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Summary

Artificial Intelligence applications are experiencing a disruptive expansion in many
relevant aspects of our life thanks to the development of even better performing Deep
Neural Networks (DNNs). However, along with higher performance, AI models are
characterized by high complexity and opaqueness, i.e., they do not allow understand-
ing the reasoning behind their automatic decision-making process. This widely limits
their applicability and opens to a wide range of problems in many sensible contexts, e.g.
health, transportation, security, and law. From one side, it is very hard to interpret the
decision-making process of AI models both at the local and global levels. Furthermore,
it is even harder to assess the reliability of their predictions over-time, e.g. because of
the presence of concept-drift. Ignoring just one of these aspects may have very harsh
consequences in real-life settings where it is supposed that users, both expert, and non-
expert, should trust the decisions taken by ”smart” platforms and devices. The evident
complexity and relevance of these issues have led to the birth of a new branch of re-
search, namely Explainable Artificial Intelligence (xAI).

In the literature, these challenges are faced separately and often without taking into
account the latent knowledge contained in the deeper layers of the DNNs. Instead, we
claim that these issues are part of the same big challenge: theModel Reliability Manage-
ment. For these reasons, we aim to address these challenges by proposing (i) a unified
model-aware strategy for the explanation of deep neural networks at prediction-local
and model-global level, and (ii) a unified model-aware assessment framework for the
management of models’ performance degradation over-time.

First, the prediction-local and model-global explainability has been addressed by in-
troducing a new explanation framework tailored to Deep Neural Networks. We intro-
duce new unsupervised mining strategies to extract and analyze the inner knowledge
contained in multiple deep layers of different models employed in different contexts,
i.e. image and textual Machine Learning tasks. The explanations produced by the pro-
posed framework consist of innovative quantitative indicators and ad-hoc qualitative
visual/textual information. These explanations are developed to be easily understand-
able by humans enabling both expert and non-expert users to better understand and to
dig into the black-box decision-making process. Also, the proposed explanation frame-
work has been developed to adapt to as many alternative models as possible going from
Convolutional Networks to complex Natural LanguageModels like BERT. The proposed
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local and global explanations have been validated on diverse image and textual classifi-
cation tasks and exploiting very different state-of-the-art deep architectures, i.e. VGG16,
VGG19, InceptionV3, InceptionResNetV2, BERT, and LSTM.We showwith these exper-
iments that the proposed framework can be easily adapted to several use-cases and that
we are able to effectively identify misleading patterns in the prediction process. Also,
we provide a complete comparison of our methodology w.r.t. the current state-of-the-
art and we quantitatively validate our solution collecting feedbacks from human users
through an online survey. Our explanations have been considered more interpretable
concerning the compared methods in 75% of the cases.

Then, assessing and managing the quality of the model’s outcomes over-time re-
quires dealing with the management of concept drift. To address this challenge we
introduce a new Concept Drift Management framework that allows to continuously
monitor the presence of drifting distributions of data that may affect the performance
of the predictive models deployed in production systems. With this framework we aim
to introduce a new level of model interpretability, addressing the current limitations of
explanation frameworks that do not take into account over-time performance degrada-
tion. The framework is based on an unsupervised and scalable strategy that measures
the drift of newly incoming data concerning the knowledge of the model at the training
time. As it is unsupervised it does not require any prior knowledge about the ground-
truth of newly collected data. Also, we introduced a new definition of model degrada-
tion that quantifies the per-class amount of performance reduction. Furthermore, the
proposed methodology is very general and it can be applied to several different use-
cases and predictive models: The proposed framework has been tested on very diverse
deep models, e.g. Doc2Vec, VGG16, and BERT, tailored to unstructured data domains,
i.e. images and texts. We show that our methodology is able to detect the presence of
drift already when just 10% of data is drifting in the window of analysis. Finally, we
demonstrate that our methodology can be horizontally distributed and it can linearly
scale managing millions of input samples in the order of few minutes.
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Chapter 1

Introduction

Artificial Intelligence applications are experiencing a disruptive expansion in many
relevant aspects of our life. From Industry 4.0 to smart devices, we are surrounded by de-
cisions taken by intelligent algorithms [65, 3, 77, 33, 57]. Deep Neural Networks (DNNs)
are at the root of this revolution. DNN models are rapidly boosting the evolution of
many Artificial Intelligence tasks such as visual and textual classification [38], image
captioning [35], question answering [68], sentiment analysis [82]. There is no doubt that
these models brought a significant improvement to the accuracy of these tasks. How-
ever, along with higher performance, AI models are characterized by high complexity
and opaqueness, i.e., they do not allow understanding the reasoning behind their au-
tomatic decision-making process. This widely limits their applicability and opens to a
wide range of problems in many sensible contexts, e.g. health, transportation, security,
and law [60, 21, 104, 6]. From one side, it is very hard to interpret the decision-making
process of AI models both at the local and global levels [69, 1, 42, 22, 99]. Furthermore,
it is even harder to assess the reliability of their predictions over-time, e.g. because of
the presence of concept-drift [28, 9, 103, 74]. Ignoring just one of these aspects may
have very harsh consequences in real-life settings where it is supposed that users, both
expert, and non-expert, should trust the decisions taken by ”smart” platforms and de-
vices. The evident complexity and relevance of these issues have led to the birth of a
new branch of research, namely Explainable Artificial Intelligence (xAI) [5, 32].

In our life, there are many examples where AI models failed in their tasks with serious
consequences in some cases. As a motivating example, let us consider a social network
moderated by a deep learning model that has been trained to recognize whether a new
post is in contrast with the policy of the platform. The model is trained to recognize if
the content of a post contains inappropriate content (e.g., insults, discriminating lan-
guage). For each new post, it performs a prediction and it is eventually censored. The
problem is that, in presence of predictive biases, a clean comment may be labeled as in-
appropriate. Table 1.1 shows an example of misleading predictions in this context. We
obtained these results by training an LSTM model to recognize if a textual comment
contains Clean or Toxic language. More details on this in Chapter 7. Both sentences are
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Introduction

Sentence 𝑃 (𝑇 𝑜𝑥𝑖𝑐)
Politician-1 is an awesome man 0.17
Politician-1 is an intellectual 0.89

Table 1.1: Misleading prediction example of a clean/toxic comment classification. The
surname of a well-know politician is anonymized.

expressing clean language. Indeed, the phrases contain the surname of a well-known
politician (anonymized for privacy) and positive adjectives. However, the predictions
are contradictory. As a consequence, the reliability and the fairness of the model are
compromised. Similar reasoning can be extended to other domains even more critical,
e.g. self-driving cars. These behaviors cause ethical and technical issues to different ty-
pologies of users [52]. Developers who are developing AI models need to understand
the causes of misleading behaviors to fix them before deployment. Yet, managers, who
are legally responsible for the services, may decide not to use these new technologies
because of their poor interpretability avoiding strong juridical consequences. Finally,
the end-users have the right to understand and trust the automatic decisions taken by
the platform. Indeed, if a user does not trust a new technology he would not use it [91].

The opaque nature of the deep neural networks does not permit understanding the
causes behind the decision-making process. This opens to new wide challenges associ-
ated with different levels of transparency:

• Challenge 1 - Local Level Explainability: Understanding the reasons that cause
local decisions.

• Challenge 2 - Global Level Explainability: Understanding if the presence of com-
mon input patterns is affecting the prediction process at a global level.

• Challenge 3 - Over-Time Reliability: Assessing the performance of the model over-
time in absence of ground truth labels. Indeed, even if errors are not occurring at
the time of model deployment, they can still occur in the future, e.g. in presence
of concept-drift.

In the literature, these challenges are faced separately. Several explanation frameworks
both model-agnostic and domain-specific are available. Model-agnostic approaches [69,
47] can be applied to any predictive model and task, proposing visual and numerical
explanations. However, being model-agnostic is at the same time an advantage and a
limitation since the explanation process is approximated, i.e. they can not mine the
knowledge contained in the inner layers of the model. On the other hand, domain-
specific solutions [76, 64, 79], exploit models’ knowledge but are often tailored to spe-
cific deep learning architectures and data domains. Also, they are usually able to provide
prediction-local explanations only. There are few solutions for global explanations, e.g.
[69, 47, 79], and often they apply to specific data domains and/or models. Furthermore,
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the current trends in xAI do not include the assessment of model performance over-
time, e.g. due to the presence of concept drift, as a transparency requirement. Also, the
current literature on concept-drift management [28, 55, 67, 11, 30, 74] does not propose
a unified framework for handling different ML/AI architectures and data domains.

We claim that these problems are part of one big challenge, namelyModel Reliability
Management. So, we aim to address these challenges by proposing (i) a unified model-
aware strategy for the explanation of deep neural networks at prediction-local and model-
global level, and (ii) a unified model-aware assessment framework for the management of
models’ performance degradation over-time.

In this work, we focus on models applied to unstructured information only, i.e. vi-
sual and textual data. All the proposed strategies in this work exploit the knowledge of
the models to produce their results. We aim at providing prediction-local, class-based
model-global, and over-time predictive performance explanations of AI models.
In the prediction-local explanation process, we analyze interpretable features extracted
through a new unsupervised mining process of the inner layers of the models. There-
fore, we measure the influence of the features by computing two new indexes, i.e. the
normalized Perturbation Influence Relation (nPIR) and the normalized Perturbation Influ-
ence Relation Precision (nPIRP). The explanations are proposed to the users with both
visual and numerical reports. A preliminary version of this work has been published in
[98, 99].
The class-based global-explanations are then computed by aggregating the information
extracted from a set of local ones. Accordingly to the data domain, the global explana-
tions are computed and presented with different strategies. For visual data, the report
summarizes the most influential visual patterns, given a set of locally explained images.
Instead, for textual data, the report computes the Global Absolute Influence and the Rel-
ative Absolute Influences of each input feature, given a set of locally explained textual
documents.
Instead, to assess the predictive performance over-time we introduced a new scalable
unsupervised approach to measure the shifts of data distribution. Our methodology is
based on a new scalable index, namely Descriptor Silhouette, and a new definition of
model performance degradation [100, 19]. Thanks to this approach we can quantify
how much the performance of a predictive model is degrading over-time. Also, we aim
to achieve a solution not tailored to a specific use-case or application domain, nor to
a specific data type. All the explanations are human-readable at all levels. Finally, we
show how our solutions can be extended to different use cases describing the strategies
that have to be exploited accordingly to the input data type.

The main contributions of this work can be summarized in:

• The design of a novel explanation process that exploits the inner knowledge of
multiple layers of AI models, i.e. DCNNs and NLP models.
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• The introduction of two new indexes, i.e., nPIR and nPIRP, to efficiently quan-
tify both the influence and the precision of the input features concerning local
predictions.

• The computation of informative class-based model-global explanations.

• The unsupervised extraction of interpretable features easily understandable by
humans.

• The introduction of a novel unsupervised and scalable methodology to assess
the model’s performance over-time based on a new index, i.e., the Descriptor
Silhouette.

• Extensive experimental validation of our solutions on state-of-the-art AI models,
i.e., VGG16, VGG19, InceptionV3, InceptionResNetV2, BERT, and LSTM.

In Chapter 2 we introduce and discuss the currently available literature. Chapter 3
provides a methodological overview of the proposed prediction-local and class-based
explanation process. Chapter 4 describes how the explanation process is adapted to the
visual data domain by explaining Deep Convolutional Neural Networks (DCNN). In
Chapter 5 we provide the experimental validation of the explanation process for DCNN.
Chapter 6 describes how the explanation process is customized to address natural lan-
guage processing tasks by explaining models like BERT and Long Short-Term Memory
networks. In Chapter 7 we provide the experimental validation of the explanation pro-
cess for NLP models. Chapter 8 describes in detail our solution to models’ predictive
performance assessment over-time and provides extensive experimental validation of
the proposed strategy. Chapter 9 concludes the dissertation.

1.1 Main Achievements
In this Section the main achievements obtained by the Ph.D. candidate will be dis-

cussed. The candidate is co-author of 14 published articles with proceedings covering
several research areas such as Applied Machine Learning, Explainable Artificial Intelli-
gence, Data Mining, and Big Data Management and Analytics. In particular, this docu-
ment is the result of some of the achievements that the candidate obtained in the three
years.

A preliminary version of the explanation framework presented in this thesis has
been firstly published in [99] for which a pre-print version is available in [98]. Instead,
the latest results related to the explanation framework have been recently submitted to
two journals for revision. The explainability of convolutional models has been treated in
[97], the work is ready to be submitted to a journal for revision.While the explainability
of deep NLP models is treated in [102], the work has been submitted to the ”Knowledge
and Information Systems” journal for revision. This explanation framework has been
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also released open source [96]1. Finally, this thesis extends the results obtained in the
context of concept-drift detection and published in [100, 19, 17].

Furthermore, the research activities carried out by the candidate resulted in inter-
national achievements.

• The candidate won the BEST PAPER AWARD for the paper [3] titled ”iSTEP, An
Integrated Self-Tunin g Engine for PredictiveMaintenance in Industry 4.0” published
in the 16th IEEE International Symposium on Parallel and Distributed Processing
with Applications (ISPA 2018).

• The candidate won the BEST PAPERAWARD for the paper [14] titled ”Clustering-
Based Assessment of Residential Consumers from Hourly-Metered Data” published
in the International Conference on Smart Energy Systems and Technologies.

• The candidate won the STUDENT SCHOLARSHIP for the paper [19] titled ”To-
wards a Real-Time Unsupervised Estimation of Predictive Model Degradation” pub-
lished in the ”Proceedings of Real-Time Business Intelligence andAnalytics (BIRTE)”.

1.2 Other Research Topics
During the three years course, the candidate collaborated with national and interna-

tional researchers on different research projects achieving relevant results in different
areas. The candidate has been involvement in four research contracts funded by inter-
national companies and public entities plus an external research period of four months
at the Technische Universität of Berlin.

The first research contract has been funded by a private company (AMADA). The
objective of this research contract was to identify an effective and efficient approach
to improve the design time, adapt manufacturing processes, and re-use sub-processes,
by exploiting the similarity of CAD objects with a particular focus on the automatic
bending process.

Then, the candidate has been involved in a research contract funded by ENEL Foun-
dation. The objective of this research contract was to identify and characterize the con-
sumption profiles of individual consumers through the analysis of hourly metered-data.
The candidate collaborates with the design of the process and he developed the CON-
DUCTS engine (CONsumption DUration Curve Time Series) exploiting big-data strate-
gies, data-stream processing and unsupervised machine learning to identify patterns of
individual electricity consumption, patterns of consumers behavior and characteristics
of consumer profiles over time. This contract has been carried out in collaboration with
the Department of Energy (Politecnico di Torino). The results of this project have been
published in [14, 15].

1https://ebano-ecosystem.github.io
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The candidate also participated in the DISLOMAN research project funded by Pied-
mont Region. The candidate was charged with studying the state-of-the-art technolo-
gies employed in the Industry 4.0 domain concerning the management, storage, mon-
itoring, and analytics of huge flows of data, generated by networks of sensors and In-
ternet of Things devices. Moreover, the candidate developed a framework, taking ad-
vantage of different distributed technologies, to face the emerging requirements of this
new field of research. The results achieved in this project have been published in [3].

Then, the candidate collaborated in the SERENA research project funded by Euro-
pean Commission. The candidate was chargedwith studying the state-of-art techniques
for industrial data processing, concerning the machine learning pipeline employed in
the Industry 4.0 context. The candidate engineered and developed the machine learning
building blocks that fulfill the requirements of the companies involved in the project,
including (i) pre-processing and classification model training service, (ii) real-time and
long-term prediction service, (iii) Self-Assessment service, (iv) Self-Labelling service.
Each service has been deployed in a distributed and containerized environment pro-
vided by the other partners of the project. The results of this project have been pub-
lished in [3, 65, 100, 18, 16, 59].

Finally, in 2020 the candidate has been involved in an external research period of
4 months at the Technische Universität of Berlin in the Database Systems and Infor-
mation Management Group (DIMA). In this period, he designed and developed an in-
novative query workload training data generator for ML-based data management. The
new engine is characterized by a three steps data-driven white-box workload genera-
tion process which involve (i) the generation of Abstract Execution Plans starting from
a small pre-existing input workload, (ii) the instantiation of new executable jobs by ana-
lyzing the user’s input data, and (iii) the forecasting of jobs’ cost labels by learning from
the available computational resources and from a small amount of executed jobs. The
results of this external research activity have been published in SIGMOD 2021 [101].
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Chapter 2

Literature Review

In this Chapter we report the latest advancements in the literature related to Ex-
plainable Artificial Intelligence and Concept-Drift Management. Section 2.1 discusses
the current state-of-the-art and details the major challenges that we aim to address. Sec-
tion 2.2 describes the current achievements in Concept-Drift Management highlighting
the corresponding open challenges.

2.1 Explainable Artificial Intelligence
A recent research trend, namely Explainable Artificial Intelligence, has been focused

onmakingML/AImodels interpretable and/or explainable. In literature, there have been
recognized two main large categories of approaches to achieve interpretable results, i.e.
model transparency and post-hoc explainability. Model transparency is referred to all
those strategies that allow understanding how a model is working internally. In this
category, we can put interpretable models by nature, e.g. decision trees, and techniques
that can make a model interpretable, e.g. visualization techniques that show the inner
functioning of deep learning models [75, 84, 83]. Instead, with post-hoc explainability
(or interpretability) we refer to all those methods that aim to explain the predictions/be-
havior of AI models after the training phase, e.g. [42, 31, 1].

Furthermore, the categorization of explainability techniques includes the type of
data under analysis (e.g. structured data, images, text), the machine learning task per-
formed by the model (e.g. classification, forecasting, clusterization), and the typology
of explanations that should be provided (e.g. local explanations, global explanations,
over-time reliability explanations). Up to now, many efforts have been devoted to ex-
plain the prediction process in the context of structured data (e.g. measuring quantita-
tive input influence [22], by means of local rules in [61]) and of deep learning models
for image classification (e.g. [76], [27], [99]), while less attention has been devoted to
multi-domain explanation frameworks for unstructured data analytics.
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In this work, we focus on post-hoc methodologies. The works belonging to the post-
hoc category will be grouped into three further categories: model-agnostic, domain-
specific, and task-specific approaches.

Model-agnostic approaches. Common techniques exploited by data scientists are
model-agnostic approaches, like LIME [69] and SHAP [47]. Secificaly, LIME [69] pro-
duces prediction-local explanations for any predictive model independently from their
architecture since it does not take into account the inner functioning. Moreover, it can
be applied to both structured and unstructured data (e.g. image, text). To compute the
local explanation, LIME exploits a surrogate linear model that performs a local approx-
imation of the prediction made by the more complex black-box model. The surrogate
model is trained with local perturbations of the input instance. Then, the explanations
are produced by analyzing the coefficient of linear surrogate which are interpretable
by definition. On the other side, the model agnostic explainer implemented in SHAP
[47] is based on the idea that different input features may have a different contribution
amount in the prediction process. To measure this contribution they exploit a concept
coming from Game Theory. The per-feature contribution is measured by exploiting the
Shapley Values [78]. In the prediction process, the model outcomes are considered as
a collaborative contribution of the elements that compose the input data So, the local
explanation is composed by the measure of the contribution of each feature in the pre-
diction task. However, the feature to analyze are analyzed not taking into account the
knowledge of the model, i.e. also the feature extraction process is model-agnostic. This
requires a more complex analytical process to find a suitable explanation for the pre-
diction.
Model agnostic techniques are really powerful and simple to use in many domains, but
often they provide very approximate explanations, limiting their reliability in critical
contexts. They are not able to analyze the prediction process taking advantage of the
information contained in the model under analysis and to give specific outcomes taking
into account the domain of interest. Although they can be applied in the context of NLP
and image processing, they are not aware of the real knowledge of the model, i.e., they
can not explain what the model has learned. They do not have access to the inner details
of the model and this can lead to less accurate explanations. For example, in the case of
NLP, model-agnostic techniques analyze the impact of singular words over local predic-
tions, without taking into account the complex semantic relations that exist in textual
documents (i.e., semantically correlated portions of text). However, modern models like
[23] are considering those complex relations and a reliable explanation should consider
that as well.

Domain-specific approaches: Image processing The literature proposes several
approaches to study the behavior of DCNNs. Most of these methodologies take into
account the model’s knowledge [79, 27, 107, 64, 76] but they are tailored to the image
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domain. The general approach is to analyze the information produced during the predic-
tion process to highlight the portions of the input that mostly affect a specific outcome.
[79] explores approaches for prediction-local and class-local explanations by exploiting
the knowledge of the model. Prediction-local explanations visualize the portions of the
input that mostly characterize the prediction through saliencymaps. Instead, class-local
explanations are computed by using the CNN model as a generator of images by max-
imizing the probability of a target class-of-interest. Generating an image in this way
allows to shows which are the patterns that are characterizing the class-of-interest.
However, this methodology requires a non-trivial adaptation of the model to convert
the prediction process into a generation process. Also, [107] identifies an explanation
strategy that requires modifying a traditional CNNmaking it self-explainable. Themain
idea here is that each convolutional layer should be activated only by a certain part of
the input image which in turn belongs to a specific category. The explanation highlights
the influential object parts by means of saliency maps. The concept of saliency maps
is also exploited in [27] which proposes a paradigm that learns the minimally salient
part of an image. Their goal is to find the smallest perturbation of the input that allows
to reduce the brings classification score of a given class-of-interest. Similarly, RISE [64]
studies the effect of perturbing randomized input samples to produce prediction-local
explanations. To do so, they measure the effects of randomly the delete and insert in-
put pixels on the outcomes of the model. Differently from other methods, they do not
take into account the internals of the model. This, increase the applicability of their
methodology but reduces the efficiency and effectiveness. Instead, GRAD-CAM [76]
elaborates prediction-local explanations through a white-box saliency approach. This
methodology analyzes the gradient of the last convolutional layer of a DCNN, general-
izing the approach proposed in [109]. The explanations are composed of saliency maps
that highlight the most influential input regions of a prediction. As we aim to do, also
GRAD-CAM [76] has been human-validated to assert the clearness of the produced
explanations.

We notice also that several works analyze reactions of the model when perturbing
input concepts [2, 99, 47, 69, 76, 27]. Some of these techniques rely on random ap-
proaches, e.g. [64, 69]. However, a random perturbation does not guarantee that the
identified features contain meaningful information for the model. This reduces the effi-
ciency and effectiveness of those approaches. Differently from the current state-of-the-
art, we aim to make also the extraction of the features to perturb an interpretable step
that can help the user to understand the behavior of the model.

The main research challenges that has to be addressed in the context of image pro-
cessing with convolutional neural networks are multiple:

• Extracting the inner knowledge of the DCNNs taking into accountmultiple layers
of deep networks.

• Identifying a transparent process able to extract the interpretable features, i.e.
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image segments, that should be understandable by human users and meaningful
for the prediction process.

• Quantifying in an efficient way the contribution of each interpretable feature for
a given local prediction to understand how much each of them is influencing the
class-of-interest and to measure the precision with which they are associated to
the learned concepts.

• Visualizing the explanations in the clearest way possible by including as much
information as possible, overcoming the limitations of the currently exploited
saliency maps.

• Computing model-global explanations to visually explain the behavior of a pre-
dictivemodel by aggregating and analyzing similar concepts that themodels have
learned at the local level.

Domain-specific approaches: Natural LanguageProcessing Differently thanmodel-
agnostic frameworks like [69, 47], some strategies exploit the information contained in
the model also in the context of NLP. Common xAI techniques for NLP models are pre-
sented in [53]. As in the image domain, many of the proposed techniques are based
on feature-perturbation strategies, e.g. [2, 99, 47, 69, 44, 56]. Indeed, they analyze the
model reactions to perturbed versions of the input and then they compute prediction-
local explanations. Again, this approach requires a meaningful selection of the input
portions to perturb, since the efficiency and the effectiveness of the produced explana-
tions strictly depend on this process. The authors of [56] use an approximate brute force
strategy to analyze the influence of each sentence in the input on the predictions made
by LSTMmodels. Then, they compute an importance score, tailored to LSTMs, to select
the sentences with a larger contribution over the prediction process. This solution has
been developed for LSTM models and it is difficult to generalize to other models. Also,
[2] introduces an explanation strategy tailored to structured and sequential data models
that exploit a perturbation strategy. However, they introduce a semantically controlled
perturbation process by exploiting variational autoencoders. This explanation strategy
has been tailored to sequence to sequence tasks, e.g., machine translation, and it re-
quires training an external variational autoencoder. The usage of an external model
significantly reduces the applicability of the approach in real-life problems. Unlike the
previous work, [41] proposes to ”train” the explainer alongside the predictor. So, they
introduce an encoder-generator framework able to extract a subset of inputs from the
original text as an interpretable summary of the prediction process. Despite the im-
provement, they still require training a separate model that deals with the explanation
process. Similarly, [44] proposes to train a surrogate reinforcement learning model that
with the aim to identify the minimal set of words to perturb to cause a change in the
model outcomes. Again, this method requires the training of an external model to ex-
tract features to be perturbed. We claim that relying on a separate model is not a good
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idea since it could introduce a further level of opacity and complexity which affect in
turn the reliability of the explanation process.

To overcome the issues of the above-mentioned works in the NLP domain we have
to face different challenges:

• Defining a common strategy to extract the inner knowledge from Deep Natural
Language models taking into account multiple layers.

• Identifying a transparent process able to extract semanticallymeaningful features
considering both the NLP domain and the concepts learned by predictive models.
Of course, even in this data domain, the extracted features should be understand-
able by human users and meaningful for the prediction process.

• Quantifying the contribution of each extracted feature for a given local predic-
tion. Similarly to the previous domain, we aim to understand how much each
portion of the input is influencing the class-of-interest. Also, we aim to obtain
the most concise and complete explanation possible in an efficient way.

• Computing model-global explanations to highlight global patterns in the input
data that are biasing the decision-making process of NLP models by aggregating
and analyzing similar concepts that the models have learned at the local level.

Task-specific approaches. There are use-cases in which task-specific solutions are
necessary. [110] focuses on explaining the duplicate question detection task. The au-
thors developed a task-specific model based on the attention mechanism. The expla-
nation is provided by a visual analysis of the attention matrix. This allows inspecting
the inter-words relations learned by the model. Of course, this strategy is limited to
AI models that are based on the attention mechanism. Also, they require significant
expertise to be interpreted. [108] proposes an explainable tag-based recommendation
model. The aim is to increase the interpretability of the users’ recommendations by
providing a report showing the user’s preferences correlated with the model’s learned
topics and the predicted tags. Finally, [26] exploits a linguistic explanation approach for
fuzzy classifiers. The proposed explanations include reasons, confidence, coverage, and
feature importance. However, the authors do not take into account the complexity of
AI models.

In this work, we do not take into account specific tasks. Our goal instead is to pro-
pose a general framework that can be adapted to several tasks and which allows ex-
ploiting the inner-knowledge of a large variety of AI models.
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2.2 Concept Drift Management
The current literature related to Explainable Artificial Intelligence does not include

the explanation of models’ performance over-time. We claim though that this is a cru-
cial aspect while managing complex data-driven platforms. The complexity and ve-
locity of the data analyzed by AI models can radically change-over-time. So, also the
performance of models trained on old data distributions may change drastically when
deployed in production systems, e.g. due to the presence of concept drift.

In [93] the phenomenon of concept-drift is defined as a change-over-time of the
concepts collected in real-world applications. This work claims that the concepts often
do not remain stable over-time and these changes can make a predictive model, built on
old data, inconsistent with the new incoming data. Then, the drift can occur Abruptly,
so without any prior notice or Gradually over-time. The result however is always the
same: an old model that can not be considered reliable is not properly tested and even-
tually retrained periodically. Furthermore, the drift of concepts can be divided also be-
tween Real and Virtual. The real concept drift occurs when the shift of the distribution
of the collected data is causing also a shift in the distributions of the predicted classes
and requires the retraining of the predictive model to properly adapt to the new con-
cepts [73]. The virtual drift instead happens when only the distribution of the incoming
data changes without influencing the distribution of the target classes [93]. In this last
case, the shift of the data distribution is still included in the decision boundaries of the
predictive model so its performance is unaltered while the data is actually shifted. Dis-
tinguishing from the two types of drift in practice, without recurring to ground-truth
labels is a very hard problem that, to the best of our knowledge, has not been solved
yet and that is out of the scope of this work.

A large number of works dealing with concept drift are collected in [28] where the
authors identified interesting trends in modern concept-drift management strategies. A
common strategy to address the detection of drift is to monitor the changes in distribu-
tions at different time windows. [103] proposes an entropy-based technique to monitor
IoT data streams (e.g., wearable devices) Specifically, this work aims to detect abrupt
concept drifts due to context changes. Also, [67] compares different strategies that mea-
sure drifts in data distributions. In this empirical study, they combine dimensionality
reduction techniques and statistical testing to propose a new strategy for detecting con-
cept shifts in real-life settings. Adaptive windows techniques have been explored in [9]
to efficiently monitor the performance of a predictive model over-time. This idea has
been also extended by [30] which introduces a parallel adaptive windowing to manage
high-velocity data streams. [37] presents a concept drift detection technique based on
Support Vector Machines, validated in the case of textual data. An analysis of discrete-
time Markov chains affected by concept drift has been recently proposed in [71], pro-
viding a collection of change-detection mechanisms and an adaptive learning algorithm
suited to this specific context. [105] addresses the problem of imbalanced classes in on-
line learning. Training on an imbalanced dataset can indeed cause a predictive model
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to suffer from the presence of drifting concepts. They reveal a problematic absence of
methodologies tailored to this problem and they carried out an empirical study iden-
tifies the principal challenges when dealing with imbalanced streams of data. Instead,
[86] faces the challenge of detecting model degradation in incremental learning. To
this aim, they propose a tree-based ensemble learning method that aims to exploit the
knowledge learned by past models and newly collected data over-time to create an up-
dated version of the model itself. Unlike other works, [74] addresses the problem of
measuring the performance of AI models from a different perspective. Indeed, the au-
thors propose to estimate the accuracy of an AI model by exploiting a further surrogate
performance predictor. The performance predictor is trained with the specific goal of
understanding if a prediction is accurate or not without knowing anything about the
input ground truth.

The validation of many cited works is limited by the fact they use controlled syn-
thetic datasets with known concept drifts to evaluate their approaches. A further chal-
lenge highlighted in [93] is the inability of most state-of-the-art approaches to identify
the presence of local concept-drift, i.e. models are discarded because their performance
is lowering at a global level, while in most of the cases it is just a portion of the knowl-
edge (e.g. singular classes) that are affected by drifting concepts. Moreover, scalability
has been only partially addressed by very few works [30]. We believe instead that scal-
ability should be a mandatory requirement when dealing with models that are used on
even more large-scale scenarios. Finally, some of the related works rely on the fact that
ground-truth labels would be available shortly after the prediction, e.g. in stock market
forecasts you have access to the correct decision shortly after the prediction. However,
in most applications, continuously collecting data sets including labeled data may be
very hard, or even unfeasible.

The challenges in the management of concept-drift are multiple. In particular, we
aim to:

• Include new concept-drift management strategies into the Explainable Artificial
Intelligence pipeline, improving the reliability of the models over-time even in
absence of ground-truth values.

• Identify a general strategy to deal with concept-drift that should not be tailored
to any specific use-case and easily adaptable to different predictive models, with
a particular focus on deep learning models.

• Define a new quantitative unsupervised measure of concept-drift, i.e. not tailored
to the availability of ground truth values at any point in time.

• Provide a horizontally scalable solution fitting the Big Data requirements of mod-
ern data applications.
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Chapter 3

The Explanation Process: a
Methodological Approach

The explanation process proposed in this work has been designed to fulfill the lack
of transparency in modern Artificial Intelligence (AI) algorithms. Specifically, we fo-
cused onAImodels applied to high-dimensional unstructured data, i.e. images and texts.
The developed explanation framework has been designed as general as possible, allow-
ing to apply it to a large variety of deep learning architectures, e.g. Deep Convolutional
Neural Networks, Long Short-Term Memory, and Attention Based Architectures like
BERT. Figure 3.1 shows a high-level overview of the explanation process presented in
this work, i.e., the explanation of local predictions and class-global behaviors of the
predictive models.
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Figure 3.1: Overview of the explanation framework.
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The automatic decision-making process carried out by a predictive model is usually
affected by the content of the input and by the model’s knowledge incorporated at
training time (Step 1 ). In classification tasks, the decisions of a predictive model are
usually represented by a distribution of probabilities. These probabilities define which
would be the most suitable class to assign to the input data. We have two main goals:

• Explaining the reasons why a specific class-of-interest has been predicted for a
given input sample.

• Explaining the per-class global behavior of the predictive model, given a pool of
input samples.

To produce reliable and effective explanations, the framework takes advantage of all
the main components of the prediction process, i.e. the input data, the Deep Learning
model, and the produced predictions for each input sample.
First, the explanation framework extracts the inner knowledge from the black-boxmodel
(Step 2a ). This step is very important making the explanation process representative
of the target model. Indeed, by mining the knowledge of the model itself we optimize
the final explanation to be as informative as possible for the end-user.
Then, to optimize the explanation process, we extract sets of aggregated features that
have a relevant role in the prediction process. We do this by analyzing the inner model’s
knowledge. The framework computes a set of Interpretable Features (Step 2b ). We refer
to these features with the term interpretable since they are selected to be both mean-
ingful for the predictive model and understandable by humans.
Finally, being the prediction process potentially highly affected by the computed fea-
tures, we measure how each of them is contributing to the predicted outcome. We do
this by iteratively perturbing and evaluating the reactions of the AI model for each
feature (Step 2c ).

The explanation process produces sets of prediction-local and per-class model-global
explanations (Step 3 ). For each input sample and each class-of-interest, i.e. each pre-
dicted class, a prediction-local explanation is computed. So, a user can understand the
causes of a specific prediction and he can decide if to trust it or not. Also, when a pool
of explanations is available they are aggregated to produce per-class model-global ex-
planations. In this way, common input patterns can be analyzed understanding if the
model had been affected by prejudices or biases in the prediction process.

In the rest of the Chapter we will introduce each component of the proposed ex-
planation process in Section 3.1 and we will define the new indexes that we exploit to
measure the interpretable features’ influence and influence precision in Section 3.2.

3.1 Explanation Process Components
Inner-Model Knowledge. We claim that deep models know more than what they
actually tell with predictions. It is widely recognized in the literature that the hidden
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layers of deep neural networks contain valuable latent knowledge [75, 34, 84, 83]. So, the
analysis of the knowledge, latently hidden in a model, can lead to very accurate results
for Explainable Artificial Intelligence (xAI), other than providing accurate predictions.
To produce reliable and effective explanations, we aim to take advantage of this inner-
knowledge contained in multiple layers of the model.
In our design, the explanation process has to be deployed alongside the predictive
model. Having access to the inner functioning of a model is one of the requirements
of our methodology. However, it is very common for data scientists to have access to all
the details of the model when designing, training, fine-tuning, or even just deploying
a pre-trained model. The inner-knowledge extraction process has to be tailored to the
architecture of the model itself. Indeed, different architectures learn concepts in differ-
ent ways. Models based on the Attention mechanism [95] are very different from the
ones based on convolutional layers [80]. Therefore, we propose different strategies to
extract the knowledge contained in different models. We propose to analyze deep con-
volutional models through hypercolumns representation [34], while for attention-based
models like BERT we introduced the Multi-Layer Word Embeddings (MLWE) feature
extraction. More details about the inner-model knowledge extraction techniques ex-
ploited in this work are reported in Chapters 4.2 and 6.3 concerning the explanation
process for convolutional models and NLP models respectively.

Interpretable Features. Machine learning models based on neural networks have
the great power to learn, during the training phase, how to automatically extract the
most relevant features from an input. Black-box models process complex unstructured
input data by considering a small unit of analysis. For example, DCNN input units of
analysis are pixels in the context of image processing. The deep network then automat-
ically learns, at training time, how to aggregate semantically correlated pixels by means
of convolutional filters. In a similar way, Deep Natural Language models analyze words
or pieces of words, i.e. tokens, as the unit of analysis. Then, the inner layers learn the
contextual relations among input tokens during the training process.

When models are deployed in production environments, they exploit the learned
knowledge to predict the outcomes for new input samples. So, each unit of analysis
included in a sample is potentially affecting the decision-making process of the model.
However, in real cases, singular units may not be that influential on the outcomes of
the model. Instead, often there exists a subset of input units that results much more
influential than all the others. Identifying the subset of the few subsets of influential
units of analysis is a challenge.

Model agnostic approaches [69, 47] face this problem with not efficient strategies.
In practice, they do not exploit the knowledge of the model under the exam to find the
set of influential features. From one side this increases their applicability to any model.
On the other instead, this widely limits their efficiency and reliability, since the search
space of possible influential subsets of units could be very large (e.g. large images, long
texts). So, analyzing the whole search space to find the optimal explanations would
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not be feasible. They use heuristic strategies to reduce this search space that limits, in
turn, the reliability of the explanations. In the worst case, their generated explanations
would highlight erroneous units of analysis as influential for the prediction process.
Instead, we strongly believe that exploiting the inner knowledge of deep models is a
requirement.

The objective of our explanation process is to provide results understandable by
any human user. To do so we propose a feature extraction process based on the mining
process of the inner-model knowledge, i.e. the output of multiple hidden layers. In this
way, we can efficiently identify which are the subsets of input units mostly contributed
to the model outcomes. Each subset of units of analysis identified by this mining pro-
cess is called Interpretable Features. This name comes from the dualistic nature of the
knowledge extracted at this step. With Interpretable Features we provide two important
properties:

• They are representative of the knowledge learned by the model in the exam.

• They are easily interpretable by human users.

First of all, they are the numerical features of our explanation process. They include the
knowledge extracted directly from the predictive model. Second, the extracted features
have a one-to-one correspondence with the input units of analysis so that each of them
is traceable to a specific portion of the input. Both the properties are guaranteed by an
ad-hoc mining process of the inner-model knowledge tailored to the models’ architec-
ture. Thanks to these, our explanation process is much more efficient and reliable than
the model agnostic ones. The data mining approach allows to automatically identify
correlated portions of input, according to the model’s knowledge. This reduces signifi-
cantly the search space providing always informative explanations to the end-user.

Of course, the tradeoff between representativeness for the model and interpretabil-
ity can be relaxed in favor of a higher human understandability. Accordingly to the con-
text of the application indeed it is necessary to investigate also features more related
to the expertise of the user. For example, in the context of natural language process-
ing, other than the features extracted from the inner-model knowledge, also portions
of a textual document related to Part-of-Speech (e.g. noun, verbs, adjectives) or whole
sentences should be investigated. This last typology of features is less related to the
knowledge of the model, while highly understandable by human beings. To fulfill also
these requirements, we combine the analysis of different typologies of interpretable
features not having to renounce neither of the above properties.

More details and examples about the interpretable feature extraction process in each
applicative domain are reported in Sections 4.2, and 6.2 for images, and texts respec-
tively.

Perturbation and Evaluation Process. This step allows investigating which is the
contribution of each interpretable feature over the predicted outcomes. After the ex-
traction of the interpretable features, an iterative perturbation and evaluation of the
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extracted knowledge is performed.
The perturbation of a feature can be performed for instance by adding noise or

removing the corresponding portion of the input. This operation of course has to be
tailored to each specific input data type. For example, images can be perturbed by ex-
ploiting gaussian blur, and textual data with word removal. So, different data domains
require different perturbation strategies.

Adding noise to the model input is a well-known technique adopted by different
state-of-the-art approaches [2, 47, 69]. This approach aims to study the model reactions
to a perturbation of a meaningful portion of the input. However, the real challenge here
is to detect the input segmentation that will describe with higher accuracy the behav-
ior of the model. The cited above works are not always able to efficiently and accu-
rately identify multiple regions of the input to perturb. Instead, thanks to interpretable
features extracted through unsupervised mining of the inner-model knowledge, our
framework perturbs only the portions of input really relevant. Also, this avoids very
expensive brute-force or heuristic approaches like [64, 69, 47].

Further details about the perturbation process will be discussed in Sections 4.2,
and 6.4 for visual and textual data domains respectively.

Prediction-Local Explanations. At this step, the explanation process produces a
human-readable report locally explaining the predictions for a specific input sample. A
predictive model may produce multiple predictions with different probabilities. Poten-
tially, each predicted class is a class-of-interest for the user, even if classes predictedwith
higher probability usually correspond to the most useful ones. Each class-of-interest,
predicted by the black-box model, is explained through qualitative and quantitative
prediction-local explanation reports. In other words, the outcome of the explanation
process is a detailed report of the whole process composed by:

• A Visual Explanation which gives an immediate qualitative idea to the user about
the most impacting portions of input on the prediction process.

• A Numerical Explanation that provides quantitative details about the influence
and of the influence precision that each interpretable feature has on the prediction
process.

Our target users are both experts and non-expert users. Both the representations can
be very useful from the users’ point of view. While experts, i.e. data scientists, have the
background knowledge to understand the quantitative results (e.g. complex numerical
indexes), non-expert users may not be interested in such deep details requiring only the
more direct qualitative explanations.

We tailored the visual explanation process to the data domain to be asmuch effective
as possible. For example, the image prediction process is visually explained through
graphical explanations, while the natural language prediction process is more suited
to textual explanations. Contrariwise, the numerical explanations of prediction-local
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reports are agnostic about the data domain.We introduce two new indexes to efficiently
quantify the contribution of each interpretable feature over the prediction process.

The indexes are (i) the normalized Perturbation Influence Relation (nPIR), and (ii)
the normalized Perturbation Influence Relation Precision (nPIRP). Given a class-of-
interest, the indexes are calculated for each extracted interpretable feature. The nPIR
index describes the positive or negative influence of an interpretable feature over the
prediction process. Instead, the nPIRP represents the precision with which a feature
is influencing the class-of-interest w.r.t. the impact that it has over the whole set of
possible classes. For example, a portion of the input may be positively influential for
a specific class. However, the same portion of input can significantly influence other
classes. This means that the current portion of the input is not precise for the class-of-
interest since themodel is using the same pattern that is characterizing different classes.
These concepts will be deeply discussed in Section 3.2 and the indexes will be formally
defined.

Further details about the prediction-local explanation reports are reported in Chap-
ters 4.3, and 6.5 respectively for each data domain.

Per-Class Model-Global Explanations. The main purpose of this component is to
identify which are the input patterns that are influencing a whole class-of-interest at a
model-global level. Indeed, a model may have been trained with an unbalanced dataset
containing any sort of bias. So, discovering if there are input patterns that lead the
predictions to a specific class is of high relevance. Our model-global explanations can
be computed for a pool of input samples. The larger is the input pool, the higher is the
reliability of the per-class model-global explanation.

Model-global explanations are computed by aggregating prediction-local reports.
As already introduced, a local explanation for a class-of-interest is composed of a set
of interpretable features. Also, each interpretable feature is characterized by nPIR and
nPIRP values. So, the joint analysis of the two indexes computed for each interpretable
feature of each input sample allows obtaining a more general representation of the
model’s behavior for a class-of-interest. However, aggregating the local features ex-
tracted with the local explanations can be a challenge accordingly to the data domain.
Indeed, different data domains have different structural and semantical characteristics.
So, at the model-global level, the explanation process has been tailored to address each
specific data domain.

The details of eachmodel-global explanation processwill be described in Sections 4.4
and 6.6 for visual and textual data domains respectively.

3.2 Measuring the Influence of Interpretable Features
To quantify the contribution of each interpretable feature over the prediction pro-

cess we introduced two novel indexes. Let us consider the local explanation process for
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a class-of-interest. The perturbation of an interpretable feature can influence the model
outcome in three different ways:

• The probability of the class-of-interest increases → the feature is negatively influ-
encing the prediction process;

• The probability of the class-of-interest decreases → the feature is positively influ-
encing the prediction process;

• The probability of the class-of-interest remains unchanged → the feature is neutral
to the prediction process.

Analyzing these effects we quantify the role of each interpretable feature in the predic-
tion process. The indices introduced for this purpose are:

• the normalized Perturbation Influence Relation (nPIR)

• the normalized Perturbation Influence Relation Precision (nPIRP)

The normalized Perturbation Influence Relation is calculated for each interpretable fea-
ture extracted from the input and it represents the positive or negative influence that the
perturbed feature has on the outcomes of the Black-Box Model. The nPIR is exploited
to evaluate if a specific concept is important for the model or not, since perturbing a
semantically significant region of input is like hiding concepts to the model. The index
is calculated exploiting the outcomes of the network before and after the perturbation.

Unlike the state-of-the-art solutions [22, 78], our indexes measure both influence
and influence precision for an input feature independently of their structured/unstruc-
tured nature and in an efficient way.

To formally define the new indexes let’s consider a black-box model able to distin-
guish between a set of classes 𝑐 ∈ 𝐶 and let be 𝑐𝑖 ∈ 𝐶 the class-of-interest for which the
local-explanation has to be computed. Given the input sample 𝐼, the explanation pro-
cess extracts the interpretable features 𝑓 ∈ 𝐹. For each 𝑓 the perturbation is applied
and the reactions of the predictive model are evaluated. These reactions represent the
contribution of 𝑓 over the prediction process and they will be quantified with the nPIR
and nPIRP indexes. Let be ℙ𝑜,𝑐𝑖 the output probability of the original input 𝐼 (the un-
perturbed input) to belong to class-of-interest 𝑐𝑖, and ℙ𝑓,𝑐𝑖 the probability of the same
input, with the feature 𝑓 perturbed, to belong to the same class. Also, consider the pre-
dicted classes as exclusive, i.e. ∑𝐶

𝑐 ℙ𝑜,𝑐 = 1 and similarly ∑𝐶
𝑐 ℙ𝑓,𝑐𝑖 = 1. For instance,

the output of the model is given by a SoftMax layer.

Measuring influence. We introduce a generic definition of influence relation for a
feature 𝑓 by combining the outcomes of the model ℙ𝑜,𝑐𝑖 and ℙ𝑓,𝑐𝑖 before and after the
perturbation process. Basically, the model can react to the perturbation of 𝑓 in three
different ways:
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• If ℙ𝑜,𝑐𝑖 > ℙ𝑓,𝑐𝑖 → it means that 𝑓 contained a concept that was positively con-
tributing to the prediction of 𝑐𝑖.

• if ℙ𝑜,𝑐𝑖 < ℙ𝑓,𝑐𝑖 → it means that the pattern in 𝑓 was negatively affecting the
prediction of class 𝑐𝑖. In other words, hiding 𝑓 to the model, the probability of
belonging to class 𝑐𝑖 increases.

• If ℙ𝑜,𝑐𝑖 ≈ ℙ𝑓,𝑐𝑖 → 𝑓 was not affecting the prediction process. It can be considered
neutral. So, the concept contained in the feature is not relevant for the prediction
process.

To measure these effects we introduced the nPIR index. We defined the nPIR to range in
the [−1; 1] interval. A nPIR value for 𝑓 close or equal to 1 represents a positive relevance
for the concept in 𝑓 over the prediction of class 𝑐𝑖. On the opposite, a nPIR value for 𝑓
close or equal to −1 represents a negative impact of that feature over the prediction of
class 𝑐𝑖. Instead, the more nPIR is close to 0 the more 𝑓 is neutral w.r.t. the prediction of
class 𝑐𝑖. The nPIR takes into account both the amplitude of the impact and the relative
influence of the perturbation process.

The nPIR derives from the combination of two sub-indicators: the Amplitude of In-
fluence Δ𝐼 and the Symmetric Relative Influence 𝑆𝑅𝐼. The Δ𝐼 for a feature 𝑓 is measured
by:

Δ𝐼𝑓 = ℙ𝑜,𝑐𝑖 − ℙ𝑓,𝑐𝑖 (3.1)

It ranges from −1 to 1 since the domain for probability values is included in [0,1]. A
Δ𝐼𝑓 > 0 represents a positive influence of the feature 𝑓 for class 𝑐𝑖, since the per-
turbation of the corresponding portion of input causes a decrease of its probability to
belong to the class-of-interest. Thus, 𝑓 is relevant for class 𝑐𝑖. Similar reasoning could
be made for Δ𝐼𝑓 < 0 representing a negative influence of the feature 𝑓 for 𝑐𝑖. However,
the amplitude does not reflect properly the contribution of 𝑓. In particular, the absolute
distance between two values can be low if the values are small w.r.t. the probability
values domain, but still, their relative distance can be significant. This effect should not
be ignored as well. Thus, we consider also the relative influence of 𝑓. The ratio between
the probabilities, as shown in [99], will result in an asymmetric evaluation of the rel-
ative influence: the ratio

ℙ𝑜,𝑐𝑖
ℙ𝑓,𝑐𝑖

will range from 0 to 1 in case of negative influence and

from 1 to ∞ in the other case. So, it will be hard to quantitatively compare positive and
negative influences. To solve this problem we defined the Symmetric Relative Influence
for a feature 𝑓:

𝑆𝑅𝐼𝑓 =
ℙ𝑜,𝑐𝑖

ℙ𝑓,𝑐𝑖
+

ℙ𝑓,𝑐𝑖

ℙ𝑜,𝑐𝑖
(3.2)

This index takes into account, in a symmetric way, the relative influence that 𝑓 has
over ℙ𝑜,𝑐𝑖 and ℙ𝑓,𝑐𝑖. The symmetry of this relation allows measuring the relative influ-
ence of the feature 𝑓 before and after the perturbation regardless of its positiveness or
negativeness.
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Then, combining Equations 3.1 and 3.2 we define the Perturbation Influence Relation
for 𝑓:

𝑃 𝐼𝑅𝑓 = Δ 𝐼𝑓 ∗ 𝑆𝑅𝐼𝑓

= ℙ𝑓,𝑐𝑖 ∗ 𝛽 − ℙ𝑜,𝑐𝑖 ∗ 𝛼

with 𝛼 = 1 −
ℙ𝑜,𝑐𝑖

ℙ𝑓,𝑐𝑖
, 𝛽 = 1 −

ℙ𝑓,𝑐𝑖

ℙ𝑜,𝑐𝑖

(3.3)

The coefficient 𝛼 represents the contribution of the original input concerning the per-
turbed one.Similarly, 𝛽 represents the contribution of the perturbation of 𝑓 concerning
the original input. The PIR index ranges in (−∞,+∞) in a symmetric way going from
negative to positive impact. However, despite particular cases, PIR values are included
in a much smaller interval. The PIR index is thus normalized exploiting the well known
Softsign [29] transformation and redefined as the normalized Perturbation Influence
Relation(nPIR):

𝑛𝑃 𝐼𝑅 = 𝑠𝑜𝑓𝑡𝑠𝑖𝑔𝑛(𝑃 𝐼𝑅) (3.4)

The Softsign function allows normalizing PIR index in [−1; 1] range for strong negative
or strong positive impacts respectivelywhile highlighting the differences of values close
to 0 with a linear behavior.

In the normalized Perturbation Influence Relationwe have both the advantages dis-
cussed for 𝐷𝐼𝑓 and 𝑆𝑅𝐼𝑓 represented in a more confident domain. The nPIRindex mea-
sures if the influence of 𝑓 is positive or negative taking into account both the amplitude
and the relative impacts in a symmetric way. It ranges in [−1; 1] going from negative
to positive impacts respectively.

Exploiting a human validation of our explanations (more details about human-validation
in Chapter 5.7) it has been noticed that users perceive a feature to be very positively
influential when its nPIR is equal or greater than 0.75 on average. On the other side, a
feature is perceived as negatively influential when nPIR is lower than -0.20. Thanks to
the symmetry of the index, a feature 𝑓 can be generally considered:

• Positively Influential if 𝑛𝑃 𝐼𝑅𝑓 ≥ 0.20;

• Negatively Influential if 𝑛𝑃 𝐼𝑅𝑓 ≤ 0.20;

• Neutral if |𝑛𝑃 𝐼𝑅𝑓| < 0.20.

Also, if |𝑛𝑃 𝐼𝑅𝑓| >= 0.75, the influence of 𝑓 can be considered strong and it can not be
ignored.
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Measuring influence precision. Other than influencing the class-of-interest, each
interpretable feature can have a positive contribution to multiple classes. Under some
circumstances, the same input pattern can actually belong to two or more classes, while
other times this is not correct. The influence of a feature 𝑓 on the prediction process
can be categorized in:

• Positively Precise → the class-of-interest is the only one affected by the perturba-
tion of 𝑓;

• Not Precise → the perturbation of 𝑓 is equally affecting positively the class-of-
interest and at least another class;

• Negatively Precise → the perturbation of 𝑓 is affecting positively any of the other
classes more than the class-of-interest.

So, it is necessary to study the precision with which each interpretable feature is influ-
encing the decision-making process of the model and to quantify how precisely each
concept has been learned. The more a concept impacts a wide range of classes the less
it can be considered accurate for the class-of-interest. As a consequence, if the concept
contained in a feature is impacting more than one class, it means that the model has as-
sociated that specific pattern to a wide range of outputs. This can be considered, in some
cases, misleading knowledge gained by the model during the training phase, caused by
the presence of bias in the dataset and/or by a bad design of the network. Thus, for
a specific feature 𝑓 it is necessary to study nPIR values for all the classes known by
the model, computing the influence precision of the feature over the entire prediction
process.
To measure the precision of the influence we introduced the normalized Perturbation
Influence Relation Precision (nPIRP). The definition of normalized Perturbation Influ-
ence Relation Precision follows similar reasoning made to define Equation 3.3. The
nPIRP evaluates the precision of the absolute impact of 𝑓 over class 𝑐𝑖, i.e., 𝜉𝑐𝑖, w.r.t.
its total positive impacts over classes 𝐶 ⧵ 𝑐𝑖, i.e., 𝜉𝐶⧵𝑐𝑖. the two components 𝜉𝑐𝑖 and
𝜉𝐶⧵𝑐𝑖 are defined as:

𝜉𝑐𝑖 = ℙ𝑜,𝑐𝑖 ∗ |𝑛𝑃 𝐼𝑅𝑐𝑖| (3.5)

𝜉𝐶⧵𝑐𝑖 =
𝐶⧵𝑐𝑖

∑
𝑐

𝑝𝑜,𝑐 ∗ 𝑚𝑎𝑥(0, 𝑛𝑃 𝐼𝑅𝑐) (3.6)

As the distribution of the predicted probabilities may be very sparse, the two measure-
ments of influence are weighted by the probability of the original input to belong to
each corresponding class. So, the influences of the most probable classes are taken into
greater consideration w.r.t. less probable ones.
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Combining Equations 3.5 and 3.6 we defined the Perturbation Influence Relation Preci-
sion of a feature 𝑓 as:

𝑃 𝐼𝑅𝑃𝑓 = Δ𝐼𝑓(𝜉𝑐𝑖, 𝜉𝐶⧵𝑐𝑖) ∗ 𝑆𝑅𝐼𝑓(𝜉𝑐𝑖, 𝜉𝐶⧵𝑐𝑖)
= 𝜉𝐶⧵𝑐𝑖 ∗ 𝑏 − 𝜉𝑐𝑖 ∗ 𝑎

with 𝑎 = 1 −
𝜉𝑐𝑖

𝜉𝐶⧵𝑐𝑖
, 𝑏 = 1 −

𝜉𝐶⧵𝑐𝑖

𝜉𝑐𝑖

(3.7)

Similarly to Equation 3.4, we normalize Equation 3.7 exploiting the softsign function to
get the normalized Perturbation Influence Relation Precision index:

𝑛𝑃 𝐼𝑅𝑃 = 𝑠𝑜𝑓𝑡𝑠𝑖𝑔𝑛(𝑃 𝐼𝑅𝑃) (3.8)

The nPIRP is computed for each feature and it ranges in [−1; 1]. The nPIRP metric
measures the precision of the influence that feature 𝑓 has over thewhole set of predicted
classes w.r.t. the class-of-interest 𝑐𝑖. When 𝑓 is very precise in describing 𝑐𝑖 the nPIRP
has a value close to or equal to 1. Instead, if the feature is impacting more on other
classes than the class-of-interest the nPIRP is close or equal to −1. In the case of values
close to 0 the precision of 𝑓 can be considered neutral. In other words, the influence of
𝑓 over 𝑐𝑖 is comparable to the influence that it has over other classes in 𝐶 − 𝑐𝑖.

As a general guideline, the nPIRP should be considered after analyzing the nPIR.
Indeed, if the nPIR is significant, then the nPIRP carries meaningful information about
the precision of the target concept. If 𝑛𝑃 𝐼𝑅𝑃 = 1 it means that the influence of 𝑓 is
all concentrated on the class-of-interest. In the opposite case, i.e., 𝑛𝑃 𝐼𝑅𝑃 = −1, the
influence of 𝑓 is irrelevant to the class-of-interest w.r.t. the influence that it has over all
the other classes.
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Chapter 4

Explaining the Convolutional
Decision-Making Process

This chapter describes the methodological details of the explanation process carried
out to explain image classification through Deep Convolutional Neural Networks (DC-
NNs). Deep Convolutional Neural Networks have been introduced in the last years but
they already reached important milestones in computer vision tasks. However, DCNN
models are considered black-boxes due to the complexity of understanding their in-
ner functioning. In this Chapter, we define a novel explanation process applied to deep
convolutional models.

Deep Convolutional neural networks [80, 89, 87] (DCNNs) are a family of deep
learning models that exploit convolution filters to process data with grid-like topolo-
gies. Thanks to the convolution operation, these kind of networks can be applied to
many different kinds of data such as time-series, images, texts, and audio signals. The
proposed framework is able to unsupervisely mine the decision-making process of con-
volutional models. through the unsupervised mining of the inner knowledge contained
in multiple layers of a DCNN. Differently from other explanation strategies [69, 76],
it provides both prediction-local and per-class model-wise explanations. Moreover, we
provide both visual and quantitative explanations. This enables wider applicability of
the approach in different contexts. Both expert and non-expert users can benefit from
our comprehensive explanations to better understand the reasons behind the prediction
process.

In particular, this chapter includes:

• The prediction-local and per-class model-global explanation process is tailored
to DCNN.

• The interpretable feature extraction process tailored to visual input data, which
is easily understandable by humans and meaningful for the model under exam.

• The definition of quantitative and qualitative explanation reports, measuring the
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influence of each interpretable feature on the local outcome provided by the
black-box model.

• The new visual class-based model-global explanation report tailored to the image
classification by aggregating quantitative prediction-local explanations.

The rest of the chapter is organized as follows. Section 4.1 gives an overview of
the explanation process tailored to Deep Convolutional Neural Networks. Section 4.2
describes how interpretable features are extracted in the case of convolutional layers.
Section 4.3 provides details about the local explanation process in the image classifica-
tion use-case. Finally, Section 4.4 describes how the local explanations are aggregated
to provide per-class model global explanations.

4.1 Convolutional Explanation Process Overview
Given an input image and a DCNN predictive model, the proposed framework pro-

vides a detailed prediction-local explanation of the black-box outcome. Figure 4.1 shows
the main steps of the explanation process of a convolutional model. An image is given
as input to the DCNN model (Step 1 ). The model produces a set of predicted class la-
bels along with their probabilities (Section 5a ). As the prediction process proceeds, the
inner-knowledge of the model is extracted and analyzed. Hypercolumns are extracted
(Step 2 ) and processed to obtain a set of interpretable features (Step 3 ). More details
in Section 4.2. The contribution of each interpretable feature over the prediction pro-
cess is then measured by means of an efficient iterative perturbation and prediction
(Step 4 ). More details in Section 4.2. Finally, visual and numerical local explanations
are produced (Step 6 ), as detailed in Section 4.3.
A sample of the explanation process is provided in Figure 4.2, showing an input im-
age (left), the interpretable feature extraction result (center), and the local explanations,
both visual and numerical (right).

4.2 Interpretable feature extraction and perturbation
One of themain challengeswhen dealingwith explanations is tomake sure that they

are actually related to the model under analysis. To address this challenge we want to
exploit the knowledge already included in the deepmodels during their training. Indeed,
Neural Networks have the great power to learn how to automatically extract the most
relevant features from an input.

Thus, our objective is to identify which are the portions of the input that mostly
contribute to the prediction process. However, the contribution of single-pixels does
not provide interpretable results and is computationally demanding. On the other side,
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Figure 4.1: Local explanation process.

Figure 4.2: Local-explanation example for class-of-interest Pizza. Input image (left), in-
terpretable features (center), visual explanation (right-top), quantitative explanation
(right-bottom).

identifying groups of pixels without taking advantage of the model has multiple draw-
backs. Identifying portions of the image really meaningful for the model can be compu-
tationally very expensive. This can require testing a very large number of combinations
and even in this case, one can not be sure that they are really meant for the model and
the end-user.

Instead, we aim to identify the most informative partitioning of input pixels for the
model under analysis and for the end-user.. To reach this goal we exploited a mining
process of the knowledge contained in multiple hidden layers of the network. In this
way, we can identify sets of correlated pixels mostly influencing the outcome of the
black-box model and yielding more understandable results for humans.
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The proposed feature extraction strategy identifies meaningful and interpretable
portions of an input image by analyzing in an unsupervised fashion the extracted hy-
percolumns [34], which are a vectorial representation of the model across all its inner
levels. The image segments extracted with this strategy are called interpretable fea-
tures because of their immediate understandability. An example of interpretable fea-
tures is reported in Figure 4.2 (center picture). The convolutional-layers’ information
has been clustered, producing a set of image portions providing different semantic as-
pects learned by the model. Specifically, the pizzas on a table have been segmented into
3 features: i) the inner part of the pizzas (feature 1 in green), ii) the table under the pizzas
(feature 2 in yellow), and iii) the border of the pizzas (feature 3 in purple). As required
by the proposed local explanation process, the extracted features are both numerically
quantifiable for the model under exam and interpretable by humans.

Hypercolumns extraction. Hypercolumns have been defined by [34] as a vectorial
representation of every input pixel. This vectorial representation has the ability to col-
lect the information related to a specific location of an input image across all the layers
of a DCNN. Then the latent information under the form of hypercolumn can be mined,
allowing us to understand if bias or knowledge has been learned by the black-boxmodel.
This allows combining feature extraction of multiple levels of a DCNN making the ex-
planation process aware of the real knowledge learned by the model.

When an image is given as input to a DCNN (Step 1 in Figure 4.1), the model is
internally extracting the features necessary to understand its semantic content. In the
specific case of DCNN, it is widely known that the first layers of the DCNN are able
to generalize over the shape of objects, identifying corners and edges, while the last
layers are more sensitive to the semantic meaning of an image [8, 51, 34]. The hyper-
columns of a specific input can be extracted feeding into the black-box model the target
image: each convolutional layer of the network outputs a tensor that is the result of the
application of the weights learned by the model. These tensors contain all the latent
information learned by the model during the training phase.

Let us provide an example in Figure 4.3. Consider a DCNN model taking as input
an image with shape 224 × 224 × 3 and its last 5 convolutional layers have as outcome
2 tensors with shape 28 × 28 × 512 and 3 tensors with shape 14 × 14 × 512. The final
shape of the hypercolumn tensor, extracted from these five layers of the network, will
be 224 × 224 × 2560 (i.e. 512 ∗ 5 = 2560). The first two dimensions of the tensors
extracted by the convolutional layers are upscaled with bilinear interpolation to fit the
first two dimensions of the input image; then, the different layers are concatenated by
the third dimension composing the hypercolumns for each input pixel.

In the case of a very deep network, using all the convolutional layers to extract the
hypercolumns can produce a very deep tensor which is difficult to manage. However,
our methodology focuses on the most characterizing information of the model, which
is usually included in the deepest layers of the network, i.e., the deeper the layer, the
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Figure 4.3: Hypercolumn extraction example. The DCNN is a VGG16 like model. The
input image is 224 × 224 × 3. The last 5 convolutional layers have been use to extract
the hypercolumns.

more specialized it is, and the information that can be extracted from it is very task-
specific. For this reason, the number of layers that should be considered is usually much
lower than the total number of available layers in the network. The number of layers
exploited to extract hypercolumns is a parameter that remains empirically configured,
being related to target the network’s architecture.

Feature extraction. Hypercolumns incorporate the information about the relations
that the DCNN has learned to exist between different pixels, hence identifying the por-
tions of an image semantically similar, as detected by the network. The interpretable
feature extraction is performed through a segmentation process of the input image,
aware of the knowledge learned by the model. Grouping correlated hypercolumns to-
gether can lead to meaningful explanations for humans, hence the resulting image seg-
ments have been called interpretable features. Moreover, it is necessary to identify cor-
related beams of hypercolumns to maintain the analyzed portion of input significant
for the black-box model as well. The K-Means algorithm [46] has been exploited for the
clustering analysis, evaluating the Euclidean distances among the hypercolumns.

Through an unsupervised clustering analysis of hypercolumns, we can identify cor-
related beams of vectors to subsequently detect the input areas to which they corre-
spond. It projects the grouped beams of hypercolumns on the input image by labeling
each pixel with its cluster. Figure 4.4 shows an example of hypercolumns’ partitioning
in 3 clusters. The clustering of hypercolumns is not lead by the position of the pix-
els in the image. This image segmentation strategy, differently from others, does not
consider input colors or pixel location. Instead, it is strictly related to what the model
has learned. Indeed, only the weights learned by the model are used during the parti-
tioning, driving the explanation with the inner information of the model itself. If the
image contains correlated hypercolumns that are distant in the original input image
(pixel-wise), they will be partitioned together, through the analysis of hypercolumns
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This property is desired. Also, semantically-meaningful image segmentation depends
only on the training of the model. This improves the reliability and understandability
of the produced explanations.

Clus
terin

g

3-k

Hypercolumns Interpretable
Features

Figure 4.4: Example of interpretable feature extracted by hypercolumns’ partitioning in
3 clusters.

When dealing with clustering analysis, a critical parameter that needs to be eval-
uated is the number of interpretable features to extract, i.e., the number of partitions
𝑘. Measuring the quality of the partitioning with well-known indexes such as SSE and
Silhouette, would not be effective in our case. Indeed, these indexes do not take into
account our task. They consider only the geometrical error in assigning points to each
cluster. Instead, we want to choose a partitioning that contains as most information as
possible for the model and for the user. In practice, we aim to present to the end-user
the Most Informative Local Explanation possible.

Figure 4.5 shows the proposed feature extraction along with the selection of the
most informative local explanation. We recall that we are measuring the influence of
each interpretable feature over the prediction process through the nPIR index presented
in Section 3.2. As previously explained, the target input image (Step 1 ) is given as
input to the black-box model, and the hypercolumns are extracted (Step 2 ). Then, the
clustering algorithm is used (Step 3 ) to extract a number of 𝑘 partitions. The number
of partitions 𝑘, which corresponds to the number of resulting interpretable features,
ranges in the interval 𝑘 ∈ 𝐾 = 2,… , 𝑘𝑚𝑎𝑥. For each 𝑘 ∈ 𝐾, a local explanation 𝑒 is
computed (Step 4 ). Each explanation 𝑒𝑘∀𝑘 ∈ 𝐾 is characterized by 𝑓 = 𝑘 interpretable
features, and 𝐹 is the set of all the interpretable features computed for 𝑒𝑘. The maximum
number of features 𝑘𝑚𝑎𝑥 has to be set so that 𝑓 is small enough to be manually inspected
by human users but large enough to avoid missing details and diversity. Finally, among
the set of potentially useful explanations 𝑒𝑘∀𝑘 ∈ 𝐾, the process identifies the most
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Figure 4.5: Feature extraction process and selection of themost informative explanation.

informative explanation (Step 5 ). The most informative explanation is defined as the
one that maximizes the contrast among the features’ influence. Each explanation 𝑒𝑘
is characterized by the score 𝐾𝑠𝑐𝑜𝑟𝑒 that measures the information contained in the
explanation itself. It is defined as:

𝐾𝑠𝑐𝑜𝑟𝑒(𝑒𝑘) = max
𝑓∈𝐹

(𝑛𝑃 𝐼𝑅𝑓(𝑒𝑘)) − min
𝑓∈𝐹

(𝑛𝑃 𝐼𝑅𝑓(𝑒𝑘)) (4.1)

Then, the Most Informative Local Explanation ̂𝑒 is identified (Step 6 ):

̂𝑒 = max
𝑒𝑘∀𝑘∈𝐾

(𝐾𝑠𝑐𝑜𝑟𝑒(𝑒𝑘)) (4.2)

This allows to provide to the end-user the best explanation in terms of information and
understandability: the wider the 𝐾𝑠𝑐𝑜𝑟𝑒 is, the more contrast there will be among the
interpretable features.

Perturbation Theoretically, each interpretable feature represents a relevant concept
contained in the input image and its role in the prediction process strictly depends on
the training process of the model. Here the challenge is to identify the most relevant
portions of the input to perturb with the aim of obtaining a significant reaction from
the predictive model. The perturbation of the model’s input is a well-known state-of-
the-art strategy adopted by several related works [2, 99, 47, 69] to study the impact of
input data on the prediction outcome. Usually, the main challenge is to define relevant
portions of input to perturb to obtain a valuable reaction from the predictive model.
However, thanks to the proposed interpretable features extraction process, the mean-
ingfulness of the input regions to analyze is guaranteed. This lowers the complexity
of the iterative perturbation process and increases the information that can be gained
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from the reaction of the predictive model when a perturbed image is given as input.
Indeed, the perturbation is performed on the specific pixels of the interpretable features
and measure the prediction difference on those concepts.

We exploited an iterative perturbation process based on Gaussian blur. A new per-
turbed image is produced for each blurred interpretable feature (Step 5 in Figure 4.1),
and we expect the model to miss the recognition of the corresponding concept; three
results are possible: (i) no change in prediction (the concepts represented by the feature
were not relevant for the predicted class); (ii) stronger prediction (the probability of
belonging to the predicted class increases after the perturbation, hence, removing the
feature, the predicted class is better modeled); (iii) weaker prediction (the probability of
belonging to the predicted class decreases after the perturbation, hence the feature was
important to model the class).

4.3 Prediction-Local Explanations
Comparing the probability distributions before and after each perturbation, our ex-

planation framework is able to study the influence of each interpretable feature on a
specific predicted class, producing a local explanation (Step 5b in Figure 4.1) with a
numerical contribution and a visual part. Let introduce a running example. Figure 4.6
shows the input image for which a pre-trained VGG16 DCNN predicts the classes in
Table 4.1. The model predicts the wrong Bottlecap class as most probable followed by
the correct one Pizza. Figure 4.7 shows the visual and numerical local explanations pro-
posed for the two classes-of-interest.

Figure 4.6: Pizza input image

Class 𝑃 (𝑐)
Bottlecap 0.42
Pizza 0.28
Bakery 0.08
Trifle 0.06
Dining table 0.03

Table 4.1: Predictions for Figure 4.6
with a pre-trained VGG16.

Quantitative explanation Providing a quantitative measure of relevance for each
feature is of mandatory importance in the explanation process. It allows the user to ob-
jectively inspect the details of the prediction process. Differently from other works [47,
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(a) Explanation of prediction Bottlecap (VGG16 in Table 4.1).

(b) Explanation of prediction Pizza (VGG16 in Table 4.1).

Figure 4.7: Example of local explanations for two classes of interest. The input image is
shown in Figure 4.6. Each explanation is organized with the Visual explanation (left),
the map of features (center), the quantitative explanation (right).

69], our indexes (i) efficiently measure the influence relation that exists between the
input feature and the model outcomes in terms of neutral, positive, or negative impact,
and (ii) consider the influence precision of the features for the class-of-interest in a
multi-class problem.
We recall that the influence of a feature over the class-of-interest can be considered:

• positive if the predicted probability decreases after the perturbation, meaning that
the feature was positively relevant for model;

• neutral if the predicted probability remains the same after the perturbation,mean-
ing that the feature was irrelevant for model;

• negative if the predicted probability increases, meaning that the feature was neg-
atively relevant for model.

Also, the distribution of the probabilities for the other classes can change accordingly
to the perturbed feature. The precision of influence of a feature can be considered:
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• precise if the class-of-interest is the only one affected by the perturbation process
of the feature;

• not precise if the perturbation of the feature is affecting equally the class-of-
interest and at least another class;

• negatively precise if the perturbation of the feature is affecting more any of the
other classes other than the class-of-interest.

To quantify these conditions we introduced two new indexes in Section 3.2: normalized
Perturbation Influence Relation (nPIR) and normalized Perturbation Influence Relation
Precision (nPIRP). Analyzing together these two indexes, a detailed report about the
prediction process is produced.

Considering the numerical local explanations in Figures 4.7a-right and 4.7b-right,
it is possible to understand the reasons for the wrong prediction. The bottom borders
of the pizzas (feature 4 in Figure 4.7a-right) are very influential for class Bottlecap and
also the underlying table in the background (features 3 and 5) is very precise for it.
On the other side, the class Pizza is predicted mainly because of the toppings of the
pizzas (feature 3 in Figure 4.7b-right). Indeed the corresponding features resulted both
positively influential with a very high nPIR value and precise with a positive nPIRP
value.

Visual explanation Along with the detailed quantitative explanation, our explana-
tion framework provides an easy-to-understand prediction-local visual explanation. In
the visual explanation, each interpretable feature is colored with a red-green gradient. It
goes from green (positive influence) to red (negative influence), passing through white,
according to the value of nPIR. The more a green area is intense, the more the corre-
sponding feature is positively influential for the class-of-interest. On the contrary, the
more a red area is intense, the more the feature is negatively impacting the class-of-
interest. White areas instead, which results almost transparent, show input portions
that have a neutral impact on the prediction process, i.e. the model is completely inde-
pendent of the presence of these features.
An example of a visual explanation is reported in Figures 4.7a-left and 4.7b-left for
the classes-of-interest Bottlecap and Pizza respectively. The visual explanation clearly
shows which are the areas of the image that have been mostly positively impacting the
prediction process reflecting the results already discussed with the quantitative expla-
nation.
Differently from other works [76, 79, 27, 107, 64], the proposed visualization is not
based on saliency maps. A saliency map is a simple and clear visualization strategy that
smoothly shows the relevance of contiguous areas of pixels but it does not allow to dif-
ferentiate the influence of multiple input areas at the same time. Instead, our approach,
as shown in the example, can highlight the impacts of more input regions simultane-
ously, with their positive and negative contributions, including more information in a
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single visual representation. The visual explanation represents a more direct way to
communicate the explanation of the user, even if losing the details related to the in-
fluence precision. Non-expert users can take advantage of this visual representation to
have an immediate result, while expert users may prefer to consider also the detailed
numerical report.

4.4 Per-Class Model Explanations
A model-global explanation is usually exploited to study the influence of a specific

concept on the whole prediction set provided by the model, to detect possible bias,
for instance. In data domains like tabular data or textual data, the explanation process
takes advantage of well-defined features, i.e. columns and word tokens, that are simple
to aggregate in model-global explanations. Works like [47, 69] study the behavior of
the model aggregating the explanations produced for singular predictions by feature
meaning.

In the case of image inputs, instead, the DCNN model processes each pixel. As pre-
viously discussed, single-pixel explanations are useless for humans. Hence, we group
prediction-local explanations according to interpretable features. Analyzed together, nPIR
and nPIRP describe the influence, in terms of both the contribution and the precision, of
each interpretable feature of an input image on the prediction process. This information
enables the explanation process to identify behavioral patterns of the model w.r.t the
prediction of each class.

The model-wise challenge is to aggregate the interpretable features belonging to
different images by their semantic meaning, without using another supervised model.
To this aim, we provide an unsupervised class-based model explanation by aggregat-
ing the prediction-local features according to their class-of-interest. Then, each class-
of-interest is described by all the features, extracted during the local-explanation pro-
cess, exploiting their nPIR and nPIRP values. The features are projected on the 𝑛𝑃 𝐼𝑅 ×
𝑛𝑃 𝐼𝑅𝑃 space and studying their distribution allows the user to inspect the class-wise
behavior of the model during the decision-making process.

Figure 4.8 shows an example of a class-based model explanation for the class-of-
interest Pizza computed for a VGG16 model, aggregating three local-explanations of
three different input images. The figure shows the interpretable features distributed in
the 𝑛𝑃 𝐼𝑅 × 𝑛𝑃 𝐼𝑅𝑃 space and their KDE distributions (Kernel Density Estimation) on
the nPIR and nPIRP axis. The plot groups the features in the four quadrants. The global
explanation report can be analyzed following:

• 𝑛𝑃 𝐼𝑅 ≥ 0; 𝑛𝑃 𝐼𝑅𝑃 ≥ 0: the features in this section are both positively influential
and precise for the class-of-interest.

• 𝑛𝑃 𝐼𝑅 < 0; 𝑛𝑃 𝐼𝑅𝑃 ≥ 0 : the features in this section are negatively influential
but precise for the class-of-interest.
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• 𝑛𝑃 𝐼𝑅 < 0; 𝑛𝑃 𝐼𝑅𝑃 < 0 : the features in this section are both negatively influen-
tial and not precise for the class-of-interest.

• 𝑛𝑃 𝐼𝑅 ≥ 0; 𝑛𝑃 𝐼𝑅𝑃 < 0 : the features in this section are influential but not precise
for the class-of-interest.

On the top and right axis, the KDE distributions of the features considering nPIR and
nPIRP are reported.

The optimal distribution of features for a model would be when all the image seg-
ments that are representative for the class-of-interest are positioned on the top-right
corner with 𝑛𝑃 𝐼𝑅 = 1, 𝑛𝑃 𝐼𝑅𝑃 = 1, and all the other features are close to the center
with 𝑛𝑃 𝐼𝑅 = 0, 𝑛𝑃 𝐼𝑅𝑃 = 0 meaning that the contextual features are not influencing
the decision-making process. The presence of features spread around the plot means
that the model can be considered uncertain about the role of them in the prediction
process. The plot easily enables human experts to quickly drive their evaluation to-
wards specific features for a semantic assessment of the model behavior.

Figure 4.8: Class-based model explanation example for class-of-interest Pizza.
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Chapter 5

Experimental Results on Deep
Convolutional Models

In this Chapter, we provide experimental evidence of the effectiveness of our expla-
nation techniques when applied to DCNN. We provide a quantitative validation of the
proposed approach, producing almost 10,000 explanations for four state-of-the-art DC-
NNs on 250 input images. We compare our explanation framework with state-of-the-art
explanation tools, i.e., LIME [69], GRAD-CAM [76], and Shapley values [85]. Then, we
provide a qualitative human validation of the effectiveness and easiness of understand-
ing of our explanation framework. This last result has been obtained by developing an
online survey and collecting users’ feedbacks.

Section 5.1 introduces the experimental setup. Section 5.2 describes relevant prediction-
local explanations. Section 5.3 shows the results of the per-class model-global explana-
tion process. Section 5.4 provides a performance comparison between us and the state-
of-the-art. Section 5.5 discusses the performance of the nPIR index across all the tested
images and models, and then Section 5.6 compares our index with the state-of-the-art
Shapley values. Finally, Section 5.7 reports the human-validation process assessing the
interpretability of the explanations concerning the state-of-the-art.

An interactive library of explanations produced by the proposed framework is avail-
able online1 as well as the online survey proposed to the users2.

5.1 Experimental Setup
We tested the explanation process on four different pre-trained DCNN models3:

1https://ebano-ecosystem.github.io/#explanation-library
2https://ebano-ecosystem.github.io/#ebano-survey
3The models are available in the Keras deep learning library [20], version 2.2.4
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• (M1) VGG16 [81],

• (M2) VGG19 [81],

• (M3) InceptionV3 [90],

• (M4) InceptionResNetV2 [88].

All the models are pre-trained on 1000 classes of the ImageNet [72] dataset. The ex-
planation process has been applied to explain a set of 250 input images collected from
different datasets, i.e. Coco [45], ImageNet [72], Caltech[43], and web scraping. The
set of tested images contains 54 different classes. The top-10 predicted classes of each
image represent the classes-of-interest analyzed, for a total of 10,000 prediction-local
explanations. The input images have never been used during the training phase of the
corresponding models.

The hypercolumns are extracted from multiple inner convolutional layers of each
model. The number of convolutional layers analyzed for each model has been exper-
imentally set. Models M1 and M2 are relatively small DCNNs. We extracted the last
5 and 8 convolutional layers for M1 and M2 respectively. Instead, models M3 and M4
have a more deep and complex structure. For those models, we considered the last 34
and 24 convolutional layers. These settings represent a fair trade-off between feature
interpretability and execution complexity.

We experimentally set the number of interpretable features to extract from each
input image to range between 2 and 10.We set the upper limit to avoid too small features
with no semantic meaning for the user. Each explanation is characterized at most by
10 features. Themost informative explanation (Section 4.2) is automatically proposed to
the user.

5.2 Evaluating Prediction-Local Explanations
We show here the explanation reports obtained for two representative input images

I1 and I2. Figure 5.1 shows the input image I1 representing a mouse over a tailed surface.
Input I1 is analyzed by models M1 and M4. Model M1 outcomes are shown in Table 5.1.
Model M4 predictions are shown in Table 5.2.

Figure 5.3 shows input image I2. Input I2 shows a pizza with an uncommon heart
shape. Models M2 and M3 are used to predict the classes for this image. Outcomes of
the models are reported in Tables 5.3 and 5.4 respectively. In this case, the two models
are apparently not influenced by the shape of the pizza. Indeed, M2 and M3 correctly
predict class Pizza. However, to assess the reliability of models M2 and M3 a deeper
investigation is required.

We aim to unwrap the black-box models by analyzing detailed explanations to an-
swer the following questions:
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• Q1. ”Why is Figure 5.1 representing a Toilette seat for model M1?”

• Q2. ”Why is Figure 5.1 not a Mouse for model M1?”

• Q3. ”Why is Figure 5.1 a Mouse for model M4?”

• Q4. ”Why Figure 5.3 is a Pizza for model M2?”

• Q5. ”Why Figure 5.3 is a Pizza for model M3?”

A larger number of prediction-local explanations for the four models is publicly avail-
able and it can be explored through an interactive web-based tool4.

Answering Q1. Model M1 wrongly predicts the class for I1. The most probable class
is indeed Toilet seat, while the correct class Mouse has a much lower probability. Ana-
lyzing the probability distribution, it is possible to guess that model M1 confused the
mouse for a toilette object. However, we want to answer the question ”Why” this is
happening.

Figure 5.2a shows the explanation for model M1 and the class-of-interest Toilet seat.
The explanation identifies the 9 features in Figure 5.2a-center for the most informative
explanation. Figure 5.2a-left shows the visual explanation and Figure 5.2a-right shows
the quantitative one. We recall that the visual explanation highlights in green and red
the features that are positively and negatively influential respectively. From the expla-
nation, it is clear that the prediction Toilet seat is caused by the presence of the hori-
zontal lines between the tiles. Hence, the prediction Toilet seat has been taken because
of contextual information and not because of the subject itself.

The numerical explanation in Figure 5.2a-right shows the values of PIR and PIRP for
each extracted feature. It confirms that the lines between tiles, i.e., feature 6, are themost
positively influencing. Also, the corresponding PIRP value is close to 0. This means that
the feature is not precise: it is a contextual feature influencing other classes. Moreover,
inspecting the body of the mouse, i.e. feature 7, we noticed that it is neutral for the class-
of-interest Toilet seat with a PIR value near 0. its PIRP value is very negative, meaning
that it has a much larger influence on other classes than Toilet seat.

Answering Q2. Figure 5.2b shows the explanation for the class-of-interest Mouse
predicted by model M1. The most informative explanation is composed of 4 inter-
pretable features in Figure 5.2b-center. From the visual explanation in Figure 5.2b-left
theMouse is correctly positively represented by feature 1. However, the PIRP of feature
1 is negative, as highlighted by the numerical explanation in Figure 5.2b-right. The case
of positive PIR and negative PIRP clearly characterize the prediction process. Even if

4https://ebano-ecosystem.github.io/#explanation-library
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feature 1 is positive for the class Mouse, other classes are more influenced so this pre-
diction is confirmed to be not reliable. Instead, we can consider correct the negative
influence of the background tiles, i.e. feature 4 with negative PIR and PIRP.

Thanks to the explanations we discover that the prediction process has been heavily
affected by the context of the subject. Model M1 correctly distinguishes among the
different concepts in the input. However, it takes into account more the context than
the subject.

Answering Q3. Model M4 predicts correctly the class Mouse for input I1. The most
informative prediction-local explanation, with 5 features, is shown in Figure 5.2c. The
body of the mouse, i.e., feature 1, is the only one affecting the prediction process with
𝑛𝑃 𝐼𝑅 ≈ 1 and 𝑛𝑃 𝐼𝑅𝑃 = 1. All the other features are not influential. Contrary to the
previous model, M4 is more focused on the subject. All the features surrounding the
mouse, i.e., the context, are not influential showing 𝑛𝑃 𝐼𝑅 = 0. Its predictions can be
considered generally reliable and it can be trusted with higher confidence than M1: it
is not by chance that the prediction is correct.

Also, comparing the explanations obtained for models M1 andM2, the differences in
the prediction processes emerge allowing the user to decide which is the most reliable
one and explaining why it can be trusted.

Figure 5.1: Mouse input image (I1)

Class 𝑃 (𝑐)
Toilet seat 0.23
Mouse 0.15
Soap dispenser 0.11
Washbasin 0.11
Can opener 0.06

Table 5.1: VGG16 (M1) predictions for Fig-
ure 5.1.

Class 𝑃 (𝑐)
Mouse 0.99
Mousetrap 0.00
Toucan 0.00
Joystick 0.00
Computer keyboard 0.00

Table 5.2: InceptionResNetV2 (M4) pre-
dictions for Figure 5.1.
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(a) Explanation of prediction Toilette seat (VGG16 in Table 5.1).

(b) Explanation of prediction Mouse (VGG16 in Table 5.1).

(c) Explanation of prediction Mouse (InceptionResNetV2 in Table 5.2).

Figure 5.2: Prediction local explanations. The input image is shown in Figure 5.1. Visual
explanation (left), features (center), numerical explanation (right).

Answering Q4. Let us consider input I2, Figure 5.3 analyzed with model M2, Ta-
ble 5.3. Apparently, M2 took the correct decision, but with some uncertainty. Indeed, the
predictions for input I2 are class Pizzawith 𝑃 = 0.48 and class Bagel with 𝑃 = 0.16. Fig-
ure 5.4a reports the explanation that answers to Q4, i.e., ”Why is I2 a Pizza?”. The visual
explanation in Figure 5.4a-left shows the reasons for the model uncertainty. Through
the explanation, we discover that most of the interpretable features are positively in-
fluencing the prediction of Pizza. The toppings of the pizza, i.e., feature 2, are the most
positively influential, but also the underneath table, i.e., feature 1, is taken into great

43



Experimental Results on Deep Convolutional Models

Figure 5.3: Pizza input image (I2)

Class 𝑃 (𝑐)
Pizza 0.48
Bagel 0.16
Corn 0.05
Pretzel 0.05
Meat loaf 0.04

Table 5.3: VGG19 (M2) predictions for Fig-
ure 5.3

Class 𝑃 (𝑐)
Pizza 0.76
Honeycomb 0.24
Dutch oven 0.00
Custard apple 0.00
Starfish 0.00

Table 5.4: InceptionV3 (M3) predictions
for Figure 5.3

consideration by the model. The numerical explanation details that feature 2 has a very
positive PIR but a low value of PIRP. This means that the pizza itself has a low precision
for the class-of-interest Pizza. Instead, feature 1 has a 𝑃 𝐼𝑅 < 0.5 and it is very precise
with 𝑃 𝐼𝑅𝑃 ≈ 1. So, in this case, the table is more important for class Pizza than the
pizza itself.

Furthermore, we can answer the opposite question as well, i.e., ”Why is I2 NOT
a Pizza?”. Figure 5.4b explain the reasons why class Bagel is the second most proba-
ble class for I2. The toppings on the pizza, i.e., feature 2 in Figure 5.4b, are confusing
the prediction process. Indeed, the feature is positively influential for class Bagel with
𝑛𝑃 𝐼𝑅 ≈ 0.9, but it is also negatively precise with 𝑛𝑃 𝐼𝑅𝑃 ≈ −0.75. This means that
the inner part of the pizza is more influential for other classes than for Bagel. So, model
M2 gets probably confused by the uncommon shape and texture of the subject during
the prediction of class Pizza that, in this case, are recognized to be correlated also to the
concept of Bagel. However, the class Pizza is confirmed to be influenced mainly by the
texture of the underneath table. This strongly calls into question the reliability of the
predictions. Without our detailed explanation process, these behaviors would remain
hidden.
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(a) Explanation of prediction Pizza (VGG19 Table 5.3). The number of interpretable
features suggested by the engine equal to 8

(b) Explanation of prediction Bagel (VGG19 Table 5.3). The number of interpretable
features suggested by the engine equal to 10

Figure 5.4: EBAnO Local explanations. The input image is shown in Figure 5.3. Visual
explanation (left), Interpretable features (center), nPIR and nPIRP (right).

Answering Q5. Let us consider now the predictions of model M3 for input I2. The
model’s predictions are reported in Table 5.4. In this case, model M3 predicts the correct
class Pizza with high probability 𝑃 = 0.76. While the second relevant predicted class
is Honeycomb with 𝑃 = 0.24.

We want to assess the predictions of model M3 by exploiting our explanation pro-
cess answering questionQ5, i.e. ”Why is I2 a Pizza?”. Figure 5.4c reports the explanation.
The explanation highlighted 3 informative features showing that only the context of
the image is positively influencing the prediction Pizza. Indeed, features 2 and 3, in Fig-
ure 5.4c-center, are highlighted in green and they clearly represent the table, completely
excluding the main subject. Moreover, the pizza itself, i.e. feature 1, is colored in red de-
scribing a slightly negative influence on the class Pizza. This behavior is even more
clear by analyzing the quantitative results in Figure 5.4c-right. Indeed, PIR and PIRP
values confirm that this prediction is completely biased by the texture contained in the
context more than the subject being not only influential but also precise. So, thanks to
the explanation we can say that the prediction process is completely biased since the
concepts influencing the model outcomes are misleading and do not correspond to the
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(c) Explanation of prediction Pizza (InceptionV3 Table 5.4). Number of interpretable
features suggested by the engine equal to 3

(d) Explanation of prediction Honeycomb (InceptionV3 Table 5.4). Number of inter-
pretable features suggested by the engine equal to 3

Figure 5.4: (Continue) Prediction-local explanations. The input image is shown in Fig-
ure 5.3. Visual explanation (left), Interpretable features (center), nPIR and nPIRP (right).

predicted class.
It is now important to further understand the reasons for the erroneous decision-

making process by answering also in this case to the opposite question, i.e. ”Why is I2
NOT a Pizza?”. To do so we analyze the prediction process of the second most probable
class, i.e., Honeycomb. The explanation for the prediction Honeycomb with model M3
is reported in Figure 5.4d. Interestingly, we note that the class Honeycomb is predicted
considering mainly the pizza. Instead, in this case, the context of the input is negatively
influencing the prediction. This behavior is highlighted in the visual explanation in
Figure 5.4d-left and supported by the quantitative indexes in Figure5.4d-right. Even in
this case the uncommon structure and texture of the pizza are leading prediction to
a wrong result. It is true that the most probable predicted class is the correct one, i.e.
Pizza, however, we demonstrated through our local explanations that the results of the
model are based on completely misleading concepts.
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5.3 Evaluating Per-Class Model Explanations
In Section 4.4 we showed how prediction-local explanations can be aggregated to

describe the behavior of the predictive model at the global level. The local explanations
are aggregated and analyzed by class-of-interest to show the most influential input pat-
terns in terms of nPIR and nPIRP. Figure 5.5 shows the per-class model explanation
reports computed on a pool of 50 images belonging to class Dalmatian with models
M1, M2, M3, and M4.

As a first analysis, interpretable features for M1 and M2 are sparsely distributed in
the whole 𝑛𝑃 𝐼𝑅×𝑛𝑃 𝐼𝑅𝑃 space in Figures 5.5a and 5.5b. Contrariwise, models M3 and
M4 show more dense patterns in Figures 5.5c) and 5.5d). Note that M1 and M2 belong
to the VGG family of DCNN, thus they have a common architecture and we expect
common behaviors.

Let us start with the results obtained for model M1. The main features correctly
representative for class Dalmatian are distributed in the 𝑛𝑃 𝐼𝑅 ≥ 0 area. Also, they are
characterized by −1 ≤ 𝑛𝑃 𝐼𝑅𝑃 ≤ 1. This means that the models learn correctly the fea-
tures that are representative of the class being very influential. However, the precision
of the learned concept varies a lot. They are mostly distributed in the first quadrant with
0 ≤ 𝑛𝑃 𝐼𝑅𝑃 ≤ 1, i.e. between the neutral and precise edges. However, few samples are
more influential for other classes than the one in the exam. Instead, the other features,
representing contextual concepts, are distributed in the 𝑛𝑃 𝐼𝑅 < 0 area, despite one
outlier showing clearly a dalmatian dog positioned on the left bottom of the area. Then,
to have a detailed explanation about the reasons why a specific feature is in a specific
region the user can look at the corresponding local explanation. For instance, we note
the presence of an outlier in the bottom left corner of the model explanation, showing a
feature representative for a dalmatian dog which is both negatively influential and neg-
atively precise. Also, comparing global explanations in Figures 5.5a and 5.5b, we can
confirm that M1 and M2 behaviors are similar being characterized by a common distri-
bution of interpretable features. So as a first result, according to the optimal distribution
of features introduced in 4.4, we note that the class-based explanations of models M1
and M2 highlight a significant uncertainty in the prediction process of class Dalmatian.

The situation is very different for models M3 and M4 instead. Interpretable features
extracted from M3 and M4 are concentrating along the edges of 0 ≤ 𝑛𝑃 𝐼𝑅 ≤ 1 and
𝑛𝑃 𝐼𝑅𝑃 ≈ 1. We notice that features related to the background are mostly distributed in
the 0 ≤ 𝑛𝑃 𝐼𝑅𝑃 ≤ 1, 𝑛𝑃 𝐼𝑅 ≈ 0 area. This means that the features used to predict class-
of-interest Dalmatian are characterized by a very high precision even if the influence
itself may below for some samples. So, the explanations highlight a much more reliable
decision-making process carried out by M3 and M4 for the class-of-interest. Indeed,
these models associate a much more defined role to each feature. However, as in the
previous case, we note the presence of an outlier feature on the left bottom corner of
the plot that shows a dalmatian dog that is again negatively influential and not precise.
The user can further inspect the details of the prediction process for the corresponding
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input sample by looking at its prediction-local explanation. Furthermore, models M3
and M4 show similar decision-making patterns.

Comparing the two behaviors, the user is able to decide which model to trust the
most. For instance, we can verify that model M1 is indeed more uncertain about the
role of each feature while model M4 has a very clear differentiation of the features that
are influential and the ones that are neutral. So, we can say that in this case models M3
and M4 are showing a more reliable decision-making process w.r.t. M1 and M2. This
result is also coherent with the state-of-the-art knowledge: M4, i.e. InceptionResNetV2
is known in the literature as a much more accurate and reliable model w.r.t. M1, i.e.
VGG16.

Finally we highlight also that our explanation process is able to highlight the model
uncertainty following a completely unsupervised approach. Indeed, the proposed frame-
work does not require the ground truth labels to compute any of the explanations.
Hence, class-based model explanations are widely applicable, and they can improve
the understandability of the black-box decision-making process.

5.4 Comparisonswith State-Of-The-Art Explanations
In this section, we compare our local explanation process with the ones available

in the state-of-the-art, i.e.m LIME [69] and GRAD-CAM [76]. We provide a comparison
with two input samples, i.e. I3 and I4 in Figures 5.6 and 5.8 respectively.

The comparison takes into account the input in Figure 5.6 for which M1 predicts
Acoustic Guitar with 𝑃 = 0.22 in Table 5.5). Image I3 has been extracted from [69] as
a comparison. The explanation proposed by LIME is reported in Figure 5.7a. While the
GRAD-CAM explanation is reported in Figure 5.7b. LIME highlights in green the areas
that are relevant for the class-of-interest, while in red those negatively influencing the
prediction. On the other hand, GRAD-CAM exploits a color gradient going from hot to
cold colors, i.e. from red to blue, to highlight important and not important input areas.

The explanation provided by LIME is quite confusing because of the feature ex-
traction process based on a model agnostic segmentation strategy. For instance, the
presence of many small sparse green areas makes it difficult to interpret the real model
behavior. Also, it may be possible that the network is confused by the presence of some
background noise but, using LIME we can not be sure of this since this method is not
taking into account the model knowledge.

GRAD-CAM, on the other hand, is more precise. It identifies with greater precision
the area around the neck of the guitar that is influencing the prediction process and it
ignores the background portions that were identified by LIME as influential. Neverthe-
less, GRAD-CAM loses the information about the positive and negative influence of the
highlighted input area. Indeed, GRAD-CAM creates the saliency map by analyzing the
information extracted directly by the gradient of the last convolutional layer of the net-
work. Also, it is not able to highlight the information related to multiple regions of the
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(a) Model M1 (VGG16).

(b) Model M2 (VGG19).

Figure 5.5: Class-based model explanation with class-of-interest Dalmatian.
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(c) Model M3 (InceptionV3).

(d) Model M4. (InceptionResNetV2)

Figure 5.5: (Continue) Class-based model explanation with class-of-interest Dalmatian.
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Figure 5.6: Input image (I3).

Class 𝑃 (𝑐)
Acoustic guitar 0.22
Electric guitar 0.09
Golden retriever 0.06
Stage 0.04
Sussex spaniel 0.03

Table 5.5: VGG16 (M1) predictions for Fig-
ure 5.6

image separately. It can just discriminate between important and not important input
areas.

Also, as already introduced, none of the two state-of-the-art methods propose a
human-readable numerical explanation of the prediction. Instead by analyzing our ex-
planation for input I3 in Figure 5.7c we can highlight the following advantages:

• The feature map in Figure 5.7c-center accurately identifies concept-wise portions
of input responsible for the model’s outcome.

• The visual explanation in Figure 5.7c-left highlights both the positive and nega-
tive influencing features for each class-of-interest.

• The quantitative explanation in Figure 5.7c-right details the influence of each
feature and measures the precision of each image portion.

Indeed, our explanation identifies the input portions that correspond to the guitar as
very influential with a high value of nPIR values and positive nPIRP values. At the same
time, the face of the dog has been correctly identified as negatively impacting Acoustic
Guitar. We also provide here the explanation for class Golden Retriever in Figure 5.7d.
It shows that the guitar has in this case a very negative impact and the dog face is
positively influencing the decision-making process.

We exploit input I4 in Figure 5.8, which is extracted from [76], as a further compar-
ison. For input I4, model M4 predicts Bull Mastiff with 𝑃 = 0.63 in Table 5.6. Let us
consider the class-of-interest Bull Mastiff. LIME highlights in Figure 5.9a the top area
of the image, including much of the background, as positive for the prediction. GRAD-
CAM, instead is much more specific, highlighting only the head of the dog. Even in this
case, both methodologies show the same issues highlighted in the previous example:
LIME is not precise in identifying influential input portions, while GRAD-CAM does
not provide any evidence of evaluation of areas different than the influential one.
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(a) Explanation of the predic-
tion Acoustic guitar with LIME
(in green).

(b) Explanation of prediction
Acoustic guitar with GRAD-
CAM.

(c) Explanation of prediction Acoustic guitar with EBAnO.

(d) Explanation of prediction Golden retriever with EBAnO.

Figure 5.7: Prediction-local explanations. The input image is shown in Figure 5.6. Visual
explanation (left), features (center), numerical explanation (right).

Our explanation in Figure 5.9c instead clearly shows which is the contribution of
each input region.

We show that the head of the dog is very positively influential and precise with
both nPIR and nPIRP equal to 1. Also, we show that the other features are negatively
impacting this prediction. For instance, the cat, feature 2, is the most negative feature in
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Figure 5.8: Input image (I4) taken from
[76] for comparison.

Class 𝑃 (𝑐)
Bull mastiff 0.63
Tiger cat 0.11
Tiger 0.04
Tabby 0.02
Boxer 0.01

Table 5.6: InceptionResNetV2 (M4) pre-
dictions for Figure 5.8

the input.We report also the explanation of the class-of-interest Tiger Cat in Figure 5.9d.
It confirms that the feature containing the cat, i.e., feature 5 is positively influencing the
prediction process with 𝑛𝑃 𝐼𝑅 ≈ 1. Also, its nPIRP is very low and it can explain why
the prediction for class Tiger Cat shows a low 𝑃 = 0.11 for model M4.

5.5 Assessment of Influence Measurement
We analyze here how the proposed nPIR index is distributing over the whole set of

250 images exploited to test the framework. This analysis has the purpose of showing
the general behavior of the index when exploited with different models and to check
if it correlated to the meta-characteristic of the analyzed features, e.g. feature size in
pixels.

We show the distributions of the minimum andmaximum nPIR values in Figure 5.10
for the four studied models. The distributions take into account only the most informa-
tive explanations computed with class-of-interest equal to the top-1 prediction. The
large shift between the minimum and the maximum nPIR distributions shows that the
index is actually able to discriminate between influential and not influential features.
This is positive since we want our explanations to contain as much contrast as possible
among feature influence. Also, despite the limited number of examples commented on
in this experimental section, we can guarantee that our methodology is able to provide
informative explanations independently by the model.

In detail, we note that the top influential features, with maximum nPIR, are mainly
included in the [0.8, 1.0] range. Only models M3 and M4 have some features of the top
influential ones falling in the [0.0, 0.2] range. Furthermore, the maximum nPIR distri-
bution never goes below 0 for any model. So, we are always able to identify a feature
positively influencing the prediction process independently by the model.
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(a) Explanation of prediction
Bull mastiff with LIME. Green
segments are the explanation.

(b) Explanation of prediction
Bull mastiff with GRAD-CAM.

(c) Explanation of prediction Bull mastiff with EBAnO. Visual explanation (left),
Interpretable features (center), nPIR and nPIRP (right)

(d) Explanation of prediction Tiger cat with EBAnO. Visual explanation (left), In-
terpretable features (center), nPIR and nPIRP (right)

Figure 5.9: Prediction-local explanations. The input image is shown in Figure 5.8. Visual
explanation (left), Interpretable features (center), nPIR and nPIRP (right)

On the other hand, the minimum nPIR distribution is predominantly ranging in
[−0.2, 0.2]. Consequently, most of the less influential features can be considered al-
most neutral for the prediction process. Minimum values higher than 0.2 are very rare.
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Figure 5.10: For each testedmodel the distributions ofmin andmax nPIR values obtained
by the prediction-local explanations with class-of-interest equal to the top-1 predicted
class for each input image.

Table 5.7: Pearson correlation between nPIR, nPIRP, and feature sizes. The abs_feat_size
is the absolute feature size concerning the number of pixels while the rel_feat_size is
the relative feature size w.r.t. the size of the input image.

Abs. Feat. Size Rel. Feat Size
nPIR 0.17 0.19
nPIRP 0.13 0.07

This confirms the large distance between the minimum and the maximum nPIR distri-
butions. This confirm also the validity of the strategy to choose the most informative
explanations.

We want to understand also if the nPIR and nPIRP are influenced by the size of the
extracted interpretable features. To this aim, we compute the correlation between the
two indexes and the size of the extracted features, in terms of absolute size (number of
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pixels) and relative size (number of pixels of the feature over image size). The results
are shown in Table 5.7. It is important to check this correlation because we want to
measure the influence of interpretable features independently of their sizes. The results
show that the influence measured with nPIR and the precision measured with nPIRP
are not significantly influenced by the size of the features. Their correlation with both
absolute, i.e. in pixels, and relative sizes is always lower than 0.2.

5.6 Efficiency andEffectiveness of InfluenceMeasure-
ment

We compare in this section the performance of our nPIR against the state-of-the-art
Shapley values [85, 48].

The Shapley Values [85, 48] are used to explain the relevance of the features exploited
by the decision-making process. The concept of Shapley Values comes from Game The-
ory in statistics. The prediction process is considered a game and the input features are
the players. The purpose of this index is to measure how much each player has con-
tributed to an outcome of the predictive model. So, it can be computed by removing
and analyzing the effects of every possible combination of input portions. Each combi-
nation of input features is a Society of features. Accordingly to the number of features
extracted by the explanation process, this index can become very onerous in terms of
computational power. The standard definition of Shapley Values requires evaluating the
contribution of all the possible societies which results in a complexity close to 𝑂(|𝐹 |!).
Moreover, Shapely Values does not consider the precision of the influence for each fea-
ture. Also, works that implement this index, e.g. SHAP [47], as quantitative explanation
are using in practice approximated versions because of its high complexity.

Instead, our nPIR index is computed by analyzing only the features extracted from
the knowledge of the model. So, we can obtain very informative results by just con-
sidering the interpretable features extracted. In our case, the complexity of analyzing
the effects of the features is linear 𝑂(|𝐹 |). Then, to compare then the effectiveness of
the two indexes we use the standard definition of Shapley Values since it is the most
accurate.

In Figure 5.11 we show the comparisons between nPIR and Shapley values for the
input in Figure 5.1. We compare (i) model M1 predicting class Toilet seat in Figure 5.11a,
(ii) model M1 predicting classMouse in Figure 5.11b, and (iii) model M4 predicting class
Mouse in Figure 5.11c. Figure 5.11a shows that nPIR better emphasizes the importance
of each feature. The Shapely values show an almost flat trend. Only feature 1 has been
identified as slightly negative. Instead, nPIR better emphasizes the contributions of each
feature showing a larger contrast among features. Indeed, it puts in evidence the neg-
ative influence of feature 1 and it shows more clearly the positive influence of features
5 and 6. Also, in Figure 5.11b our nPIR is more effective than Shapley Values by bet-
ter identifying which are the real impacting features for the prediction of class Mouse.
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(a) Model M1 with class-
of-interest Toilet seat.

(b) Model M1 with class-
of-interest Mouse.

(c)ModelM4with class-of-
interest Mouse.

Figure 5.11: Comparison of nPIR index and Shapley values.

Even if, feature 1 is considered by both as positive, nPIR better emphasize it. Then, nPIR
correctly identifies feature 4 as negative, while Shapely values do not identify this con-
tribution. Lastly, Figure 5.11c shows that both indicators have the same trend. Feature
1 is considered very positive by both of them, while all the other features are neutral.

The proposed nPIR index is more efficient and effective w.r.t. the state-of-the-art
Shapely Values in identifying the contributions of each input feature. Indeed, in all the
performed experiments, nPIR has been always more clear in the results showing equal
or better results.

5.7 Human Validation
Human beings are the main beneficiary of explanation frameworks. So, to assess the

quality and the interpretability of our explanations we take into account users feed-
backs. To this aim, we developed a publicly-available online survey5. The survey al-
lowed us to assess the effectiveness and the easiness of understanding of our prediction-
local explanation process. The survey’s goal is to validate (i) the understandability of
our explanations and (ii) to validate the quality of our framework against the explana-
tions proposed by state-of-the-art strategies, i.e., LIME [69], and GRAD-CAM [76].

The survey is composed of 12 predictions with their local explanations. The local
explanations have been chosen to be appreciated by both expert and non-expert users.
So, we proposed only images analyzed by all the four models considered in this chapter
and for which models correctly predicted the class. In this way, we avoid misleading
behaviors of the models or complex concepts that would require detailed analysis or
expert skills.

5https://ebano-ecosystem.github.io/#ebano-survey
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Figure 5.12: Survey example question.

A sample question, extracted from the survey is reported in Figure 5.12. Each ques-
tion is divided into three sections:
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1. On the top, we show the input image along with details about the model’s pre-
diction.

2. Then we show the prediction-local explanation and we ask a few sub-questions
about the relevance/irrelevance of green and red areas.

3. Lastly, we propose to the user the visual explanations computed with our frame-
work (i.e. EBAnO), LIME andGRAD-CAM andwe ask to select the ones that better
are representing the prediction of the target class-of-interest.

The user is asked to verify if he considers relevant the portions of the visual explana-
tion in terms of positive (green) and negative (red) influence. Then, we asked to select,
allowing multiple selections, which of the explanation strategies is representing the
class-of-interest with higher precision. Since all the predictions are correct and we se-
lect the explanationsmore representative for them, this last question aims to understand
if the average user would actually understand the explanation itself and which of the
three methodologies is more effective from a human point of view.

The survey has been completed by 60 people to which we asked anonymous in-
formation about their background. The instruction level is distributed as follows: 25%
bachelor, 38% master, 32% Ph.D., 5% other. Also, respondents are belonging to different
age ranges: 18% between 19 and 24, 51% between 25 and 29, 30% with more than 30
years.

The green areas of our visual explanations have been selected 55% as Important, 40%
as Partially Important, and only 5% have been consideredNot Important. So, in 95% of the
cases, the influential areas of the input have been considered correctly characterizing
the class-of-interest. In turn, red areas have been correctly considered Not Important
for the target class-of-interest in the 69% of the answers, when present.

Thus, also the areas negatively impacting on the prediction process, have been in-
terpreted correctly by themajority of the users. Just 23% of the interviewed get confused
about the role of the red portions of the explanations and only the 8% of the time the
user was not able to answer specifying I do not know.

Then, analyzing the results from the third section of the survey it is possible to
understand which of three tested explanation frameworks is more able to identify the
portions of the input that are representing the predicted class-of-interest accordingly
to human users. Figure 5.13 shows, for each of the 12 images, the percentage of times
in which EBAnO, GRAD-CAM, and LIME have been selected.

Our explanation strategy has been chosen w.r.t. the other two methods in 67% of the
cases. In particular, EBAnO has been considered more interpretable concerning GRAD-
CAM in 75% of the cases. While more interpretable than LIME on 75% of the cases.
Overall, considering all the 720 answers, i.e. 12 questions times 60 respondents, our
framework has been chosen 439 times, while GRAD-CAM 242 times, and LIME 156
times.
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Figure 5.13: Survey results. For each of the 12 images, we report the percentage of times
that EBAnO, GRAD-CAM, and LIME have been selected as the best explanation result
for the class of interest (multiple choice allowed).

We collected also feedbacks after answering the survey. As result, we note that users,
especially non-expert ones, exploit the quality of the segmentation as an implicit metric
to evaluate the quality of the explanation. Unlike the other methods, our interpretable
features correlate the image portions to the knowledge of the model, so the quality of
the segments can be exploited as a soft metric to decide if rely on the model predictions
or not. Indeed, in our case, a precise segmentation of the input is a sign that the model
correctly learned the concepts related to the class-of-interest.
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Chapter 6

Explaining Deep Natural Language
Models

This chapter describes the details of our explanation process tailored to Deep Nat-
ural Language Models. As in the previous use-case, i.e. image classification, the gen-
eral approach to the explanation process presented in Chapter 3 remains the same.
However, to fully take advantage of the inner-model knowledge of Deep NLP models,
the proposed framework includes new domain-specific tools such as the Multi-Layer
Word Embedding (MLWE) feature extraction. The study proposed in [92] supports this
choice. Indeed, textual embeddings have been recognized to have interesting inter-
pretable properties. Also, [25] states that modern natural-language models incorporate
most of the context-specific information in their inner layers.

Our explanation framework produces both prediction-local and model-global ex-
planations, which, in the case of NLP tasks, consist of textual and numerical human-
readable reports.
In particular, this chapter describes:

• The prediction-local and model-global explanation process is tailored to NLP.

• The interpretable feature extraction process is tailored to textual input documents
which include a set of model-wise strategies to mine the inner-model knowledge.

• The definition of quantitative and qualitative explanations, measuring the influ-
ence of each set of features on the local outcome provided by the black-boxmodel.

• The innovative model-global explanation process tailored to the NLP domain by
introducing two new domain-specific indexes, the Global Absolute Influence, and
the Global Relative Influence scores.

The following Chapter is organized as follows. Section 6.1 introduces an overview
on the explanation process when applied to NLP tasks. Section 6.2 describes how the
interpretable are extracted in the context of NLP. Then, Section 6.3 provides the details
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of the new Multi-Layer Word Embedding feature extraction technique. Section 6.4 in-
troduces the perturbation process exploited in this context. Section 6.5 explains how
the prediction local explanations are produced in this case. Finally, Section 6.6 provides
the details of the per-class model-global explanation process tailored to textual input
data.

6.1 Deep NLP Explanation Process Overview
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Box Mod

el
Input Document
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Figure 6.1: Local explanation process.

Figure 6.1 shows an overview of the explanation process tailored to Deep NLP mod-
els.

Let’s consider a deep neural network, which is trained to solve a classification task,
and an input document given input to themodel (Step 1 ). The black-boxmodel predicts
the class label along with the probability distribution for each class label (Step 2 ).

Then, the explanation process for a class-of-interest begins. First, the interpretable
features are extracted (Step 3 ). This step extracts both model-agnostic (i.e., part of
speech, sentences) by exploiting common NLP techniques andmodel-aware (i.e., multi-
layer word embeddings) features.

The interpretable features are iteratively perturbed and the outcomes of the model
are evaluated (Step 4 ) measuring the impact of each perturbation w.r.t. the original
predictions. As already introduced in previous chapters, also in this case the pertur-
bation of a specific feature can affect the outcomes of the model by: (i) increasing, (ii)
decreasing, or (iii) keeping unchanged the probability of the class-of-interest.

Accordingly to this, the framework combines the effects of all the analyzed features
through the nPIR and nPIRP indexes (introduced in Chapter 3). Thus, the framework
computes the explanation producing the local explanation report (Step 5 ) and the re-
sults are showed through an informative dashboard.

Finally, this explanation process can produce model-global explanations by com-
bining a pool of local explanations computed to a number of input documents. To do
so, we introduced two new indexes, namely Global Absolute Influence (GAI) and Global
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Relative Influence (GRI), that analyze relevant inter- and intra- class semantic concepts
that are influencing the black-box decision-making process. Section 6.6 provides the
details.

6.2 Interpretable Feature Extraction
The interpretable feature extraction process is one of the most critical components

to provide meaningful explanations in the context of NLP tasks. The challenge is to
identify portions of the input text that are meaningful for both the model under exam
and the end-user.

A feature is considered meaningful for the model if it has a relevant role in the pre-
diction process. Even singular words may be considered meaningful if their perturba-
tion is causing huge changes in the predicted outcomes. Instead, a feature is meaningful
for the end-user if it can simply understand its semantical meaning.

To find the correct set of words to perturb however requires an optimized approach.
Indeed, identifying a set of meaningful words by using a brute force approach may re-
quires huge computational resources and the quality of the results is still not guaran-
teed. On the other side, the understanding of the end-user is correlated to the semantical
meaning of the analyzed features.

Finding a trade-off between these two requirements is necessary. We developed
the interpretable feature extraction process by integrating both NLP techniques, which
are model-agnostic and a model-aware strategy called Multi-Layer Word Embedding.
Thanks to the combination of multiple techniques, we are able to explore different as-
pects of the prediction process. The input text is first split in tokens, i.e. singular words.
Then, the features are elaborated. Specifically, we adopted three different interpretable
feature extraction strategies:

• Part-of-Speech (PoS). This strategy analyze the influence of singular part-of-speech,
i.e. adjectives, nouns, verbs, adverbs, on the prediction process. Also, we record
the position where each PoS token is located in the text, since different positions
in the text may have different impacts. Each set of tokens belonging to a specific
Pos are considered a singular interpretable feature. This representation is also
very clear for a human-user since he can early evaluate the role of each word in
a text knowing its role (e.g., adjective or verb).

• Sentence-based. Each sentence in the text is analyzed separately measuring the
influence of each of them. Indeed,modernNLPmodels consider thewhole context
inwhichwords are used. Thus, this is a necessary interpretable feature to consider
while explaining the prediction process. Also, this is another technique that is
clearly understandable by the user: the mining of whole sentences can be easily
understood by humans.
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• Multi-layer Word Embedding (MLWE). This is the most powerful strategy. It al-
lows to extract knowledge about the prediction process by mining directly the
output of the inner-layers of a network during the prediction process. To apply
this technique it is necessary to access the predictive model. However, it can ease
the extraction of meaningful patterns of correlated words. The extracted patterns
of wordswould be the onesmost representative of themodel itself. MLWE feature
extraction is detailed in Section 6.3.

The first two techniques are completely model-agnostic and allow to analyze sets of
features that are very meaningful also for the end-user (e.g. adjectives have a specific
role in the logical grammatical structure, sentences usually contain complete concepts).
The way in which the features are extracted, through these techniques, allows to intrin-
sically maintain their contextual information (e.g. adjectives have a specific role in the
logical grammatical structure, sentences usually contain complete concepts) and this
information can be used by the end-user to assign a significance to the extracted fea-
tures. Instead, the MLWE features are very meaningful for the model itself since they
are extracted directly from the parameters of the network under exam. However, they
may lack interpretability. For example, few words may be correlated for the model but
not for their semantical meaning and they can be very influential for the prediction
process.

In case a prominent influential feature is not identified, separately for each extrac-
tion method, we test pairwise combinations of features to create larger groups of to-
kens corresponding to more complex concepts. For example, if after the analysis of the
features extracted by PoS, any impacting feature is found, we combine, for instance,
Adjectives with Verbs or with Nouns and so on. The same strategy is applied also for all
the other methods by combining, for instance, pairs of sentences or pairs of clusters of
words (exploiting the MLWE).

6.3 Multi-layer Word Embedding (MLWE)
When dealing with such models, the objective of the training phase is to approxi-

mate the knowledge contained in the training data into a numerical model that can be
applied to perform predictions for new incoming data. Specifically, the hidden layers
of a deep neural network have the role of automatically extracting the most relevant
features of a given input. The outcomes of the internal layers of a neural network can
be often exploited as an embedded numerical representation of the input words in a
document.

We want to extend this concept by including the knowledge of even multiple layers
in the explanation process. Indeed, the more the explanation is related to the knowledge
of the model the more it would be reliable. To do so, we introduce the Multi-layer Word
Embedding (MLWE) feature extraction.
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Figure 6.2: MLWE feature extraction process.

Figure 6.2 provides the main steps of this feature extraction process. The first step is
the extraction of the output from the model’s hidden layers for a given input (Step 1 )
which produces a tensor of layers’ output (Step 2 ). Then, the tensor containing the
output of each layer is aggregated (Step 3 ). This operation reduces the dimensionality
in a similar way in which a pooling layer would do (e.g. exploiting average or sum). Ad-
ditionally, the current representation is further reduced through Principal Component
Analysis (Step 3 )). The process up to here produces the Multi-layer Word Embedding
of the input document (Step 4 ).

This embedding process allows highlighting correlated words from the model point
of view, i.e. with a similar MLWE. Thus, it is possible to mine the MLWE knowledge to
identify the key input concepts, that most probably are influencing the current predic-
tion. The MLWE feature extraction, and in particular the extraction of the aggregated
word embeddings from multiple layers, has to be achieved in different ways depending
on the neural network architecture under the exam.

6.3.1 MLWE Extraction in Practice.
We report here two practical examples of MLWE feature extraction on two entirely

different architectures: (i) a Long Short-Term Memory (LSTM) network with a single
static embedding layer derived from GloVe [63], and (ii) a BERT model which is based
on transformers and presents a contextualized word embedding on multiple layers.
These two models will be exploited also in Chapter 7.

Long Short-Term Memory. LSTM networks are robust architectures that can learn
from both from time dimension and context of words. The LSTM taken into account for
this practical example includes an embedding layer of 300 dimensions, two bidirectional
LSTM layers (with 256 units for each direction), and a dense layer with 128 hidden units.
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This LSTM model exploits one embedding layer that works with full tokens (i.e. the
input words are not split in smaller tokens) and two bidirectional LSTM layers. This
is the simplest use-case, where there is only one layer that can be exploited for the
MLWE extraction. So, if an input text is composed of 𝑡 tokens (i.e. words) the MLWE
extracts a tensor of shape (𝑡 × 300 × 1). Then, a Principal Component Analysis is used
to reduce the embedding matrix shape to (𝑡 × 𝑐), where 𝑐 is the number of required
principal components. This last matrix is multi-layer word embedding representation
for the LSTM model.

BERT. A much more complex process has to be carried out in the case of a BERT
model. Let us consider the BERT base (uncased) model [23]. This model is composed of
12 transformer layers [94].

BERT Mod
el

N
°
W
or
d
P
ie
ce
s

Embedding Dim. = 768

N°
La
ye
rs

Ewp
768[9]Ewp

0 [9]

E0
0 [9] E

0

768 [9]

N
°
W
or
d
P
ie
ce
s

N
°T

ok
en

s

N
°T

ok
en

s

Reduced Emb. Dim.

E t
cE t

0

E0
0 E0

c

Embedding Dim. = 768

Embedding Dim. = 768

SUMExtract AVG PCA

Ewp
768ΣLEwp

0ΣL

E
0

0ΣL E0
768ΣL

E t
768E t

0

E0
0 E0

768

Figure 6.3: BERT multi-layer word embedding feature extraction process. With:
𝐸<𝑤𝑝 or 𝑡>

𝑐 [𝐿𝑖𝑑] such that: 𝐸 is the word embedding matrix, 𝑤𝑝 and 𝑡 indicate the position of
the word-piece and token respectively in the input text, 𝑐 is the component of the word
embedding vector and 𝐿𝑖𝑑 is the layer from which is extracted.

Figure 6.3 shows the MLWE feature extraction process exploited in this case. The
BERT model requires a pre-processing phase to split each input word in smaller tokens,
called word pieces 𝑤𝑝. So, each transformer layer produces a tensor of shape (𝑤𝑝×768).
We want to exploit the information contained in as much layer as possible. However, it
has been motivated in literature [25] that modern MLP models incorporate most of the
context-specific information in the last and deepest layers. So, we consider the extrac-
tion of the last four transformer layers.

The MLWE feature extraction process begins by collecting the output of the last
four transformer layers, i.e., 𝐿9, 𝐿10, 𝐿11, 𝐿12 (Figure 6.3-left). The output is a tensor
of shape 𝑤𝑝 × 768 × 4 where each row represents the embedding of a word piece in
each layer. Then, accordingly to [25] these embeddings can be aggregated by summing
the values over the layer axes (Figure 6.3-center-left). This results in a matrix of shape
𝑤𝑝 × 768. Since the smallest part of the input that we consider are full words, but
BERT works with word pieces, their embedding has to be aggregated as well. So, the
embeddings of word pieces belonging to the same word are averaged over the word-
piece axes (Figure 6.3-center-right) The result is a new matrix of shape 𝑡 × 768, where 𝑡
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corresponds to the number of input words. Finally, the Principal Component Analysis
is exploited to reduce the sparsity of the previous representation (Figure 6.3-right). The
final MLWE representation for the BERT model is a matrix of shape (𝑡 × 𝑐), where each
input token is represented through a vector of 𝑐 dimensions.

6.3.2 Exploiting MLWE in the Explanation Process
Discovering groups of inputwords by analyzing the contributions of singular tokens

to the prediction process is often not sufficient to produce exhaustive explanations.
Because of the high dimensionality characterizing NLP tasks, models tend to be affected
by many features at the same time. However, testing all the possible combinations of
input tokens to identify the most impacting ones is often unfeasible, leading to huge
search space. Multi-Layer Word Embeddings can help to overcome this issue. The main
challenge is to find the smallest group of words that impacts the prediction, and that
will produce the most informative explanation possible.

Thanks to their properties, the MLWE word representations can be unsupervisely
mined to identify groups of correlated meaningful words for the target model. Thus a
cluster analysis based on the well-known K-Means [46] algorithm is exploited (Step 5 ).
A critical parameter in clustering analysis the desired number of groups 𝐾 to extract.
In our case, this corresponds to the number of concepts to analyze when producing
the explanation. A fine partitioning, with large 𝐾, would fine very specific concepts
that however can be too specific for the explanation purpose. On the other hand, gross
partitions, with small 𝐾, can aggregate everything in few broad concepts that would
make the understanding of the corresponding explanation more complex. For these
reasons, we explore a number of partitions ranging in {2,… ,𝐾𝑚𝑎𝑥}, where the max
number of clusters 𝐾𝑚𝑎𝑥 is a function of the number of words 𝑁𝑤𝑜𝑟𝑑𝑠 in the input. It
has been empirically set to:

𝐾𝑚𝑎𝑥 = √𝑁𝑤𝑜𝑟𝑑𝑠 + 1 (6.1)

This definition prevents the number of clusters to be as large as the number of words
in the input. Indeed, it would not be useful nor feasible to consider partitioning with
𝐾 as large as 𝑁𝑤𝑜𝑟𝑑𝑠. The root of 𝑁𝑤𝑜𝑟𝑑𝑠 provides a good trade-off between input size,
performance required to perform the clustering analysis, and quality of the output ex-
planations.

To identify the best partitioning, all the corresponding prediction-local explanations
are computed (Step 6 ). Each partitioning is composed of 𝐾 interpretable features, i.e.,
groups of correlated words. Thus, each 𝐾 ∈ {2,… ,𝐾𝑚𝑎𝑥} is evaluated by iteratively
perturbing the content of the interpretable features and the explanations are computed.
Next Sections 6.4 and 6.5 will provide more details about these steps. Once all the local
explanations are available, we analyze how much information is contained in each of
them. Potentially. a large number of local explanations is produced in the previous step.
However, only the most informative explanation has to be provided to the end-user. We
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define the most informative local explanation as the one with the highest impact on the
prediction process. For each partitioning 𝐾 ∈ {2,… ,𝐾𝑚𝑎𝑥}, the informativeness score
𝐾𝑠𝑐𝑜𝑟𝑒 is computed (Step 7 ) We recall that the influence of an interpretable feature over
the prediction process is measured with the normalized Perturbation Influence Relation
(nPIR) index (Chapter 3). Similarly to what we showed in Section 4.2 we define the
informativeness of an explanation as:

𝐾𝑠𝑐𝑜𝑟𝑒 = max
𝜅∈𝐾 (

𝑛𝑃 𝐼𝑅𝜅
|𝜅| ) − min

𝜅∈𝐾 (
𝑛𝑃 𝐼𝑅𝜅

|𝜅| ) (6.2)

Where 𝜅 is the current partition, |𝜅| is the number of words inside the partition and
𝑛𝑃 𝐼𝑅𝜅 is the 𝑛𝑃 𝐼𝑅 value of the current partition 𝜅, which measures the positive or
negative influence of perturbing the tokens in 𝜅.

Finally, the selected set of features, i.e. the partitioning producing the most informa-
tive explanation, is the one withmax(𝐾𝑠𝑐𝑜𝑟𝑒). The 𝐾𝑠𝑐𝑜𝑟𝑒 tends to assign a high influence
to small clusters. The 𝐾𝑠𝑐𝑜𝑟𝑒 ranges in [0,2]. Themost informative local explanation pos-
sible would have a score of 2 which means that at least one feature in the partitioning,
composed of 1 word, has 𝑛𝑃 𝐼𝑅 = 1 and at least another, composed of 1 word as well,
has 𝑛𝑃 𝐼𝑅 = −1.

On the way around, the least informative local explanation has a score of 0. This
happens when the algorithm finds 𝐾 clusters of words all being neutral for the predic-
tion of the class-of-interest, hence with 𝑛𝑃 𝐼𝑅𝜅 = 0. The output of the whole process
represents the most informative local-explanation (Step 8 ).

6.4 Perturbation of Interpretable Features
After the extraction of the interpretable feature sets a perturbation phase is per-

formed to introduce noise in the traditional phases of the predictive analytics to assess
the impact of the perturbed features in the model outcomes. In the case of textual data,
the perturbation can be performed by either feature removal or feature substitution.

The first considered strategy is the feature removal perturbation. All the extracted
interpretable features are iteratively removed from the input text, producing new per-
turbed variations of it. Multiple blank spaces are merged into one and spaces before
punctuation are removed to produce a new text that is written like humans. The per-
turbed variations of the input are then fed back into the model under analysis and its
predictions are collected and analyzed to produce the local explanation report. Examples
of explanations produced by feature removal perturbation are shown in Figures 6.4b,
6.4c and 6.4d. In these cases, the extracted features are actually removed from the input
text. In Figure 6.4b shows Adjective-POS removal, Figure 6.4c shows sentence removal,
and Figure 6.4d shows the removal of words identified by MLWE.

The feature substitution perturbation has been also experimentedwith. This strategy
differs from the previous, the substitution perturbation introduces a new related con-
cept that can cause a change in the prediction. The feature substitution perturbation
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requires an additional step to select new words that will replace the ones in the cur-
rent feature. We substitute words with their antonyms. The substitution with antonyms
turned out to be very powerful in some specific cases (e.g. Adjective-POS perturba-
tion), but in general it has several limitations like: words can have several antonyms,
antonyms do not exist for some words (e.g. nouns) and, especially, the choice of the new
words to insert in the substitution of the feature is task-specific (e.g. antonyms work
with opposite class labels like Positive and Negative in sentiment analysis, but are not
suited with independent class labels as in topic detection). Thus, the effectiveness of this
perturbation strategy is highly affected by these limitations. Figures 6.4e and 6.4f show
two examples of explanation performed using this technique. For the Adjective-POS
features it is straightforward to find meaningful antonyms while for Verb-POS the re-
sult is very difficult to evaluate since verbs like {was, have} are substituted with {differ,
lack}. This feature perturbation strategy remains an open task left for further inspection
in future works in that new research issues emerged, such as:

• How to choose one antonym of a given word when multiple different antonyms
exist?

• How substitute a word for which there are no antonyms?

• How to generalize the choice of the new words regardless of the task?

6.5 Prediction-Local Explanations
As introduced, to produce local explanations we analyze together the original out-

come of a model against its perturbed versions. A local explanation consists of: a textual
explanation and a quantitative explanation. Figure 6.4 and Table 6.1 show an example of
a local explanation. In the example a BERT model has been trained to detect the senti-
ment of a textual document, either positive (P) or negative (N). Figure 6.4a shows the
original input text.

Textual explanation. The textual explanation reports the most relevant sets of in-
terpretable features for the model under analysis. This allows the user to understand
the context in which they appear. Many sets of features can be extracted for each inter-
pretable feature extraction technique. Figure 6.4 shows an example of textual explana-
tions. Given the input document in Figure 6.4a, the model outputs a negative sentiment.
So, the user can inspect the highlighted features (in red) in the textual explanations. Fig-
ures 6.4b, 6.4c, 6.4d, 6.4e, and 6.4f shows the most important concept exploited by the
model while producing the predictions. For completeness, we reported also features
that are not influent in Figures 6.4c and 6.4f to show how they would appear.
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This film was very awful. I have never seen such a bad movie.

(a) Original text
This film was very awful. I have never seen such a bad movie.

(b) EXP1: Adjective - POS feature extraction with removal perturbation.
This film was very awful. I have never seen such a bad movie.

(c) EXP2: Sentence feature extraction with removal perturbation.
This film was very awful. I have never seen such a bad movie

(d) EXP3: Multi-layer word embedding feature extraction with removal perturbation.
This film was very [awful] nice. I have never seen such a [bad] good movie

(e) EXP4: Adjective-POS feature extraction with substitution perturbation.
This film [was] differ very awful. I [have] lack never seen such a bad movie.

(f) EXP5: Verb-POS feature extraction with substitution perturbation.

Figure 6.4: Examples of a textual explanation report. The original text was labeled by
BERT as Negative with a probability of 0.99. The most relevant features are highlighted
in red. Removed features are in squared brackets.

Explanation Feature 𝑓 𝐿𝑜 𝐿𝑓 𝑛𝑃 𝐼𝑅𝑓(𝑁)
EXP1 POS-Adjective N P 0.998
EXP2 Sentence N N 0.000
EXP3 MLWE N P 0.984
EXP4 POS-Adjective (sub.) N P 0.999
EXP5 POS-Verb (sub.) N N 0.000

Table 6.1: Quantitative explanation for example in Figure 6.4. P is the positive label, N
is the negative label. The (sub.) suffix indicates that the substitution perturbation has
been applied.

Quantitative explanation. The quantitative explanation shows the influence of each
set of extracted features separately for each prediction by exploiting the nPIR intro-
duced in Section 3. As already explained it allows to quantify the contribution of an
interpretable feature over the prediction process sor a specific class-of-interest.

Table 6.1 shows the quantitative explanations for the textual explanations in Fig-
ure 6.4. Columns 𝐿𝑜 and 𝐿𝑓 reports the labels assigned by the model before and af-
ter their perturbation for each interpretable feature. Column nPIR the influence values
calculated for the class-of-interest Negative (N). Perturbing the POS adjectives in Fig-
ure 6.4b (EXP1) or the MLWE cluster in Figure 6.4d (EXP3) the nPIR is very close to
1. This means that these sets of features are very relevant for the model outcome: re-
moving one of these features will cause completely different outcomes from the model,
changing the prediction from negative (N) to positive (P). Instead, the perturbation of
the sentence in Figure 6.4c (EXP2) is not relevant at all for the model, showing a value
of nPIR equal to 0. Thanks to the quantitative explanation is possible to understand that

70



6.6 – Per-class Model-Global Explanations

features {awful, bad} and { was, awful, bad, movie } are the real reason why the model
is predicting the negative class. The information contained in the sentence { This film
was very awful } instead does not justify the model outcome alone, like the rest of the
text that is also contributing to the prediction.
The quantitative explanations obtained through substitution instead (EXP4 and EXP5)
have been also reported in Table 6.1. Even from these results, it is evident that the
substitution perturbation has great potential in expressivenesswhen it is possible to find
suitable antonyms. In the case of Adjective-POS substitution (EXP4), the quantitative
explanation shows a 𝑛𝑃 𝐼𝑅 value close to 1. On the contrary, in the case of EXP5, verbs
are replaced with semantically incorrect words (not antonyms) in the context of the
phrases, showing no impact in the prediction process with a 𝑛𝑃 𝐼𝑅 equal to 0.

6.6 Per-class Model-Global Explanations
To evaluate the concepts that are globally affecting the prediction process we intro-

duced a per-class model-global explanation process. A pool of local explanations com-
puted for a corpus of documents can be aggregated to highlight misleading behaviors
of the predictive model.

The per-class explanation process is carried out computing two new indexes: (i)
the Global Absolute Influence (𝐺𝐴𝐼), and (ii) the Global Relative Influence (𝐺𝑅𝐼). The
𝐺𝐴𝐼 score measures the global importance of all the words impacting on the class-of-
interest, without distinction concerning other classes (Figure 6.5a). On the other hand,
the 𝐺𝑅𝐼 score evaluates the relevance of the words influential only (or mostly) for the
class-of-interest, differently from other classes (Figure 6.5b).

Analyzing 𝐺𝐴𝐼 and 𝐺𝑅𝐼 scores, the user can easily understand which are the most
influential inter- and intra- class concepts that are leading the prediction process at a
global level. For instance, if a word is influential for the whole set of available classes, it
will be characterized by a very high 𝐺𝐴𝐼 value and a low 𝐺𝑅𝐼 value close to 0. On the
other side, a word might have a high 𝐺𝑅𝐼 score for a specific class-of-interest, while
having a very low 𝐺𝐴𝐼. This means that it is relevant for that specific class only.

The global explanations are computed for each available class-of-interest 𝑐 ∈ 𝐶,
analyzing the set of local explanations 𝐸. The local explanations 𝑒𝑑,𝑓 ∈ 𝐸 are computed
for each document 𝑑 ∈ 𝐷 and for each interpretable feature 𝑓.

Global Absolute Influence. The Global Absolute Influence value is computed fol-
lowing the process described in Algorithm 1. Given a set of local explanations 𝐸 gen-
erated for a corpus of documents 𝐷, the algorithm computes the global score for each
possible class-of-interest and for each lemma (base form of a word) contained in the
most informative local explanations. Only MLWE explanations are used by the algo-
rithm (line 2) since it is the only one exploiting the inner model knowledge. Then,
given the MLWE explanations related to a document 𝑒𝑑, only the most influential one
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Figure 6.5: Influential set of words at model-global level for class-of-interest 𝑐0.

̂𝑒𝑑, i.e., the one with the highest 𝑛𝑃 𝐼𝑅, is selected (line 5) and the lemmas 𝐿 ̂𝑒𝑑
are ex-

tracted from the tokens contained in the corresponding interpretable feature (line 6).
The algorithm analyzes lemmas instead of tokens (words) in order to group together
with their inflected forms, obtaining more significant results. Finally, the GAI score for
the corresponding class-of-interest 𝑐 and lemma 𝑙 is updated (line 8) by summing the
𝑛𝑃 𝐼𝑅 score of the explanation ̂𝑒𝑑, only if it is positively impacting the prediction (i.e.,
if 𝑛𝑃 𝐼𝑅 > 0). The output of the algorithm is the set of Global Absolute Influence scores.

The 𝐺𝐴𝐼 score will be 0 for all the lemmas that have always brought a negative
influence on class 𝑐, and it will grow proportionally to the frequency and to the positive
influence of each lemma positively influencing class 𝑐. The higher the GAI score, the
most positively influential a lemma is for the model under analysis with respect to class
𝑐.

Algorithm 1: Global Absolute Influence.
Input: Local explanations 𝐸, Classes 𝐶 .
Output: 𝐺𝐴𝐼 scores for each class label and lemma.

1 𝐺𝐴𝐼 ← initHashMap(0);
2 𝐸MLWE ← getExplanationsMLWE(𝐸);
3 for 𝑐 in 𝐶 do
4 for 𝑒𝑑 in {𝐸MLWE ∶ 0 ≤ 𝑑 ≤ |𝐷|} do
5 ̂𝑒𝑑 ← getMax_nPIR_Explanation(𝑒𝑑,𝑐);
6 𝐿 ̂𝑒𝑑

← lemmatizeTokens( ̂𝑒𝑑.𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑇 𝑜𝑘𝑒𝑛𝑠);
7 for 𝑙 in 𝐿 ̂𝑒𝑑

do
8 𝐺𝐴𝐼(𝑐, 𝑙) ← 𝐺𝐴𝐼(𝑐, 𝑙) + 𝑀𝑎𝑥[0, ̂𝑒𝑑.𝑛𝑃 𝐼𝑅];
9 end

10 end
11 end
12 return 𝐺𝐴𝐼;
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6.6 – Per-class Model-Global Explanations

Global Relative Influence. The Global Relative Influence score highlights the most
influential and differentiating lemmas for each class-of-interest, discarding lemmaswith
multiple impacts on other classes. The 𝐺𝑅𝐼 for a class-of-interest 𝑐 and for a specific
lemma 𝑙 is defined as:

𝐺𝑅𝐼(𝑐, 𝑙) = 𝑀𝑎𝑥[0,𝐺𝐴𝐼(𝑐, 𝑙) −
𝐶

∑
𝑐𝑖≠𝑐

𝐺𝐴𝐼(𝑐𝑖, 𝑙)] (6.3)

The 𝐺𝑅𝐼 score is 0 when a lemma is more relevant for other classes than for the one
under exam, while 𝐺𝑅𝐼 > 0 if its influence is higher for class 𝑐 than all the other classes.
The higher the GRI value, the more specific the lemma influence is with respect to the
class-of-interest.
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Chapter 7

Experimental Results on Deep
Natural Language Models

In this Chapter, we present experimental validation of our explanation framework
in providing useful and human-readable insights on the decisions taken by black-box
NLP models. We applied our explanation process to two classification use cases with
two state-of-the-art NLP models, specifically LSTM and BERT.

To show the effectiveness of the proposed framework even in the case of deep NLP
models we consider two different tasks addressed by two models with very different
architectures.

Use case 1. We consider as a first use-case the binary toxic comment classification. In
this task, we explain the reasons why a textual input comment has been classified as
clean or toxic. A document is defined toxic if it contains for instance obscenity, threat,
insult, identity attack, and explicit sexual content. For this task, we exploit an LSTM
model trained on a civil comments dataset [10]. The LSTM model is composed of an
embedding 300-dimensional layer, two bidirectional LSTM layers (with 256 units for
each direction), and finally, a dense layer with 128 hidden units. We used for the em-
bedding layer the GloVe [63] (with 300-dimensional vectors) pre-trained weights and
we apply transfer learning. The fine-tuned LSTM model shows an accuracy of 90% on
this binary problem.

Use case 2. We exploited as a second use-case a binary sentiment analysis task. Sen-
timent analysis consists of predicting if an input text is expressing positive or negative
sentiment. In this case, we exploited a state-of-the-art BERT base (uncased) pre-trained
model [23]. We fine-tuned the model on the IMDB dataset [49], which is a reference
dataset for sentiment analysis. To fine-tune the BERT model we added a classification
layer on top of the last encoder-transformer layer. The fine-tuned BERT model shows
an accuracy of 86% on this sentiment analysis problem.

With the results reported in this chapter, we want to demonstrate that:
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• Our explanation framework can be successfully applied to different deep learning
models, and NLP tasks.

• the proposed feature extraction strategies are able to provide different kinds of
explanations and they can be used in a complementary manner.

• We can extract informative explanations from both long and short text documents
without limiting the interpretability.

• We provide to the end-usermeaningful prediction-local and per-classmodel global
explanations that can be analyzed to judge the quality of the model outcomes.

Section 7.1 shows a glance over the experimental results. Section 7.2 describes sig-
nificant explanations produced at the prediction-local level. Then, Section 7.3 intro-
duces a detailed analysis of explanations computed for each class-of-interest at a model-
global level. Finally, Section 7.4 concludes the Chapter by comparing our solution in the
NLP context with the state-of-the-art LIME [69].

7.1 Experiments at a glance
In this section, we provide an overview of the results we achieved exploiting the

proposed explanation process in the context of NLP classification. We exploited all the
feature extraction strategies described in Chapter 6 for each prediction-local explana-
tion. Also, in the context of binary classification, only the nPIR is evaluated. Indeed,
the nPIRP would not add any further information since the model can decide only be-
tween two classes and thus it is straightforward to understand from the nPIR if a target
feature is influencing other classes. We consider, in this case, a local explanation to be
informative when having a 𝑛𝑃 𝐼𝑅 ≥ 0.5. As already explained, the engine identifies
and proposes automatically the most informative local explanation to the user. All the
other explanations remain available to the users for further investigations.

Wewant to demonstrate the effectiveness of our feature extraction strategies. So, we
measured, for each feature extraction separately, the percentage of documents forwhich
we found at least one informative local explanation for the target class-of-interest. This
analysis has been done first without combining the different features. Then, the analysis
of the pairwise combination of features.

Table 7.1 shows the result for the first use-case. In the first use-case, we evaluate our
explanation process on 400 textual documents: 202 of class Positive and 198 of classNeg-
ative. In total, we analyzed almost 100,000 prediction-local explanations, with 250 local
explanations explored for each input document, on average. We note that the MLWE
feature extraction is outperforming the other methods producing 75% of explanations
with 𝑛𝑃 𝐼𝑅 ≥ 0.5. This confirms that exploiting themodels’ knowledge can improve the
informativeness of the explanation process. Then, also Part-of-Speech is able to identify
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7.1 – Experiments at a glance

Feature Extraction Type No Comb 2 Comb
Part-of-speech 33% 70%

Sentence 22% 30%
MLWE 75% 86%
Overall 80% 90%

Table 7.1: Explanation of the BERT model: percentage of documents for which each
feature extraction strategy produces at least one influential local explanation (i.e. with
𝑛𝑃 𝐼𝑅 ⩾ 0.5), with and without combination of features. Overall is the percentage of
documents for which at least one method found it.

Feature Extraction Type Clean Toxic Clean/Toxic
Part-of-speech 8% 98% 53%

Sentence 2% 76% 39%
MLWE 12% 98% 55%
Overall 15% 99% 58%

Table 7.2: Explanation of the CUSTOM LSTM model: percentage of documents for
which each feature extraction strategy produces at least one influential local expla-
nation (i.e. with 𝑛𝑃 𝐼𝑅 ⩾ 0.5), with combination of features, for the class labels Clean
and Toxic.

meaningful explanations, especially when features are combined creating features rep-
resenting more complex concepts. . For instance, the joint analysis of adjectives+nouns
creates features composed of words like {bad, film} that better express a sentiment.

Table 7.2 reports the results for the second use-case. In the toxic comment use-case
we analyzed 2250 documents: 1121 of class Toxic and 1129 of classClean. In total we pro-
duced almost 160,000 prediction-local explanations. For class Toxic, we identify at least
one informative explanation in the vast majority of cases. The MLWE is still, with the
Part-of-Speech, the most suitable technique both reaching 98% of explained documents
with 𝑛𝑃 𝐼𝑅 ≥ 0.5. Only the sentence-based feature extraction has a lower percentage
of informative explanations. This is probably because toxic words are sparse, i.e. not
concentrated in single sentences. On the other side, we note that finding informative
explanations for the Clean class is harder. In this case, none of the features can explain
more than 15% of the predictions. However, the explanation for this is intrinsic to the
nature of the problem. Usually, standard documents can be considered clean. A doc-
ument then becomes toxic because of the presence of specific linguistic expressions.
Our, hypothesis that the LSTM model was not able to find any pattern of words that
represents the Clean class. A further discussion on this will be provided in Section 7.3.
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Criticize a black man and the left calls you a racist. Criticize a woman and you are a sexist. Now I will critcize you
as a fool and you can call me intolerant.

(a) Original text
Criticize a black man and the left calls you a racist. Criticize a woman and you are a sexist. Now I will critcize you
as a fool and you can call me intolerant.

(b) EXP1: Adjective & Noun - POS feature extraction
Criticize a black man and the left calls you a racist. Criticize a woman and you are a sexist. Now I will critcize you
as a fool and you can call me intolerant.

(c) EXP2: Multi-layer word embedding feature extraction

Figure 7.1: Examples of textual explanation report for the input in Figure 7.1a originally
labeled by custom LSTM model as Toxic with a probability of 0.98. The most relevant
features are highlighted in red.

Explanation Feature 𝑓 𝐿𝑜 𝐿𝑓 𝑛𝑃 𝐼𝑅𝑓(𝑁)
EXP1 POS-Adj&Noun T C 0.839
EXP2 MLWE T C 0.883

Table 7.3: Quantitative explanation for example in Figure 7.1. T is the Toxic label, C is
the Clean label.

7.2 Evaluating Prediction-Local Explanations
In this section, we discuss a few meaningful examples of local explanations for both

the use-cases. All the reported explanations are considered informative by the frame-
work. We provide four different examples of prediction local explanation, two for use-
case 1 and two for use case 2. Thus, to evaluate the reliability of the explanation process
for the four input documents we try to answer the following questions:

• (Q1) ”Why input text in Figure 7.1a is Toxic for the LSTM model?”

• (Q2) ”Why input text in Figure 7.2a is Toxic for the LSTM model?”

• (Q3) ”Why input text in Figure 7.3a is Negative for the BERT model?”

• (Q4) ”Why input text in Figure 7.4a is Negative for the BERT model?”

Answering Q1. In the first example, the LSTMmodel for the input in Figure 7.1a pre-
dicts Toxic. Themost influential features are shown in Figures 7.1b and 7.1c.We find that
the most positive features for class Toxic are {black man, left, racist, woman, sexist,
fool, intolerant}. Table 7.3 shows the quantitative explanation. The most informative
explanations are extracted by combining adjectives and nouns (i.e., EXP2), and through
MLWE (i.e., EXP2). It is interesting that the combination of adjectives and nouns is very
relevant for this model. For instance, the word black alone does not make a comment
toxic. Instead, the combination of words black man does. Furthermore, the POS fea-
ture extraction and theMLWEhighlighted very similar sets of words. Also, thanks to the
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7.2 – Evaluating Prediction-Local Explanations

They are nuts that have the Liberal government by the short and curlies, the good news is we see them a d they
are being rejected on a global stage! It can’t happen fast enough, the Marxist pigs are a freak show better suited
for a circus.

(a) Original text
They are nuts that have the Liberal government by the short and curlies, the good news is we see them a d they
are being rejected on a global stage! It can’t happen fast enough, the Marxist pigs are a freak show better suited
for a circus.

(b) EXP1: Noun - POS feature extraction
They are nuts that have the Liberal government by the short and curlies, the good news is we see them a d they
are being rejected on a global stage! It can’t happen fast enough, the Marxist pigs are a freak show better suited
for a circus.

(c) EXP2: Multi-layer word embedding feature extraction

Figure 7.2: Examples of textual explanation report for the input in Figure 7.2a originally
labeled by custom LSTM model as Toxic with a probability of 0.96. The most relevant
features are highlighted in red.

Explanation Feature 𝑓 𝐿𝑜 𝐿𝑓 𝑛𝑃 𝐼𝑅𝑓(𝑁)
EXP1 POS-Noun T C 0.608
EXP2 MLWE T C 0.999

Table 7.4: Quantitative explanation for example in Figure 7.2. T is the Toxic label, C is
the Clean label.

explanation we can note that the model learned features like black man and woman to
be positively influential for class Toxic. Also, despite the different methodology, EXP1
and EXP2 highlight the same set of words as influential. This confirms once again that
exploiting the inner-model knowledge is a reliable strategy that can lead to correct and
more interesting results.

Answering Q2. The LSTM predicts class Toxic also for the input document in Fig-
ure 7.2a. The most influential features are shown in Figures 7.2b and 7.2c. The quanti-
tative explanation is in Table 7.4. In this case, the POS analysis identifies the Nouns as
influential with a 𝑛𝑃 𝐼𝑅 ≈ 0.61(i.e. EXP1). Moreover, the MLWE finds the set {nuts,
pigs, freak, suited, circus} as very important for the prediction with 𝑛𝑃 𝐼𝑅 ≈ 0.99 (i.e.,
EXP2). Also in this case, the two features are quite similar. However, the MLWE can
find a smaller number of words that together cause the prediction of the target class.
Moreover, the MLWE features appear to be significant for the performed prediction,
enforcing the trustfulness of the model outcome. Thus, thanks to the provided expla-
nations it is straightforward to confirm the correctness of the decision-making process
performed by the LSTM model even in this case. Indeed, the explanation process iden-
tifies as influential specific words that are usually correlated to a toxic language.
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How many movies are there that you can think of when you see a movie like this? I can’t count them but it sure
seemed like the movie makers were trying to give me a hint. I was reminded so often of other movies, it became a
big distraction. One of the borrowed memorable lines came from a movie from 2003 - Day After Tomorrow. One
line by itself, is not so bad but this movie borrows so much from so many movies it becomes a bad risk. BUT… See
The Movie! Despite its downfalls there is enough to make it interesting and maybe make it appear clever. While
borrowing so much from other movies it never goes overboard. In fact, you’ll probably find yourself battening down
the hatches and riding the storm out. Why? …Costner and Kutcher played their characters very well. I have never
been a fan of Kutcher’s and I nearly gave up on him in The Guardian, but he surfaced in good fashion. Costner
carries the movie swimmingly with the best of Costner’s ability. I don’t think Mrs. Robinson had anything to do
with his success. The supporting cast all around played their parts well. I had no problem with any of them in the
end. But some of these characters were used too much. From here on out I can only nit-pick so I will save you the
wear and tear. Enjoy the movie, the parts that work, work well enough to keep your head above water. Just don’t
expect a smooth ride. 7 of 10 but almost a 6.

(a) Original text
How many movies are there that you can think of when you see a movie [...] I was reminded so often of other
movies, it became a big distraction. One of the borrowed memorable lines came from a movie from 2003 - Day
After Tomorrow. One line by itself, is not so bad but this movie borrows so much from so many movies it becomes
a bad risk. BUT … See The Movie! Despite its downfalls there is enough to make it interesting and maybe make
it appear clever. While borrowing so much from other movies it never goes overboard. [...] I have never been a fan
of Kutcher ’s and I nearly gave up on him in The Guardian, but he surfaced in good fashion. Costner carries the
movie swimmingly with the best of Costner ’s ability. [...] But some of these characters were used too much. [...]
Just do n’t expect a smooth ride. 7 of 10 but almost a 6.

(b) EXP1: Adjective - POS feature extraction
How many movies are there that you can think of when you see a movie like this? I can’t count them but it sure
seemed like the movie makers were trying to give me a hint. I was reminded so often of other movies, it became a
big distraction. One of [...]

(c) EXP2: Sentence feature extraction
How many movies are there that you can think of when you see a movie like this? [...] See the movie despite its
downfalls there is enough to make it interesting and maybe make it appear clever. [...]

(d) EXP3: Multi-layer word embedding feature extraction

Figure 7.3: Examples of textual explanation report for the input in Figure 7.3a wrongly
labeled by BERT as Negative with a probability of 0.99. The most relevant features are
highlighted in red.

Explanation Feature 𝑓 𝐿𝑜 𝐿𝑓 𝑛𝑃 𝐼𝑅𝑓(𝑁)
EXP1 POS-Adjective N P 0.884
EXP2 Sentence N P 0.663
EXP3 MLWE N P 0.651

Table 7.5: Quantitative explanation for example in Figure 7.3. P is the positive label, N
is the negative label.

Answering Q3. In this case, the BERT model wrongly predicts the sentiment of the
input in Figure 7.3a as Negative. Indeed, the expected label is Positive. We want to un-
derstand what led to this prediction by exploiting our explanation process. Figure 7.3
reports the textual explanations. Table 7.5 shows the corresponding quantitative expla-
nations. We find three main explanations for the Negative class. The top informative
feature is represented by Adjectives-POS in the sentence in Figure 7.3c and MLWE in
Figure 7.3d).
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7.2 – Evaluating Prediction-Local Explanations

The perturbation of adjectives in Figure 7.3b shows that general words like {many,
other, big, ..., smooth} are considered influential for the prediction processwith 𝑛𝑃 𝐼𝑅 ≈
0.88. They have a strong impact on this prediction and this may lead to not trustful
results. Also, the perturbation of the singular sentence in Figure 7.3c is leading to a
Positive prediction with a 𝑛𝑃 𝐼𝑅 ≈ 0.66. Finally, MLWE features in Figure 7.3d reports
a set of words composed of just two instances of a single general word, {there}. By re-
moving these two instances the prediction changes from Negative to Positive showing
a 𝑛𝑃 𝐼𝑅 ≈ 0.651. For this reason, we could say that the prediction process for the class
Negative performed for this text can not be trusted. As a general rule, if the pertur-
bation of non-meaningful small portion of input leads to a change in the prediction,
then the process itself must be questioned. In this case, the model was very uncertain
about the prediction for the document. This uncertainty can not be discovered either
having the ground-truth for comparison since one could not tell which is the problem
without a detailed exploration of the result. Instead, our explanation process has been
able to identify this uncertainty by putting in evidence that just a couple of words made
the difference between a result or another. Then, also the global behavior of the model
should be questioned. In Section 7.3 we will further discuss the global behavior of this
BERT model.

Answering Q4. The BERT model correctly predicts class Negative for the input in
Figure 7.4a. For comparison, we discuss here both informative and non-informative
explanations. The reported explanations are the adjective in Figure 7.4b, verb in Fig-
ure 7.4c, adjective and verb in Figure 7.4d, sentence in Figure 7.4e, and MLWE in Fig-
ure 7.4f. Their nPIR values are reported in Table 7.6. We note that only the EXP3, EXP4,
and EXP5 provide meaningful information. Instead, the EXP1 and EXP2, adjective and
verb respectively, led to uninformative explanations.

From EXP1 and EXP (Figures 7.4b and 7.4c respectively), we note that the different
parts-of-speech, taken separately one at a time, are not influential for class Negative.
Indeed, Table 7.6 shows a very low nPIRof about 0.003 and 0.137 for the corresponding
explanations. In these cases, the explanation process starts exploring pairwise combi-
nations of features to analyze the contribution of more complex concepts. As result, the
combination of adjectives and verbs produced EXP3 in Figure 7.4d a new very influen-
tial feature with 𝑛𝑃 𝐼𝑅 ≈ 0.915. On the other hand, EXP4 in Figure 7.4e shows a single
influential sentence as an explanation with 𝑛𝑃 𝐼𝑅 ≈ 0.638. Finally, the MLWE analyzes
a partitioning composed of 15 different sets of words and highlight EXP5 in Figure 7.4f
as the most influential, reaching a 𝑛𝑃 𝐼𝑅 ≈ 0.899.

Analyzing the content of EXP3, EXP4, and EXP5 explanations, it might seem that
the word {trivialized} is the main responsible for the prediction. Although, also EXP2,
which is considered not informative, contains the same word. So, we could say that this
prediction is not influenced by single words. Instead, it is the combination of different
tokens that lead the prediction process. From EXP3 instead, we note that the joint per-
turbation of adjectives and verbs affects the outcomes of the model. However, the joint
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There were so many classic movies that were made where the leading people were out-and- out liars and yet they
are made to look good. I never bought into that stuff. The ”screwball comedies” were full of that stuff and so were
a lot of the Fred Astaire films. Here, Barbara Stanwyck plays a famous ”country” magazine writer who has been
lying to the public for years, and feels she has to keep lying to keep her persona (and her job). She even lies to a
guy about getting married, another topic that was always trivialized in classic films. She’s a New York City woman
who pretends she’s a great cook and someone who knows how to handle babies, etc. Obviously she knows nothing
and the lies pile up so fast you lose track. I guess all of that is supposed to be funny because lessons are learned
in the end and true love prevails, etc. etc. Please pass the barf bag. Most of this film is NOT funny. Stanwyck was
far better in the film noir genre. As for Dennis Morgan, well, pass the bag again.

(a) Original text
There were so many classic movies that were made where the leading people were out-and- out liars and yet they
are made to look good. I never bought into that stuff. The “screwball comedies” were full of [...] plays a famous
“country” [...] getting married, another topic that was always trivialized in classic films. [...] she’s a great cook and
someone [...] supposed to be funny because lessons are learned in the end and true love [...] bag. Most of this film
is NOT funny. Stanwyck was far better in the film noir genre. [...]

(b) EXP1: Adjective - POS feature extraction
There were so [...] that were made where the leading people were out-and- out liars and yet they are made to look
good. I never bought into that stuff. The “screwball comedies” were full of that stuff and so were a lot [...] Barbara
Stanwyck plays a famous “country” magazine writer who has been lying to [...] she has to keep lying to keep her
persona (and her job). She even lies to a guy about getting married, another topic that was always trivialized in
classic films. She ’s a New York City woman who pretends she’s a great cook and someone who knows how to
handle babies, etc. Obviously she knows nothing and the lies pile up so fast you lose track. I guess all of that is
supposed to be funny because lessons are learned in the [...] Please pass the barf bag. Most of this film is NOT
funny. Stanwyck was far [...] well, pass the bag again.

(c) EXP2: Verb - POS feature extraction
There were so many classic movies that were made where the leading people were out-and- out liars and yet they
are made to look good. I never bought into that stuff. The “screwball comedies” were full of that stuff and so were
a lot of the Fred Astaire films. Here, Barbara Stanwyck plays a famous “country” magazine writer who has been
lying to the public for years, and feels she has to keep lying to keep her persona (and her job). She even lies to a
guy about getting married, another topic that was always trivialized in classic films. She ’s a New York City woman
who pretends she ’s a great cook and someone who knows how to handle babies, etc. Obviously she knows nothing
and the lies pile up so fast you lose track. I guess all of that is supposed to be funny because lessons are learned
in the end and true love prevails, etc. etc. Please pass the barf bag. Most of this film is NOT funny. Stanwyck was
far better in the film noir genre. As for Dennis Morgan, well, pass the bag again.

(d) EXP3: Adjective & Verb - POS feature extraction

Figure 7.4: Examples of textual explanation report for the input in Figure 7.4a originally
labeled by BERT as Negative with a probability of 0.99. Features found are highlighted
in red.(Continue)

perturbation can be considered a good measure of robustness for this prediction. More-
over, EXP5 is characterized by an apparently random pool of relevant words. However,
we could say also that MLWE features are more precise w.r.t. EXP3 with just a small
penalty on the nPIR score. The MLWE strategy exploits the model’s knowledge to find
a concise set of words independently from their part-of-speech and sentence. So, also
the resulting explanations can be considered more reliable by the end-user.
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[...] She even lies to a guy about getting married, another topic that was always trivialized in classic films. [...]

(e) EXP4: Sentence feature extraction
[...] I never bought into that stuff. The ”screwball comedies” were full of that stuff and so were a lot of the Fred
Astaire films. Here, Barbara Stanwyck plays a famous ”country” magazine writer who has been lying to the public
for years, and feels she has to keep lying to keep her persona (and her job). she even lies to a guy about getting
married, another topic that was always trivialized in classic films. she’s a new york city woman who pretends she’s
a great cook and someone who knows how to handle babies, etc. Obviously she knows nothing and the lies pile up
so fast you lose track. I guess all of that is supposed to be funny because lessons are learned in the end and true
love prevails, etc. [...] Most of this film is not funny. Stanwyck was far better in the film noir genre. as for Dennis
Morgan, well, pass the bag again

(f) EXP5: Multi-layer word embedding feature extraction

Figure 7.4: (Continued) Examples of textual explanation report for the input in Fig-
ure 7.4a originally labeled by BERT as Negative with a probability of 0.99. Features
found are highlighted in red.

Explanation Feature 𝑓 𝐿𝑜 𝐿𝑓 𝑛𝑃 𝐼𝑅𝑓(𝑁)
EXP1 POS-Adjective N N 0.003
EXP2 POS-Verb N N 0.137
EXP3 POS-Adj&Verb N P 0.915
EXP4 Sentence N P 0.638
EXP5 MLWE N P 0.899

Table 7.6: Quantitative explanation for example in Figure 7.4. P is the positive label, N
is the negative label.

7.3 Evaluating Per-Class Model Explanations
Exploiting the prediction-local explanations computed for all the input documents

we provide per-class model-global insights about the leading input patterns. For each
use-case we report, separately for each class-of-interest, the 𝐺𝐴𝐼 and 𝐺𝑅𝐼 scores of
each input token under the form of word-clouds. The sizes of words in the word-clouds
are proportional to the 𝐺𝐴𝐼 or 𝐺𝑅𝐼 scores computed separately for each class-of-
interest. Also, note that the relative size of the word size is local to each word-cloud.
Twowords with the same size in different word-clouds do not necessarily have the same
score. Also, two words with the same size in the same word-cloud have a similar score.

Use case 1. Figure 7.5 reports the 𝐺𝐴𝐼 and 𝐺𝑅𝐼 score for the toxic comment clas-
sification task. Class Toxic is reported in Figures 7.5a and 7.5c), while class Clean is
reported in Figures 7.5b and 7.5d)respectively. The 𝐺𝐴𝐼 word-clouds (Figures 7.5a and
7.5b) show that the two classes are influenced by a non-overlapping set of words. So, if a
word is characterizing toxic language it would not be associated to clean language. We
also note that the model learned to distinguish toxic comments when input documents
include terms that are strongly related to discrimination, or racism. Instead, there is
no specific pattern of words that characterize clean comments. This confirms the hy-
pothesis for which the model is able to recognize toxic words while all the others are
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(a) GAI Toxic class. (b) GAI Clean class.

(c) GRI Toxic class. (d) GRI Clean class.

Figure 7.5: Global explanation of toxic comment classification with LSTM.

(a) GAI Positive class. (b) GAI Negative class.

(c) GRI Positive class. (d) GRI Negative class.

Figure 7.6: Global explanation of sentiment analysis with BERT.

correctly considered non-toxic.
The 𝐺𝑅𝐼 word-clouds (Figures 7.5c and 7.5d) show then which are the concepts

that the model is using to differentiate the two classes. They highlight that class Toxic
is influenced by general insults like stupid, idiot, and ignorant and terms related
to minorities and genders like woman, black, white, gay. This means that the model
learned to distinguish toxic comments when these terms are present. Also, we discov-
ered that politician family names, anonymized as Politician1, Politician2, etc.,
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are meaningfully related to toxic comments by the model. These last result highlights
the necessity of exploiting detailed explanations when dealing with black-box models.
Indeed, if models are not carefully trained, they can learn from sensible content includ-
ing prejudices and various forms of bias that should be avoided in critical contexts. For
instance, associating a person’s family name to a class raises ethical issues.

Use case 2. We analyzed the prediction-local explanations for 400 input texts in the
sentiment analysis use-case. Doing so we extract per-class global insights about the
BERT model. Figure 7.6 shows the 𝐺𝐴𝐼 and 𝐺𝑅𝐼 word-clouds for classes Positive and
Negative.

In this case, the 𝐺𝐴𝐼 word-clouds for classes Positive in Figure 7.6a and theNegative
in Figure 7.6b report that several words like story, movie, film, like are impacting
at the same time on both classes. Thus, the model learned overlapping concepts that
do not express directly a sentiment. However, if these concepts are taken together to
the context, they can actually express a sentiment (e.g. This film is not as good
as expected).

The 𝐺𝑅𝐼 of class Positive in Figure 7.6c reports also that words like movie and film
are still very relevant for the model. Instead, these words disappear in class Negative
in Figure 7.6d. Interestingly, it emerges that this class is highly characterized by the
word book. Investigating this in the dataset, we discovered that negative comments
are often related to movies extracted from books. This is a form of bias that the model
has learned. From one side, the model learned what the dataset contained. On the other,
though the automatic evaluation of a movie should not take into account the fact that
it is inspired from by book or not. Otherwise, good movies inspired by books may be
classified erroneously as Negative just because of the comparison with the book.

The 𝐺𝑅𝐼 highlight that other influential words for class Positive are words strongly
related to the corresponding sentiment, e.g. good, great, best, love. Similarly, the
negative class Negative is characterized by concepts like worst, bad, awful. In this
case, the model behaves as expected.

We can conclude that per-class model-global explanations are useful tools to better
understand the decision-making process of a model. In our experiments, it highlighted
the presence of prejudices and/or biases. Also, the data scientist responsible for the
quality of the model may also use them to decide if and which corrective actions have
to be taken to make the decision-making process more reliable.

FurtherGlobal Insights. Contrariwise to the short input text classified by LSTM, the
BERT predictive model has been exploited to analyze much more complex and longer
inputs. The average number of tokens in the texts classified by the LSTM model is 51,
whereas the average for BERT is almost 225 tokens per input text.

Considering the more complex classification task of the BERT model, we analyze
which are the characteristics of the input data that are influencing the prediction pro-
cess. We do this by exploiting the information extracted during the explanation process.
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From Table 7.1 we notice that the perturbation of a single part-of-speech (POS) is caus-
ing a change in the predicted class only in 33% of the documents, of which: 14% due to
adjectives, 10% verbs, 10% conjunctions, 8% adverbs, 7% by pronouns, and 6% nouns (the
percentages do not sum to 33% since several part-of-speech features can characterize
each textual document).

Regarding the analysis of the features extracted by MLWE, BERT showed the ten-
dency to be influenced by the perturbation of singular words (example of this in Sec-
tion 7.2), which is typically an undesired behavior. Figure 7.7 shows the relative size
of the features extracted through MLWE for each local explanation, computed as the
number of tokens in the cluster exploited in each local explanation over the number
of tokens in the corresponding input text. This measures the percentage of input text
that should be perturbed to change the model prediction. We notice that there are few
documents for which the perturbation of 2 or 3 words causes a change in the predicted
outcome, whereas most documents usually require at least 30% of the text to be per-
turbed before changing the outcome. We can conclude that the fine-tuned BERT model
is on average particularly sensitive to the context of whole phrases since there is no
specific part-of-speech or singular word influencing the decision-making process at a
model-global level.

Figure 7.7: Relative size of the features extracted with MLWE strategy (i.e. size of the
most influential clusters of words) for all the informative local explanations. The relative
size is calculated, for each local explanation, as the number of tokens in the cluster over
the number of tokens in the input text.
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7.4 Comparisons ofModel-Agnostic andModel-Aware
explanations

In this section, we compare our explanation processwith the state-of-the-art LIME [69].
The main difference between the two methods is that we consider the knowledge of the
model to produce the explanations. Instead, LIME’s explanations are extracted by ex-
ploiting a model-agnostic approach.

To better understand the comparison process, let us describe briefly how the local
explanations are computed by LIME. Given an input text, LIME randomly perturbs the
tokens in the input text and produces a number of local variations. The labels for the lo-
cal variations are predicted with the target black-box model. The local variations along
with the predicted labels constitute a new dataset describing the local behavior of the
model. The local dataset is used to train a linear surrogate model which is interpretable.
The coefficients of the surrogate model are exploited as prediction-local explanations.

Figures 7.8 and 7.9 show the comparison of two prediction-local explanations pro-
duced by LIME and by our framework. The two examples represent two predictions
extracted from use-case 2, i.e. the sentiment analysis task performed with BERT. The
predictions for input texts in Figures 7.8a and 7.9a are Negative and Positive and they
are both correct.

From a first analysis, LIME’s explanations highlight a very small set of influential
words. Figure 7.8b identifies the word unbearable as the main responsible for the
class-of-interest. Similarly, in Figure 7.9b LIME highlight the set {what, and , I,
personally, found, very} as influential for the prediction Positive. Both LIME’s
explanations are very easy to read and if not analyzed properly they may seams correct
and trustworthy.

On the other side, our explanation framework highlights a much larger number
of tokes as influential in Figures 7.8c and 7.9c for the two predictions respectively. The
reported explanations are extracted with the MLWE strategy to fully exploit the knowl-
edge of the model. The influential tokens have been colorized accordingly to their nPIR
values, i.e. 0.99 and 0.82 respectively.

So, now the question is ”which of the two frameworks is providing the more reliable
explanation?”. To answer this question we took the explanations provided by LIME and
we removed them from the input text. Then, this newly perturbed version of the input
is given in input to the BERT model which produces a new prediction. If the model is
actually affected by the concepts found by LIME, then the new outcomes of the model
would show a variation. Interestingly, we discovered that the perturbation of the to-
kens explained by LIME is not affecting at all the prediction process in both examples.
The probabilities of belonging to the classes-of-interest do not change before and af-
ter the perturbation. This demonstrates that approaching the explanation process with
model agnostic strategies can lead to not reliable results. Indeed, LIME’s explanations
are suffering from a large approximation introduced by the surrogate model.
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Instead, our explanation process is intrinsically optimizing the informativeness of
the explanations by using the black-box model itself. The sets of influential features
found with our approach are larger w.r.t. the ones from LIME. However, they are more
reliable since, if perturbed they drift the predictions to the opposite class. In particular,
perturbing features in Figure 7.8c are lowering the probability of class Negative from
1.0 to 0.002. Similarly, the perturbation of features in Figure 7.9c is lowering the proba-
bility of class Positive from 0.999 to 0.186. This shows once more that our model-aware
explanation process is more reliable, even if the produced explanations may seamless
readable. Moreover, we can say that our explanation process is reliable by definition,
since it does not relies on any other knowledge than the one coming from the target pre-
diction process, i.e. the input data, the model’s knowledge, and the model’s outcomes.

(a) Original input text predicted by BERT as Negative with probability 1.0.

(b) Explanation provided by LIME.

(c) Explanation provided by our framework with MLWE feature extraction. The nPIRis
0.99.

Figure 7.8: Comparison of explanation between LIME and our framework for class-of-
interest Negative.
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(a) Original input text predicted by BERT as Positive with probability 1.0.

(b) Explanation provided by LIME.

(c) Explanation provided by our framework with MLWE feature extraction. The nPIRis
0.82.

Figure 7.9: Comparison of explanation between LIME and our framework for class-of-
interest Negative.
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Chapter 8

Assessing and Trusting Models’
Performances Over-Time

In this chapter, we address the problem of managing the reliability of a predictive
model over-time. It is widely recognized that the performance of a predictive model can
degrade over time due to factors like the presence of concept drift [28, 103, 37, 11, 30]. To
this aim, we introduce a new general framework tailored to Concept-DriftManagement
which enables the unsupervised monitoring of predictive performance over-time. With
this frameworkwe aim to introduce a new level of model interpretability, addressing the
current limitations of explanation frameworks that do not take into account over-time
performance degradation. In particular, our contributions can be summarized in:

• Our approach has been developed to address different use-cases and ML/AI ar-
chitectures, e.g. standard ML pipelines, DCNN, Word2Vec, BERT.

• We consider also modern Big-Data use cases where scalability is a requirement.
So, we introduced a new scalable index, namely Descriptor Silhouette, that we
exploit to measure the degradation of input data distribution.

• We introduced a new quantitative definition of model degradation that measures
the presence of concept-drift separately for each class-of-interest.

• We validate our approach on unstructured data analyzed by modern state-of-the-
art models, i.e., DCNN,Word2Vec, and BERT. Furthermore, we deeply analyze the
scalability performance of our approach.

A preliminary version of this work has been published in [100, 19].
The chapter is organized as follows. Section 8.1 introduces the overall methodol-

ogy to automatically provide up-to-date predictive models when required. Section 8.2
presents the new concept-drift detection strategy proposed to explain how the predic-
tive performance degrades over time, while Section 8.3 discusses some experimental
results that validate the proposed approach.
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8.1 A framework for Concept-Drift Management

Decision Boundary Decision Boundary

New incoming data with
unknown distribution

Before Drift Time

Ground Truth

Prediction

After Drift

Figure 8.1: Predictive model before and after the occurrence of concept drift.

The performances of predictive models are subject to degradation over-time be-
cause of the occurrence of new data distributions, that are unknown at training-time.
This phenomenon is known as concept-drift. A symbolic example of this phenomenon
is shown in Figure 8.1. In the example, before the arrival of drifting data, the Decision
Boundary of the predictive model is able to distinguish between Circles and Squares.
However, as soon as a new Triangle data arrives, the model has to decide a label among
the ones that he has learned at training-time. Unfortunately, this dummy model has
never learned the concept of Triangle, thus it wrongly assigns the new data to the
squares class.

Assessing and managing the quality of the model’s outcomes over-time requires
dealing with the presence of concept drift. To this aim, it is necessary to introduce
further steps in the standard online analytical pipeline.

New unseen data Labeled data

ML / AIModel

Model degradation
evaluator over-timeUpdate model with

Auto-KDD

Semi-supervised
data labelling

Data with new labels

Per-class % of
Degradation

Concept-Drift Management

Known data

Unknown data
Prediction

Figure 8.2: Concept-Drift management framework.

In [19] we proposed a new framework to manage concept drift that introduced a
novel Model Degradation Evaluation Over-Time component. Figure 8.2 shows the main
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components of the proposed framework. Consider a predictive model deployed in pro-
duction that is analyzing a stream of data.

The Concept-Drift Management framework continuously monitors the presence of
drifting distributions of data through theModel Degradation Evaluation Over-Time. The
outcomes of this evaluation step are proposed to the user as well so that he can decide
if to trust the model’s prediction over-time.

Then, before updating the model, it is necessary to isolate the samples of data af-
fected by concept-drift. To this aim, a Semi-Supervised Data Labelling step has been
introduced. Due to the massive quantity of data collected and analyzed every day by
modern systems, the labeling step is widely recognized as a huge bottle-neck in the
machine learning pipeline. This step aims to support domain experts in identifying a
meaningful pattern in the newly correlated data and allowing to assign semantically
meaningful labels to the new automatically-discovered classes of data. A small sub-
set of representative samples of the new classes will be manually inspected by domain
experts. Their label assignments will be used for the remaining samples in each corre-
sponding class.

Lastly, the Data with New Labels is exploited to Update the Model with Auto-KDD
(Knowledge Discovery Process) fitting the new incoming data distributions and clas-
sification labels. This step can be automatically triggered based on the results of the
previous ones, e.g., when the model degradation is higher than a given threshold. The
latter step has already seen applications of state-of-the-art approaches tailored to spe-
cific data types, such as in [3] for predictive maintenance, in [24, 66] for addressing topic
detection among textual document collections, and for network traffic characterization
in [4].

The contribution of this chapter focuses on theModel Degradation Evaluation Over-
Time, which we claim as a new core component of novel Explainable Artificial Intelli-
gence pipelines. We are proposing a novel unsupervised process able to automatically
detect per-class concept drifts and to manage predictive model rebuilding by evaluat-
ing the degradation of predictions of data streams. Specifically, we aim at identifying
when additional or different class labels are required, without requiring ground-truth
data labels for the new data, and with a scalable approach.

8.2 Evaluating model’s performance over-time
Due to the absence of ground-truth labels when the model is deployed in real sys-

tems, it would not be possible to exploit standard validation techniques to assess the
performance of the model. Thus, we propose an unsupervised approach to highlight
whether the distribution of known classes is starting to drift and in turn when the pre-
diction process is no more reliable. Figure 8.3 shows the main steps of the model’s per-
formance degradation evaluation over-time.

Let’s consider a prediction process of a stream of data. A predictive model is first
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Figure 8.3: Model’s Performance Degradation Evaluation Over-Time.

trained to exploit a labeled training dataset, thus, the model associates the distribution
of the labeled samples to each class. The model’s degradation evaluation starts by per-
sisting the knowledge contained in the training data with an embedded form (Step 1 ).
This operation is performed one-time. We will define in Section 8.2.1 what we mean by
embedded form.

Then, the model is deployed and exploited to predict a stream of data. As soon as the
predictions are produced, the labeled samples are collected and analyzed by windows
(Step 2 ) and their information is persisted under the form of embedded data (Step 3 ) as
well. The embedded data of the window of analysis is then merged with the embedded
data representing the training data distribution (Step 4 ).

The distributions of the training data, i.e., the base distribution, and of the train-
ing plus the new incoming data, i.e., the eventually degraded data, are then evaluated
(Steps 5a , and 5b ). The cohesion and the separation for each class label separately are
measured. Further details about the measurement of cohesion and separation will be
reported later in this Chapter as well.

Finally, the outcomes of the evaluation phase of the base and the degraded dis-
tributions are used to estimate the degradation of the model’s performance over-time
(Step 6 ). At each time interval, as large as the window of analysis, the evaluation pro-
cess provides the percentage of performance degradation for each known class label.
The higher is the degradation, the higher is the probability of the presence of concept
drift, reducing, in turn, the reliability of the model itself.

While new data are continuously classified by the model over time, the assessment
of the predictive performance has to be performed periodically. Also, the evaluation
of the base and degraded distributions depend on the cardinality of the new incoming
data.
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8.2.1 Embedding the model’s knowledge
Exploiting an embedded representation of data has several advantages. The liter-

ature is prone of techniques and examples where the input data is transformed in its
embedded form. Word embeddings in Natural Language Processing [40, 63, 25], image
embeddings in image processing [58, 34], and more in general all the techniques used to
reduce the dimensionality of a raw input sample are just a few of the examples that can
be done. These techniques are able to reduce the complexity of the input data putting in
evidence their semantical meaning in a geometrical fashion. Also, modern models like
Word2Vec [40], BERT [23], and VGGs [80] incorporate the knowledge of thousands of
concepts under the form of numerical tensors. We already saw in previous Chapters 4.2
and 6.2 how the knowledge of these models can be exploited to extract meaningful in-
formation about the prediction process. Similarly, also in this context, the inner knowl-
edge of the model comes in help when dealing with monitoring the distribution of new
incoming data.

In our predictive performance evaluation approach, the embedding representation
of the input samples shows several advantages as well:

• The dimensionality of the input data is significantly reduced, lowering the re-
quirements of memory and processing power required to process a large amount
of data;

• The input sample is projected to a lower geometrical space, putting more in evi-
dence where the shift in the distribution is occurring;

• The knowledge of most of the modern AI models can be accessed to extract the
embedded representation of the input sample, as already explained in previous
Chapters;

• The privacy of the real content of the data can be preserved;

It is not always possible to apply a data embedding process to the input data. In
particular, three different scenarios are possible: (i) the analytical pipeline deployed
along with the predictive model does not include an embedding step, (ii) the analytical
pipeline deployed along with the predictive model already includes an embedding step
(e.g. text classification exploiting Word2Vec embeddings), and (iii) the deployed model
is a Deep Neural Network from which an embedded representation of the input can be
extracted.

In the first scenario, an embedding process is not available and it should be avoided
to preserve as much information as possible from the input data. Indeed, the predictive
model has been probably trained on the input data after a custom preprocessing step.
The data after the preprocessing step of the ML pipeline can be exploited in the pre-
dictive performance evaluation process. In this case, most of the advantages offered by
the embedded representation will be lost and they have to be substituted by a robust
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preprocessing process that produces a reliable vectorial representation of the input. An
example of preprocessing that can be exploited in this step has been presented in [3, 19,
100]

In the second scenario, the ML pipeline already includes an embedding phase that
can be then exploited also in the predictive performance evaluation process. Although
the embeddings are extracted from outside the model itself, they can be considered
reliable since the predictive model has been trained relying on this information. In this
case, the predictive performance evaluation is agnostic about the predictive model, i.e.,
any typology of model as linear, tree-based, neural networks can be used since the
analysis of the predictive performance will consider only the embedding of the input
data and the prediction made by the model. In some cases, being model agnostic is a
requirement. An example of embedding that can be exploited for example in NLP is
Word2Vec [40].

The third and last scenario taken into account is when a Deep Learning Model is
used. As in the previous chapters, the inner knowledge of the models can be exploited
to get an accurate and valuable embedded representation of an input sample also ex-
pressing the knowledge learned by the model. Furthermore, deep learning models are
often fine-tuned to address smaller more specific tasks, starting from a more general
pre-trained checkpoint. The pre-trained model is able to recognize a wide range of con-
cepts, e.g. the pre-trained BERTmodel incorporates the knowledge ofmillions of textual
documents. Then, with the fine-tuning the models are specialized to solve a particular
task, hiding all the latent knowledge used during the decision-making process. Instead,
the embedded representation of the input extracted directly from the inner layers of the
network will allow to include also latent knowledge in the unsupervised analysis of the
predictive performance. To address this scenario, the techniques proposed in Chapters 4
and 6 can be exploited.

As previously cited, exploiting the embedded version of the input samples will al-
low preserving the privacy of their content. The embedding is a simplified vectorial
representation of complex input data from which it is not possible to reconstruct the
original input if the source of the model is not available for retraining [50, 13, 12].

8.2.2 Per-class predictive performance degradation
The knowledge of the predictive model is represented by the distribution of the

training samples (historical data with labels). As long as new incoming data maintains
a distribution similar to the one learned by the model at training time its performance
can be considered unchanged. However, if the incoming data distribution starts to drift
the model’s predictions may become misleading or erroneous. Traditional evaluation
techniques, e.g., f-measure, precision, recall, are obviously not applicable since they
require ground-truth labels for the new incoming data, which is missing for newly-
classified samples.
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Hence, we exploit an unsupervised strategy that, given a set of data samples di-
vided into classes (either ground-truth labels or assigned by the model), is able to quan-
tify both their intra-class cohesion and inter-class separation. To efficiently capture the
model performance degradation over time, the proposed approach performs (i) Base
Distribution Evaluation, by computing unsupervised quality metrics on the training set,
and (ii) Degraded Distribution Evaluation, by periodically recomputing the same metrics
on the newly labeled data and comparing it to the values obtained in (i).

In this work, we exploit the Silhouette [70], a measure of the fit of each sample
within its predicted class. It measures how similar a sample is to its own class (cohe-
sion) compared to other classes (separation). The Silhouette value ranges from -1 to +1,
with higher values indicating a better match to the assigned class and a poor match
to other classes. In order to compute the Silhouette, for each sample, the pairwise dis-
tance between itself and each other sample of the dataset has to be calculated. For this
reason, the traditional computation of the Silhouette coefficient is not suitable for Big
Data scenarios. However, we recently developed a scalable alternative named Descrip-
tor Silhouette (DS) that makes the silhouette suitable for large amounts of data [100].
We included this alternative index in the framework to address big data distributed
platforms as well. In practice, if the size of the data requires distributing the computa-
tion the DS index is exploited approximating the real silhouette value. Otherwise, the
original silhouette definition is exploited.

The degradation of the predictive model is then obtained by evaluating the quality
metric before and after the arrival of new training data.

Finally, to fully automate the process, a degradation threshold should be defined
to trigger predictive model rebuilding. This threshold depends on the expectations of
domain experts and end-users, the risks and costs related to the specific application,
and also the number of records and classes of the dataset. Its evaluation is out of the
scope of this work.

Descriptor Silhouette index. The Silhouette [70] is a well-known index with the
purpose of evaluating the quality of clusters of points in terms of cohesion and separa-
tion. However, the computational cost of this index is 𝑂(𝑁2), where 𝑁 is the cardinality
of the dataset (a critical dimension in a Big Data context): to calculate the Silhouette in-
dex all the pairwise distances between the points of the dataset have to be computed.
Thus, the Silhouette coefficient is not suited to be applied in a Big Data application.

To solve this problem, we propose a new approach, named DS (Descriptor Silhou-
ette), that is tunable to have a computational cost linear in the number of records and
with an error with respect to the standard Silhouette score definitely acceptable.

The DS describes the geometrical space defined by a group of points with a low
number of descriptors, well distributed. For each group, i.e., classification label, a num-
ber of descriptors are extracted through clustering analysis.

Algorithm 2 shows the main steps necessary to compute the DS index. The algo-
rithm takes into input the set of data samples 𝑋 along with the class labels for each
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Algorithm 2: Descriptor Silhouette computation.
Input : Input samples 𝑋; class labels 𝑦; number of descriptors 𝜅;
Output: Descriptos Silhouette Samples 𝐷𝑆𝑆

1 𝐷 ← ∅;
2 𝐷𝑆𝑆 ← ∅;

/* Compute Descriptors for each class */

3 for 𝑐 in unique(𝑦) do
4 𝑋𝑐 ← filterSamplesPerClass(𝑋,𝑐);
5 𝐾𝑀 ← fitClustering(𝑋𝑐, 𝜅);
6 𝐷𝑐 ← getCentroids(𝐾𝑀);
7 𝐷 ← 𝐷 ∪ 𝐷𝑐;
8 end

/* Compute Descriptor Silhouette for each Sample */

9 for x ∈X do
10 𝑎(𝑥) ← computeCoefficient_a(𝑥, 𝐷) ; // Equation 8.1

11 𝑏(𝑥) ← computeCoefficient_b(𝑥, 𝐷) ∑ ; // Equation 8.2

12 𝑑𝑠𝑠(𝑥) ← computeSilhouette(𝑎(𝑥), 𝑏(𝑥)) ; // Equation 8.3

13 𝐷𝑆𝑆 ← 𝐷𝑆𝑆 ∪ 𝑑𝑠𝑠(𝑥);
14 end
15 return 𝐷𝑆𝑆

point 𝑦 and the number of descriptors 𝜅.
The first part of the algorithm computes 𝜅 descriptors for each class separately (lines

from 3 to 8). The descriptors, in our implementation, correspond to centroids extracted
by the well-known K-Means algorithm [7]. Indeed, K-Means and generally clustering
algorithms are able to describe the dataset with a limited number of centroids, that well
represents the whole geometrical points distribution. Moreover, K-Means can be easily
parallelized to scale horizontally within the available computational resources.

Then, the descriptor silhouette is computed for each sample contained in the input
data 𝑥 ∈ 𝑋 (lines from 9 to 14). The DS approach implements the Euclidean distance
and it exploits a Silhouette definition similar to the original (Equation 8.3) to calculate
the score for each point in the dataset.
First, the 𝑎(𝑥) coefficient is computed (line 10). It is the average distance of sample 𝑥
from all the other descriptors 𝑑 ∈ 𝐷𝑥 of class 𝑐 (Figure 8.4-left), i.e.,

𝑎(𝑥) = 1
|𝐷𝑥| ∑

𝑑∈𝐷𝑥,𝑥≠𝑑
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑑) (8.1)

and then 𝑏(𝑥) (line 11) that represents the lowest average distance of 𝑥 from all other
classes’ descriptors 𝑑 ∈ 𝐷𝑘, 𝑘 ≠ 𝑥 (Figure 8.4-right), i.e.

𝑏(𝑥) = min
𝑘≠𝑥

( 1
|𝐷𝑘| ∑

𝑑∈𝐶𝑘

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑑)) (8.2)
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Finally, the silhouette formulation is applied (line 12):

𝑠(𝑥) = 𝑏(𝑥) − 𝑎(𝑥)
𝑚𝑎𝑥{𝑎(𝑥), 𝑏(𝑥)}

(8.3)

As the Silhouette coefficient, the proposed DS index assumes values in [−1, 1]. The
DS is computed for each sample in a dataset. It gives information about the quality of
the assignment of that record to a specific classification class. Values lower than zero
represent a bad assignment of the record to a group, while values higher than zero mean
a good assignment. In the specific case of model assessment, the classes of the classifier
can be considered as clusters to which the new incoming unlabeled data is assigned.

Decision Boundary

New incoming data with
unknown distribution

Descriptor
Computed distanceDecision Boundary

New incoming data with
unknown distribution

Intra-Class Cohesion Inter-Class Separation

Figure 8.4: Visual example of distance computation among points and descriptors with
𝜅 = 4. intra-class cohesion on the left and inter-class separation on the right.

Increasing the number of descriptors the approximation of the DS will reduce. The-
oretically, if 𝜅 = |𝑋| then the Descriptor Silhouette is equal to the Silhouette index.
In practice, the current implementation will use the original definition of silhouette if
|𝑋| is small enough to be computed locally or if 𝜅 « |𝑋| is not satisfied. In this way,
the number of distances to compute is significantly reduced, computing the distances
only between points and descriptors. The computational complexity of this new index
is lowered to 𝑂(|𝑋| ∗ 𝐶 ∗ 𝜅), where |𝑋| is the cardinality of the dataset, 𝐶 is the num-
ber of classes learned by the classifier, and 𝜅 is the number of descriptors computed for
each class. The number of classes is usually very small w.r.t. the number of points and,
commonly, it remains constant unless a model is retrained with a new set of classes.
Also, the number of descriptors is usually several order of magnitude lower than the
number of records in data collection under analysis.

Per-class degradation estimation. Figure 8.5 shows the main steps of the evalua-
tion over-time of the predictive model performance degradation. The algorithm analyze
both the data exploited at training time, i.e., time 𝑡0, and windows of new incoming data
labeled by the model until time 𝑡𝑛 (Figure 8.5- 1 ). The evaluation of the degradation is
triggered as soon as 𝑠 new incoming samples are collected. When a set of 𝑠 new incom-
ing samples has been labeled, the evaluate thewindow of size 𝑇 of historical samples and
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Figure 8.5: Degradation estimation over-time.

it recomputes an updated silhouette curve including both the training samples and the
new labeled points. The window of analysis 𝑇 should never be bigger than the number
of samples in the training data. Otherwise, a possible drifting distribution may over-
whelm the original one and then the silhouette may indicate this new distribution as
cohesive and well separated producing misleading results.

Then, the algorithm compares the cohesion and separation, through the silhouette
index, of two different distributions (Figure 8.5- 2 ): (i) the base, computed on the train-
ing set only, and (ii) the potentially degraded one, computed on the training set plus
the newly-labeled data. Hence, at each step, for each class, a curve is plotted, represent-
ing the Silhouette values of each point, sorted in increasing order. When comparing
two Silhouette curves, an under-sampling of their points can be required to allow a
point-to-point evaluation. An upward shift of the Silhouette curve represents an im-
provement in terms of intra-class cohesion and inter-class separation, while, on other
hand, a downward shift denotes a degradation. This means that the current prediction
model is not able to correctly assign the class labels to these new samples. Furthermore,
the correct class labels might be new (additional) ones, unknown for the current model.

The degradation of the model’s performance is thus quantified separately for each
class 𝑐 and aggregated to give the overall degradation of the model at time 𝑡 (Fig-
ure 8.5- 3 ). The degradation is translated in an evaluation of the errors between the
two silhouette curves. The MAAPE (Mean Arc-tangent Absolute Percentage Error ) [36]
has been exploited in our implementation since it is more robust to the presence of
values close or equal to zero. Although other error metrics can be considered. Given a
predictive model trained on a set of classes 𝐶 at time 𝑡0 and characterized by a silhouette
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curve 𝑆𝑖𝑙𝑡0
, the degradation of a class 𝑐 ∈ 𝐶 at time 𝑡 is described by the following:

𝐷𝐸𝐺(𝑐, 𝑡) = 𝛼 ∗ MAAPE(𝑆𝑖𝑙𝑡0
,𝑆𝑖𝑙𝑡) ∗

𝑁𝑐
𝑁

(8.4)

𝛼 =
{

1 𝑖𝑓 ∶ 𝑆𝑖𝑙𝑡0
≥ 𝑆𝑖𝑙𝑡

−1 𝑖𝑓 ∶ 𝑆𝑖𝑙𝑡0
< 𝑆𝑖𝑙𝑡

(8.5)

The coefficient 𝛼 defines if the degradation is positive, meaning a possible reduction in
performances of the prediction model, or negative, when the new data fits the training
distribution, hence increasing the cohesion of class 𝑐. From (8.4), the degradation is
modeled as the MAAPE error between the baseline Silhouette 𝑆𝑖𝑙𝑡0

on the training set
and the possibly-degraded Silhouette 𝑆𝑖𝑙𝑡 computed at time 𝑡 on newly-labeled data.
The degradation estimation is weighted by the ratio 𝑁𝑐/𝑁, where 𝑁𝑐 is the number
of new records assigned to class 𝑐 and 𝑁 is the total number of new samples, with 𝑁
capped at the number of samples in the training set 𝑁𝑡𝑟𝑎𝑖𝑛. The cap is introduced to
allow a fair comparison when 𝑁 » 𝑁𝑡𝑟𝑎𝑖𝑛. To this aim, 𝑆𝑖𝑙𝑡 is computed on a trailing
window containing the latest 𝑁 samples up to the number of samples of the training
set 𝑁𝑡𝑟𝑎𝑖𝑛. Finally, the overall degradation of the model at time 𝑡 is then defined by the
following:

𝐷𝐸𝐺(𝑡) = ∑
𝑐∈𝐶

𝑚𝑎𝑥(0,𝐷𝐸𝐺(𝑐, 𝑡)) (8.6)

The overall model degradation considers only when the degradation of each class is
positive, thus affecting its performance. In other words, as the new incoming data in
increasing the cohesion of the class-of-interest, it is not considered as concept-drift.

The proposed degradation evaluation, other than defining when the predictions of
a model are no more reliable, can be exploited to decide when to rebuild the model
itself. This decision can be taken considering a threshold over which the newly collected
data is considered as drifting. However, the retraining process of the model, given its
degradation trend, is out of the scope of this work.

8.3 Experimental results
Datasets. Wepresent experimental results on concept driftmanagement on four datasets.
Table 8.1 summarize the main characteristics of the dataset exploited in this experimen-
tal section. The concept shifts have been manually introduced following two different
patterns and it is represented by the arrival of data belonging to previously unseen
classes, unknown to the predictive model.

The first dataset, D1, is a synthetic dataset created with the scikit-learn Python
library [62]. It has been generated with 4 normally distributed classes and 800,000
records, 200,000 for each class, and 10 features. D1 has been built to assess the pro-
posed algorithm. Indeed, each class in the dataset is characterized by a high cohesion
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Table 8.1: Summary of datasets exploited in concept drift management experiments.

Id Data Type Model # Classes (train + drift) # Record Drift Pattern
D1 Synthetic Random Forest 4 (2+2) 800,000 P1
D2 Texts Doc2Vec + Random Forest 3 (2+1) 3,000 P1
D3 Images VGG16 (Fine Tuning) 3 (2+1) 1,000 P2
D4 Texts BERT (Fine Tuning) 4 (3+1) 1̃00,000 P2

and inter-class separation. This allows understanding if and how the predictive perfor-
mance degradation is identified by our algorithm.

Dataset D2, on the contrary, is a real-world dataset containing Wikipedia articles,
extracted from 3 classes:mathematics, literature, and food-drink. For each class, a selec-
tion of 1,000 articles appearing in the Wikipedia index for that class has been down-
loaded. Each article has been pre-processed to obtain an embedded representation of
100 features for it. The document-embedding process takes advantage of a Doc2Vec
model [40], pre-trained on the English Wikipedia corpus [39]. For D1 and D2, a Ran-
dom Forest classifier has been used as a predictive model. In both cases, the training
set consisted of a stratified sample over classes 0 and 1, sampling 60% of the records in
each class. The remaining part of the dataset (i.e., 40% class 0, 40% class 1, the whole
unknown class 2 and/or 3 according to the dataset) is exploited as the test set to as-
sess model degradation. Using a 3-fold cross-validation, the average f-measure of the
predictive model is 0.964 for dataset D1, and 0.934 for dataset D2.

Dataset D3 is composed of images. A subsample of three classes, available in the
Multi-domain Image Characteristics Dataset1, has been exploited. The three classes are
about animals and are divided into three categories: Cat,Dogs, and Fox. Figure 8.6 shows
a sample of the images extracted from the dataset. Dataset D3 contains 1,000 images,
of which about 280 equally distributed among Cat and Dog are exploited to fine-tune a
VGG16 model (pre-trained on the Imagenet dataset). The fine-tuned model reached an
accuracy of 0.99 on the binary task. The remaining samples are exploited to simulate
the presence of concept drift, using class Fox as drifting data.

(a) Example for class Cat in-
cluded in training.

(b) Example for class Dog
included in training.

(c) Example for class Fox not
included in training.

Figure 8.6: Data samples extracted from dataset D3.

1https://www.kaggle.com/realtimear/multidomain-image-characteristics-dataset
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Dataset D4 is composed of about 100,000 documents divided into 4 classes. The
classes available in this dataset are world, sport, business, and Sci/Tech. A subsample of
74612 rows, belonging to classes world, sport, and business, has been exploited to fine-
tune a base uncased BERT model composed of 12 hidden layers. The model reached an
accuracy of 0.97 in the validation process. All the remaining records have been used
to test the performance of the concept-drift detection algorithm using class Sci/Tech as
drifting data.

Patterns of analysis. Two different patterns of incoming concept drift have been
evaluated. They allow showing the capability of the proposed concept drift evaluation
strategy to correctly assess the predictive performance degradation over time when a
new unknown data distribution is introduced. Figure 8.7 shows the two different pat-
terns.

Pattern P1 simulates a window of analysis of increasing size (Figure 8.7a). The first
four test sets, from 𝑡1 to 𝑡4, contain only data known to belong to the classes included in
the training set. Then, from 𝑡5 to 𝑡𝑛, a new drifting distribution is gradually introduced.
The test sets have been designed to simulate the flow of time. This pattern has been
applied to datasets D1 and D2. The window of analysis is incrementally added over
time: 𝑡1 contains half of the test set for class 0, 𝑡4 contains the whole test set for classes
0 and 1, 𝑡5 contains all the test samples for classes 0 and 1 and 20% of the unknown
class (class 2 or 3), then at each step another 20% of the unknown class is added for the
evaluation of degradation until 𝑡𝑛.

Pattern P2 simulates a sliding window of analysis with fixed size and a drifting
distribution of the analyzed samples (Figure 8.7b). In this case, the window size remains
fixed to 𝑇 and the evaluation of the predictive performances is triggered as soon as
new 𝑠 samples are collected. The simulated flow of incoming data, even in this case,
consists of samples belonging to known classes (but never exploited in the training
of the model) from time 𝑡1 to 𝑡5. Then, from time 𝑡6 to 𝑡𝑛 a new data distribution is
increasingly introduced, while previously collected data is consequently forgot. This
pattern has been applied to datasets D3 and D4.

Experimental definition of degradation threshold. Defining when the degrada-
tion is correctly detected is a challenge in real scenarios. We defined an experimental
way to decide whether the measured degradation is due to concept drift or if it is caused
by the noisy nature of the data under analysis. In the firsts periods of time, after the de-
ployment of the model, it is reasonable to assume that the distribution of the data is
similar to the one collected and labeled at training time. Thanks to this assumption, the
degradation of the first 𝑛 periods of time 𝑡 can be observed. These observations can be
used to determine the 𝑡 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 of the degradations observed under non-drifting
conditions. The 𝑡 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 with 𝑛 − 1 degrees of freedom is used since 𝑛 can be
assumed to be lower than 30 (as defined in the literature). Then, each new observation
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(b) Pattern P2

Figure 8.7: Concept Drift patterns.

after 𝑡𝑛 is tested and if their p-value is lower than 𝛼 = 5% the null hypothesis is re-
jected. This means that the degradation measured after 𝑡𝑛 is significantly higher w.r.t.
the non-degrading observations.

Validation on degradation pattern 1. Figure 8.8 shows the percentage of degrada-
tion measured on pattern P1 for dataset D1. The synthetic distribution of the classes
allows identifying exactly when the concept drift occurs and how much it is affecting
the model performance. In this specific case, data embedding has not been required
since the data is already numeric and it does not require any preprocessing being syn-
thetically generated. Thus, the raw samples have been given as input to the algorithm.
Also, the Descriptor Silhouette has been configured to extract 200 descriptors per-class.
The presence of concept drift is correctly highlighted when both unknown classes 2 and
3 are introduced as drifting concepts (Figures 8.8a and 8.8b respectively). Up to time 𝑡4
an average degradation of 1.7% is measured, while as soon as drifting records occur, i.e.,
time 𝑡5, the degradation increases over 10% with Class 2 as drifting concept and reaches
16.7% when Class 3 is exploited as a drifting concept. Then, the degradation percentage
increases almost linearly until time 𝑡9, reflecting the trend of introduced drift showed in
pattern P1 (each timestamp, from 𝑡5, adds 40,000 records with concept drift). Moreover,
Figure 8.9 shows in detail the DS curves before and after the arrival of degraded data.
The Base and Degraded curves at time 𝑡1 are almost coincident (Figure 8.9a). Instead,
at time 𝑡9, the degradation is evident, showing Degraded curves downshifted w.r.t. the
Base ones. These results show that the approach is theoretically valid. However, real
data is rarely well distributed in a geometrical space.

Dataset D2 is exploited to assess the proposed approach in the case of real and high
dimensional data, exploiting pattern P1. Due to the sparse nature of textual data, dataset
D2 has been preprocessed exploiting a Doc2Vec model. The output of this preprocess-
ing is still high dimensional, i.e., each input document is represented by a vectorial
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(a) Degradation with class 2.
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(b) Degradation with class 3.

Figure 8.8: Dataset D1. Model degradation over time, with training on classes 0 and 1.
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Figure 8.9: Comparison of Base DS curve at training time, and degraded DS curves at
time 𝑡 for dataset D1.

embedding of size 300 dimensions. However, thanks to the property of textual embed-
ding, the documents have been projected on a much lower better separated geomet-
rical space concerning the original one. Thus, the documents’ embeddings have been
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exploited as input to the algorithm. Figure 8.10 shows the degradation of the Wikipedia
document classification model when the unknown Class mathematics is introduced.
Between times 𝑡1−𝑡4, the new unseen data classified by the model fit well the learned
distribution, with an overall degradation below 15%. At time 𝑡5, samples of an unknown
class start arriving and the overall degradation raises above 28% (each timestamp, from
𝑡5, adds 200 records with concept drift). Also, the class mostly affected by degradation
over-time is Class 0 because most of the documents belonging to the unknown math-
ematics class have been wrongly assigned by the model to Class food-drink. Thanks to
our unsupervised algorithm it is possible to highlight the presence of drifting data and
to have evidence of which is the most affected class.

In both datasets, the analysis of the overall degradation of the known-classes has
been correctly detected when the shift was introduced. Even if the proportion of new
shifted data was low (i.e., 20% of the unknown class). Specifically, we note that the
overall degradation at least doubled from the pre-drift (𝑡1 to 𝑡4) to the post-drift (𝑡5 to
𝑡𝑛), hence proving to be a promising detector of these events.
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Figure 8.10: Dataset D2. Model degradation over-time, with training on classes 0 (food-
drink) and 1 (literature). Degradation introduced with the new class 2 (mathematics).

Validation on degradation pattern 2. Dataset D3 shows an even harder domain
of analysis. The dimensionality of image data is very high and deep learning models
like VGG16 are exploited to deal with it. The tested predictive model is the fine-tuned
VGG16 model. As already explained in Chapter 4, valuable embedding representation
for images can be extracted directly from its hidden layers. For this analysis, only the
last convolutional tensor of the VGG16 model has been exploited as an embedded rep-
resentation of the input. The last convolutional layer of the VGG16 is composed of a
tensor of shape 512𝑥14𝑥14. Thus, each input image is converted into a vector of 100,352
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dimensions. This vectorial representation is very sparse and with very high dimension-
ality but it offers a good test-bench to measure the robustness of our approach. Drifting
concepts are introduced following pattern P2. Also, the Descriptor Silhouette has been
configured to extract a number of descriptors equal to the 10% of the samples in the win-
dow of analysis. The window of analysis has max size 𝑇 = 100 and step 𝑠 = 10 samples.
The small window size allows the computation of the standard silhouette index to show
the differences between the two results. Figure 8.11a shows the measurement of degra-
dation over-time exploiting the Descriptor Silhouette. The high dimensionality of the
data affects the quantification of the predictive performance quality. The degradation is
far from zero when known distributions occur, i.e., time 𝑡1-𝑡5. This is mainly caused by
three factors: (i) the intrinsic variability characterizing highly dimensional data, and (ii)
the approximation introduced when computing the Descriptor Silhouette, and (iii) the
known limits of the euclidean distance measure in the case of very sparse data. Despite
these limitations, however, a significant increment in the degradation is measured just
with a delay of three timestamps. The drifting data has been starting from 𝑡6, while the
increment is highlighted at time 𝑡9. So, the drift is recognized when 40% of the win-
dow is composed of drifting samples. Also, the most affected class is Cat. The VGG16
is wrongly labeling most of the Fox images as Cat, thus the degradation of class 0 is
significantly higher than the one of class 1. In the next paragraphs, the limitations of
this approach will be described in detail.
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(a) Degradation measured with Descriptor
Silhouette.
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(b) Degradation measured with Standard
Shilouette.

Figure 8.11: Dataset D3. Model degradation over-time with training on classes 0 (Cat)
and 1 (Dog). Degradation introduced with the new class 2 (Fox).)

Limits of concept drift detection with Descriptor Silhouette. The small window
size exploited for dataset D3 allows the computation of the standard silhouette index
to show the differences among the two results. Figure 8.11 shows the measurement of
degradation over-time exploiting Descriptor Silhouette (Figure 8.11a) and the standard
silhouette index (Figure 8.11b). The already cited causes of error affecting the proposed
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methodology are: (i) the intrinsic variability characterizing highly dimensional data,
and (ii) the approximation introduced when computing the Descriptor Silhouette, and
(iii) the known limits of the euclidean distance measure in case of very sparse data. In
both cases, the overall degradation measurements before the introduction of drifting
data, i.e., 𝑡 ≤ 𝑡5, show values significantly higher than zero. The two indexes behave
similarly, and both are affected by the dimensionality and the sparsity of the input data.
However, differently than DS, the standard silhouette shows a significant increment of
degradation as soon as the drifting data is introduced at time 𝑡6. In other words, with
just 10 drifting samples, over a window of size 100, the concept drift is detected. In
practice, the approximations made with the DS can be one of the causes of delayed
drift detection when very high dimensional data has to be analyzed. However, while
the number of the collected samples increases the Standard Silhouette becomes even
more costly in terms of computational resources, not being applicable anymore. While
the Descriptor Silhouette remains scalable and its performances are acceptable if the
dimensionality of the data remains in mid-low ranges.

Effects of the size of the window of analysis. Another parameter that is affecting
the efficiency of our concept drift detection approach is the size of the window of anal-
ysis 𝑇. To measure its effects we perform the experiment in Figure 8.12. Each row of the
matrix represents the over-time measurement of degradation with different window
sizes. The window size of the first row is 10% of the Max Window Size and it increases
by 10%. The step of analysis 𝑠 for each window corresponds in turn to the 10% of the
current window size. The Max Window Size is set to 𝑇 = 100 for dataset D3. From
the experiments, it is clear that the size of the window plays a key role in the algorithm
performance. As the window size increases, the concept drift is detected with more pre-
cision. The solution with the Descriptor Silhouette (Figure 8.12a) is clearly showing the
degradation trend only when the window size reaches 50% of its maximum. However,
the drift is detected with a large delay of 6 timestamps. Then, as the size of the window
increases, the detection is anticipated up to time 𝑡9. So, a large window would be more
effective in the detection of the drift. Of course, its size should not exceed the size of
the data used to compute the base distribution. On the other side, the experiment per-
formed with the Standard Silhouette (Figure 8.12b) is showing good performances even
with very small window sizes. The drift however is detected on a non-continuous basis
if the window is too small.

Effects of the number of descriptors. The number of descriptors to use in the pro-
posed framework is a critical parameter that needs to be properly tuned. From a theo-
retical point of view, for dense data distributions, the number of descriptors can be very
small. Instead, the more the distribution of data is sparse, the more it becomes hard to
completely describe the problem with few descriptors. To overcome this problem it is
necessary to increase the number of descriptors used by the Descriptor Silhouette.
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(a) Degradation measured with Descriptor Silhouette.
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(b) Degradation measured with Standard Shilouette.

Figure 8.12: Model degradation over-time measured for dataset D3 varying the size of
the window of analysis. Max window size 𝑇 = 100 and step 𝑠 = 10. Training on classes
0 (Cat) and 1 (Dog. Degradation introduced with the new class 2 (Fox).)

To show this effect we exploited dataset D4 which is composed of textual data an-
alyzed with the BERT model. It is commonly known that textual data is usually char-
acterized by very sparse data distribution. Then, we considered a complex task of topic
detection for which BERT reached 0.97 of accuracy on the validation set. We tested our
framework by introducing a new class as drift following pattern 2 in Figure 8.7b. The
embeddings of the input are extracted from the last transformer layer, following the ex-
traction process described in Chapter 6. We repeated the experiment by increasing the
number of maximum descriptors extracted by DS, i.e. 100, 500, and 2000. Figure 8.13
shows the results of this experiment. As expected, with only 100 descriptors we are
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partially able to detect the drift introduced from time 𝑡5, but the trend is very unsta-
ble. The situation slightly improves when increasing the maximum descriptors to 500,
but still, the most drifting timestamps are wrongly identified as non-drifting. We have
to further increase the number of descriptors to a max of 2000 to get the correct re-
sult. Basically, with this configuration, we are computing the minimum approximation
possible renouncing to computational time. Still, we confirm that our approach can be
configured to address very sparse data distributions. Deciding the correct configuration
though is still an experimental task that has to be addressed before putting the system
in production by analyzing the complexity of the user’s data.
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(a) Degradation measured with
max 100 descriptors.
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(b) Degradation measured with
max 500 descriptors.
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(c) Degradationmeasuredwithmax
2000 descriptors.

Figure 8.13: Dataset D4.Model degradation over-timewith training on classes 0 (World),
1 (Sports), and 2 (Business). Degradation introduced with the new class 3 (Science). The
window of analysis is equal to 2000 samples.)

8.3.1 Evaluation of Descriptor Silhouette performance
Descriptor Silhouette scalability. The proposed approach for the estimation of pre-
dictive model degradation is based on the computation of the Silhouette index proposed
in [100]. To take advantage of its scalability properties, the algorithm has been devel-
oped exploiting theMap-Reduce programming paradigm with the Apache Spark frame-
work [106]. The Silhouette computation is the most onerous component in the concept

110



8.3 – Experimental results

drift detection framework, hence extensive experiments are required to show its perfor-
mance and scalability. We test its performance in a distributed configuration, showing
its effectiveness in presence of very large amounts of data.

A synthetic dataset of 10,000,000 (10M) records with 10 features and a normal dis-
tribution over 3 classes has been created exploiting the scikit-learn Python machine
learning library [62]. From this dataset, 6 sub-datasets with the same characteristics of
the original one but with different cardinality have been extracted: 𝑑1) 10K, 𝑑2) 50K, 𝑑3)
100K, 𝑑4) 500K, 𝑑5) 1M, and 𝑑6) 10M records. The first 5 datasets have been used to test
the single-node configuration, exploiting an Intel i7 8-core server with 32GB of mem-
ory, while the distributed configuration consists of 50 virtual nodes, each with 512MB
of memory and 2 cores, running on top of the BigData@Polito cluster2. All experiments
have been configured to compute 200 descriptors for each class, showing the tunable
linearity in the single-node configuration and making the experiments comparable in
the distributed configuration.

Figure 8.14 shows the results on single-node configuration. It reports the time the
execution time for DS index (𝐷𝑆) compared to one required by the standard Silhou-
ette available in scikit-learn3 (𝑆𝐾𝑆). DS presents linear scalability over the number of
records in the dataset. Furthermore, the 𝐷 curve shows the negligible constant time
required to compute the descriptors.

The execution time of DS for dataset 𝑑5 is much lower than the time required to
compute the 𝑆𝐾𝑆 in the single-node configuration, but some applications dealing with
a stream of data might require even stricter timing constraints that can be reached with
a distributed configuration.

Thus, we tested the approach in a distributed environment showing that the pro-
cessing time of DS can be as low as few minutes (e.g., 3 minutes) for dataset 𝑑5 (1M
records) and the order of tens of minutes for dataset 𝑑6 (10M records). In the Spark
cluster, the data is split into partitions (slices of data) and redistributed in the executor
nodes, enabling parallel computation and minimizing network traffic for sending data
between executors. Figure 8.15a shows the time required to compute DS as a function
of the number of partitions in which the dataset is redistributed in the cluster.

As already discussed, DS requires only 194 seconds for dataset 𝑑5 (1 million rows)
and 1519 seconds (approximately 25 minutes) for dataset 𝑑6 (10 million rows) to be
computed when data is redistributed in 500 partitions. Splitting the data into multiple
partitions improves the parallelization of the algorithm even if the number of available
workers is kept constant since the resource manager of the cluster assigns pending jobs
toworkers as soon as they have free CPU cores. This is why, in our clusterwith 50 nodes,
the computational cost speedup for dataset 𝑑5 is almost linear up to 100 partitions.
Figure 8.15b shows the speedup obtained running DS in the distributed configuration

2https://smartdata.polito.it/computing-facilities/
3https://scikit-learn.org/stable/
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Figure 8.14: Scikit-learn Silhouette and DS cost comparison on a single-node. 𝐷 is the time required to compute the descrip-
tors, 𝐷𝑆 is the time required to obtain the DS values and 𝑆𝐾𝑆 is the time required for the SciKit-provided Silhouette, for datasets
from 𝑑1 to 𝑑5.

w.r.t. the single-node configuration for dataset 𝑑5.
Exploiting a powerful single server, the execution time reaches approximately 3968

seconds while distributing the jobs on many small workers allows having an improve-
ment of more than 20 times, thus enabling the DS to be calculated in near real-time
even in presence of huge amounts of data.
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Figure 8.15: DS scalability performance.

Descriptor Silhouette performance. As already shown in [100], the DS algorithm
better approximates the standard Silhouette w.r.t. other scalable approaches (i.e. the
Square Euclidean Silhouette implemented in Apache Spark MLLIB [54]).

To prove the accuracy of DS also for datasets 𝐷1 and 𝐷2 we show in Figure 8.16 a

112



8.3 – Experimental results

(a) Synthetic dataset D1 (b) Wikipedia dataset D2

Figure 8.16: Silhouette curve comparison computed with DS configured with 200 de-
scriptors and SKS.

Table 8.2: Silhouette scores comparison between DS, SKS and Squared Euclidean Sil-
houette (SES).

𝐷𝑆𝑎𝑣𝑔 𝑆𝐾𝑆𝑎𝑣𝑔 SES
D1 0.069 0.077 0.109
D2 0.024 0.021 0.044

qualitative comparison of the Silhouette curves calculated with the standard SKS and
with DS configured with 200 descriptors. Each couple of curves represents the Silhou-
ette of each class, calculated with DS and SKS. It is noticeable that the DS and SKS
curves for each class are very close to each other, meaning that DS correctly models
the more complex SKS ground-truth value. Even in the case of textual data (dataset 𝐷2
in Figure 8.16b), usually characterized by a high number of features and high hetero-
geneity, the DS curves are very similar to the ones obtained with the state-of-the-art
Silhouette. Table 8.2 shows the average values of the scores obtained with DS, SKS, and
the value of SES (Apache Spark Squared Euclidean Silhouette). DS and SKS maximum
difference is 0.008 in D1 and only 0.003 in D2. The SES index, instead, is always much
further from the other two indexes showing, in case of D2, a score that is more than
double w.r.t. the state-of-the-art and almost twice w.r.t. our algorithm.

113



114



Chapter 9

Conclusions

In this work, we addressed the problem of managing the reliability of complex Deep
Neural Networks at the level of local predictions, per-class model-global behavior, and
measuring over-time prediction performance. To do so we propose different strategies
that exploit the inner knowledge of the predictive model to ensure the reliability of
the proposed explanations. The prediction local and model global explainability has
been addressed by introducing a new explanation framework tailored to Deep Neu-
ral Networks. We prosed new unsupervised mining strategies to extract and analyze
the inner knowledge of different kinds of models employed in different contexts, i.e.
image-processing and natural language machine learning tasks. The proposed expla-
nation framework has been developed to adapt to as many alternative models as pos-
sible going from Convolutional Networks to complex Natural Language Models like
BERT. We demonstrated the high flexibility of the framework with several experimen-
tal results. Also, we validated our results both quantitatively and qualitatively through
detailed analyses of the obtained explanations. Then, we compare with the currently
available state-of-the-art, i.e., LIME [69], GRAD-CAM [76], and Shapley Values [85],
showing the higher effectiveness and interpretability that we are able to achieve. Fi-
nally, we collected feedback from human users who turned out to prefer our explana-
tions in more than 75% of the cases w.r.t. the other solutions. The main contribution of
this first framework can be summarized in:

• The introduction of a flexible solution that can be adapted to a large number of
state-of-the-art DNNs and that can exploit their inner knowledge.

• A higher interpretability of the visual explanations better highlighting the por-
tion of the input influencing the prediction process and more detailed numerical
quantification w.r.t. the state-of-the-art.

• The introduction of an unsupervised mining strategy of multiple inner layers of
deep neural networks model.
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• The effective and efficient identification of specific influential features in both
visual and the textual domain.

• A qualitative human validation of the approach demonstrates that our solution,
in visual tasks is the most interpretable and it is preferred by the vast majority of
the interviewed.

The assessment of models’ predictive performance over-time has been addressed
instead by developing a new scalable framework. In our solution, we proposed a new
unsupervised strategy that measures the drift of newly incoming data concerning the
knowledge of the model at the training time. We introduced a new definition of per-
class model degradation that is based on a new scalable version of the Silhouette called
Descriptor Silhouette. The framework has been developed not to be tailored to any
specific use-case and model. Indeed, exploiting the inner model knowledge extraction
strategies proposed in the explanation framework we are able to apply this solution to
complex models like DCNNs and BERT as well as Random Forests. We first demonstrate
the effectiveness of our methodology by analyzing several use-cases and showing that
is able to identify the presence of drift already when just 10% of data is drifting. Further-
more, we show the scalability property of the proposed Descriptor Silhouettecompared
to the standard definition and the lower approximation error w.r.t. the Square Euclidean
Silhouette implemented in Apache Spark. The main contribution of this last framework
can be summarized in:

• The introduction of an unsupervised approach that measures the predictive per-
formance of the predictive models deployed in production systems without hav-
ing any knowledge regarding the ground-truth of the analyzed data.

• The introduction of the new interpretable definition of per-class model degrada-
tion over-time.

• The introduction of a highly scalable and well-approximated variant of the Sil-
houette index.

• The extensive validation on different use-cases and models with different archi-
tectural structures demonstrates the generality of the proposed solution.
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