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Abstract 

Advanced control strategies can enable energy flexibility in buildings by enhancing on-site renewable 

energy exploitation and storage operation, significantly reducing both energy costs and emissions. 

However, when the energy management is faced shifting from a single building to a cluster of 

buildings, uncoordinated strategies may have negative effects on the grid reliability, causing 

undesirable new peaks. 

To overcome these limitations, the paper explores the opportunity to enhance energy flexibility of a 

cluster of buildings, taking advantage from the mutual collaboration between single buildings by 

pursuing a coordinated approach in energy management. 

This is achieved using Deep Reinforcement Learning (DRL), an adaptive model-free control 

algorithm, employed to manage the thermal storages of a cluster of four buildings equipped with 

different energy systems. The controller was designed to flatten the cluster load profile while 

optimizing energy consumption of each buildingThe coordinated energy management controller is 

tested and compared against a manually optimized rule-based one. 

Results shows a reduction of operational costs of about 4%, together with a decrease of peak demand 

up to 12%. Furthermore, the control strategy allows to reduce, the average daily peak and average 

peak-to-average ratio by 10 and 6% respectively, highlighting the benefits of a coordinated approach. 

mailto:alfonso.capozzoli@polito.it


 

Keywords: Coordinated energy management, Deep Reinforcement Learning, energy flexibility, 

grid stability 

 

1. Introduction  

The current energy transition is deeply changing the way energy is used and generated.  The need of 

a further decarbonisation of the building sector [1], together with  the rapid growth of urban areas, 

has fostered the use of distributed renewable energy resources. Nonetheless, the rapid penetration of 

renewable energy sources, characterised by their stochastic behaviour, represents the main cause of 

an intermittent injection of electricity into the power grid, which can jeopardize grid stability [2]. A 

recent solution lies in a new paradigm of energy management, which shifts from the supply- to 

building demand-side control. The latter exploits the novel concept of building energy flexibility, that 

represents the ability of adapting energy consumption and storage operation without compromising 

technical and comfort constraints, to increase on-site renewable energy consumption, reduce costs 

and provide services to the grid (i.e. load shifting, peak shaving) [3]. Among the different strategies 

aimed at increasing grid stability arises demand response (DR). DR programs are designed to control 

power demand through different mechanisms that can be classified as i) price-based mechanisms, 

which aim to encourage consumption in specific periods of the day by reducing tariffs, and ii) event-

based mechanisms, such as load curtailment, which are used to preserve network reliability. However, 

the adoption of price-based programs in some circumstances could be a double-edged sword, causing 

new undesirable peaks of demand during periods with low electricity prices [4].  

In this framework, building energy management should leverage automated algorithms capable to 

adapt to a changing environment and to learn from user’s behaviour and historical building-related 

data to optimise, coordinate and control the different actors of the smart grids (e.g., producers, service 

providers, consumers) [5].  



A novel approach that aims to exploit the benefits of DR programs while avoiding peak rebounds is 

represented by the coordinated building energy management [6]. This concept arises from the 

necessity to manage the aggregated power demand of cluster of buildings with the aim of optimising 

its energy demand shape while considering at single building level user’s needs, renewable energy 

production and the diversity of consumption patterns and energy systems. 

1.1.Related works and contributions 

Coordinated energy management of buildings can be addressed with a centralised or decentralised 

approach to the control task, where a centralised controller is assumed to have all the information 

about the current state of the entire cluster of buildings considered, while decentralised controllers 

act at single building level [7]. In [8] the authors discussed the advantages of competition, 

coordination and peer-to-peer transaction to achieve global objectives (e.g., cost minimisation, peak 

shaving), demonstrating the greater impact of such approach with respect to individual management.  

In the literature, most of the papers assessing the effectiveness of a coordinated approach in the energy 

environment, were mainly devoted to electric vehicle charging strategies for  providing DR services 

[9] or shaving peaks [10], and to schedulable appliances for load shifting [11]. Few efforts have been 

devoted to the coordination at building cluster level of heating ventilation and air conditioning 

systems (HVACs), which typically represent one of the largest energy end-uses in buildings [12]. 

This mainly because, with respect to other applications, the management of HVAC systems 

(including storage systems) is highly influenced by weather conditions, occupant behaviour, comfort 

requirements, and building features, that highly increase the complexity of the control problem. 

Advanced optimal control of HVAC systems at single building level has been widely analysed in the 

literature, with predictive based control  [13],[14]. Among these techniques, model predictive control 

(MPC) stands out for its ability to optimise complex systems, exploiting a dynamic model to predict 

building behaviour. However, it requires a detailed model, which enable its application especially at 

single building scale and rarely at cluster level [15], neglecting the potential benefits of a coordinated 

approach. 



 Moreover, model-based approaches are not always effective for real-life implementation at large 

scale, due to the evolution of the environment (e.g., retrofits, PV integration), and the computational 

cost associated to the modeling of a cluster of buildings, that can constrain the control scalability. 

In this context the many researchers are investigating the use of reinforcement learning (RL) as a 

valuable control approach in buildings. RL in spite of its adaptive and potentially model-free nature, 

fits the needs for an effective implementation of energy management in cluster of buildings [16]. RL 

agent directly learns an optimal control policy through a trial-and-error interaction with the 

environment, with adaptability potential in case of changes in the environment [17] such as retrofits 

[18] or demand response programs [19]. 

In [20] the potential of RL demand response on the market was assessed while in [21] an incentive-

based demand response based on RL was proposed. RL control approach has been used in residential 

demand response [22] or applied to control the operation of different systems, including heat pumps 

[23], domestic hot water (DHW) [24] and electric water heater [25]. To provide non-intrusive demand 

response programs, a lot of attention was devoted to the exploitation of control strategy, for indoor 

temperature setting [26] and thermal storage operation for heating [27] and DHW energy management 

[28]. Recently, few studies have started to put emphasis on cooperative or competitive coordination 

mechanisms [29] to account for demand peak shifting when multiple agents take the same control 

decisions [30].  

The presented literature review shows that most studies in the past years have implemented RL for 

single-agent systems which act greedily and independently of each other, neglecting the opportunity 

provided by a coordinated control to flatten the peaks on the grid rather than shifting them.  

However, it is not surprising that in the past years the need for multi-agent coordination in DR 

applications was not fully adopted, as the lack of it does not always lead to shifts in the peak demand 

or “rebound” effects in the daily load profiles. Indeed, in urban settings where the amount of energy 

storage capacity is not very high, building agents can enable DR without coordination and still be 

successful in reducing the peaks of electric demand. However, due to the trend towards a wide 



adoption of electric vehicles and other storage devices such as batteries, this is subject to change in 

the near future [31,32]. As energy storage devices become more abundant and electrical demand more 

volatile due to the presence of more renewable energy resources and EV charging stations, properly 

coordinating all these energy systems in an adaptive manner can be critical without a centralised 

control or multi-agent cooperation. Nevertheless some pioneering studies have already demonstrated 

the advantages of a coordinated approach in HVAC systems using advanced control strategies in 

simulated environment, including heuristic control [33] and reinforcement learning control [34].  

This paper explores the opportunity of enhancing demand flexibility for a cluster of buildings by 

implementing a coordinated energy management, using Deep Reinforcement Learning (DRL) to 

manage the thermal storages of a cluster of four buildings equipped with different energy systems. 

The controller was designed with the objective to flatten the total load profile of the cluster while 

optimizing energy consumption of each building. For benchmarking purposes, the coordinated energy 

management is then tested and compared against a manually optimized rule-based controller. 

On the basis of the literature review the main novelty of the paper can be summarised as follows: 

• The paper exploits a single-agent RL centralised controller with a strategy explicitly designed 

to consider the benefits at multiple levels (i.e., single building, cluster and grid level), against 

a most common rule-based control strategy that optimise single buildings. 

• The paper makes use of a novel simulation environment, CityLearn [35], an OpenAI Gym 

environment specifically designed to allow RL implementations for the built environment, 

enhanced to consider a variable electricity price. 

• The DRL controller used in this work exploits a state-of-the-art continuous control algorithm 

i.e., soft actor critic (SAC). The control performances of the agent were deeply analysed to 

highlights the benefits provided by coordinated energy management. 

The paper is organised as follows: Section 2 introduces the methods adopted for developing and 

testing the controllers, including algorithms and simulation environment. Then, Section 3 describes 

the methodological framework at the basis of the analysis. Section 4 introduces the case study, 



explaining in detail the energy modelling of the system and the controllers design and training. 

Section 5 presents the results of the training and deployment phase, while discussion of results is 

given in Section 6. Eventually, conclusions and future works are presented in Section 6.  

2. Methods 

Reinforcement learning is a branch of machine learning mainly aimed at solving control problems. It 

combines the advantages of dynamic programming, with a trial-and-error approach. RL uses an agent-

based control, where the agent learns through the interaction with the controlled environment. 

Reinforcement learning can be formalized using a Markov decision process (MDP), a discrete-time 

stochastic control process [36]. MDP provides a mathematical framework for modelling decision 

making in situations where outcomes are partly random and partly under the control of an agent. 

Markov Decision Process are represented using a 4-tuple (𝑆, 𝐴, 𝑃, 𝑅) made up of: 

1. State space (S) 

The state describes the environment completely. Here, must be noticed that state is a term used 

to represent the environment, while the information seen by the agent, that are a mathematical 

description of the environment, relevant and informative to the decision to be made are called 

observations. Often, the agent can see only a part of the state, dealing with the so-called Partially 

Observable Markov Decision Process (POMDP). In this paper, observation space and state space 

are considered equal.  

2. Action space (A) 

The action is the decision made by the agent on how to control the environment 

3. Transition probability (P) 

The transition probability 𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) = 𝑃: 𝑆 × 𝐴 × 𝑆′ is the probability that, 

starting in s and performing action a at the time t, the next state will be s’. MDP satisfies the 

Markov Property, which states the memoryless of the stochastic process, represented as 

𝑃(𝑠𝑡+1 = 𝑠′|𝑠𝑡) =  𝑃(𝑠𝑡+1 = 𝑠′|𝑠1, 𝑠2, … , 𝑠𝑡) 

https://en.wikipedia.org/wiki/Discrete-time
https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Optimal_control_theory
https://en.wikipedia.org/wiki/Decision_making
https://en.wikipedia.org/wiki/Decision_making
https://en.wikipedia.org/wiki/Randomness#In_mathematics


4. Reward function (R) 

The reward function is used to map the immediate reward 𝑟 with the tuple  𝑆 × 𝐴 × 𝑆′  

The main goal of the agent is to find the optimal control Policy (𝜋). A control policy is a mapping 

between states and actions 𝜋: 𝑆 → 𝐴, and it has the aim to maximize the cumulative reward over 

a time horizon. This concept is summarized introducing the expected return G, that represent the 

cumulative sum of the reward 𝐺 = ∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 . Where 𝛾 ∈ [0,1] is the discount factor for 

future rewards. An agent employing 𝛾 equal to 1 considers future rewards as important as current 

ones, while an agent with 𝛾 equal to 0 assign higher values to states that lead to high immediate 

rewards.  

For sake of clarity, an example with an energy system is provided in Figure 1 where the controller 

(agent) is connected to a heat pump and a thermal storage to satisfy the building cooling demand 

over the summer season. The controller has the role of minimising electricity cost (reward 

function) charging and discharging (actions) the storage to satisfy the building demand. The 

reward function can be minimized charging the storage during night hours, when efficiency is 

higher and electricity price is low (states). The exploitation of these information allows the 

controller to find the optimal policy. 

 

 

Figure 1: Reinforcement learning control framework 

 



The control problem can be defined by two closely related value function, namely the state-value 

function 𝑣𝜋(𝑠) and action-value function 𝑞𝜋(𝑠, 𝑎), shown below:  

𝑣𝜋(𝑠) =   𝔼[𝑟𝑡+1 + 𝛾𝑣𝜋(𝑠′)|𝑆𝑡 = 𝑠, 𝑆𝑡+1 = 𝑠′]                                           (1) 

 

𝑞𝜋(𝑠, 𝑎) =   𝔼[𝑟𝑡+1 + 𝛾𝑞𝜋(𝑠′, 𝑎′)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]                                           (2) 

 

These functions are used to show the expected return of a control policy 𝜋 at a state or a {state,action} 

tuple. One of the advantages of the RL is that in its model-free version, the values of 𝑣𝜋  and 𝑞𝜋 are 

directly learned from experience, without explicitly calculating the transition probabilities. RL 

algorithms can improve their policy in two different ways: i) on-policy methods, which attempt to 

evaluate the policy that is used to make decisions and ii) off-policy methods, which evaluate a policy 

different from that used to generate the data. Among RL algorithms, the most used one, due to its 

simplicity, is Q-learning [37]. In Q-learning transitions can be represented with a tabular approach 

that stores the state-action values (Q-values) that are updated as follows: 

 

𝑄(𝑠, 𝑎) ⃪𝑄(𝑠, 𝑎) + 𝜇[𝑄(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥
𝑎

 (𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]                                       (3) 

Where s is the next state and µ ∈ [0,1] is the learning rate, which determines to what degree new 

knowledge overrides old knowledge. When µ is equal to 1 new knowledge completely substitutes old 

knowledge, while for µ set equal 0 no learning happens. One of the advantages of the off-policy 

learning lies in their ability to learn from other agent, opening the door to the experience replay, in 

which previous information is re-used to enhance the current policy. Despite these advantages, a 

tabular representation of real-world problem may be unfeasible, due to large state and action spaces 

that needs to be stored. 

 

 



2.1.Soft actor critic 

The combination of RL and high-capacity function approximators such as Deep Neural Networks 

(DNN) demonstrated to overcome computational problem renewing the interest for the RL topic and 

promoting its extension to complex problems [38]. Among Deep Reinforcement Learning (DRL) 

algorithms, an actor-critic method was selected in this paper for its ability to combine advantages of 

both value-based and policy-based methods. The main idea behind actor-critic is to split the problem 

using two deep artificial neural networks. The actor maps the current state to the action that it 

estimates to be optimal (policy-based), while the critic evaluates the actions by computing the value 

function (value-based). 

  

 

Figure 2: Actor-Critic Environment interaction and neural networks in DRL 

 

The key components of soft actor-critic [39]  are: 

• An actor-critic architecture, used to map policy and value function with different networks; 

• The off-policy formulation, that allows reusing previously collected data, stored in a replay 

buffer (𝐷) to increase data efficiency; 

• The entropy maximization formulation, that helps stabilize the algorithm and the exploration 

SAC learns three different functions: (i) the actor (mapped through the policy function with 

parameters 𝜙), (ii) the critic (mapped with the soft Q-function with parameters 𝜃) and (iii) the value 

function 𝑉, defined as: 



𝑉(st) = 𝔼at~𝜋[𝑄(st, at) −  𝛼 log 𝜋(at|st)]          (4) 

= 𝔼𝑎𝑡~𝜋[𝑄(𝑠𝑡, 𝑎𝑡)] + 𝛼𝔼𝑎𝑡~𝜋[𝑙𝑜𝑔 𝜋(𝑎𝑡|𝑠𝑡)] 

= 𝔼at~𝜋[𝑄(st, at)] + 𝛼𝐻 

 

Differently from standard RL algorithm, maximum entropy reinforcement learning optimizes policies 

to maximize both the expected return and the expected entropy of the policy as follows: 

 

𝜋∗ = arg max
𝜋𝜙

∑ 𝔼(𝑠𝑡,𝑎𝑡)~𝜌𝜋
 [𝑟(𝑠𝑡, 𝑎𝑡) +  𝛼𝐻 (𝜋𝜙(∙ |𝑠𝑡))]𝑇

𝑡=0                          (5) 

 

Where (𝑠𝑡, 𝑎𝑡)∼𝜌𝜋
is a state-action pair sampled from the agent’s policy, and 𝑟(𝑠𝑡, 𝑎𝑡) is the reward 

for a given state-action pair. Due to the entropy term, 𝐻, the agent attempts to maximize the returns 

while behaving as randomly as possible.  The final policy used in the evaluation of the algorithm can 

be made deterministic by selecting the expected value of the policy as the final action. 

The parameters of the critic networks are updated by minimizing the expected error 𝐽𝑄, which is given 

by: 

𝐽𝑄(𝜃) = 𝔼(𝑆𝑡,𝑎𝑡)~𝐷 [
1

2
(𝑄𝜃(𝑠𝑡, 𝑎𝑡) − (𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝔼st+1~𝑝[𝑉�̅�(𝑠𝑡+1)]))

2

]   (6) 

Where the value function is implicitly parameterized through the soft Q-function parameters in 

Equation 6. On the other hand, the temperature parameter 𝛼 determines the relative importance of the 

entropy term against the reward, and thus controls the stochasticity of the optimal policy. A high 

value of the temperature parameters may lead to a uniform behaviour, while a low value of the 

temperature parameter will only maximize the reward. SAC is highly influenced by the temperature 

parameter, that needs to be properly tuned to achieve good performances. Unfortunately, tuning this 

hyper-parameter is very hard, since entropy can vary both across actions and over time, as the policy 

becomes better. To overcome these problems, in this study a recent version of the SAC that employs 



alpha automatic optimization [40] was used. To ease the comprehension, the main algorithm logics 

are summarised in Table 1. 

 

Table 1: soft actor-critic algorithm 

Input: 𝜃1, 𝜃2, 𝜙 Initial parameters 

    �̅�1 ⃪  𝜃1, �̅�2 ⃪  𝜃2 Initialize target network weights 

    𝒟   ⃪  0 Initialize an empty replay buffer 

    for each iteration do  

        for each environment step do  

        𝑎𝑡 ~ 𝜋𝜙(𝑎𝑡|𝑠𝑡) Sample action from the policy 

        𝑠𝑡+1 ~ 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) Sample transition from the environment 

        𝒟 ⃪ 𝒟 ∪ {(𝑠𝑡, 𝑎𝑡, 𝑟(𝑠𝑡, 𝑎𝑡), 𝑠𝑡+1)}  Store the transition in the replay buffer 

        end for  

        for each gradient step do  

            𝜃𝑖  ⃪ 𝜃𝑖 − 𝜆𝑄𝛻𝜃𝑖
𝐽𝑄(𝜃𝑖) for 𝑖 ∈ {1,2} Update of the Q-function parameters 

            𝜙𝑖  ⃪ 𝜙𝑖 − 𝜆𝜋𝛻𝜙𝐽𝜋(𝜙) Update policy parameters 

            𝛼   ⃪ 𝛼 − 𝜆𝛻𝛼𝐽(𝛼)  Adjust temperature 

            �̅�𝑖  ⃪ 𝜏�̅�𝑖 + (1 − 𝜏)�̅�𝑖  for 𝑖 ∈ {1,2} Soft update of the target network weight 

        end for  

    end for  

Output: 𝜃1, 𝜃2, 𝜙 Optimized parameters 

  

2.2.The CityLearn simulation environment  

In order to train, implement and test the developed RL controller, a new simulation environment, 

CityLearn [35,41], was used. The environment is specifically built to enable training and evaluation 

of reinforcement learning models for demand response in smart cities through energy simulations 

with an hourly control timestep. Moreover, the simulation environment makes it possible to control 

heterogeneous cluster of buildings and offers the possibility to easily implement RL-algorithm to 

manage cooling and domestic hot water storages with centralised or distributed controllers. The aim 

is to facilitate and standardize the evaluation of RL agents to enable the comparison of different 

algorithms. CityLearn is well suited for the easy implementation of both centralized and decentralized 



multi-agent RL control systems, as well as for the implementation of single-agent independent RL 

controllers. 

The environment allows to control multiple thermal energy storage devices within the building, 

including water tanks of domestic hot water, cooling and heating systems. The energy demand for 

space cooling is satisfied by air-to-water heat pumps, and the heating energy is supplied by electric 

heaters. Furthermore, it also accounts for photovoltaic generation and allows the user to select 

different performance metrics related to load-shaping. Additionally, users can select up to 28 different 

state variables which include current weather conditions and forecasts, or the state of charge of the 

different energy storage devices.  

3. Methodological Framework 

The section reports the methodological framework adopted in the present paper, with the aim of 

describing each stage of the process, including the development, training and deployment of DRL 

control agent. The framework unfolds over four different stages, as shown in Figure 3. 

 

Figure 3: Framework of the application of DRL control 

 

RL Problem formulation: the first stage of the framework was aimed at defining the main 

components of the reinforcement learning control problem. The action-space includes all the possible 

control actions that can be taken by the control agent. Considering that the aim of the paper is to 

coordinate multiple buildings, the action space includes multiple actions, 2 for each building. The 



state-space is a set of variables related to the controlled environment which are fed to the agent to 

learn the optimal control policy which maximizes the reward function. Eventually, a reward function 

was formulated to describe the performance of the control agent with respect to control objectives.  

Training phase: in the second stage of the process the DRL agent was trained. As previously 

introduced in Section 2, DRL agent is characterised by many hyperparameters which require 

appropriate tuning. In order to enhance the reproducibility of the work, a description about the setting 

of hyperparameters was provided. The training process was implemented in an off-line fashion using 

the same training episode (i.e. a time period representative of the specific control problem) multiple 

times in order to refine agent’s control policy.  

Training Results: the agent was firstly tested with the same climate used for training, with the aim 

to specifically analyse the effect of the learned policy on multiple levels, including single buildings, 

cluster and then on the grid. The performances of the DRL controller were analysed against an RBC 

controller, by evaluating various key performances indicators (KPI), specifically tailored for each 

scale of analysis (i.e., single building level or cluster of buildings level).  

Deployment: to evaluate the robustness of the trained agent, the algorithm was deployed in four 

different climates, which also lead to different building thermal-related loads. The agent was tested 

through a static deployment in one episode and compared with the RBC also during this stage. 

4. Case Study 

The DRL algorithm described in Section 2.1 was used to control a complex environment that consists 

of a cluster of 4 commercial buildings, whose load profiles have been assessed through dynamic 

simulations in EnergyPlus. Each building is equipped with a heat pump, to satisfy cooling demand, 

an electric heater to meet DHW demand and both cooling and DHW storages. For each building, the 

heat pump is sized to always match cooling demand, considering a safety factor to account for reduced 

capacity in case of low external temperature. On the other hand, storages capacity is three times the 

maximum hourly demand for both cooling and DHW loads [42]. Moreover, two out of four buildings 



are equipped with photovoltaic systems. Table 2 reports for each building their geometrical features 

and the main design details of the energy systems.  The energy systems are managed by a single-

agent centralised DRL controller, which aims to reduce costs and to flatten the aggregated load profile 

of the cluster reducing peaks. 

 

Table 2: Building and energy systems properties 

 Type Surface 

[m2] 

Volume 

[m3] 

Cold 

Storage 

Capacity 

[kWh] 

Electric 

Heater 

Capacity 

[kW] 

Hot 

Storage 

Capacity 

[kWh] 

PV 

Capacity 

[kW] 

Building 1 Office 5000 13700 235 17 50 0 

Building 2 Restaurant 230 710 150 25 75 25 

Building 3 Retail 2300 14000 200 23 70 20 

Building 4 Retail 2100 10800 185 35 105 0 

 

4.1. Description of the cluster of buildings 

The aggregated load pattern of the cluster can result from heterogeneous single building profiles, 

characterised by both very different intensities and shape. Figure 4 shows the electrical consumption 

patterns for the first three days analysed. On the left part, it is displayed the load profile for each of 

the 4 buildings included in the cluster analysed, while on the right part it is showed the total profile. 

In particular, Building 1 and 4 are characterised by homogeneous daily load profiles, with a peak in 

the morning, while Building 2 has sudden peak during the evening and Building 3 may have more 

than a peak per day. As a result, considering that the load profile of the cluster is highly influenced 

by the single building energy behaviour, to achieve an optimal control at cluster level a coordination 

at both low and high level is needed. Moreover, the right part of Figure 4 shows at cluster level also 

the breakdown of electrical demand for cooling, DHW and appliances and the PV production in 

Buildings 2 and 3.  



 

Figure 4: Load Profile for each building (left) and cluster profile electricity and PV production (right) 

 

This representation is useful to underline the electrical demand for cooling and DHW, on which the 

RL controller can act to enhance cluster flexibility. In fact, since electrical cooling demand represents 

a large part of the cluster load, the analysis was focus only to the summer period (1st June to 31st 

August). 

4.2. Energy systems and control objectives 

The control problem consists in the optimally management of the charging and discharging of the 8 

storages to satisfy cooling and DHW demand of the four buildings included in the same cluster. The 

goal of the control policy is to minimize costs and to avoid peaks at cluster level. The most influencing 

factor to take into account are the energy cost and the heat pump efficiency. In particular, the energy 

cost considered in the paper is based on the Austin (Texas) electricity tariffs [43].  In detail, were 

assumed an off-peak electricity tariff during night-time period 20:00-7:00 (0.03025 $/kWh) and an 

on-peak electricity tariff during daytime period 7:00-20:00 (0.06605 $/kWh). On the other hand, the 

efficiency of the heat pump was modified from CityLearn original implementation to consider partial 

load ratio (PLR) and the effect of external temperature not only on the coefficient of performance 

(COP), but also on the design capacity. A description of the relation among COP, design capacity 

(DC) and external temperature was defined according to real data sheet of heat pumps. Moreover, the 

heat pump operation at part load condition was modelled according to UNI EN 14825 [44]. 



Eventually, COP was evaluated according to Equation 5. The external temperature rise has a twofold 

effect, firstly it reduces COP (increasing electricity consumption) and secondly it increases the 

maximum cooling power deliverable by the heat pump. Moreover, heat pump efficiency is influenced 

not only by external variables, but also from controller actions affecting the cooling load. Finally, the 

fraction in Equation 5 accounts for part load ratio and intermitting operation of the heat pump. 

𝐶𝑂𝑃(𝑇, 𝑃𝐿𝑅) =  𝐶𝑂𝑃𝑇(𝑇) ∗ (

𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔(𝑎𝑐𝑡𝑖𝑜𝑛)

𝐷𝐶(𝑇𝑖)

0.9∗
𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔(𝑎𝑐𝑡𝑖𝑜𝑛)

𝐷𝐶(𝑇𝑖)
+0.1

)                                           (5) 

 

4.3.Baseline rule-based control 

The effectiveness of the DRL controller was assessed through a comparison with a manually 

optimised rule-based controller. In the baseline strategy, both cooling and DHW storages are charged 

during the night period, when electricity price is lower and heat pumps can take advantage, in terms 

of efficiency, from lower temperature (i.e., higher values of COP). To limit peak demand, the 

charging process was spread over the whole night period, while the discharging process is 

homogeneous throughout the day.  

4.4. Design of the deep reinforcement learning controller 

The DRL control algorithm described in section 2.1 was trained and tested in the CityLearn 

environment, including constraints related to the maximum charging and discharging rate of the 

storages and ensuring that cooling and DHW demands are always met. In the next sub-sections, action 

space design is presented, together with the description of the reward function design and of the state-

space, to properly characterize the DRL control problem.  

4.4.1. Action-space design 

The analysed case study deals with multiple buildings, each one with two storages that could be 

controlled. Therefore, the two actions have different targets: the first one is related to the operation 

of the cold storage, that can be charged by the heat pump to store energy or discharged to meet 



building cooling load; the second action is related to the operation of the hot storage, that can be 

charged by an electric heater or discharged to meet DHW demand. 

Since each building has different storages and heat pump capacities, the action space makes use of 

normalized values. In particular, the controller uses actions between -1 and 1, where -1 represents the 

full storage discharge in the control timestep and 1 represents the full storage charge. However, 

considering that a full charge/discharge in a single timestep is not feasible, in this work, the action 

space was constrained into the interval [-0.33,0.33], imposing therefore a complete charge or 

discharge time of 3 hours according to [42]. 

In conclusion, at each control time step the agent selects 8 values (one for each storage) to charge or 

discharge the energy storage devices. This information is used to select the best actions that maximise 

the reward function.  

4.4.2. State-space design 

The states represent the environment as it is observed by the control agent. At each control timestep, 

the agent choses among the available actions according to the values assumed by the states. In 

particular, states should be easy to measure in real-world implementation, and they should be selected 

according to the meaningfulness of the information they provide for predicting the reward function. 

The variables used for representing the state-space are reported in Table 3 and in the following further 

described.  

 

 

 

 

 

 



 

Table 3: State-space 

Variable group Variable  Unit 

Weather   

 

 
 

Temperature °C 

Temperature Forecast (6h)   °C 

Direct Solar Radiation W/m2 

Direct Solar radiation Forecast (6h) W/m2 

District 

  

Total Load kW 

Electricity Price €/kWh 

Electricity Price Forecast (1,2,3 h) €/kWh 

Hour of day h 

Building  

  

Non-shiftable load kW 

Heat Pump Efficiency [-] 

Solar generation W/m2 

Cooling Storage SOC [-] 

DHW SOC [-] 

 

The variables used for representing the state-space can be categorised as weather, district and building 

states.  

Weather states, such as outdoor temperature and direct solar radiation, were selected because of their 

strong influence on the magnitude of building loads for space cooling. Additionally, their 6 hours-

ahead values were used to provide useful information about temperature and solar radiation changes 

and enhancing the predictive capabilities of the controller. 

District states includes variables that assume the same value for all the buildings over time, such as 

hour of day, electricity price, forecast of the electricity price and weather conditions.  



Building states include variables related to the electricity production (photovoltaic system) and 

consumption of the buildings (non-shiftable load). These states are specific of the single building, 

that can have different energy systems (PV) or trend of consumption. Additionally, heat pump 

efficiency, cooling and domestic hot water state of charge were included.  

Figure 5 summarises the states and action space interaction selected in this work. The central 

controller receives as states high-level information such as weather conditions and electrical demand 

of the whole cluster of buildings. Moreover, it also receives low-level information from each building 

such as appliances loads and energy systems information. 

 

Figure 5: State-action space representation of the DRL controller 

 

4.4.3. Reward design 

The reward function plays a key role for defining how the agent assess the quality of the control 

policy during the learning phase. It was conceived to allow the agent learning a control policy during 

training period which minimize the energy cost at cluster level and reduce the demand peaks.  

In particular, the reward was formulated as follows: 

𝑅 =  ∑ 𝑒𝑖
2 ∗ 𝑐𝑒𝑙𝑖

𝑛
𝑖=1                                               (6) 

 



Where 𝑒𝑖
2 is the squared energy consumption of the i-th building, while 𝑐𝑒𝑙 is the electricity tariff in 

that time step. To obtain a more uniform load profile at cluster level, the controller tries to minimise 

the sum of the squared consumption of each building for each time step. This formulation was chosen 

since the squared minimization approach tries to flatten the profile rather than shifting the 

consumption to low electricity tariff, avoiding simultaneous charge (and discharge) of storages. In 

order to consider the economic aspect of the problem, the electricity tariff in the specific timestep 

was included. Moreover, due to the relation between consumed energy and costs, the controller tries 

to minimize energy consumption, increasing system efficiency. 

The design of the reward function highly influences DRL performances, searching compromises 

between energy savings and grid stability. 

4.5.Training and deployment 

The subsection describes the setting of hyperparameters during the training phase. Then, a description 

of the different climatic conditions analysed for the deployment phase is presented. 

4.5.1. Training phase 

The DRL framework is characterised by several hyperparameters that strongly affect the behaviour 

of the control agent. The aim of this subsection is to illustrate the hyperparameters set during the 

formulation of the control problem. For the sake of reproducibility, Table 4 reports the value of the 

main hyperparameters.  In particular, the two hyperparameters that mostly influence the results are 

the number of training episodes and the temperature 𝛼 . Differently from many other control fields, 

the number of training episodes is relatively low. This is justified by the problem nature, in which 

actions are constrained by energy balance, finding the optimal policy quickly. Furthermore, as 

explained in 2.1 𝛼 highly influences the outcome of the policy. While in certain application 𝛼 could 

be set a-priori as a constant, in this study a version of SAC algorithm that optimizes the temperature 

parameter was adopted. As a reference, both starting and final value of temperature and entropy 

coefficient are provided below. 



Table 4: Hyperparameter settings 

 

As previously stated in Section 4.1, a training episode includes 3 months, from 1st of June to 31st of 

August (2208 control steps). The weather file used in this work for the training phase is referred to 

the climatic zone of the USA named 2A, Hot-Humid. 

4.5.2. Deployment phase 

In the last phase of the process the agent was deployed for the same cluster of buildings but 

considering four different climates to assess the adaptability capabilities of the learned control policy 

to different configurations related to the controlled environment. Each agent was deployed for one 

episode including the period between 1st June and 31st August. 

The first climate is 2A Hot-humid: this climate is the same on which the agent was trained on. This 

scenario is compared to the baseline RBC to assess the effectiveness of the trained agent. Then, the 

adaptability is tested with the deployment of the agent in warm-humid climate (3A), mixed-humid 

climate (4A) and cold-humid climate (5A). The thermal related load patterns changed according to 

climatic conditions. 

 Variable Value 

1 DNN architecture 2 Layers 

2 Neurons per hidden layer 256 

3 DNN Optimizer Adam 

4 Batch size 512 

5 Learning rate 𝜆 0.003 

6 Decay rate 𝜏 0.005 

7 Temperature* 𝛼 Starting = 1, Final = 0.05 

8 Entropy coefficient* 𝐻 Starting = 8, Final = 5 

9 Target model update 1 

10 Episode Length 2208 Control Steps (92 days) 

11 Training Episodes 5 



 

Figure 6: Temperature distribution of the different deployment climates 

 

Figure 6 shows the patterns of outdoor air temperature in the four climates selected, highlighting how 

the external temperature is strongly different in amplitude and distribution. In particular, the Climate 

2A, the one on which the agent is trained on, has a distribution with a narrow amplitude, with a mean 

temperature of about 27.5 °C. On the other hand, climates 3A and 4A have a different temperature 

distribution, but the same mean value of about 25.5 °C. Lastly, Climate 5A is the coldest climate 

considered, with a mean temperature of 22.5 °C and a more uniform distribution with respect to 

Climate 2A. 

5. Results 

The section reports the results of the implemented framework. Firstly, a brief evolution of the control 

policy is presented. Then, a comparison between the two control strategies by analysing the results 

with a focus at single building scale and cluster level is provided. Eventually, the analysis focuses on 

the load curve and on the role of storage devices for the grid stability. To this purpose a further 

comparison is performed computing the load duration curve for the cluster of buildings also 

considering the case without storages. Furthermore, to summarise the performance of the two control 

strategies a numeric comparison is provided. 



5.1.Training results 

The subsection presents the evolution of the DRL control strategy over the training period and 

compare it with the RBC. In particular, Table 5 reports the evolution of the reward function over the 

training period, together with the normalized values of cost and peak compared to the RBC (where a 

value smaller than 1 suggest a better performance of the DRL). The first episode is used to store states 

and actions and after that it can be observed a quick convergence of both cost and peak term, that 

stabilize after episode 4. To prove this point, a sensitivity analysis was performed on the number of 

training episodes, spanning from 5 to 20, which showed little to no improvements with more than 5 

episodes.  

Table 5: Reward and KPI evolution over training period 

 Episode 1 Episode 2 Episode 3 Episode 4 Episode 5 Deployment 

Reward -343 -337 -297 -271 -271 -265 

Cost  1.1 1.1 1.06 0.98 0.97 0.96 

Peak  1.07 1.29 0.96 0.96 0.96 0.88 

 

5.1.1. Comparison of controllers at single building level 

Figure 7 shows the charging and discharging patterns of both storages determined by the RBC and 

RL controller. In particular, the figure shows the days related to the maximum peak demand of the 

RBC, to highlight the difference with the DRL control strategy. 

Moreover, the figure shows the relation between the control process and the forcing variables (i.e., 

external temperature and the electricity price). To allow an easier comparison, all quantities were 

normalised on maximum values between 0 and 1, where the maximum temperature is 35 °C.  

It can be observed that RBC charges both storages mutually at a lower rate, exploiting off-peak tariff 

and the highest COP of the heat pump. However, to exploit off-peak tariff and avoid sudden peaks, 

RBC control strategy leads the heat pump to work at part load. Moreover, it has no information about 

outdoor temperature evolution and so on the efficiency of the heat pump. 



On the other hand, the DRL controller learns to charge the two storages as soon as the electricity price 

and the temperature tend to decrease. However, the main difference is related to the discharge pattern, 

since DHW is used as soon as needed to reduce electricity demand, while cooling storage is 

discharged when external temperature is high, avoiding using heat pump when the COP is low.  

 

Figure 7: State of charge of storages and forcing variables scaled between 0 and 1 

 

5.1.2. Comparison of controllers at cluster level 

Figure 8 shows a comparison between the aggregate electrical load obtained through the 

implementation of the RBC controller in the simulation environment, in which each building is 

optimised to minimise its own costs, and the DRL controller, that optimises cluster behaviour. In 

particular, Figure 8 shows three days during which the RBC determined the occurrence of load peak 

at cluster level that could cause stress on the grid.  



 

 

Figure 8: Comparison between uncoordinated and coordinated energy management 

 

As shown in Figure 8, the DRL controller is capable to better flat the aggregate load profile and to 

diversify the charge time of the storages among the buildings in the cluster. As a result, cluster profile 

is more homogeneous and, in this particular situation, a great reduction can be observed looking at 

the two peaks (hour 605 and 655). This result does not represent the average performance of the DRL 

controller but highlights the potential of buildings coordination in increasing grid stability in specific 

situations.  

To understand how these results have been achieved, Figure 9 shows the average evolution of the 

state of charge related to the storage device. As can be seen, the cooling and DHW storages are 

charged during the night homogeneously, as the RBC. The main differences is related to the storage 

discharges. In particular, as soon as the electricity price increases, the DHW storages start the 

discharge phase almost simultaneously, since they are only influenced by the electricity price. On the 

other hand, the agent learned the dependency between external temperature and heat pump COP (the 



higher the temperature lower the COP). As a result, the optimal policy discharges the cooling storage 

during the hottest hour, maximising heat pump efficiency. 

 

Figure 9: State of charge of storages averaged over a day 

 

5.1.3. Comparison of controllers at grid level 

To highlight the flexibility provided by the introduced framework in terms of load profile flattening, 

the load duration curves resulting from the application of RBC and DRL control and from the case 

without storages were compared in Figure 10. As can be seen, the baseload increases with both RBC 

and DRL, underlying the importance of the storages in increasing buildings energy flexibility. 

However, RBC leads to the creation of new undesirable peaks (as shown inside the “zoom” area) 

while DRL algorithm, thanks to the coordinated approach, is able to reduce them. 



 

Figure 10: Load duration curve for the base case without energy storages in buildings and the two control strategies 

 

Eventually, to provide a comprehensive analysis of the results different KPIs are introduced to 

compare the performances of the control strategies. In particular, the KPIs chosen are the total energy 

consumption, the total energy cost, maximum peak, average daily peak, peak-to-average ratio (PAR) 

and daily peak-to-average ratio. These KPIs have been chosen to summarise the advantages of DRL 

control strategies at cluster level (energy consumption, costs, maximum peak and peak-to-average 

ratio) and the effect on the grid (average daily peak and daily peak-to-average ratio). 

Table 6 shows the performance of the two control strategies with respect to the main criteria selected. 

In order to allow an easier comparison, the values of KPIs are normalised on the RBC values.  

Table 6: Comparison between performances of the two control strategies 

 Energy 

Consumption 

Electricity 

Cost 

Peak Peak-to-

average 

ratio (PAR) 

Average 

daily 

peak 

Average 

daily 

PAR 

Manually 

Optimised RBC 

1 1 1 1 1 1 

DRL 1.03 0.96 0.88 0.96 0.90 0.94 

 



DRL outperforms the manually optimised RBC. In particular, DRL controller exploits the storage 

charge and discharge to increase heat pump efficiency, while slightly reduces electricity cost. 

Nevertheless, it must be noticed that the manually optimised RBC already took full advantage from 

off-peak electricity tariff, therefore the economic improvement of DRL over RBC are closely related 

to the more efficient use of energy.  

On the other hand, the coordinated approach showed good results at cluster level, reducing maximum 

peak of 12% and average daily peak of 10%. Moreover, the PAR and average daily PAR reduction 

of 4 and 6% respectively highlight the benefits of building coordination that can be translated into a 

more homogenous energy consumption. 

Furthermore, the advantage provided by the increased grid stability could be translated into reduced 

electricity tariff, with additional advantages for users. 

The DRL approach is able to reduce peaks of 12% with respect to the RBC and 8% with respect to 

the no storage case, but more importantly the peak demand rapidly decreases, resulting in a more 

homogeneous profile. 

5.2. Deployment of deep reinforcement learning controller in different climatic conditions 

The last section analyses the deployment of the agent in the other 3 climates described in 4.5.2. After 

the training and deployment of the agent in Climate 2A, a simulation of 3 months was run using the 

trained agent with climate 3A, 4A and 5A. To evaluate the performances of the agent in the new 

climates, as done before, the DRL controller was compared with the RBC controller, analysing the 

previously introduced KPIs and normalizing them on the RBC values. Figure 11 summarizes the 

results of the deployment phase, where 100 represents the RBC performance. 



 

Figure 11: KPI comparison for the four deployment cases 

 

It can be seen how the controller is able, also in Climate 3A, to flatten the load pattern. This is 

highlighted by the peak and PAR reduction, looking both at maximum and daily values. These results 

are achieved consuming slightly more electricity with respect to the RBC, but with the same energy 

cost. 

Looking at Climate 4A, it can be noticed a peak reduction of around 5%, but with negligible effect 

on the PAR. On the other hand, looking at the average daily values, it can be noticed that the daily 

PAR is 10% lower with respect to the RBC, highlighting the more homogeneous consumption.  

Eventually, analysing climate 5A, the coldest one, it can be seen how the cost slightly increases, 

around 3%, however there are great improvement at district level, with a peak reduction of 11% and 

an average daily PAR 22% lower with respect to the RBC case. 



6. Discussion 

The presented paper aims to exploit model-free DRL controller to coordinate the energy management 

of a cluster of buildings. The analysis is performed with the CityLearn environment, an openAI gym 

environment where a detailed representation of the heat pump and a variable electricity price have 

been implemented. The DRL controller was designed to act on the DHW and cold storages of 4 

buildings to optimise both energy costs and peak demand at cluster level. 

The control problem analysed involved renewable energy sources, variable electricity price and 

building coordination. To compare the DRL performances and underline the effect of a coordinated 

energy management versus a single building optimisation, a manually optimised RBC controller 

baseline was introduced. 

Despite the complex environment, the DRL controller found the optimal policy to exploit 

environment behaviour, consuming energy more efficiently and charging and discharging storages to 

optimise the cluster load profile. Additionally, due to the problem nature, the solution was found with 

a very short training period of 5 episodes. The analysis highlights how the real-world implementation 

could be done with a relatively small amount of data for the training, proving the versatility of the 

proposed approach. However, to study the interaction among states, actions and rewards it is still 

necessary a simulation environment when dealing with a district scale. 

Looking at the problem formulation, forecast information on electricity price and weather helped to 

rapidly find an optimal policy, highlighting how important is the proper design of the state-space. 

Moreover, the design of the reward function plays a key role for the DRL controller behaviour. It is 

therefore necessary to find an optimal trade-off between the advantages of single users and cluster 

that are bounded to the case study. During the work, the adoption of the square minimization was 

found to be effective at both single building and cluster level, proving to be scalable independently 

by the number of buildings.  

To test its adaptability, the controller was deployed considering four different climatic conditions. 

The results highlight that the controller flattened the cluster load profile, almost independently from 



the external conditions, while the economic performances varied with the different cases. Even with 

the same (or slightly higher) electricity costs, the services provided to the grid, such as peak reduction 

and load shaping, justify the adoption of the DRL controller with respect to the RBC.  

Eventually, the strength of the proposed approach is not only the mere improvement of energy 

performances, but the opportunity provided by its adaptive nature to account the cluster environment 

evolution. In fact, a large environment may involve rapid changes, such as consumption pattern 

modification and demand response programs. 

7. Conclusion and future perspectives 

The present paper discussed the design and application of a DRL controller with the aim to coordinate 

multiple buildings in a novel simulation environment. The problem was formulated to provide 

benefits for users and grid, while a specific analysis to assess how this performance can be achieved 

was performed.  

A fundamental aspect is related to the development of proper state space and reward function. The 

effectiveness of the reward function was proven by the deployment phase, in which the DRL agent 

exploited the policy learned during training in different scenarios. In particular, the developed 

controller has shown a cost reduction of around 4% with peak reduction of 12%. Moreover, daily 

peaks were reduced on average by 8%, decreasing daily PAR with values that varies from 6 to 22%. 

The research has shown how the single-agent centralised DRL controller was able to coordinate 

different buildings, increasing grid stability and reducing energy costs. 

Future works will be focused on: 

• The implementation and comparison between the proposed centralised controller and a 

decentralised DRL approach, in which the controllers can cooperate or compete. The 

opportunity provided by a multi-agent configuration are several. Firstly, specific reward 

function can be designed and tailored according to renewable electricity production; secondly 

for each building the relative importance among the objectives as reduce their cost or flatten 



the profile can be decided, with the aim of facilitating the participation to demand response 

programs. Moreover, in multi-agent configuration the control policy could be potentially 

transferred in similar buildings.  

• Enhancing the simulation environment for considering variations of the indoor thermo-

hygrometric conditions in buildings. In fact, in this study, building loads are evaluated with 

EnergyPlus software considering a fixed internal temperature. To provide a more realistic 

implementation, CityLearn will be modified using black-box models to analyse the relation 

among cooling loads provided to the buildings and the internal temperature. This has the 

twofold advantages to exploit building thermal mass and consider thermal comfort for users.  

• Implementing dynamic electricity price tariff and demand response programs to study the 

interaction of buildings with the grid. The use of a dynamic electricity price tariff can further 

increase the benefit provided by a more refined controller with respect to reactive controller. 

Furthermore, online implementation of adaptive controller could provide an efficient 

management strategy not only to the DR event, but also to avoid the rebound effect, thanks to 

the coordinated approach. 

A major effort to build upon this research work will be then focused on fully 

addressing all the mentioned challenges that are behind the next generation of 

“smart districts” in smart cities. 

Nomenclature 

Symbols 

A = Action space 

a = Action 

𝑐𝑒𝑙 = Electricity price 

𝒟 = Replay Buffer 

𝑒 = Energy consumption 



G = Return 

P = Transition Probabilities 

q = Action-value 

r = Reward 

S = State space 

s = State 

v = State-value 

α = Temperature parameter 

γ = Discount factor 

θ = Soft-Q network parameters 

λ = Learning rate 

ϕ = Policy network parameters 

τ = Decay rate 

𝐻 = Shannon Entropy of the policy 

π = Policy 

π* = Optimal Policy 

 

Abbreviations 

COP = Coefficient of Performance 

DC = Design Capacity 

DHW = Domestic Hot Water 

DNN = Deep Neural Network 

DR = Demand Response 

DRL = Deep Reinforcement Learning 

EMS = Energy Management System 

HVAC = Heating, Ventilation and Air Conditioning 



KPI = Key Performance Indicator 

MDP = Markov Decision Process 

MPC = Model Predictive Control 

PAR = Peak-to-average ratio 

PLR = Partial-load ratio 

POMDP = Partially Observable Markov Decision Process 

PV = Photovoltaic 

RBC = Rule Base Control 

RL = Reinforcement Learning 

SAC = Soft Actor-Critic 

SOC = State-of-Charge 
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