore, it should be
emphasized that Γ11 is real, while Γ12 is generally a complex coefficient.

A.3.1 Optical confinement factor Γ𝑦

In this section, we show how the normalized coupling coefficients can be conveniently
recast by introducing an optical confinement factor which takes into account the field
confinement within the active layers along the direction orthogonal to the slab.

For the sake of clarity, the reference waveguide with the reference system adopted
throughout this thesis are shown in Fig. A.1(a). We denote the 𝑥-direction (𝑦-direction)
as lateral (vertical). The 𝑧-direction is instead the longitudinal direction. We start from
Eq. (A.35a), which we divide and multiply by 𝑎 ∫𝐴 𝜖0𝑛2

slab|e0(r)|2𝐹 uniform
carrier (r)𝑑𝐴. Here,

𝐹 uniform
carrier (r) coincides with 𝐹carrier(r) along the 𝑥- and 𝑧-direction. On the other hand,

𝐹 uniform
carrier (r) implies that the active layers homogeneously extend throughout the slab

along the vertical direction. This gives

Γ11(𝑧) =
∫𝐴 |e0(r)|2𝐹carrier(r)𝑑𝐴

∫𝐴 |e0(r)|2𝐹 uniform
carrier (r)𝑑𝐴⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Γ𝑦

𝑎 ∫𝐴 𝜖0𝑛2
slab|e0(r)|2𝐹 uniform

carrier (r)𝑑𝐴

∫𝑉 𝜖0𝑛2
𝑏(r)|e0(r)|2 𝑑𝑉⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Γcarrier
11

(A.36)

The difference between 𝐹carrier(r) and 𝐹 uniform
carrier (r) is clarified by Fig. A.1(c) and (d). They

show the cross-section view of (c) the actual active waveguide, with the active layers
denoted by red, and (d) the active waveguide with the active region being homogenized
along the 𝑦-direction. 𝐹carrier(r) is unitary within the active layers in Fig. A.1(c) and
zero elsewhere. Similarly, one finds 𝐹 uniform

carrier (r) = 1 (𝐹 uniform
carrier (r) = 0) within the ho-

mogenized active region in Fig. A.1(d) (elsewhere). The structure in Fig. A.1(c) reflects
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Coupled-Bloch-mode equations: derivation

Figure A.1: (a) Reference photonic crystal waveguide and (b) corresponding dispersion
relation. The inset in (b) shows a top view of the waveguide, with the unit cell reference
planes. (c) Active photonic crystal waveguide (cross-section view). (d) Fictitious active
waveguide with homogenized active region (cross-section view).

photonic crystal lasers based on line-defect waveguides with a buried heterostructure
active region [88, 160]. From Eq. (A.36), we obtain the expression of Γ𝑦, which accounts
for the electric field confinement within the active layers along the 𝑦-direction.

Strictly speaking, we should proceed similarly on the normalized coupling coeffi-
cient Γ12 in Eq. (A.35b), thus identifying a generally complex confinement factor Γcross

𝑦 .
By doing so, wemay express the normalized coupling coefficients asΓ11(𝑧) = Γ𝑦 Γcarrier

11 (𝑧)
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A.3 – Coupling coefficients

and Γ12(𝑧) = Γcross
𝑦 Γcarrier

12 (𝑧), where

Γcarrier
11 (𝑧) =

𝑎 ∫𝐴 𝜖0𝑛2
slab|e0(r)|2𝐹 uniform

carrier (r)𝑑𝐴

∫𝑉 𝜖0𝑛2
𝑏(r)|e0(r)|2 𝑑𝑉

(A.37a)

Γcarrier
12 (𝑧) =

𝑎 ∫𝐴 𝜖0𝑛2
slab [e0,−(r) ⋅ e∗

0,+(r)] 𝐹 uniform
carrier (r)𝑑𝐴

∫𝑉 𝜖0𝑛2
𝑏(r)|e0(r)|2 𝑑𝑉

(A.37b)

Here, Γcarrier
11 (Γcarrier

12 ) is the normalized self-coupling (cross-coupling) coefficient with
the active region being homogenized along the 𝑦-direction. The confinement factors
along the vertical direction are

Γ𝑦 =
∫𝐴 |e0(r)|2𝐹carrier(r)𝑑𝐴

∫𝐴 |e0(r)|2𝐹 uniform
carrier (r)𝑑𝐴

(A.38a)

Γcross
𝑦 =

∫𝐴 [e0,−(r) ⋅ e∗
0,+(r)] 𝐹carrier(r)𝑑𝐴

∫𝐴 [e0,−(r) ⋅ e∗
0,+(r)] 𝐹 uniform

carrier (r)𝑑𝐴
(A.38b)

In principle, these confinement factors depend on frequency, as well as on 𝑧. To quan-
tify these dependencies, we have computed the confinement factors Γ𝑦 and Γcross

𝑦 by as-
suming a single active layer being 8 nm thick and placed in the middle of the waveguide
slab. The parameters of the referencewaveguide are summarized in Tab. 2.1 in Sec. 2.2.1.
The dispersion relation of the fundamental guided mode is reported in Fig. A.1(b). Here,
the inset shows a top view of the reference waveguide. The reference planes of the unit
cell adopted throughout this thesis are also indicated. The input plane is denoted by
𝑧in, while 𝑧mid corresponds to the centre. Fig. A.2 shows (a) Γ𝑦 and (b) the magnitude
of Γcross

𝑦 versus the normalized wavenumber of the reference waveguide. Each colour
corresponds to a different position 𝑧 along the waveguide unit cell, with 𝑧 = 𝑧in (blue),
𝑧 = (𝑧in + 𝑧mid)/2 (red) and 𝑧 = 𝑧mid (yellow). For the sake of comparison, Fig. A.2(c)
and (d) show, respectively, the normalized self-coupling coefficient Γcarrier

11 and the mag-
nitude of the normalized cross-coupling coefficient Γcarrier

12 . The frequency and spatial
dependence of these normalized coupling coefficients is thoroughly discussed in Chap-
ter 3. Here, we emphasize that, as compared to Γcarrier

11 and Γcarrier
12 :

• Γ𝑦 and |Γcross
𝑦 | are close to each other to a good approximation;

• they are weakly dependent on frequency and position 𝑧.

Furthermore, the phase of Γcarrier
12 (not shown in Fig. A.2) is practically zero, indepen-

dently of the frequency and position 𝑧. Therefore, we may assume Γ𝑦 and Γcross
𝑦 to be

constant and to coincide with each other. We have checked that this remains a valid
approximation if more active layers are considered. Indeed, the field is confined along
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Coupled-Bloch-mode equations: derivation

Figure A.2: (a) Confinement factor Γ𝑦 and (b) magnitude of the complex confinement
factor Γcross

𝑦 for a single active layer being 8 nm thick and placed in the middle of the
waveguide slab. (c) Normalized self-coupling coefficient Γcarrier

11 and (d) magnitude of
the normalized cross-coupling coefficient Γcarrier

12 . In each plot, the 𝑥-axis reports the
normalized wavenumber. Each colour corresponds to a different 𝑧-coordinate along the
waveguide unit cell (see the inset of Fig. A.1(b)), with 𝑧 = 𝑧in (blue), 𝑧 = (𝑧in + 𝑧mid)/2
(red) and 𝑧 = 𝑧mid (yellow).

the vertical direction by total internal reflection. Owing to the high refractive index
contrast between the cladding and slab material, this confinement is weakly dependent
on frequency and position 𝑧 as compared to confinement along the lateral direction,
which is due to the photonic band gap.

As a result, throughout this thesis we adopt the following approach [137, 139] when
computing the coupling coefficients by Eqs. (A.34a)-(A.34c):

• we evaluate Γ11 and Γ12 by assuming the material gain to be homogeneous within
the slab along the vertical direction, as if the active layers entirely filled the slab
along this direction. That is, we compute Γ11 as Γcarrier

11 and Γ12 as Γcarrier
12 ;

• we assume Γ𝑦 = Γcross
𝑦 and embed this confinement factor into the imaginary

refractive index 𝑛𝑖. Under these conditions, 𝑛𝑖 reflects the modal gain coefficient
𝑔0 = Γ𝑦𝑔mat, with

𝑛𝑖 = −1
2 (

𝑐
𝜔) Γ𝑦𝑔mat (A.39)

This approach is convenient because, for a given reference waveguide, the normalized
coupling coefficients are only computed once. One can then account for any number
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of active layers by appropriately scaling Γ𝑦.

209



210



Appendix B

Reduced coupled-Bloch-mode
equations: analytical solution

In this appendix, we focus on the reduced coupled-Bloch-mode (CBM) equations pre-
sented in Sec. 3.3. Firstly, we solve them as an initial value problem. This approach pro-
vides the Bloch modes of the perturbed photonic crystal waveguide, possibly including
active material, and the associated dispersion relation. Then, we derive the power flow
in the perturbed waveguide. Here, we highlight the impact of the dispersion relation.
Finally, we solve the reduced CBM equations as a boundary value problem. This ap-
proach provides the spatial evolution of the forward- and backward-propagating field
in a typical scattering experiment.

The reduced coupled-Bloch-mode (CBM) equations are

𝜕𝜓+(𝑧)
𝜕𝑧

= 𝑖𝜅FF𝜓+ + 𝑖𝜅FB𝑒+𝑖2𝛿𝑧𝜓− (B.1a)

−
𝜕𝜓−(𝑧)

𝜕𝑧
= 𝑖𝜅BF𝑒−𝑖2𝛿𝑧𝜓+ + 𝑖𝜅FF𝜓− (B.1b)

Here, the self- (𝜅FF) and cross-coupling coefficients (𝜅FB and 𝜅BF) depend on frequency,
as well as on the perturbation (that is, refractive index tuning and/or material gain).
However, they do not depend on position 𝑧. The detuning 𝛿 is equal to 𝜋/𝑎 − 𝑘𝑧, with
𝑎 being the lattice constant and 𝑘𝑧 the wavenumber of the Bloch modes of the refer-
ence waveguide. Finally, 𝜓+ (𝜓−) is the slowly-varying amplitude which the forward-
propagating (backward-propagating) Bloch mode of the reference waveguide acquires
within the perturbed waveguide as a result of the perturbation. These amplitudes are
generally complex.
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Reduced coupled-Bloch-mode equations: analytical solution

B.1 Initial value problem
We perform the change of variable

[
𝜓+(𝑧)
𝜓−(𝑧)]

=
[

𝑒+𝑖𝛿𝑧 0
0 𝑒−𝑖𝛿𝑧] [

̃𝑐+(𝑧)
̃𝑐−(𝑧)]

(B.2)

and subsequently turn Eqs. (B.1a) and (B.1b) into

𝜕
𝜕𝑧 [

̃𝑐+(𝑧)
̃𝑐−(𝑧)]

= 𝑖𝐻 [
̃𝑐+(𝑧)
̃𝑐−(𝑧)]

(B.3)

where the matrix 𝐻 is

𝐻 =
[

𝜅FF − 𝛿 𝜅FB

− 𝜅BF − (𝜅FF − 𝛿)]
(B.4)

By adding an initial condition, we obtain the initial value problem

𝜕
𝜕𝑧 [

̃𝑐+(𝑧)
̃𝑐−(𝑧)]

= 𝑖𝐻 [
̃𝑐+(𝑧)
̃𝑐−(𝑧)]

(B.5a)

[
̃𝑐+(0)
̃𝑐−(0)]

=
[

̃𝑐0+

̃𝑐0−
]

(B.5b)

which can be solved analytically. The solution is

[
̃𝑐+(𝑧)
̃𝑐−(𝑧)]

= 𝑀
[

𝑒+𝑖𝜆+𝑧 0
0 𝑒−𝑖𝜆+𝑧]

𝑀−1
[

̃𝑐0+

̃𝑐0−
]

(B.6)

Here, 𝜆+ is one of the two eigenvalues of the matrix 𝐻 (the other eigenvalue being
−𝜆+). It is given by

𝜆+ = ±√(𝜅FF − 𝛿)2 − 𝜅FB𝜅BF (B.7)

In the presence of optical gain, the sign of the square root is selected such that Im{𝜆+}
and Im{𝜅FF} have the same sign. The matrix 𝑀 is

𝑀 = [
𝑢11 𝑢12
𝑢21 𝑢22] (B.8)

with 𝑢1 = [𝑢11 𝑢21]𝑇 and 𝑢2 = [𝑢12 𝑢22]𝑇 being the eigenvectors of 𝐻, where 𝑇
denotes the transpose operator. Each eigenvector is determined up to a multiplicative
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B.2 – Bloch modes and disperson relation of the perturbed waveguide

constant, but the ratio between its two elements is uniquely defined. We denote by 𝑟+
(𝑟−) the ratio 𝑢21/𝑢11 (𝑢12/𝑢22)

𝑟+ =
𝑢21
𝑢11

= −
(𝜅FF − 𝛿) − 𝜆+

𝜅FB
= −

𝜅BF

(𝜅FF − 𝛿) + 𝜆+
(B.9a)

𝑟− =
𝑢12
𝑢22

= −
(𝜅FF − 𝛿) − 𝜆+

𝜅BF
= −

𝜅FB

(𝜅FF − 𝛿) + 𝜆+
(B.9b)

and reformulate the matrix 𝑀 as

𝑀 = [
𝑢11 𝑢22𝑟−
𝑢11𝑟+ 𝑢22] (B.10)

The elements 𝑢11 and 𝑢22 can be chosen freely, e.g. 𝑢11 = 𝑢22 = 1. By inserting Eqs. (B.7)
and (B.10) into Eq. (B.6), we solve the initial value problem in the unknows ̃𝑐±. Then,
by usage of Eq. (B.2), we retrieve the amplitudes 𝜓±.

B.2 Bloch modes and disperson relation of the per-
turbed waveguide

As seen in AppendixA, the electromagnetic state of the perturbed waveguide can be
represented as

[
E(r)
H(r)]

= 𝑐+(𝑧) [
e+(r)
h+(r)]

+ 𝑐−(𝑧) [
e−(r)
h−(r)]

(B.11)

Here, the electric (magnetic) fields e± (h±) are 𝑧 periodic, with the period given by the
lattice constant 𝑎. The amplitudes 𝑐± are directly related to 𝜓± by

𝑐±(𝑧) = 𝜓±(𝑧)𝑒±𝑖𝑘𝑧𝑧 (B.12)

Therefore, by usage of Eq. (B.2), one finds

[
𝑐+(𝑧)
𝑐−(𝑧)]

=
[

𝑒+𝑖 𝜋
𝑎 𝑧 0

0 𝑒−𝑖 𝜋
𝑎 𝑧] [

̃𝑐+(𝑧)
̃𝑐−(𝑧)]

(B.13)

By inserting Eq. (B.13) into Eq. (B.11), we can reformulate the electromagnetic state as

[
E(r)
H(r)]

= [
e+(r) e−(r)
h+(r) h−(r)] [

𝑒+𝑖 𝜋
𝑎 𝑧 0

0 𝑒−𝑖 𝜋
𝑎 𝑧] [

̃𝑐+(𝑧)
̃𝑐−(𝑧)]

(B.14)

We can now exploit the solution of the initial value problem obtained in Sec. B.1. By
inserting Eq. (B.6) into Eq. (B.14) and making use of Eq. (B.10), we finally obtain

[
E(r)
H(r)]

= ̃𝐹
[
ẽ+(r)

̃h+(r)]
𝑒+𝑖�̃�𝑧𝑧 + ̃𝐵

[
ẽ−(r)
h̃−(r)]

𝑒−𝑖�̃�𝑧𝑧 (B.15)
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Reduced coupled-Bloch-mode equations: analytical solution

Here, the electric (magnetic) fields ẽ± and (h̃±) are the Bloch modes of the perturbed
waveguide

ẽ±(r) = e±(r) + 𝑟±𝑒∓𝑖 2𝜋
𝑎 𝑧e∓(r) (B.16a)

h̃±(r) = h±(r) + 𝑟±𝑒∓𝑖 2𝜋
𝑎 𝑧h∓(r) (B.16b)

Each of them results from the interference of the forward- and backward-propagating
Blochmodes of the reference waveguide, with 𝑟+ and 𝑟− determining the strength of the
backward component as compared to the forward one and viceversa. The amplitudes

̃𝐹 and ̃𝐵 are related to the initial condition by

[
̃𝐹
̃𝐵] = [

𝑢11
𝑢22]

𝑇
𝑀−1

[
̃𝑐0+

̃𝑐0−
]

(B.17)

Finally, the wavenumber �̃�𝑧 is generally complex and given by

�̃�𝑧 = 𝛽eff − 𝑖
2

𝑔eff (B.18)

where the effective propagation constant 𝛽eff and net modal gain 𝑔eff are

𝛽eff = Re{𝜆+} + 𝜋
𝑎

(B.19a)

𝑔eff = −2Im{𝜆+} (B.19b)

Eqs.(B.19a) and (B.19b) define the dispersion relation of the perturbedwaveguide, which
is thoroughly discussed in Sec. 3.4.

B.3 Power flow
The time-averaged power flowing in the waveguide is defined as [53]

𝑃 (𝑧) = 1
2
Re{∫𝐴

[E(r) × H∗(r)] ⋅ ̂𝑧 𝑑𝐴} (B.20)

with𝐴 being the transverse section at position 𝑧. Here, we are assuming that the electric
field in the time-domain is

E(r, 𝑡) = Re{E(r)𝑒−𝑖𝜔𝑡} = 1
2
E(r)𝑒−𝑖𝜔𝑡 + 𝑐.𝑐. (B.21)

and similarly for the magnetic field, with 𝑐.𝑐. denoting the complex conjugate. There-
fore, by time-averaged we mean over a time interval equal to 2𝜋/𝜔.
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B.3 – Power flow

We may express the power by two equivalent formulations. In either case, we need
the orthonormality relation of the Bloch modes of the reference waveguide. From Ap-
pendixA, we may recall

1
4 ∫𝐴

(e𝜎 × h∗
𝜎′ + e∗

𝜎′ × h𝜎) ⋅ ̂z 𝑑𝐴 = 𝜎𝑃0𝛿𝜎,𝜎′ (B.22a)

𝑃0 =
𝑣𝑔

2𝑎 ∫𝑉
𝜖0𝑛2

𝑏(r)|e+(r)|2 𝑑𝑉 (B.22b)

Here, 𝛿𝜎,𝜎′ is the Kronecker delta, with 𝜎 = ± and 𝜎′ = −𝜎. 𝑣𝑔 is the group velocity in
the reference waveguide, 𝑛𝑏(r) the background refractive index and 𝑉 the volume of a
supercell.

B.3.1 Formulation I
By inserting (B.11) into Eq. (B.20) and using the orthonormality relation, we obtain

𝑃 (𝑧) = |𝑐+(𝑧)|2𝑃0⏟⏟⏟⏟⏟⏟⏟
𝑃+(𝑧)

− |𝑐−(𝑧)|2𝑃0⏟⏟⏟⏟⏟⏟⏟
𝑃−(𝑧)

(B.23)

Here, the forward- (𝑃+) and backward-propagating power (𝑃−) are coupled and gener-
ally not monotonic with position 𝑧.

The importantmessage behind Eq. (B.23) is that the forward-propagating (backward-
propagating) power is proportional to the squared magnitude of 𝑐+ (𝑐−). We compute
these powers explicitly in Sec. B.4.

B.3.2 Formulation II
Equivalently, we may insert Eq. (B.14) into Eq. (B.20). In this case, we firstly derive the
useful relations

1
4 ∫𝐴

(ẽ+ × h̃∗
+ + ẽ∗

+ × ̃h+) ⋅ ̂𝑧 𝑑𝐴 = (1 − |𝑟+|2) 𝑃0 (B.24a)

1
4 ∫𝐴

(ẽ− × h̃∗
− + ẽ∗

− × ̃h−) ⋅ ̂𝑧 𝑑𝐴 = − (1 − |𝑟−|2) 𝑃0 (B.24b)

1
4 ∫𝐴

(ẽ+ × h̃∗
− + ẽ∗

− × ̃h+) ⋅ ̂𝑧 𝑑𝐴 = 𝑒−𝑖 2𝜋
𝑎 𝑧

(𝑟∗
− − 𝑟+) 𝑃0 (B.24c)

Here, we have employed the expressions of the Blochmodes of the perturbedwaveguide
from Eqs. (B.16a) and (B.16b), as well as the orthonormality relation from Eqs. (B.22a)
and (B.22b). It is important to note that the integral in Eq. (B.24c) is generally different
from zero. This means that the Bloch modes of the perturbed waveguide are generally
not power orthogonal. We will return to the consequences in a few lines. By exploiting
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Reduced coupled-Bloch-mode equations: analytical solution

Eqs. (B.24a)-(B.24c), we may now insert Eq. (B.14) into Eq. (B.20) and express the power
as the sum of three uncoupled contributions

𝑃 (𝑧) = ̃𝑃+(𝑧) − ̃𝑃−(𝑧) + ̃𝑃cross(𝑧) (B.25)

The first two contribution are the forward- (+) and backward-propagating power (−)
of the Bloch modes of the perturbed waveguide

̃𝑃+(𝑧) = | ̃𝐹 |2𝑒𝑔eff𝑧 (1 − |𝑟+|2) 𝑃0 (B.26a)
̃𝑃−(𝑧) = | ̃𝐵|2𝑒−𝑔eff𝑧 (1 − |𝑟−|2) 𝑃0 (B.26b)

These contributions are obviously monotonic with position 𝑧 and they exponentially
increase with the net effective modal gain 𝑔eff. However, they are also scaled down by
the factor (1 − |𝑟±|2). Depending on 𝑟±, this factor might be much smaller than unity.
The third contribution is the cross power

̃𝑃cross(𝑧) = 2Re{ ̃𝐹 ̃𝐵∗𝑒2𝑖𝛽eff𝑧𝑒−𝑖 2𝜋
𝑎 𝑧(𝑟∗

− − 𝑟+)} 𝑃0 (B.27)

This contribution is periodic with position 𝑧, with the periodicity determined by the
effective propagation constant 𝛽eff. It arises because, as mentioned above, the Bloch
modes of the perturbed waveguide are generally not power orthogonal. In addition,
it should be emphasized that, in dependence of 𝑟±, the cross power is not necessarily
negligible as compared to the other two contributions.

In light of these considerations, the important message behind Eq. (B.25) is that a
larger net effective modal gain 𝑔eff does not necessarily translate into more power. In
fact, the impact of 𝑟±, as well as the cross power, should be also taken into account.

B.4 Boundary value problem
In Sec. B.1, we have solved the reduced CBM equations as an initial value problem. Here
instead we wish to solve them as a boundary value problem.

For this purpose, we take advantage of results of Sec. B.2. Eqs. (B.11) and (B.15)
are two equivalent formulations of the electromagnetic state. By comparing them, one
finds

𝑐+(𝑧) = 𝑒+𝑖 𝜋
𝑎 𝑧

( ̃𝐹 𝑒+𝑖𝜆+𝑧 + 𝑟− ̃𝐵𝑒−𝑖𝜆+𝑧) (B.28a)

𝑐−(𝑧) = 𝑒−𝑖 𝜋
𝑎 𝑧

(𝑟+ ̃𝐹 𝑒+𝑖𝜆+𝑧 + ̃𝐵𝑒−𝑖𝜆+𝑧) (B.28b)

The amplitudes ̃𝐹 and ̃𝐵 depend on the boundary conditions. We assume that the
waveguide extends from 𝑧 = 0 (input) to 𝑧 = 𝐿 (output). As boundary conditions,
we impose

𝑐+(𝑧 = 0) = ̃𝐹 + 𝑟− ̃𝐵 = 𝑐0+
(B.29a)

𝑐−(𝑧 = 𝐿) = 𝑒−𝑖 𝜋
𝑎 𝐿

(𝑟+ ̃𝐹 𝑒+𝑖𝜆+𝐿 + ̃𝐵𝑒−𝑖𝜆+𝐿) = 0 (B.29b)
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B.4 – Boundary value problem

As seen in Sec. B.3.1, the forward-propagating (backward-propagating) power is pro-
portional to |𝑐+|2 (|𝑐−|2). Therefore, the boundary conditions which we have imposed
reflect a typical scattering experiment, with power being solely injected from the input.
By solving Eqs. (B.29a) and (B.29b), we obtain

̃𝐹 =
𝑐0+

1 − 𝑟+𝑟−𝑒+2𝑖𝜆+𝐿 (B.30a)

̃𝐵 =
−𝑟+𝑐0+

𝑒+2𝑖𝜆+𝐿

1 − 𝑟+𝑟−𝑒+2𝑖𝜆+𝐿 (B.30b)

By inserting these values into Eqs. (B.28a) and (B.28b), we obtain the spatial evolution of
the forward- and backward-propagating field in the perturbed waveguide. From these,
one may easily compute the forward- and backward-propagating power in compliance
with Eq. (B.23).

As mentioned above, in practice one injects a given power from the waveguide
input. Therefore, we may directly relate 𝑐0+

to the input power 𝑃in = 𝑃+(𝑧 = 0). In
this case, from Eq. (B.23) we obtain

|𝑐0+
| =

√
𝑃in

𝑃0
(B.31)

with 𝑃0 being the normalization term given by Eq. (B.22b). Here, it should be empha-
sized that, owing to the frequency dependence of 𝑃0, a given input power results in
different values of |𝑐0+

| in dependence of the frequency. In addition, we note that the
constraint on the input power does not fix the phase of 𝑐0+

(that is, the phase of the
forward-propagating field at the waveguide input).
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Appendix C

Active Photonic Crystal Waveguides:
transmission matrix, scattering
matrix and block diagram

In this appendix, we derive the transmission and scattering matrices of photonic crys-
tal waveguides including active material. For this purpose, we exploit the analytical
solution of the reduced coupled-Bloch-mode (CBM) equations which is fully derived in
Appendix B. Finally, we derive a block diagram of the active waveguide, which further
elucidates the physics behind the mathematical expressions.

As seen in AppendixA, the electromagnetic state of a photonic crystal waveguide
with a generally complex refractive index can be represented as

[
E(r)
H(r)]

= 𝑐+(𝑧) [
e+(r)
h+(r)]

+ 𝑐−(𝑧) [
e−(r)
h−(r)]

(C.1)

Here, e± are the forward- (+) and backward-propagating (−) electric field of the guided
Bloch mode of a reference waveguide with purely real refractive index. Similarly, h±
are the magnetic fields. The amplitudes 𝑐± are given by

𝑐±(𝑧) = 𝜓±(𝑧)𝑒±𝑖𝑘𝑧𝑧 (C.2)

where 𝑘𝑧 is the wavenumber of the reference waveguide along the propagation direc-
tion 𝑧 and 𝜓± are slowly-varying amplitudes. The spatial evolution of these amplitudes
is governed by the reduced CBM equations derived in Sec. 3.3.

In the following, we simply denote the waveguide of interest (with a generally com-
plex refractive index) as active waveguide. We derive the transmission and scattering
matrix for the amplitudes 𝑐±(𝑧).

219



Active Photonic Crystal Waveguides: transmission matrix, scattering matrix and block diagram

C.1 Transmission matrix
We assume that the waveguide extends from 𝑧 = 0 (input) to 𝑧 = 𝐿 (output). We set
𝑧 = 𝐿 in Eq. (B.6), which gives

[
̃𝑐+(𝐿)
̃𝑐−(𝐿)]

= 𝑀 Λ 𝑀−1
[

̃𝑐+(0)
̃𝑐−(0)]

(C.3)

The matrix Λ is

Λ =
[

𝑒+𝑖𝜆+𝐿 0
0 𝑒−𝑖𝜆+𝐿]

(C.4)

while the matrix 𝑀 and its inverse read

𝑀 = [
𝑢11 𝑢22𝑟−
𝑢11𝑟+ 𝑢22] (C.5a)

𝑀−1 = 1
𝑢11𝑢22(1 − 𝑟+𝑟−) [

𝑢22 −𝑢22𝑟−
− 𝑢11𝑟+ 𝑢11] (C.5b)

We refer to Appendix B for details on the various quantities. In addition, we exploit
Eq. (B.13). This equation provides the relationship between the amplitudes 𝑐±(𝑧), which
we are interested in, and ̃𝑐±(𝑧), appearing in Eq. (C.3). At the input (𝑧 = 0), one finds
𝑐±(0) = ̃𝑐±(0). At the output (𝑧 = 𝐿), it turns out

[
𝑐+(𝐿)
𝑐−(𝐿)]

= Φ [
̃𝑐+(𝐿)
̃𝑐−(𝐿)]

(C.6)

where the matrix Φ reads

Φ =
[

𝑒+𝑖 𝜋
𝑎 𝐿 0

0 𝑒−𝑖 𝜋
𝑎 𝐿]

(C.7)

By combining Eq. (C.6) with Eq. (C.3), we obtain

[
𝑐+(𝐿)
𝑐−(𝐿)]

= 𝑇 [
𝑐+(0)
𝑐−(0)]

(C.8)

where the transmission matrix 𝑇 is

𝑇 = Φ 𝑀 Λ 𝑀−1 (C.9)

This is the transmission matrix of the active waveguide in the basis of the Bloch modes
of the reference waveguide. The laser cavity block diagram which we thoroughly dis-
cuss in Sec. 4.3.1 is directly based on Eq. (C.9). By carrying out the multiplications, one
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C.2 – Scattering matrix

finds the elements

𝑇11 = 1
1 − 𝑟−𝑟+

(𝑒+𝑖𝜆+𝐿 − 𝑟+𝑟−𝑒−𝑖𝜆+𝐿) 𝑒+𝑖 𝜋
𝑎 𝐿 (C.10a)

𝑇12 =
−𝑟−

1 − 𝑟−𝑟+
(𝑒+𝑖𝜆+𝐿 − 𝑒−𝑖𝜆+𝐿) 𝑒+𝑖 𝜋

𝑎 𝐿 (C.10b)

𝑇21 =
𝑟+

1 − 𝑟−𝑟+
(𝑒+𝑖𝜆+𝐿 − 𝑒−𝑖𝜆+𝐿) 𝑒−𝑖 𝜋

𝑎 𝐿 (C.10c)

𝑇22 = 1
1 − 𝑟−𝑟+

(−𝑟+𝑟−𝑒+𝑖𝜆+𝐿 + 𝑒−𝑖𝜆+𝐿) 𝑒−𝑖 𝜋
𝑎 𝐿 (C.10d)

C.2 Scattering matrix
The scattering matrix 𝑆 relates the amplitudes 𝑐± of the Bloch modes entering and
exiting the active waveguide, that is

[
𝑐−(0)
𝑐+(𝐿)]

= 𝑆 [
𝑐+(0)
𝑐−(𝐿)]

(C.11)

By applying the usual relations between the elements of a scattering and transmission
matrix [23], from Eqs. (C.10a)-(C.10d) one finds

𝑆11 =
−𝑇21
𝑇22

=
− (𝑒+2𝑖𝜆+𝐿 − 1) 𝑟+

1 − 𝑟+𝑟−𝑒+2𝑖𝜆+𝐿 𝑒−𝑖 2𝜋
𝑎 𝐿 (C.12a)

𝑆12 = 1
𝑇22

=
(1 − 𝑟+𝑟−)𝑒+𝑖𝜆+𝐿

1 − 𝑟+𝑟−𝑒+2𝑖𝜆+𝐿 𝑒+𝑖 𝜋
𝑎 𝐿 (C.12b)

𝑆21 =
det{𝑇}

𝑇22
= 𝑆12 (C.12c)

𝑆22 =
𝑇12
𝑇22

=
− (𝑒+2𝑖𝜆+𝐿 − 1) 𝑟−

1 − 𝑟+𝑟−𝑒+2𝑖𝜆+𝐿 𝑒+𝑖 2𝜋
𝑎 𝐿 (C.12d)

As seen in Sec. B.3.1, the forward- and backward-propagating power at position 𝑧 are
proportional to |𝑐+(𝑧)|2 and |𝑐−(𝑧)|2 respectively. Therefore, the squared magnitude
of 𝑆12 (or 𝑆21) represents the power transmitted through the waveguide at one end
normalized to the power injected from the other side. Similarly, the squared magnitude
of 𝑆11 (𝑆22) is the power reflected at the input (output) normalized to the power injected
from the input (output).
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Active Photonic Crystal Waveguides: transmission matrix, scattering matrix and block diagram

C.3 Block diagram
Based on Eq. (C.9), we can derive a block diagram of the active waveguide. For this
purpose, we recast the equation as

𝑇 = [Φ 𝑀] Λ [𝑀−1
] (C.13)

Such recasting leads to the following interpretation, summarized by Fig. C.1. Λ is the

Figure C.1: Block diagram of an active photonic crystal waveguide.

transmission matrix in the basis of the Bloch modes of the active waveguide. While
propagating, they remain uncoupled, because Λ is diagonal. The matrix Φ 𝑀 accounts
for the mismatch (i.e. change of basis) between the Bloch modes of the active waveg-
uide and those of the reference waveguide (used as original basis) at the right end.
Similarly, 𝑀−1 takes into account the mismatch at the left end. These matrices play the
role of equivalent dielectric interfaces between the active waveguide and the reference
waveguide, which is supposed to extend on either side.

C.3.1 Right interface
The transmission matrix describing the equivalent right interface is

𝑇𝑟 = Φ 𝑀 =
[

𝑢11𝑒+𝑖 𝜋
𝑎 𝐿 𝑢22𝑟−𝑒+𝑖 𝜋

𝑎 𝐿

𝑢11𝑟+𝑒−𝑖 𝜋
𝑎 𝐿 𝑢22𝑒−𝑖 𝜋

𝑎 𝐿]
(C.14)
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C.3 – Block diagram

The elements of the corresponding scattering matrix 𝑆𝑟 are obtained as

𝑆𝑟11
=

−𝑇𝑟21

𝑇𝑟22

= −
𝑢11
𝑢22

𝑟+ (C.15a)

𝑆𝑟12
= 1

𝑇𝑟22

= 1
𝑢22

𝑒+𝑖 𝜋
𝑎 𝐿 (C.15b)

𝑆𝑟21
=

det{𝑇𝑟}
𝑇𝑟22

= 𝑢11(1 − 𝑟+𝑟−)𝑒+𝑖 𝜋
𝑎 𝐿 (C.15c)

𝑆𝑟22
=

𝑇𝑟12

𝑇𝑟22

= 𝑟−𝑒+𝑖 2𝜋
𝑎 𝐿 (C.15d)

As already noted in Appendix B, 𝑢11 and 𝑢22 can be chosen freely, e.g. 𝑢11 = 𝑢22. There-
fore, Eq. (C.15a) reveals that 𝑟+ can be interpreted (within a phase shift of 𝜋) as the reflec-
tion coefficient of the equivalent right interface indicated in Fig. C.1. This explains why
the power contribution ̃𝑃+(𝑧) associated with the forward-propagating Bloch mode of
the active waveguide is scaled down by the factor 1 − |𝑟+|2 (see Eq. (B.26a)).

C.3.2 Left interface
The transmission matrix describing the equivalent left interface is

𝑇𝑙 = 𝑀−1 = 1
𝑢11𝑢22(1 − 𝑟+𝑟−) [

𝑢22 −𝑢22𝑟−
− 𝑢11𝑟+ 𝑢11] (C.16)

from which we compute the elements of the corresponding scattering matrix 𝑆𝑙

𝑆𝑙11
=

−𝑇𝑙21

𝑇𝑙22

= 𝑟+ (C.17a)

𝑆𝑙12
= 1

𝑇𝑙22

= 𝑢22(1 − 𝑟+𝑟−) (C.17b)

𝑆𝑙21
=

det{𝑇𝑙}
𝑇𝑟22

= 1
𝑢11

(C.17c)

𝑆𝑙22
=

𝑇𝑙12

𝑇𝑙22

= −
𝑢22
𝑢11

𝑟− (C.17d)

By choosing 𝑢11 = 𝑢22 in Eq. (C.17d), we can interpret 𝑟− (within a phase shift of 𝜋) as
the reflection coefficient of the equivalent left interface. This explains why the power
contribution ̃𝑃−(𝑧) associated with the backward-propagating Bloch mode of the active
waveguide is scaled down by the factor 1 − |𝑟−|2 (see Eq. (B.26b)).
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Appendix D

Stimulated emission rate in
slow-light photonic crystal lasers:
derivation

In this appendix, we derive in detail the stimulated emission rate to be used in the rate
equation model of photonic crystal lasers presented in Chapter 5.

We assume that the electric field in the time-domain is

E(r, 𝑡) = Re{E(r)𝑒−𝑖𝜔𝑠𝑡} = 1
2
E(r)𝑒−𝑖𝜔𝑠𝑡 + 𝑐.𝑐. (D.1)

and similarly for the magnetic field, with 𝑐.𝑐. denoting the complex conjugate. From
Poynting’s theorem, the time-averaged energy transferred per unit time and unit vol-
ume from the electromagnetic field to the active medium is [149]

⟨
𝑑𝑈
𝑑𝑡 ⟩ = 1

2
𝜖0𝜔𝑠|E(r)|2 Im{𝜒pert(r)} (D.2)

Here, 𝜖0 is the vacuum dielectric permittivity and 𝜒pert the susceptibility perturbation
due to the active medium, while ⟨⟩ denotes the time average. This average is performed
over a wave cycle, that is a time interval equal to 2𝜋/𝜔𝑠. The local stimulated emission
rate is defined as

𝑅st(r) = − 1
ℏ𝜔𝑠

⟨
𝑑𝑈
𝑑𝑡 ⟩ (D.3)

corresponding to the average generation rate of photons of energy ℏ𝜔𝑠 in a generic
point r of the active medium.

Travelling wave description
We consider a laser cavity based on a line-defect photonic crystal waveguide, as those
discussed in Chapter 4. The active region may either uniformly extend throughout the
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slab or be limited to the line-defect (see Fig. 3.7 in Sec. 3.2.1). From Eq. (A.24) in Sec. A.1,
we obtain

Im{𝜒pert(r)} = 2𝑛slab𝑛𝑖𝐹carrier(r) (D.4)

Here, 𝑛slab is the slab refractive index. 𝐹carrier(r) is the distribution function of the active
layers of quantum wells or quantum dots, which are assumed to undergo spatially uni-
form pumping. One finds 𝐹carrier = 1 (𝐹carrier = 0) within the active layers (elsewhere).
The imaginary refractive index 𝑛𝑖 reflects the material gain 𝑔mat. We are interested in
the global stimulated emission rate

𝑅st = ∫𝑉act

𝑅st(r) 𝑑𝑉act

= −
𝜖0𝑛slab𝑛𝑖

ℏ ∫𝑉act

|E(r)|2𝐹carrier(r) 𝑑𝑉act

= −
𝜖0𝑛slab𝑛𝑖

ℏ ∫
𝐿

0 ∫𝐴
|E(r)|2𝐹carrier(r) 𝑑𝐴 𝑑𝑧

(D.5)

with 𝑉act being the active region volume, 𝐿 the length of the active region and 𝐴 the
transverse section at position 𝑧. This rate corresponds to the average number of pho-
tons generated per unit time in the whole active region.

From Eq. (3.2) in Sec. 3.2, we may express the electric field as

E(r) = 𝑐+(𝑧)e+(r) + 𝑐−(𝑧)e−(r) (D.6)

Here, e± are the forward- (+) and backward-propagating (−) electric field of the guided
Bloch mode of a reference waveguide. As explained in Sec. 3.2, the active waveguide
on which the laser cavity is based is viewed as perturbed as compared to this reference
waveguide, having purely real refractive index. The perturbation is represented by
the material gain induced by carrier density. The Bloch fields e± are 𝑧 periodic, with
the period given by the lattice constant 𝑎. The complex amplitudes 𝑐±(𝑧) reflect the
spatial dependence which the Bloch fields acquire within the laser cavity at the lasing
threshold. The electric field squared magnitude is

|E(r)|2 = |𝑐+(𝑧)|2|e+(r)|2 + |𝑐−(𝑧)|2|e−(r)|
+ 𝑐+(𝑧)𝑐∗

−(𝑧) [e∗
−(r) ⋅ e+(r)] + 𝑐−(𝑧)𝑐∗

+(𝑧) [e−(r) ⋅ e∗
+(r)]

(D.7)

From Eq. (A.10a) in AppendixA, we recall the time-averaged electric field energy stored
in a supercell

𝑊𝑒 = 1
4 ∫𝑉

𝜖0𝑛2
𝑏(r)|e±(r)|2 𝑑𝑉 (D.8)

with 𝑉 being the supercell volume and 𝑛𝑏 the background refractive index. We consider
the third line of Eq. (D.5). We multiple and divide the right-hand side by the quantity
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(𝜖0𝑎 𝑛2
slab) / (4𝑊𝑒). Then, by inserting the expression of |E(r)|2 fromEq.(D.7), we obtain

𝑅st = −
4𝑊𝑒

ℏ
𝑛𝑖

𝑎 𝑛slab [∫
𝐿

0
|𝑐+(𝑧)|2Γ11(𝑧) 𝑑𝑧 + ∫

𝐿

0
|𝑐−(𝑧)|2Γ11(𝑧) 𝑑𝑧

+ ∫
𝐿

0
𝑐+(𝑧)𝑐∗

−(𝑧)Γ21(𝑧) 𝑑𝑧 + ∫
𝐿

0
𝑐−(𝑧)𝑐∗

+(𝑧)Γ12(𝑧) 𝑑𝑧]

(D.9)

Here, Γ11 and Γ12 are the normalized coupling coefficients from Eqs. (A.35a) and (A.35b)
in Sec. A.3, while Γ21 is the complex conjugate of Γ12. By recalling our discussion in
Sec. A.3.1, we may conveniently evaluate Γ11 and Γ12 by assuming the material gain
to be homogeneous within the slab along the vertical direction, as if the active layers
entirely filled the slab along this direction. In this case, 𝑛𝑖 reflects themodal gain Γ𝑦𝑔mat,
with

𝑛𝑖 = −1
2 (

𝑐
𝜔𝑠 ) Γ𝑦𝑔mat (D.10)

Here, Γ𝑦 is the optical confinement factor within the active layers along the vertical
direction (see Eq. (A.38a) in Sec. A.3.1). Thus, we may recast Eq. (D.9) as

𝑅st =
2𝑊𝑒
ℏ𝜔𝑠 (

𝑐
𝑛slab)

Γ𝑦𝑔mat

𝑎 [∫
𝐿

0
|𝑐+(𝑧)|2Γcarrier

11 (𝑧) 𝑑𝑧 + ∫
𝐿

0
|𝑐−(𝑧)|2Γcarrier

11 (𝑧) 𝑑𝑧

+ ∫
𝐿

0
𝑐+(𝑧)𝑐∗

−(𝑧)Γcarrier
21 (𝑧) 𝑑𝑧 + ∫

𝐿

0
𝑐−(𝑧)𝑐∗

+(𝑧)Γcarrier
12 (𝑧) 𝑑𝑧]

(D.11)
Here, Γcarrier

11 and Γcarrier
12 are given by Eqs. (A.37a) and (A.37b) in Sec. A.3.1, which we

recall for the sake of convenience

Γcarrier
11 (𝑧) =

𝑎 ∫𝐴 𝜖0𝑛2
slab|e0(r)|2𝐹 uniform

carrier (r)𝑑𝐴

∫𝑉 𝜖0𝑛2
𝑏(r)|e0(r)|2 𝑑𝑉

(D.12a)

Γcarrier
12 (𝑧) =

𝑎 ∫𝐴 𝜖0𝑛2
slab [e0,−(r) ⋅ e∗

0,+(r)] 𝐹 uniform
carrier (r)𝑑𝐴

∫𝑉 𝜖0𝑛2
𝑏(r)|e0(r)|2 𝑑𝑉

(D.12b)

while Γcarrier
21 is the complex conjugate of Γcarrier

12 . 𝐹 uniform
carrier (r) coincides with 𝐹carrier(r)

along the lateral and longitudinal direction. On the other hand, 𝐹 uniform
carrier (r) implies

that the active layers homogeneously extend throughout the slab along the vertical
direction.

The normalized coupling coefficients Γcarrier
11 and Γcarrier

12 are 𝑧 periodic. Therefore,
they can be expanded in a Fourier series. As thoroughly discussed in Sec. 3.2.1 and
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Figure D.1: Magnitude of the spatial harmonics of the normalized coupling coefficients
of (a) and (b) an all-active waveguide and (c) and (d) a waveguide with a BH active
region. The spatial harmonics of the self-coupling coefficient Γcarrier

11 are in (a) and (c),
those of the cross-coupling coefficient Γcarrier

12 in (b) and (d). Each color corresponds to
a different value of the wavenumber, as indicated by the legend in (a).

Sec. 3.3, one finds

Γcarrier
11 (𝑧) = ∑

𝑞
Γcarrier

11,𝑞 𝑒+𝑖𝑞 2𝜋
𝑎 𝑧 ≈ Γcarrier

11,𝑞=0⏟
ΓFF

(D.13a)

Γcarrier
12 (𝑧) = ∑

𝑞
Γcarrier

12,𝑞 𝑒+𝑖𝑞 2𝜋
𝑎 𝑧 ≈ Γcarrier

12,𝑞=1⏟
ΓFB

𝑒+𝑖 2𝜋
𝑎 𝑧 (D.13b)

Γcarrier
21 (𝑧) = ∑

𝑞
Γcarrier

21,𝑞 𝑒+𝑖𝑞 2𝜋
𝑎 𝑧 ≈ Γcarrier

21,𝑞=−1⏟
ΓBF

𝑒−𝑖 2𝜋
𝑎 𝑧 (D.13c)

with ΓBF = Γ∗
FB. For the sake of convenience, we include Fig. D.1, already discussed in

Sec. 3.2.1. As shown in the figure, the approximation in Eqs. (D.13b) becomes increas-
ingly better as the frequency approaches the band edge at 𝑘𝑧 = 𝜋/𝑎, with 𝑘𝑧 being the
wavenumber of the reference waveguide. Away from the band edge, the approximation
may become inaccurate and one should also retain the spatial average (corresponding
to 𝑞 = 0) in the Fourier series expansion of the cross-coupling coefficient Γcarrier

12 . How-
ever, this additional term would be smaller as compared to the spatial average of the
self-coupling coefficient Γcarrier

11 . Therefore, the impact of this additional term on the
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stimulated emission rate in Eq. (D.11) is expected be limited. In order to proceed ana-
lytically, in the following we employ the approximate Fourier series expansions from
Eqs. (D.13a)-(D.13c). Under this assumption, we may recast Eq. (D.11) as

𝑅st =
2𝑊𝑒
ℏ𝜔𝑠 (

𝑐
𝑛slab) Γ𝑦𝑔mat

(I′ + I′′)
𝑎

(D.14)

where I′ and I′′ are the integrals

I′ = ΓFF ∫
𝐿

0
[|𝑐+(𝑧)|2 + |𝑐−(𝑧)|2] 𝑑𝑧 (D.15a)

I′′ = 2Re{ΓFB ∫
𝐿

0
𝑐∗

+(𝑧)𝑐−(𝑧) 𝑒+𝑖 2𝜋
𝑎 𝑧 𝑑𝑧} (D.15b)

ΓFF is real and positive, while ΓFB is complex. However, we should recall from Sec. 3.2.1
our discussion on the phase of the cross-coupling coefficient Γcarrier

12 . For the choice of
a unit cell adopted throughout this thesis (see the inset of Fig. 3.8 in Sec. 3.2.1), one may
approximate the phase of Γcarrier

12 with 2𝜋
𝑎 𝑧−𝜋 (see Fig. 3.12 in Sec. 3.2.1). Thus, one finds

ΓFB = 1
𝑎 ∫𝑎

Γcarrier
12 (𝑧)𝑒−𝑖 2𝜋

𝑎 𝑧 ≈ 𝑒−𝑖𝜋⟨|Γcarrier
12 (𝑧)|⟩ (D.16)

with ⟨⟩ denoting here the spatial average. Therefore, ΓFB is real and negative to a good
approximation. The magnitude of ΓFF and ΓFB is shown in Fig. 3.15 in Sec. 3.3.

Amplitudes 𝑐±

In the following, we wish to compute the integrals in Eqs. (D.15a) and (D.15b). For this
purpose, first of all we recall the expressions of 𝑐±(𝑧) from Eqs. (3.30a) and (3.30b) in
Sec. 3.5

𝑐+(𝑧) = 𝑒+𝑖 𝜋
𝑎 𝑧

( ̃𝐹 𝑒+𝑖𝜆+𝑧 + 𝑟− ̃𝐵𝑒−𝑖𝜆+𝑧) (D.17a)

𝑐−(𝑧) = 𝑒−𝑖 𝜋
𝑎 𝑧

(𝑟+ ̃𝐹 𝑒+𝑖𝜆+𝑧 + ̃𝐵𝑒−𝑖𝜆+𝑧) (D.17b)

Here, ̃𝐹 and ̃𝐵 are the amplitudes of the forward- and backward-propagating Bloch
mode of the active waveguide on which the laser cavity is based (see Sec. 3.4). From
Eqs. (3.24a) and (3.24b) in Sec. 3.4, the complex propagation constant 𝜆+ may be ex-
pressed as

𝜆+ = (𝛽eff − 𝜋
𝑎 ) − 𝑖

2
𝑔eff (D.18)

where 𝛽eff is the effective propagation constant and 𝑔eff the effective net modal gain,
both evaluated at the lasing threshold.
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Coefficients 𝑟±

The coefficients 𝑟± are given by Eqs. (3.26a) and (3.26b) in Sec. 3.4, which we recall for
the sake of convenience

𝑟+ = −
𝜅BF

(𝜅FF − 𝛿) + 𝜆+
(D.19a)

𝑟− = −
𝜅FB

(𝜅FF − 𝛿) + 𝜆+
(D.19b)

Here, the self- (𝜅FF) and cross-coupling coefficients (𝜅FB and 𝜅BF) are generally given by
Eq. (3.19) in Sec. 3.3. Therefore, 𝑟+ and 𝑟− are complex and generally different one from
the other.

However, to simplify the calculations of the integrals in Eqs. (D.15a) and (D.15b), we
assume that any real refractive index perturbation, if present, is spatially uniform and
limited to the active region. Under this assumption, from Eq. (3.19) in Sec. 3.3 one finds

𝜅FF = (
𝜔𝑠
𝑐 ) 𝑆 [𝑖 (𝑛𝑖 − 𝑖Δ𝑛𝑏)] ΓFF (D.20a)

𝜅FB = (
𝜔𝑠
𝑐 ) 𝑆 [𝑖 (𝑛𝑖 − 𝑖Δ𝑛𝑏)] ΓFB (D.20b)

𝜅BF = (
𝜔𝑠
𝑐 ) 𝑆 [𝑖 (𝑛𝑖 − 𝑖Δ𝑛𝑏)] ΓBF (D.20c)

Here, 𝑆 is the slow-down factor and Δ𝑛𝑏 is the real refractive index perturbation. This
term accounts for refractive index variations induced by carrier density (via the linewidth
enhancement factor) and/or due to different reasons, such as structural or thermal tun-
ing. Since ΓFB is the complex conjugate of ΓBF, one finds

|𝑟+| = |𝑟−| (D.21)

In addition, since ΓFB is approximately real (see Eq. (D.16)), one also finds

𝜙+ ≈ 𝜙− (D.22)

with 𝜙+ (𝜙−) denoting the phase of 𝑟+ (𝑟−).

Boundary and oscillation conditions
To link ̃𝐹 and ̃𝐵 in Eqs. (D.17a) and (D.17b), we make us of the right mirror bound-
ary condition. To illustrate this condition, we recall by Fig. D.2 the block diagram of
the active cavity discussed in Sec. 4.3.1. 𝑇𝐿 (𝑇𝑅) is the left (right) mirror transmission

matrix in the basis of the Bloch modes of the reference waveguide. The left and right
mirror reflection coefficient are 𝑟𝐿 and 𝑟𝑅 respectively. For a detailed discussion on the
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Figure D.2: Block diagram of a photonic crystal laser with slow-light and gain-induced
distributed coupling.

group of blocks denoted by ”active region”, we refer to Sec. C.3. Here, it is sufficient to
know that Λ is the transmission matrix in the basis of the Bloch modes of the active
waveguide. Owing to the gain-induced distributed feeback associated with slow-light,
equivalent dielectric interfaces originate at the left- and right-hand side of the active
region. These interfaces account for the mismatch between the Bloch modes of the ac-
tive waveguide and those of the reference waveguide. As a result, the Bloch modes of
the active waveguide experience an equivalent right (left) mirror reflection coefficient
𝑟𝑅𝑒𝑞

(𝑟𝐿𝑒𝑞
). Thus, the boundary condition at the equivalent right mirror is

̃𝐵 [𝑒−𝑖(𝛽eff − 𝜋
𝑎 )𝐿 𝑒− 1

2 𝑔eff𝐿
] = ̃𝐹 [𝑒+𝑖(𝛽eff − 𝜋

𝑎 )𝐿 𝑒+ 1
2 𝑔eff𝐿

] 𝑟𝑅𝑒𝑞
(D.23)

We conveniently recast this condition as

̃𝐵 = ̃𝐹 [𝑒+2𝑖(𝛽eff − 𝜋
𝑎 )𝐿 𝑒+𝑔eff𝐿

] 𝑟𝑅𝑒𝑞
(D.24)

which is equivalent to Eq. (4.3a) in Sec. 4.2 under the assumption of 𝐿/𝑎 being an in-
teger. As explained therein, we make indeed this assumption and embed any possible
deviation into the phase of 𝑟𝐿 and 𝑟𝑅. The integrals in Eqs. (D.15a) and (D.15b) must be
evaluated at the lasing threshold. Therefore, in addition to Eq. (D.24), we need the laser
oscillation condition. As derived in Sec. 4.2, this is given by

𝑔eff = 1
𝐿
ln

(
1

|𝑟𝐿𝑒𝑞
||𝑟𝑅𝑒𝑞

|)
(D.25a)

2 (𝛽eff − 𝜋
𝑎 ) 𝐿 + 𝜙𝐿𝑒𝑞

+ 𝜙𝑅𝑒𝑞
= 2𝜋𝑚 (D.25b)
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where 𝜙𝐿𝑒𝑞
(𝜙𝑅𝑒𝑞

) is the phase of 𝑟𝐿𝑒𝑞
(𝑟𝑅𝑒𝑞

) and 𝑚 is an integer. We conveniently recast
Eq. (D.25a) as

𝑒𝑔eff𝐿 = 1
|𝑟𝐿𝑒𝑞

||𝑟𝑅𝑒𝑞
|

(D.26)

which will turn out to be useful in the computations below.

Computation of the integral I′

Having introduced the necessary ingredients, we can now proceed to compute the in-
tegral I′ in Eq. (D.15a). To simplify the notation, we recal from Eq. (3.36) in Sec. 3.5 the
effective detuning

𝛿eff = − (𝛽eff − 𝜋
𝑎 ) (D.27)

From Eq. (D.17a), the squared magnitude of 𝑐+(𝑧) reads

|𝑐+(𝑧)|2 = | ̃𝐹 |2 𝑒𝑔eff𝑧 + |𝑟−|2| ̃𝐵|2 𝑒−𝑔eff𝑧 + 2Re{ ̃𝐹 ̃𝐵∗ 𝑟∗
− 𝑒−2𝑖𝛿eff𝑧} (D.28)

By inserting the boundary condition from Eq. (D.24), one finds

|𝑐+(𝑧)|2 = | ̃𝐹 |2
{𝑒+𝑔eff𝑧 + |𝑟−|2|𝑟𝑅𝑒𝑞

|2 𝑒−𝑔eff(𝑧−2𝐿)

+2|𝑟−||𝑟𝑅𝑒𝑞
|𝑒+𝑔eff𝐿 cos [−2𝛿eff (𝑧 − 𝐿) − 𝜙𝑅𝑒𝑞

− 𝜙−]}
(D.29)

Similarly, from Eq. (D.17b) the squared magnitude of 𝑐−(𝑧) reads

|𝑐−(𝑧)|2 = |𝑟+|2| ̃𝐹 |2 𝑒𝑔eff𝑧 + | ̃𝐵|2 𝑒−𝑔eff𝑧 + 2Re{ ̃𝐹 ̃𝐵∗ 𝑟+ 𝑒−2𝑖𝛿eff𝑧} (D.30)

which, by using Eq. (D.24), becomes

|𝑐−(𝑧)|2 = | ̃𝐹 |2
{|𝑟+|2 𝑒+𝑔eff𝑧 + |𝑟𝑅𝑒𝑞

|2 𝑒−𝑔eff(𝑧−2𝐿)

+2|𝑟+||𝑟𝑅𝑒𝑞
|𝑒+𝑔eff𝐿 cos [−2𝛿eff (𝑧 − 𝐿) − 𝜙𝑅𝑒𝑞

+ 𝜙+]}
(D.31)

In the following, computations are carried out step by step. If not interested in these
detailed steps, the reader may directly move on to the result.

Exponential terms
In the following, we compute the contribution to the integral I′ due to those terms in
Eqs. (D.29) and (D.31) which depend exponentially on 𝑧

I′exp = | ̃𝐹 |2ΓFF ∫
𝐿

0
[(1 + |𝑟+|2) 𝑒+𝑔eff𝑧 + (1 + |𝑟−|2) |𝑟𝑅𝑒𝑞

|2 𝑒−𝑔eff(𝑧−2𝐿)
] 𝑑𝑧

= | ̃𝐹 |2ΓFF (1 + |𝑟±|2) ∫
𝐿

0
[𝑒+𝑔eff𝑧 + |𝑟𝑅𝑒𝑞

|2 𝑒−𝑔eff(𝑧−2𝐿)
] 𝑑𝑧

(D.32)
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with Eq. (D.21) being used in the second line. By employing the integrals

∫
𝐿

0
𝑒+𝑔eff𝑧 𝑑𝑧 = (𝑒+𝑔eff𝐿 − 1) /𝑔eff (D.33a)

∫
𝐿

0
𝑒−𝑔eff(𝑧−2𝐿) 𝑑𝑧 = 𝑒+𝑔eff𝐿 (𝑒+𝑔eff𝐿 − 1) /𝑔eff (D.33b)

we further develop Eq. (D.32) into

I′exp = | ̃𝐹 |2ΓFF (1 + |𝑟±|2) [(𝑒+𝑔eff𝐿 − 1) + |𝑟𝑅𝑒𝑞
|2𝑒+𝑔eff𝐿 (𝑒+𝑔eff𝐿 − 1)] /𝑔eff

= | ̃𝐹 |2ΓFF (1 + |𝑟±|2) (𝑒+𝑔eff𝐿 − 1) [1 + |𝑟𝑅𝑒𝑞
|2𝑒+𝑔eff𝐿

] /𝑔eff
(D.34)

Finally, by exploiting Eq. (D.26), we obtain

I′exp = | ̃𝐹 |2ΓFF

(1 + |𝑟±|2) (1 − |𝑟𝐿𝑒𝑞
||𝑟𝑅𝑒𝑞

|) (|𝑟𝐿𝑒𝑞
| + |𝑟𝑅𝑒𝑞

|)
𝑔eff|𝑟𝑅𝑒𝑞

||𝑟𝐿𝑒𝑞
|2 (D.35)

Cosinusoidal terms
In the following, we compute the contribution to the integral I′ due to those terms in
Eqs. (D.29) and (D.31) which depend cosinusoidally on 𝑧

I′cos = 2| ̃𝐹 |2ΓFF|𝑟±||𝑟𝑅𝑒𝑞
| 𝑒+𝑔eff𝐿

{∫
𝐿

0
cos [−2𝛿eff (𝑧 − 𝐿) − 𝜙𝑅𝑒𝑞

− 𝜙−] 𝑑𝑧

+ ∫
𝐿

0
cos [−2𝛿eff (𝑧 − 𝐿) − 𝜙𝑅𝑒𝑞

+ 𝜙+] 𝑑𝑧}

(D.36)

Firstly, we compute the integral

∫
𝐿

0
cos [−2𝛿eff (𝑧 − 𝐿) − 𝜙𝑅𝑒𝑞

+ 𝜙] 𝑑𝑧 =
sin(−𝜙𝑅𝑒𝑞

+ 𝜙) − sin(𝜙𝐿𝑒𝑞
+ 𝜙)

−2𝛿eff
(D.37)

where we have exploited Eq. (D.25b). Then, by using this integral, as well as Eq. (D.26),
we further develop Eq. (D.36) into

I′cos = | ̃𝐹 |2ΓFF
|𝑟±|

−|𝑟𝐿𝑒𝑞
|𝛿eff [sin(−𝜙𝑅𝑒𝑞

− 𝜙−) − sin(𝜙𝐿𝑒𝑞
− 𝜙−)

+ sin(−𝜙𝑅𝑒𝑞
+ 𝜙+) − sin(𝜙𝐿𝑒𝑞

+ 𝜙+)]

(D.38)

This result may be further simplified by recalling that 𝜙+ ≈ 𝜙− (see Eq.(D.22)). Thus,
by denoting 𝜙+ and 𝜙− by 𝜙±, one finds

I′cos ≈ 2| ̃𝐹 |2ΓFF

|𝑟±| cos (𝜙±) [sin(𝜙𝐿𝑒𝑞) + sin(𝜙𝑅𝑒𝑞)]
|𝑟𝐿𝑒𝑞

|𝛿eff
(D.39)
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Result
The integral I′ to be used in Eq. (D.14) is

I′ = ΓFF ∫
𝐿

0
[|𝑐+(𝑧)|2 + |𝑐−(𝑧)|2] 𝑑𝑧 = I′exp + I′cos (D.40)

Here, I′exp (I′cos) reflects those terms in the expressions of |𝑐+(𝑧)|2 and |𝑐−(𝑧)|2 which
depend exponentially (cosinusoidally) on 𝑧. I′exp and I′cos are given by Eqs. (D.35) and
(D.39) respectively.

Computation of the integral I′′

In the following, we are interested in computing the integral I′′ in Eq. (D.15b). From
Eqs. (D.17a) and (D.17b), one finds

𝑐∗
+(𝑧)𝑐−(𝑧) = 𝑒−𝑖 2𝜋

𝑎 𝑧
(𝑟+| ̃𝐹 | 𝑒+𝑔eff𝑧 + 𝑟∗

−| ̃𝐵|2 𝑒−𝑔eff𝑧

+ ̃𝐹 ∗ ̃𝐵 𝑒+2𝑖𝛿eff𝑧 + 𝑟∗
− ̃𝐵∗𝑟+ ̃𝐹 𝑒−2𝑖𝛿eff𝑧)

(D.41)

By inserting the boundary condition from Eq. (D.24), we obtain

𝑐∗
+(𝑧)𝑐−(𝑧) = 𝑒−𝑖 2𝜋

𝑎 𝑧| ̃𝐹 |2
[𝑟+ 𝑒+𝑔eff𝑧 + 𝑟∗

−|𝑟𝑅𝑒𝑞
|2 𝑒−𝑔eff(𝑧−2𝐿)

+ 𝑟𝑅𝑒𝑞
𝑒+2𝑖𝛿eff(𝑧−𝐿)𝑒+𝑔eff𝐿 + 𝑟∗

−𝑟+𝑟∗
𝑅𝑒𝑞

𝑒−2𝑖𝛿eff(𝑧−𝐿)𝑒+𝑔eff𝐿
]

(D.42)

In the following, computations are carried out step by step. If not interested in these
detailed steps, the reader may directly move on to the result.

Exponential terms
In the following, we compute the contribution to the integral I′′ due to those terms in
Eq. (D.42) whose dependence on 𝑧 is governed by exponentials with real argument

I′′
exp = 2| ̃𝐹 |2Re{ΓFB [𝑟+ ∫

𝐿

0
𝑒+𝑔eff𝑧 𝑑𝑧 + 𝑟∗

−|𝑟𝑅𝑒𝑞
|2

∫
𝐿

0
𝑒−𝑔eff(𝑧−2𝐿) 𝑑𝑧]} (D.43)

By exploiting the integrals from Eqs. (D.33a) and (D.33b), we obtain

I′′
exp = 2| ̃𝐹 |2Re{ΓFB [𝑟+ (𝑒+𝑔eff𝐿 − 1) + 𝑟∗

−|𝑟𝑅𝑒𝑞
|2𝑒+𝑔eff𝐿 (𝑒+𝑔eff𝐿 − 1)] /𝑔eff}

= 2| ̃𝐹 |2 (𝑒+𝑔eff𝐿 − 1)
𝑔eff

Re{ΓFB (𝑟+ + 𝑟∗
−|𝑟𝑅𝑒𝑞

|2𝑒+𝑔eff𝐿
)}

(D.44)
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By using Eq. (D.26), we further develop Eq. (D.44) into

I′′
exp = 2| ̃𝐹 |2

1 − |𝑟𝐿𝑒𝑞
||𝑟𝑅𝑒𝑞

|

|𝑟𝑅𝑒𝑞
||𝑟𝐿𝑒𝑞

|𝑔eff
Re

{
ΓFB (

𝑟+ + 𝑟∗
−

|𝑟𝑅𝑒𝑞
|

|𝑟𝐿𝑒𝑞
|)}

= 2| ̃𝐹 |2
1 − |𝑟𝐿𝑒𝑞

||𝑟𝑅𝑒𝑞
|

|𝑟𝑅𝑒𝑞
||𝑟𝐿𝑒𝑞

|𝑔eff
|ΓFB||𝑟±|Re

{
𝑒+𝑖𝜙FB

(
𝑒+𝑖𝜙+ + 𝑒−𝑖𝜙−

|𝑟𝑅𝑒𝑞
|

|𝑟𝐿𝑒𝑞
|)}

(D.45)

where 𝜙FB denotes the phase of ΓFB. Finally, by further step, one finds

I′′
exp = 2| ̃𝐹 |2|ΓFB|

|𝑟±| (1 − |𝑟𝐿𝑒𝑞
||𝑟𝑅𝑒𝑞

|) [|𝑟𝐿𝑒𝑞
| cos (𝜙FB + 𝜙+) + |𝑟𝑅𝑒𝑞

| cos (𝜙FB − 𝜙−)]
𝑔eff|𝑟𝑅𝑒𝑞

||𝑟𝐿𝑒𝑞
|2

(D.46)
This result may be further simplified by recalling that the phase of ΓFB is approximately
equal to −𝜋 (see Eq. (D.16)) and that 𝜙+ is approximately equal to 𝜙− (see Eq. (D.22)).
Thus, one finds

I′′
exp ≈ −2| ̃𝐹 |2|ΓFB|

|𝑟±| cos (𝜙±) (1 − |𝑟𝐿𝑒𝑞
||𝑟𝑅𝑒𝑞

|) (|𝑟𝐿𝑒𝑞
| + |𝑟𝑅𝑒𝑞

|)
𝑔eff|𝑟𝑅𝑒𝑞

||𝑟𝐿𝑒𝑞
|2 (D.47)

Cosinusoidal terms
In the following, we compute the contribution to the integral I′′ due to those terms in
Eq. (D.42) whose dependence on 𝑧 is governed by exponentials with imaginary argu-
ment

I′′
cos = 2| ̃𝐹 |2 𝑒+𝑔eff𝐿Re{ΓFB [𝑟𝑅𝑒𝑞 ∫

𝐿

0
𝑒+2𝑖𝛿eff(𝑧−𝐿) 𝑑𝑧

+ 𝑟∗
−𝑟+𝑟∗

𝑅𝑒𝑞 ∫
𝐿

0
𝑒−2𝑖𝛿eff(𝑧−𝐿) 𝑑𝑧]}

(D.48)

The equation can be recast as

I′′
cos = 2| ̃𝐹 |2|ΓFB||𝑟𝑅𝑒𝑞

| 𝑒+𝑔eff𝐿
{∫

𝐿

0
cos [+2𝛿eff(𝑧 − 𝐿) + 𝜙FB + 𝜙𝑅𝑒𝑞] 𝑑𝑧

+ |𝑟±|2
∫

𝐿

0
cos [−2𝛿eff(𝑧 − 𝐿) + 𝜙FB − 𝜙𝑅𝑒𝑞

+ 𝜙+ − 𝜙−] 𝑑𝑧}

(D.49)
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where 𝜙FB denotes the phase of ΓFB. To simplify the final result, we recall that 𝜙FB ≈ −𝜋
(see Eq. (D.16)) and that 𝜙+ ≈ 𝜙− (see Eq. (D.22)). Therefore, we may write

I′′
cos ≈ −2| ̃𝐹 |2|ΓFB||𝑟𝑅𝑒𝑞

| 𝑒+𝑔eff𝐿
{∫

𝐿

0
cos [+2𝛿eff(𝑧 − 𝐿) + 𝜙𝑅𝑒𝑞] 𝑑𝑧

+ |𝑟±|2
∫

𝐿

0
cos [−2𝛿eff(𝑧 − 𝐿) − 𝜙𝑅𝑒𝑞] 𝑑𝑧}

= −2| ̃𝐹 |2|ΓFB||𝑟𝑅𝑒𝑞
| (1 + |𝑟±|2) 𝑒+𝑔eff𝐿

∫
𝐿

0
cos [−2𝛿eff(𝑧 − 𝐿) − 𝜙𝑅𝑒𝑞] 𝑑𝑧

(D.50)

By using the integral from Eq. (D.37), as well as Eq. (D.26), one finally finds

I′′
cos ≈ −| ̃𝐹 |2|ΓFB|

(1 + |𝑟±|2) [sin(𝜙𝐿𝑒𝑞) + sin(𝜙𝑅𝑒𝑞)]
|𝑟𝐿𝑒𝑞

|𝛿eff
(D.51)

Result
The integral I′′ to be used in Eq. (D.14) is

I′′ = 2Re{ΓFB ∫
𝐿

0
𝑐∗

+(𝑧)𝑐−(𝑧) 𝑒+𝑖 2𝜋
𝑎 𝑧 𝑑𝑧} = I′′

exp + I′′
cos (D.52)

Here, I′′
exp (I′′

cos) reflects those terms in the expression of 𝑐∗
+(𝑧)𝑐−(𝑧) whose dependence

on 𝑧 is governed by exponentials with real (imaginary) argument. I′′
exp and I

′′
cos are given

by Eqs. (D.47) and (D.51) respectively.

Forward field at the right mirror
As seen above, I′ and I′′ in Eq. (D.14) are proportional to | ̃𝐹 |2. The amplitude of the
forward-propagating electric field on the left-hand side of the right mirror (𝑧 = 𝐿 in
Fig. D.2) is

ℰ+
𝜔𝑠

(𝐿, 𝑡) = Re{𝑐+(𝐿)𝑒−𝑖𝜔𝑠𝑡} = 1
2

𝑐+(𝐿)𝑒−𝑖𝜔𝑠𝑡 + 𝑐.𝑐. (D.53)

In the following, we define the complex field

𝒜 +
𝜔𝑠

= 1
2

𝑐+(𝐿) (D.54)

We are interested in relating |𝒜 +
𝜔𝑠

|2 to | ̃𝐹 |2. For this purpose, from Eq.(D.29) we obtain

|𝑐+(𝐿)|2 = | ̃𝐹 |2 𝑒+𝑔eff𝐿
[1 + |𝑟−|2|𝑟𝑅𝑒𝑞

|2 + 2|𝑟−||𝑟𝑅𝑒𝑞
| cos(𝜙𝑅𝑒𝑞

+ 𝜙−)]

= | ̃𝐹 |2 𝑒+𝑔eff𝐿
|1 + 𝑟𝑅𝑒𝑞

𝑟−|
2

= | ̃𝐹 |2 |1 + 𝑟𝑅𝑒𝑞
𝑟−|

2

|𝑟𝐿𝑒𝑞
||𝑟𝑅𝑒𝑞

|

(D.55)
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with Eq. (D.26) being used in the last step. Finally, by combining Eqs. (D.55) and (D.54),
one finds

| ̃𝐹 |2 =
4|𝑟𝐿𝑒𝑞

||𝑟𝑅𝑒𝑞
|

|1 + 𝑟𝑅𝑒𝑞
𝑟−|

2 |𝒜
+
𝜔𝑠|

2
(D.56)

Global stimulated emission rate
Weare ready to derive the global stimulated emission rate to be used in the rate equation
model presented in Chapter 5. By inserting Eqs. (D.40) and (D.52) into Eq. (D.14) and
employing the expression of | ̃𝐹 |2 from Eq. (D.56), we obtain

𝑅st =
8𝑊𝑒
ℏ𝜔𝑠 (

𝑐
𝑛slab) Γ𝑦𝑔mat

(𝜉exp + 𝜉cos)
𝑎 |𝒜

+
𝜔𝑠|

2
(D.57)

Here, 𝜉exp is given by

𝜉exp =
|𝑟𝐿𝑒𝑞

||𝑟𝑅𝑒𝑞
|

|1 + 𝑟𝑅𝑒𝑞
𝑟−|

2 (I′exp + I′′
exp)

= ΓFF [1 + |𝑟±|2 − 2
|ΓFB|
ΓFF

|𝑟±| cos (𝜙±)]
(1 − |𝑟𝐿𝑒𝑞

||𝑟𝑅𝑒𝑞
|) (|𝑟𝐿𝑒𝑞

| + |𝑟𝑅𝑒𝑞
|)

𝑔eff|𝑟𝐿𝑒𝑞
| |1 + 𝑟𝑅𝑒𝑞

𝑟−|
2

(D.58)
while 𝜉cos reads

𝜉cos =
|𝑟𝐿𝑒𝑞

||𝑟𝑅𝑒𝑞
|

|1 + 𝑟𝑅𝑒𝑞
𝑟−|

2 (I′cos + I′′
cos)

= ΓFF [2|𝑟±| cos (𝜙±) −
|ΓFB|
ΓFF

(1 + |𝑟±|2)]

|𝑟𝑅𝑒𝑞
| [sin(𝜙𝐿𝑒𝑞) + sin(𝜙𝑅𝑒𝑞)]

𝛿eff |1 + 𝑟𝑅𝑒𝑞
𝑟−|

2

(D.59)
Strictly speaking, Eq. (D.57) only applies in the continuous wave limit, i.e. for time-
harmonic fields oscillating at the lasing angular frequency 𝜔𝑠 (see Eqs.(D.1) and (D.53)).
However, it is common practice [167] to extend its application to the case of fields with
a slowly-varying time-domain envelope

ℰ+(𝐿, 𝑡) = 𝒜 +(𝑡) 𝑒−𝑖𝜔𝑠𝑡 + 𝑐.𝑐. (D.60)
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Therefore, we may replace 𝒜 +
𝜔𝑠

with the slowly-varying envelope 𝒜 +(𝑡) and let the
material gain vary with time. By assuming the material gain to be linear with the time-
dependent carrier density 𝑁(𝑡), the global stimulated emission rate becomes

𝑅st(𝑡) =
8𝑊𝑒
ℏ𝜔𝑠 (

𝑐
𝑛slab) Γ𝑦𝑔𝑁 [𝑁(𝑡) − 𝑁tr]

(𝜉exp + 𝜉cos)
𝑎 |𝒜 +(𝑡)|

2 (D.61)

where 𝑔𝑁 is the differential gain and 𝑁tr the transparency carrier density. As already
mentioned, this rate corresponds to the average number of photons generated per unit
time inside the laser.

Without gain-induced distributed feedback
It is instructive to derive Eq. (D.61) in the absence of gain-induced distributed feedback
associated with slow-light.

In this limiting case, one finds ΓFB = 0, implying 𝑟± = 0 (see Eqs. (D.19a) and
(D.19b)). Therefore, 𝜉cos is identically equal to zero. On the other hand, 𝑟± = 0 im-
plies that 𝑟𝐿𝑒𝑞

and 𝑟𝑅𝑒𝑞
are reduced, respectively, to 𝑟𝐿 and 𝑟𝑅 (see Eqs. (4.9) and (4.10)

in Sec. 4.3.1). In fact, in the absence of distributed feedback the equivalent dielectric
interfaces in Fig. D.2 simply disappear. Thus, 𝜉exp is reduced to

𝜉exp = ΓFF
(1 − |𝑟𝐿||𝑟𝑅|) (|𝑟𝐿| + |𝑟𝑅|)

𝑔eff|𝑟𝐿|
(D.62)

Without distributed feedback, the effective net modal gain reads

𝑔eff = 𝑆 (ΓFFΓ𝑦𝑔mat𝑠 − 𝛼1) (D.63)

with the disorder-induced backscattering loss being neglected. Here, 𝑆 = 𝑛𝑔/𝑛slab is
the slow-down factor, with 𝑛𝑔 being the group index. 𝑔mat𝑠 is the material gain at the
lasing threshold, while 𝛼1 accounts for the disorder-induced loss due to coupling with
radiation modes [117]. It is convenient to introduce the quantity

Φ(𝑡) =
8𝑊𝑒
ℏ𝜔𝑠

𝑆
ΓFF

𝜉
𝑎 |𝒜 +(𝑡)|

2

= 1
2

1
ℏ𝜔𝑠

(1 − |𝑟𝐿||𝑟𝑅|) (|𝑟𝐿| + |𝑟𝑅|)

𝑎 |𝑟𝐿| (ΓFFΓ𝑦𝑔mat𝑠 − 𝛼1)
|𝒜 +(𝑡)|

2
∫𝑉

𝜖0𝑛2
𝑏(r)|e±(r)|2 𝑑𝑉

(D.64)

With this definition, the global stimulated emission rate from Eq. (D.61) is reduced to

𝑅st(𝑡) = (
𝑐
𝑛𝑔 ) ΓFFΓ𝑦𝑔𝑁 [𝑁(𝑡) − 𝑁tr] Φ(𝑡) (D.65)
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Formally, this is the familiar expression of the stimulated emission rate employed in
conventional rate equation models [23], with Φ(𝑡) clearly playing the role of the photon
number. Furthermore, the total optical confinement factor is ΓFFΓ𝑦. In order to exactly
mimic the formulation of [23], we may define the mode volume

𝑉Φ =
𝑉act

ΓFFΓ𝑦
(D.66)

and introduce the normalized stimulated emission rate

�̄�st(𝑡) =
𝑅st(𝑡)
𝑉act

= (
𝑐
𝑛𝑔 ) 𝑔𝑁 [𝑁(𝑡) − 𝑁tr]

Φ(𝑡)
𝑉Φ

(D.67)

with Φ(𝑡)/𝑉Φ being the photon density. �̄�st(𝑡) is the average number of carriers per unit
time undergoing stimulated recombination, normalized to the active region volume𝑉act.
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