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 15 
Abstract 16 

Over the last decade, the topic of regional resilience has drawn the attention of public 17 
authorities due to the increasing number of natural disasters. The absence of a practical and 18 
concrete methodology makes it extremely difficult to evaluate resilience at the regional scale, 19 
which involves several concepts such as economics, social sciences, environment, etc. This 20 
paper proposes an indicator-based approach to assess the resilience assessment of Italian 21 
regions. A set of twelve indicators has been selected among publicly available census data. A 22 
time window of ten years was considered in the analysis. Three different resilience indexes 23 
were calculated for each region. The first is an overall measure of resilience, while the other 24 
two represent resilience during the emergency and the restoration phase following a disaster. 25 
Results highlight fundamental aspects that have a higher impact on regional resilience and 26 
can be used by decision-makers to effectively allocate resources. The procedure has also been 27 
extended to evaluate the regional epidemic risk which can be used as a preliminary tool to 28 
develop risk mitigation strategies against biological hazards. 29 
 30 
Keywords: resilience assessment; indicator-based approach; regional resilience; census data; 31 
emergency management. 32 

 33 
1. Introduction 34 

In the past two decades, several studies have been conducted to address the resilience of 35 
communities, interconnected systems, and networks. By looking at available resilience 36 
definitions in the literature, it can be considered as a process leading to an improvement of 37 
current conditions, whether it is a safer city, a more robust infrastructure, a cost-effective 38 
policy, etc. Resilience includes a variety of aspects such as community preparedness, code 39 
adoption and enforcement, and hazard mitigation. To account for all these characteristics, 40 
proper resilience frameworks need to be designed. Usually, these are grouped according to 41 
their spatial scale (e.g., city, region, country). 42 

By looking at the available frameworks, there is no single or widely accepted method to 43 
quantify community resilience [1]. Overall, resilience measurement approaches can be 44 
classified into four different groups. The first group consists of schemes based on scorecards 45 
to evaluate the performance of a given system. Scorecards are in the form of checklists that 46 



identify a series of qualitative questions about the presence or absence of certain features and 47 
actions. Each question is associated with a score and the total resilience of the system is 48 
measured by adding all scores. The second group is based on indicators or indices that 49 
provide a quantitative measure of the system's resilience[2]. Indices are representative of 50 
system characteristics and can be statistically evaluated. The overall system resilience is 51 
computed by an aggregation of the selected indexes. The third group is based on the 52 
combination of scorecards and indices providing tools for resilience assessment (such as 53 
guidance, surveys, procedures, or data)[3]. Lastly, the fourth group gathers approaches that 54 
use mathematical models to simulate interactions and relationships within the analyzed 55 
system. Those models can be used to measure various resilience dimensions of the system 56 
(such as physical, social, economic, etc.) through computational simulations [4; 5]. 57 

The United Nations International Strategy for Disaster Reduction (UNISDR) is an 58 
example of a city-level framework that evaluates community resilience against natural 59 
disasters [6]. The methodology is based on scorecards that identify priorities for investments 60 
and track the status of the city over the recovery time. However, the framework is not 61 
practical to apply in real case scenarios. Additional information is required to assess the 62 
performance of critical networks and their interdependencies. Furthermore, there is not a 63 
specific metric tool to assess recovery time considering all community dimensions such as 64 
social and economic aspects. 65 

The National Institute of Standards and Technology (NIST) [7] proposed a city-scale 66 
resilience framework based on a comprehensive list of community indicators. It summarizes 67 
the available guidance, tools, and metrics considering different hazard intensities. The 68 
framework presents three different metrics to compute the overall community resilience (i.e., 69 
recovery time, economic metrics, and social metrics). However, these parameters are defined 70 
in terms of guidelines without a specific description of how to use and apply them in practice.  71 

Another example is represented by the Oregon resilience plan, which was built upon the 72 
SPUR (Social, Psychological, Usage, Rational) framework that was specifically developed 73 
for the city of San Francisco [8]. Compared to the SPUR framework, it provides a 74 
methodology to better evaluate resilience in the economic dimension, but it does not quantify 75 
social aspects.  76 

A more comprehensive methodology is represented by PEOPLES framework [9], a 77 
multidimensional resilience framework that can be applied from the city level to the country 78 
level. It is also capable of modeling interdependencies among different community layers 79 
[10]. However, it provides a qualitative assessment rather than a quantitative measure. 80 

Even though remarkable efforts have already been made to boost research on community 81 
resilience [11-13], there is still not a universally accepted methodology [14]. Chang and 82 
Shinozuka [15] proposed a series of resilience measures in a probabilistic formulation based 83 
on the work done by Bruneau et al. [16]. Furthermore, Ayyub [17] defined practical 84 
resilience metrics related to the concepts of reliability and risk. Liu et al. [18] introduced a 85 
method that combines dynamic modeling with resilience analysis. They investigated the 86 
response of interdependent critical infrastructures by performing a numerical analysis of their 87 
conditions in terms of design, operation, and control for a given failure scenario. Overall, 88 
there is a lack of clarity and consistency of key concepts across different resilience 89 
frameworks, especially concerning social aspects [19-21]. 90 

The use of indicators is perceived as an important tool to measure the resilience of a 91 
system. Yet developing a standardized set of resilience indicators is challenging for such a 92 
dynamic and context-dependent concept. This is particularly true at the regional and country 93 



level. In addition, for such large-scale analyses, data paucity is a common issue that needs to 94 
be overcome.  95 

This paper presents a novel indicator-based approach to measure resilience at the regional 96 
scale using only publicly available statistical data. The selection of indicators is based on 97 
PEOPLES framework’s dimensions and components. To translate these indicators from a 98 
qualitative measure into a quantitative measure, their interdependency and importance were 99 
evaluated through a survey and combined to obtain weighting factors. The methodology is 100 
applied to the twenty Italian regions to evaluate the seismic resilience under three scenarios: 101 
normal conditions, emergency phase, and restoration phase. The procedure is then extended 102 
to evaluate the regional risk towards the spread of an epidemic. Results are discussed and 103 
compared to the recent events regarding the novel coronavirus.  104 
 105 
2. Data collection and selected indicators 106 

When dealing with resilience assessment at any scale, the first issue to face concerns data 107 
collection. In many situations, however, not only data quality is a problem but also scarcity. 108 
Indeed, data is often incomplete or not available in the first place. Especially at large scale, it 109 
is likely that the information needed to carry out resilience analyses is hold by private 110 
authorities and stakeholders who are not always willing to share it. The idea of this research 111 
is to perform a resilience assessment at the regional scale using only publicly available data 112 
records. Depending on the case study, different public sources might be accessible. The 113 
crucial aspect is to select only information that has a positive or negative contribution to 114 
regional resilience. Any available resilience framework can be followed. Nonetheless, it is 115 
worth noting that most frameworks either do not provide a quantitative way to measure 116 
resilience or they propose some metrics which not necessarily match the resources in 117 
available databases. Thus, it is unlikely that one framework can be followed thoroughly, and 118 
some adaptations should be made [22].  119 

This paper aims at providing a resilience measure of the 20 regions in which Italy is 120 
divided. To do so census data was chosen as data source. In Italy, the largest institution that 121 
carries out the official census and statistical surveys is called ISTAT. Its activities include 122 
demographic and economic censuses as well as many social, technical, and environmental 123 
surveys and analyses at different scales. The results of their investigations can be reached at 124 
their online database [23]. To select adequate parameters, PEOPLES framework was 125 
followed as a guideline [24]. The first step consisted of creating a list of all indicators 126 
obtainable from the ISTAT database. In the second step, indicators were filtered by time, 127 
selecting the period ranging from 2007 to 2017. The choice of this time frame was found to 128 
be optimal to include the greatest number of parameters since many of them had not been 129 
collected prior to 2007 and newer data has not been fully published yet. Among all the 130 
available statistical records, only a few are relevant to measure resilience. For this reason, at 131 
the end of the data collection and screening process, only 12 annual indicators ranging from 132 
2007 to 2017 could be selected. The further refinement that could be achieved by performing 133 
a correlation analysis was not considered necessary due to the already low number of 134 
variables, which could lead to misleading results. The list of indicators with a brief 135 
description is provided in Table 1. 136 

Despite an exact correspondence to the indicators proposed in PEOPLES framework 137 
could not be achieved, the selected indicators can still be considered similar. This similarity is 138 
shown in Table 2, which reports a comparison between the available data and the 139 
corresponding indicators present in PEOPLES methodology. It can be seen that the available 140 
data falls somehow in various categories of PEOPLES framework indicators except for 141 



number 12 “people living in damaged houses” which is deemed to be a significant indicator 142 
describing the socio-economic status of the population. Besides, Table 2 shows also the 143 
slightly different definition of indicators assumed by PEOPLES framework compared to the 144 
ones adopted by ISTAT. This confirms that existing methodologies should inevitably be 145 
adapted to the specific case. Indeed, they tend to be as comprehensive as possible and for this 146 
reason they propose several input parameters. Typically, a larger number of input parameters 147 
should lead to a more accurate result. Nonetheless, there is not a clear indication of the 148 
minimum number of indicators and whether or how this affects the overall measure. It is also 149 
worth noting that multiple indicators are often suggested to better define a single 150 
characteristic of the analyzed system. For instance, to define the economic development of a 151 
community, indicators such as annual income, median household income, percentage of 152 
households covered by insurance, tax revenues, wealthy retirees, etc. could all be used. 153 
Therefore, the type and number of indicators can significantly vary depending on the object 154 
of the study and its peculiarities. When comparing many of the existing frameworks and 155 
methodologies, there is overlapping in some concepts and specific variables. This allows to 156 
identify some core categories of indicators [25]. The majority of the overlap concerns social 157 
indicators. In our application, the 12 indicators belong to the major and most common 158 
categories (i.e., social education, income, health access, community attributes, infrastructures 159 
and buildings). Other categories of indicators are more specific such as preparedness, number 160 
of religious organizations, number of nonprofit organizations, population covered by hazard 161 
mitigation plans, etc. Such indicators are challenging to collect consistently throughout the 162 
years on a regional scale. Some of them could also be impossible to define because they refer 163 
to aspects that are extraneous to the analyzed community.  164 

Another aspect to take into account is the effect that the single indicator has towards 165 
resilience. Depending on the way they are defined, some indicators contribute positively 166 
while others have a negative impact. The last column of  Table 2 indicates the effect of the 167 
indicator on resilience. The letter “P” stands for positive effect, and it is assigned to measures 168 
that contribute to increasing resilience, while the letter “N” stands for negative effect, and it 169 
is assigned to those that do the converse. For instance, the higher the “elders’ index” the less 170 
resilient the region since old people give less contribution to the growth of the community, 171 
they are prone to health issues, and unwilling to change their habits. 172 
 173 

Table 1. Description of the selected indicators. 174 

No. Indicator Description 
1 Population density Percentage of inhabitants per square kilometer 

2 Elders’ index 
Ratio between elders (more than 65 years old) and young 
people (less than 14 years old) 

3 Number of foreigners Number of not Italian citizens living in the region 

4 
People holding a middle school 
diploma 

Population who have attained a middle school diploma (8th 
grade) as their highest education 

5 People holding a degree 
Population who have attained a Bachelor’s or Master’s 
degree 

6 Gross domestic product (GDP) Gross domestic product of each region in million euros 

7 Relative poverty index 
Ratio between the number of families with a total spending 
minor or equal to the Italian poverty threshold (defined each 
year by ISTAT) and the total number of resident families 

8 Unemployment rate Percentage of unemployed people 
9 Number of doctors Number of doctors per 10,000 inhabitants 
10 Number of hospital beds Number of hospital beds per 1,000 inhabitants 
11 Families with Internet access Percentage of families who have access to the Internet 



12 People living in damaged houses 
Percentage of people who declared to live in damaged 
buildings 

 175 
 176 

Table 2. Available data compared to PEOPLES’ dimensions, components, indicators, and 177 
measures. 178 

No. 
Selected 

indicator at 
regional level 

PEOPLES 
framework 
indicator 

PEOPLES 
component 

PEOPLES 
framework 
definition 

Indicator 
effect 

1 
Population 
density 

Population 
density 

Distribution/Density 
Average number of 
people per area ÷ SV 

P 

2 Elders’ index Age  Composition 
% population whose 
age is between 18 
and 65 

N 

3 
Number of 
foreigners 

Place 
attachment-not 
recent 
immigrants 

Composition 
% population whose 
age is between 18 
and 65 

N 

4 
People holding 
a middle school 
diploma 

Educational 
attainment 
equality 

Socio-Economic 
Status 

% population with 
college education – 
% population with 
less than high school 
education 

P 

5 
People holding 
a degree 

Educational 
attainment 
equality 

Socio-Economic 
Status 

% population with 
college education – 
% population with 
less than high school 
education 

P 

6 
Gross domestic 
product (GDP) 

Income 
Socio-Economic 
Status 

Capita household 
income ÷ SV 

P 

7 
Relative 
poverty index 

Poverty 
Socio-Economic 
Status 

% population whose 
income is below 
minimum wage 

N 

8 
Unemployment 
rate 

Occupation 
Socio-Economic 
Status 

Employment rate % N 

9 
Number of 
doctors 

Medical care 
capacity 

Lifelines 
Number of hospital 
beds per population ÷ 
SV 

P 

10 
Number of 
hospital beds 

Physician 
access 

Lifelines 
Number of 
physicians per 
population ÷ SV 

P 

11 
Families with 
Internet access 

High-speed 
internet 
infrastructure 

Lifelines 
% population with 
access to broadband 
internet service 

P 

12 
People living in 
damaged 
houses 

- - - N 

 179 
 180 
3. Resilience computation 181 

3.1. Normalization criteria of the indicators 182 



To combine indicators, the first step consists in normalizing them so that they range between 183 
0 and 1. The best normalization criterion would be to divide each measure by an optimal 184 
performance value defined by a competent authority or best practices. This value would be 185 
essential to provide a benchmark to measure the resilience of a system. In this wat, the 186 
system’s serviceability at a certain time could be compared to the optimal performance value 187 
to know how much serviceability deficiency the system experiences. However, defining or 188 
finding references for an optimal value for each indicator could be notably challenging. In 189 
this study, indicators were normalized to the best performing region. For example, 190 
considering the indicator “GDP”, Lombardy is the region with the highest value of gross 191 
domestic product. Hence, this value is considered as the optimal performance value to which 192 
the GDP of the other regions is normalized.  193 

As previously mentioned, some of the selected indicators have a negative effect on 194 
resilience. For those parameters, the complementary value has been calculated. In this 195 
specific case, the complementary measure was calculated for the following indicators: elders’ 196 
index, number of foreigners, relative poverty index, unemployment rate, people living in 197 
damaged houses.  198 
 199 
3.2. Combination of the indicators 200 

Interdependencies between different indicators can highly affect the result of the resilience 201 
assessment. To consider interdependencies, different coefficients are assigned to each 202 
variable through an interdependence analysis. The proposed method is based on the 203 
construction of an interdependence matrix, as proposed in POEPLES framework [9]. The 204 
idea is that a variable highly interdependent on others is likely to have a major effect on the 205 
resilience evaluation. Variations of a highly interdependent indicator yield to variations of the 206 
indicators dependent on it, affecting the overall resilience index. Each cell in the matrix 207 
represents the level of interdependency between two variables. This matrix is a [n×n] square 208 
matrix where n is the number of selected variables. In this study, it is assumed that possible 209 
values for the elements in the matrix are 0, 0.5 or 1, indicating no dependence, medium 210 
dependence, and full dependence, respectively, as expressed in Equation (1): 211 
 212 
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 214 
where the element aij represents the dependency of the i-th variable to the j-th variable. 215 
Values can be identified using descriptive knowledge in the form of a questionnaire filled by 216 
a group of experts. The expert responsibility is to identify whether two indicators have a 217 
“low” or “high” dependence based on their experience. If the number of collected responses 218 
is large enough, results can bet treated statistically to better consider uncertainties and reduce 219 
subjectivity. For instance, a probability distribution function could be adopted for each 220 
variable, and eventually discuss resilience measures in terms of mean and standard deviation.  221 

The interdependency matrix is not symmetrical because if variable i is dependent on 222 
variable j, the opposite is not necessarily true. For example, the indicator “GDP” can be 223 
regarded as strongly dependent on the “elder’s index”, whereas the latter has a weak 224 
dependence on “GDP”.  225 

Once the elements of the matrix are determined, the interdependence vector (λ) is 226 
calculated. For the i-th variable, the interdependence factor is obtained by normalizing the 227 



sum of the values in the i-th column to the maximum value found among all columns’ sum. A 228 
high value means high dependence of the corresponding variable to the others. The 229 
interdependency factor is mathematically calculated as shown in Equation (2): 230 
 231 
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 233 
It should be noted that the interdependency among variables is greatly related to the 234 

community type (e.g. urban, rural, etc.). For instance, indicators related to the economic 235 
dimension are significantly less dependent on indicators related to the lifelines dimension in a 236 
rural community as opposed to an urban environment. In modern and industrial communities, 237 
economic development is the dimension that most other dimensions are dependent on. This 238 
implies that after a disaster, for a fast and efficient recovery, most resources should be 239 
allocated to lifelines since many parameters are heavily dependent on it. In this work, all 240 
regions are analyzed in the same manner. However, if detailed data about the type of regional 241 
communities was available, it would be recommended to apply correction factors to take into 242 
account this aspect. 243 

Another aspect that should be highlighted is that indicators do not contribute equally to 244 
the overall resilience. The importance of variables strictly depends on the type of community. 245 
For example, in a rural community, lifestyle and economic indicators have not the same 246 
contribution toward the overall community resilience as environment-related parameters. In 247 
addition, the relevance of each indicator is dependent on the type of hazard. To include this 248 
aspect, each variable is assigned with an importance factor (c) that can assume three values, 249 
i.e., 1, 2, or 3, where 1 means low importance, 2 means medium importance, and 3 means 250 
high importance (Equation (3)). As for the interdependence matrix, also this factor can be 251 
estimated through the evaluation of experts and decision-makers.  252 
 253 
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 255 
Importance factors can be estimated for various scenarios. Depending on the context, the 256 

same indicators may assume different importance on the calculation of resilience. In this 257 
study, three scenarios related to seismic hazard were taken into account. The first consists in 258 
the evaluation of global resilience (Rg) under normal circumstances, the second represents 259 
resilience under seismic emergency conditions (Re), and the last corresponds to the 260 
assessment of resilience in the restoration phase (Rr). 261 

The final weighting factor (w) for each variable is calculated combining both 262 
interdependence and importance factors as shown in Equation (4): 263 
 264 
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 266 
After obtaining weighting factors for all indicators, the final resilience metric for each 267 

region (Ri) is obtained through the aggregation of weighted measures for all indicators 268 
(Equation 5). 269 
 270 
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 272 
where mi is the corresponding normalized measure for the i-th indicator. 273 
 274 
4. Results 275 

The elements of the interdependence matrix and importance factors were determined by 276 
conducting a survey. The group of experts who participated in the survey was composed of 277 
20 people who were asked to fill out questionnaires (see Appendix A). Their age ranges from 278 
30 to 50 and 55% are women. Six of them are doctors working in public hospitals, while the 279 
rest of the group works in administrative offices of municipalities and regions. Due to the 280 
small size of the poll, only average values of the responses were used instead of treating them 281 
statistically.  282 

Table 3 reports the average values obtained for the interdependence matrix and the 283 
calculation of the interdependence vector (λ). The results of the survey show that gross 284 
domestic product is the most interdependent parameter followed by the elders’ index, while 285 
the least interdependent indicators are “people living in damaged houses” and “families with 286 
Internet access”. Table 4 summarizes the average importance factors for normal conditions, 287 
emergency, and restoration phase. Results show how the same indicators play different roles 288 
depending on the ongoing situation. For example, the gross domestic product turned out to be 289 
the most important parameter under normal conditions and among the most important ones 290 
during the restoration phase but it is one of the least relevant during a seismic emergency 291 
when resources are managed at the country level. On the other hand, the number of doctors 292 
and hospital beds are extremely important in the emergency phase, while their impact on 293 
resilience during the restoration process is limited. 294 

Table 3. Interdependence matrix. 295 

  1 2 3 4 5 6 7 8 9 10 11 12 

1 Population density 1.00 0.08 0.03 0.05 0 0.48 0.53 0.15 0 0 0 0.03 

2 Elders’ index 0.15 1.00 0.05 0.08 0.03 0.50 0.05 0.13 0.08 0.03 0 0 

3 Number of foreigners 0.50 0.15 1.00 0.03 0.08 0.45 0.53 0.45 0.03 0 0 0 

4 
People holding a middle 
school diploma 

0.03 0.88 0.03 1.00 0.10 0.48 0.08 0.08 0.05 0 0.08 0 

5 People holding a degree 0.08 0.45 0.03 0.83 1.00 0.50 0.03 0.10 0.03 0.08 0.08 0 

6 GDP 0.88 0.50 0.48 0.50 0.43 1.00 0 0.98 0.15 0.15 0.03 0.03 

7 Relative poverty index 0.08 0.08 0.13 0.03 0.05 0.50 1.00 0.93 0.03 0 0.08 0.18 

8 Unemployment rate 0.43 0.03 0.18 0.53 0.53 0.98 0.03 1.00 0.03 0 0.12 0.08 



9 Number of doctors 0.55 0.73 0 0.08 0.08 0.03 0 0.08 1.00 0.65 0 0 

10 Number of hospital beds 0.50 0.93 0 0.05 0.03 0.43 0.45 0.13 0.25 1.00 0 0 

11 Families with Internet access 0.43 0.53 0.10 0.45 0.98 0.08 0.98 0.50 0 0 1.00 0 

12 
People living in damaged 
houses 

0.08 0.03 0.18 0.08 0.05 0.48 1.00 0.03 0 0 0.03 1.00 

 Interdependence factors 0.80 0.91 0.37 0.63 0.57 1.00 0.79 0.77 0.28 0.32 0.24 0.22 

 296 
Table 4. Importance factors for normal, emergency, and restoration conditions. 297 

  NORMAL EMERGENCY RESTORATION 
1 Population density 1.15 1.35 1.30 

2 Elders’ index 1.95 2.90 1.75 

3 Number of foreigners 1.10 1.15 1.15 

4 People holding a middle school diploma 1.05 2.00 2.00 

5 People holding a degree 1.85 1.75 2.10 

6 GDP 2.95 1.25 2.80 

7 Relative poverty index 2.00 1.15 2.85 

8 Unemployment rate 2.05 1.15 2.85 

9 Number of doctors 2.20 3.00 1.30 

10 Number of hospital beds 1.85 3.00 1.15 

11 Families with Internet access 1.15 1.65 1.05 

12 People living in damaged houses 2.25 2.85 1.15 

 298 
Firstly, the resilience analysis was performed for the 2017 set of data. Weighting factors 299 

relative to 2017, calculated using Equation (4), are exemplified in Table 5. The choropleth 300 
maps in Figure 1 show the obtained resilience measurement for each region for 2017. This 301 
type of visualization allows to rapidly assess and compare regions’ performances simply 302 
looking at color intensity. From the maps it is evident that Lombardy (region no. 4) is the 303 
most resilient region in all three scenarios. Numerical results are reported in Table 6. Looking 304 
at these numbers it is possible to further analyze how single regions perform under different 305 
circumstances and compare results among different regions. Molise (region no. 14) is the 306 
least resilient in both normal and emergency conditions, while Calabria (region no. 18) has 307 
the worst performance in the restoration phase. 308 

This analysis, although simplified, already shows some critical aspects. Lombardy proved 309 
to be resilient towards seismic events despite in that region seismic hazard is quite low. 310 
Conversely, Calabria, as well as many other regions along the Apennines (i.e., the area more 311 
subjected to severe earthquakes), showed alarmingly low levels of resilience. Cases in points 312 
are the 2009 L’Aquila earthquake and the 2016 Central Italy earthquake. Both events had 313 
catastrophic consequences and after many years, in those areas, reconstruction is stuck, and 314 
socio-economic activities are still way below pre-event levels. Overall, northern regions seem 315 
to be more resilient and this is mostly due to factors such as better economics, lower 316 
unemployment rates, and better services. However, some southern regions like Campania and 317 
Sicily showed solid performances explained by adequate indicators in terms of younger, 318 
dense population and number of doctors. More detailed considerations and comparisons 319 
could be made by decision-makers and public administrators through an in-depth analysis of 320 
each indicator (see Appendix B). 321 
 322 



Table 5. Weighting factors for normal, emergency, and restoration conditions. 323 

  NORMAL EMERGENCY RESTORATION 
1 Population density 0.85 1.05 0.89 
2 Elders’ index 1.65 2.59 1.37 
3 Number of foreigners 0.38 0.42 0.37 
4 People holding a middle school diploma 0.61 1.23 1.07 
5 People holding a degree 0.97 0.97 1.02 
6 GDP 2.75 1.22 2.40 
7 Relative poverty index 1.47 0.89 1.94 
8 Unemployment rate 1.47 0.87 1.88 
9 Number of doctors 0.57 0.81 0.31 

10 Number of hospital beds 0.56 0.95 0.32 
11 Families with Internet access 0.26 0.39 0.21 
12 People living in damaged houses 0.46 0.62 0.22 
 324 
 325 

   
(a) (b) (c) 

Figure 1. Choropleth maps of Italian regions illustrating (a) global resilience (b) emergency 326 
resilience and (c) restoration resilience for 2017 (the numbers identify the regions reported in 327 

the first column of Table 6). 328 

To have an idea of the regions’ resilience performance over time, the analysis was 329 
repeated for each year of the period that goes from 2007 to 2017. The average of the 330 
measurements obtained in these years has been used to compare 2017 results. Table 6 331 
summarizes the resilience measures for 2017, those for the 2007-2017 period, and the 332 
percentage variation between them. Results point out that most regions decreased their 333 
performance over time in all scenarios, with Calabria and Apulia being the worst. The only 334 
exceptions are Lombardy, Emilia Romagna, and Trentino South Tyrol which have registered 335 
a positive variation in all scenarios.  336 

The obtained results are meant to be used in a preliminary phase of analysis. Regions are 337 
not homogeneous in terms of demographics, economics, infrastructures, etc., and those that 338 
got a high resilience index might have low resilience territories inside. Undoubtedly, 339 
neighborhoods consisting of small, hardly accessible mountain villages are going to be less 340 
resilient because of the poorer services and infrastructures. However, in most cases, public 341 



funds are distributed at the regional level. Therefore, this type of straightforward resilience 342 
analysis could assist decision-makers to significantly improve resource allocation. 343 
 344 

Table 6. Values of global, emergency, and restoration resilience for each Italian region. 345 

  2017 2007 – 2017 Variation (%) 

No. Region Rg Re Rr Rg Re Rr Rg Re Rr 

1 Piedmont 0.53 0.50 0.54 0.54 0.51 0.55 -1.0 -0.8 -0.7 

2 Aosta Valley 0.47 0.48 0.48 0.47 0.48 0.48 0.0 -0.2 0.2 

3 Liguria 0.48 0.47 0.50 0.48 0.47 0.50 -0.8 -0.1 -0.7 

4 Lombardy 0.73 0.63 0.72 0.73 0.63 0.72 0.1 0.1 0.2 

5 Veneto 0.58 0.55 0.59 0.59 0.56 0.59 -0.8 -0.8 -0.7 

6 
Friuli Venezia 
Giulia 

0.48 0.47 0.50 0.48 0.48 0.50 -1.0 -1.5 -0.6 

7 
Emilia 
Romagna 

0.57 0.54 0.58 0.57 0.53 0.57 1.2 2.0 1.0 

8 
Trentino South 
Tyrol 

0.52 0.53 0.53 0.51 0.53 0.52 0.5 0.1 0.5 

9 Tuscany 0.52 0.49 0.53 0.52 0.49 0.53 -0.5 -0.1 -0.5 

10 Umbria 0.46 0.47 0.47 0.46 0.46 0.48 -0.5 1.1 -1.2 

11 Marche 0.48 0.48 0.50 0.49 0.49 0.50 -1.3 -1.1 -1.2 

12 Lazio 0.61 0.58 0.61 0.62 0.59 0.62 -1.8 -1.8 -1.2 

13 Abruzzo 0.47 0.48 0.48 0.47 0.48 0.48 -1.2 -0.8 -1.2 

14 Molise 0.43 0.45 0.44 0.44 0.46 0.45 -2.3 -2.6 -2.4 

15 Campania 0.56 0.58 0.56 0.58 0.59 0.58 -2.8 -2.5 -2.7 

16 Apulia 0.50 0.51 0.50 0.51 0.53 0.52 -3.1 -3.5 -2.7 

17 Basilicata 0.44 0.45 0.44 0.44 0.46 0.44 -0.6 -1.6 0.2 

18 Calabria 0.44 0.47 0.44 0.46 0.48 0.46 -4.2 -3.2 -4.7 

19 Sicily 0.50 0.52 0.50 0.51 0.53 0.51 -2.8 -1.9 -2.8 

20 Sardinia 0.45 0.46 0.46 0.46 0.48 0.49 -2.4 -3.4 -1.7 

 346 
 347 
5. Epidemic risk 348 

The methodology herein presented can be easily extended to other natural or manmade 349 
hazards. Epidemics of infectious diseases like the recent Ebola, Severe Acute Respiratory 350 
Syndrome (SARS – CoV), Middle East Respiratory Syndrome (MERS – CoV), and the novel 351 
Coronavirus (SARS – CoV2) have shown the capacity to seriously affect communities. If we 352 
consider biohazard, it is possible to adapt the procedure to estimate the epidemic risk of each 353 
Italian region, which is the first step towards resilience assessment. Indeed, limited data from 354 
past events and consequences that are different from one disease to another make quantifying 355 
epidemic resilience extremely challenging. 356 

The analysis starts with the definition of the epidemic risk, which represents the 357 
probability of having human losses due to the spreading of a disease. In the literature, there is 358 
no unique definition or approach that the scientific community agrees upon. The World 359 
Health Organization decided to follow a composite indicator procedure (INFORM Global 360 
Risk Index) developed by the Joint Research Center of European Commission (JRC) [26]. 361 
Through this framework, it is possible to calculate a risk index at the country level based on 362 
arithmetic and geometric averages of indicators categorized into three dimensions, i.e., 363 



hazard and exposure, vulnerability, lack of coping capacity. Similarly, in this work, the 364 
epidemic risk is estimated based on the generic definition used also for the seismic risk. 365 
According to this definition, the epidemic risk is a combination of three factors, namely 366 
hazard, vulnerability, and exposure as shown in Equation (6).  367 

 368 

 

rE hazard×vulnerability×exposure

 

(6) 369 

 370 
Vulnerability is represented by “the characteristics and circumstances of a community, 371 
system or asset that make it susceptible to the damaging effects of a hazard” [27]. Given its 372 
definition, the concept of vulnerability is quite broad. First, it varies depending on the 373 
considered element, i.e., community, system, or asset. Second, vulnerability can be specific to 374 
physical, social, economic, and environmental aspects. In addition, vulnerability is hazard 375 
dependent. Exposure is represented by the elements that are subject to potential losses due to 376 
a hazard. Different hazards may cause damage only to some elements. Therefore, exposed 377 
elements are combined with the specific vulnerability to a certain hazard to assess risk. In this 378 
case study, the human asset is the one that is vulnerable to biohazard. Since epidemic 379 
diseases are directly responsible for human losses, indicators that characterize the human 380 
asset, which are of demographic and socio-economic nature, have been considered. 381 

The probabilistic approach commonly used in seismic risk assessment to define the 382 
hazard is much more challenging to follow. Biohazard can be of natural, deliberate, or 383 
accidental origin and most of the time consequences are unexpected. Moreover, experience is 384 
gained through previous outbreak responses which are typically very different from case to 385 
case and from country to country. Therefore, the calibration of a probabilistic model based on 386 
historical data can be quite challenging if not impossible due to a lack of information.  387 

An indicator-based approach, such as the one previously described, represents a viable 388 
alternative at least at a preliminary stage of analysis. Among the twelve indicators used in the 389 
resilience analysis, seven have been selected to extend the application of the method to assess 390 
the epidemic risk of Italian regions: 391 

 elders’ index; 392 
 relative poverty index; 393 
 number of doctors; 394 
 number of hospital beds; 395 
 population density; 396 
 number of foreigners; 397 
 GDP. 398 

These indicators can positively or negatively affect vulnerability and exposure. It should be 399 
noted that both “number of doctors” and “number of hospital beds” tend to reduce 400 
vulnerability and therefore their complementary values were used in the analysis. While the 401 
interdependence matrix remains the same, new importance factors had to be defined. These 402 
were also obtained through a questionnaire averaging the responses (see Appendix A). Table 403 
7 contains all input parameters which are interdependence matrix, interdependence factors, 404 
importance factors, and weighting factors. Population density and elders’ index both obtained 405 
the highest values in terms of importance and interdependence. 406 

 407 
Table 7. Interdependence matrix, importance, and weighting factors of the epidemic risk 408 

indicators. 409 

  1 2 3 6 7 9 10 Importance Weighting 



factor factor 

1 Population density 1.00 0.08 0.03 0.48 0.53 0 0 2.85 2.96 

2 Elders’ index 0.15 1.00 0.05 0.50 0.05 0.08 0.03 2.95 2.89 

3 Number of foreigners 0.50 0.15 1.00 0.45 0.53 0.03 0 1.55 0.74 

6 GDP 0.88 0.50 0.48 1.00 0 0.15 0.15 2.25 2.16 

7 Relative poverty index 0.08 0.08 0.13 0.50 1.00 0.03 0 2.15 1.56 

9 Number of doctors 0.55 0.73 0 0.03 0 1.00 0.65 2.10 0.91 

10 Number of hospital beds 0.50 0.93 0 0.43 0.45 0.25 1.00 1.50 0.78 

 Interdependence factor 1.00 0.95 0.46 0.93 0.70 0.42 0.50   

 410 

 411 

Table 8 reports the numerical values representing a measure of the epidemic risk. The 412 
analysis was performed in 2017 the results were compared to the average values of the 2007-413 
2017 period. Figure 2a shows the choropleth maps of the epidemic risk for 2017. The regions 414 
more at risk are Lombardy and Lazio (region no. 12) due to their high exposure factors, while 415 
the ones with the lowest epidemic risk are Aosta Valley (region no. 2) and Trentino South 416 
Tyrol (region no. 8). Figure 2b illustrates the choropleth map of the Covid-19 cases registered 417 
in each region as of 2020 May 1. Although many other factors should be considered in an 418 
accurate evaluation of this epidemic (such as travel and commercial routes to the Asian 419 
countries where the virus spread first), the region that was found to have the highest epidemic 420 
risk (i.e., Lombardy) is indeed the one with more Covid-19 cases. This demonstrates that the 421 
proposed approach can be effective to preliminarily assess the epidemic risk provided that 422 
specific indicators are available. 423 
 424 

Table 8. Values of epidemic risks for each Italian region. 425 

  2017 2007 – 2017 Variation (%) 

No. Region Er Er Er 

1 Piedmont 0.413 0.404 2.3 

2 Aosta Valley 0.224 0.215 4.0 

3 Liguria 0.474 0.471 0.6 

4 Lombardy 0.675 0.661 2.2 

5 Veneto 0.452 0.442 2.4 

6 Friuli Venezia Giulia 0.351 0.338 3.8 

7 Emilia Romagna 0.412 0.413 -0.2 

8 Trentino South Tyrol 0.235 0.225 4.3 

9 Tuscany 0.399 0.392 1.7 

10 Umbria 0.298 0.295 1.1 

11 Marche 0.343 0.331 3.6 

12 Lazio 0.511 0.484 5.6 

13 Abruzzo 0.309 0.297 4.1 

14 Molise 0.276 0.257 7.3 

15 Campania 0.495 0.476 4.0 

16 Apulia 0.371 0.346 7.2 

17 Basilicata 0.264 0.250 5.7 

18 Calabria 0.318 0.298 6.7 



19 Sicily 0.368 0.354 4.0 

20 Sardinia 0.290 0.267 8.5 

 426 

  
(a) (b) 

 427 
Figure 2. (a) Choropleth map of Italian regions illustrating epidemic risk for 2017 and (b) 428 

number of Covid-19 cases as of 2020 May 1. 429 

 430 
6. Conclusions 431 

In this study, an indicator-based approach to measure resilience at the regional level has been 432 
presented. When dealing with resilience assessment at large-scale, the main challenge regards 433 
data availability. This often results in the inability to thoroughly follow existing resilience 434 
frameworks. In the proposed methodology only public census data has been utilized to 435 
evaluate the seismic resilience of Italian regions under three circumstances (i.e., normal 436 
conditions, seismic emergency, restoration phase). At the end of the data collection process, 437 
twelve relevant indicators have been selected and combined using a weighting system derived 438 
by questionnaires. The obtained resilience metrics allow to determine the performance of the 439 
same region under different scenarios and to make comparisons among different regions. The 440 
analysis has been carried on for a ten-year period showing that most regions have decreased 441 
their performances. Despite its simplicity, the proposed methodology represents a valid tool 442 
for preliminary analyses as it points out solid and poor indicators for each region. This kind 443 
of analysis can help decision-makers to deeper investigate community indicators, to allocate 444 
the resources to aspects that highly contribute to resilience (both in terms of importance and 445 
interdependency), and finally to plan a better recovery process. To demonstrate its versatility, 446 
the indicator approach was extended to biohazard aiming at providing a measure of regional 447 
epidemic risk. Only seven indicators could be used in this analysis, which affected result 448 
accuracy. However, when comparing results with the recent spread of the novel coronavirus, 449 
the regions with the highest epidemic risk values were found to be the ones with the highest 450 
number of Covid-19 cases. 451 
 452 



Appendix A 453 

Figure A.1 shows a sample of the questionnaire used to obtain the interdependence matrix, 454 
while Figure A.2 and Figure A.3 show a sample of the questionnaire used to obtain the 455 
importance factors for the resilience and epidemic analyses, respectively. 456 
 457 

 458 
Figure A.1. Sample questionnaire used in the survey – interdependence matrix. 459 

 460 



 461 
Figure A.2. Sample questionnaire used in the survey – resilience importance factors. 462 

 463 

 464 
Figure A.3. Sample questionnaire used in the survey – epidemic importance factors. 465 

 466 



Appendix B 467 

Figure B.1 illustrates the choropleth maps of the twelve regional indicators for 2017 used in 468 
the resilience analysis. 469 
 470 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

Figure B.1. Choropleth maps for 2017 of (a) population density, (b) elders’ index, (c) number 471 
of foreigners, (d) people holding a middle school diploma, (e) people holding a degree, (f) 472 

GDP, (g) relative poverty index, (h) unemployment rate, (i) number of doctors, (j) number of 473 
hospital beds,  (k) families with Internet access, and (l) people living in damaged houses. 474 

 475 
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