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Abstract. In district energy applications, implementation of management strategies is crucial to achieve reductions 

in primary energy consumption and carbon dioxide emissions. The development of optimization tools to upgrade 

the operation of smart energy systems should take into account all the relevant elements of these complex 

infrastructures. In this paper, a global optimization approach, applied to district heating, cooling and electricity 

networks interconnected to each other, is proposed. The suggested approach combines the optimization of the 

production side, useful to understand how it is convenient to produce heat, cold and electricity, with demand-side 

management for district heating customers. This is reached by using a bi-level optimization structure, exploiting 

the genetic algorithm and linear programming. A physical model of the district heating network is included in the 

procedure to accurately reproduce the effects of demand-side management. The tool can be applied to different 

objective functions. In this paper, a multi-objective optimization is carried out with two different objective 

functions: the operation cost and the carbon dioxide emissions. Results show that, by choosing an intermediate 

trade-off among the two goals, it would be possible to have a 12% reduction in the emissions at the expense of a 

25% increase in the operating cost. 

Keywords: Vector optimization; energy hub; district heating; thermal network; production optimization; demand-

side management. 

 

1. INTRODUCTION 

 
Nowadays, district heating and cooling are convenient solutions to satisfy the thermal and cooling demands of buildings 

located in high-population density regions. These technologies can guarantee lower carbon dioxide emissions with respect 

to conventional systems (such as individual boilers and air conditioners), since they mainly exploit energy sources that 

would otherwise be lost [1]. 

Until recently, most of the district heating and cooling systems in the world are supplied with combined heat and power 

plants, which are meant to cover the base load, while heat-only boilers are generally used during the peaks [2,3]. However, 

in the last few years, the connections among district heating and cooling networks and the other energy grids are becoming 

increasingly tight. For this reason, a new concept has been coined to refer to interconnected district heating, cooling and 

electricity grids, and in some cases also to gas networks: the concept of Multi-Energy Systems (MES) [4,5]. The great 

potential of the interconnections lies in the possibility of converting each form of energy into a different energy vector, 

when this is convenient; this is done by using energy converters, such as heat pumps or power-to-cool technologies. The 

convenience is amplified if storage units are installed in the system, since this allows to select the form of energy to be 

stored [6,7].  

The advantages provided by the interconnections of different energy grids, combined with the exploitation of low-grade 

and sustainable energy sources, allow significant primary energy reductions [8,9]. Thus, district heating and cooling will 

remain leading-edge technologies for potential emission reduction in the following years, and the increasing 

interconnection trend will be probably confirmed in the next decades [10]. 

Within the framework of Multi-Energy Systems, the range of possible operations can be quite wide. The most favorable 

operation is very often not easily predictable: this may be linked to the wide variety of production layouts, the great 

interest in exploiting fluctuating renewable sources, the presence of energy conversion technologies and storages and the 

great variation of consumption and energy prices. For these reasons, optimization models for the operation management 



of multi-energy systems are of great interest in the literature. Such models should be able to take into consideration the 

overall energy system, including the influence of each energy system to the other ones, in order to identify the best 

solutions [11]. The best solutions are mainly defined in terms of carbon emissions, production costs, revenues, operation 

and/or investment costs and renewable exploitation [12]. These goals are pursued using different approaches. Wang et al. 

[13] developed a linear programming (LP) algorithm to optimize the planning of a CHP-DH system with renewables 

sources and a thermal energy storage. Mixed integer linear programming (MILP) is largely adopted to solve multi-energy 

production optimization. Bischi et al. [14]  faced the problem of the short-term planning of a combined cooling, heat and 

power (CCHP) energy system by converting the initial MINLP formulation into a MILP using a piecewise linear 

approximation. A similar problem has been addressed in [15] including the rolling horizon algorithm to take into account 

the data uncertainty. In [16], [17] MILP has been adopted for both operation and design respectively for a distributed 

energy system and to supply and industrial area. Finally, non-linear programming (NLP) or Mixed Integer Non-linear 

programming (MINLP) formulations are mainly used in case the problem is highly non-linear. Powell et al. [18], for 

example, introduced an algorithm to solve a complex dynamic optimization problem with energy storages by 

decomposing the original problem into multiple static MINLP problems; other examples of usage of MINLP are [19]–

[21].  

Despite all the previous works deeply addressed the problem of the optimal energy supply to the consumers, they do not 

take into account the active role of the consumers as a mean to increase the overall efficiency of an integrated energy 

system. As stated by Schweiger et al. [22], the consumer represents a key element of any smart energy system. The options 

for an active participation of the users in the development of an efficient and intelligent energy system are multiple. One 

of the most interesting is the implementation of Demand Side Management (DSM) actions [23], [24], which can be used 

to reduce the total energy demand. In particular, short-term demand side actions (i.e. Demand Response) are an effective 

way to reduce the load peaks and to fill the valleys. In district heating applications, Demand Side Management can be 

implemented either by applying changes to the heating systems schedules or by adopting a different control strategy [25]. 

The main purpose is to cut the thermal peaks [26] in order to avoid using low efficiency production units that would 

decrease the overall efficiency of the system. It represents an excellent alternative to the installation of heat storage tanks 

to limit the mass-flow rates circulating in the system in order to control the pumping costs and to avoid compromising 

the possibility of network expansion [27]. Also, the combined adoption of demand response and storages is of great 

interest. Because of these interesting features, the opportunities for demand-side management in district heating 

applications have been investigated by various works, such as [28]–[34]. An extensive survey of the different attempts 

that can be found in literature was presented by [24]. To mention some examples, Basciotti and Schmidt [35] proposed 

an implementation technique of load shifting that allows peak reductions up to 35%. In [36], DSM was applied to a real 

district heating network in a multi-scenario simulation analysis and peak reductions in the range from 5% to 35% were 

obtained depending on the scenario analyzed and on the limitations introduced. Another approach for implementing 

demand-response in district heating was presented by [37], who chose to prioritize the supply of domestic hot water at 

the expense of space heating and achieved a decrease in the peak load of about 15% and corresponding energy savings of 

about 9%. 

In this framework, it is essential to incorporate the increasingly central role of the consumers in the development of 

suitable optimization models. Nevertheless, in the scientific literature, the optimization of multi-energy systems/energy 

hubs are mainly based on supply-side management strategies. Few researchers have investigated the topic of combined 

supply and demand-side optimizations and, in most cases, the flexibility of the users was exploited just from the electric 

network perspective [38], [39]. A first attempt to combine all the aforementioned aspects was done by Reynolds et al. 

[40] and consists in the development of an optimization strategy which optimizes both the generation and the demand. 

The optimization was performed on a multi-vector energy system including natural gas, electricity, and heat and modelled 

the building using EnergyPlus. However, they neglected the influence of the network: the thermal dynamics (such as heat 

losses, thermal lag and return temperatures) are not taken into account by this study, but they are, as stated by the authors 

themselves, worthwhile to include in a real-case analysis. The importance of modelling the temperature dynamics of a 

district heating network is also confirmed by a huge number of papers in literature [41], [42]. 

The aim of this paper is to propose a tool methodology for the estimation of the optimal operations of a multi-energy 

system, both from the production and the demand point of view. The system analyzed involves various technologies to 

produce heat, cold and electricity and various kind of storages (hot, cold and electricity). The energy produced is delivered 

to customers located in a small district energy system by means of district heating, cooling and electricity infrastructures. 

Moreover, the possibility of applying demand side management for the thermal network is included and a physical model 

of the district heating network is used to properly evaluate the effects of load shifting on the thermal dynamics within the 

network. The main novelties of the paper are: 

 

• the simultaneous optimization of demand and production for a multi-vector energy system, including heat, cold 

and electricity (this is obtained by means of a bi-level optimization structure where the upper-level optimization, 

executed by means of a genetic algorithm, is devoted to demand-side management, while the lower-level uses a 

linear programming algorithm to find the best production layout); 



• the consideration of the network behavior by means of a physical model of the district heating network; this 

model is included in the optimization tool in order to properly evaluate the thermal load at production plant 

without neglecting the thermal transients in heat transport and distribution; 

• the development of a multi-objective optimization tool that allows to examine different and conflicting objective 

functions (in this specific case-study, the economic aspect and the environmental impact of the system are taken 

into account). 

The paper is structured as follows:  

• Section 2: the most important aspects and characteristics of the case-study are discussed; 

• Section 3: the methodology used for the optimization is explained; 

• Section 4: the most important results of the optimization are reported and discussed; 

• Section 5: the main conclusions of this work are outlined. 

 

 

2. CASE STUDY 

 
The case study analyzed in this paper involves a complex multi-energy system. The system is made up by several end-

users, with predetermined needs in terms of heating, cooling and electricity demand. The users are connected to a local 

production plant by means of an infrastructure including a district heating network (represented in Figure 1), a cooling 

network and an electricity network. 

Different production units are included in the production plant, which has to satisfy the heating, cooling and electricity 

loads. These are: 

• a combined heat and power plant (CHP), which uses natural gas from the national grid to produce heat and 

electricity; 

• a heat-only boiler (HOB), which uses natural gas from the national grid to produce heat; 

• a photovoltaic plant (PV), which produces electricity depending on the solar radiation available during the day; 

• an electric heat pump (EHP), which absorbs electricity to produce both heat and/or cold; 

• an absorption refrigeration unit (ARU), which absorbs thermal power to produce cold; 

• an electric storage unit; 

• a thermal storage unit; 

• a cold storage unit. 

Moreover, thanks to the connection with the national electric grid, it is possible to buy and sell electricity from the grid 

(in this case proper transmission efficiencies are considered). A schematic of the production plant structure is given in 

Figure 2. The storage units, which are not represented in the scheme, are used to store energy when the production is 

more convenient; then, the energy is released and used to fulfill the loads when producing is less cost-effective. 

Overall, the electricity exchange with the national electric grid and the purchased natural gas are the only resources driving 

the whole production unit: they are the only elements associated to specific operating costs and CO2 emissions. 

In this analysis, the operation of the system is optimized for a typical winter day, with known cooling demand for industrial 

buildings, and heating and electricity demands for industrial and residential buildings. Differently from the cooling and 

electricity loads, which are fixed, the heating demand is supposed to be flexible. Hence, it is possible to apply thermal 

demand side management to vary the heating demand profile of the customers according to the plant needs. 

 
Figure 1 Topology of the district heating network. 



 

 

 
 

Figure 2. Schematic representation of the production units in the plant. Red, light blue and yellow lines respectively represent the 

heat, cold and electricity flows. For the sake of simplicity, the storage units are omitted in this scheme. 

 

 

3. METHODOLOGY 

 
The aim of this paper is to develop a comprehensive optimization tool that combines the optimization of the demand and 

production of a complex multi-vector energy system and is able to take into consideration the complex thermal dynamics 

occurring within a district heating network. Due to the different objectives that can be important in this kind of analyses, 

the optimization should be structured in a multi-objective perspective. To do that, a bi-level optimization structure was 

used. In this section, the methodology developed to perform the multi-objective optimization is outlined: the optimization 

model is described starting from its general definition; the different levels of the algorithm are then described in the 

following subsections. 

The multi-objective optimization model developed in this paper is defined by two objective functions: the total operation 

cost and the carbon footprint of the production system. In mathematical terms, the problem can be formulated as: 

 

 min
𝐱∈𝑋

(𝑓𝑒𝑐𝑜(𝐱), 𝑓𝑒𝑛𝑣(𝐱)) (1) 

 

where the set 𝑋 is the feasible region of the decision vector 𝐱, 𝑓𝑒𝑐𝑜 represents the economical objective function and 𝑓𝑒𝑛𝑣 

is the environmental objective function. Since 𝑓𝑒𝑐𝑜 and 𝑓𝑒𝑛𝑣 can be conflicting, improvements in one of them could 

deteriorate the other one. In this case, the optimal solution of the multi-objective problem is a set of solutions, which is 

represented by the so-called Pareto front. Each solution in the Pareto front, which is called Pareto solution 𝐱𝑃𝑎𝑟𝑒𝑡𝑜, 

represents an optimal solution and satisfies the following condition: there does not exist any other feasible solution 𝐱 ∈ 𝑋 

such that the inequalities 𝑓𝑒𝑐𝑜(𝐱) ≤ 𝑓𝑒𝑐𝑜(𝐱𝑃𝑎𝑟𝑒𝑡𝑜) and 𝑓𝑒𝑛𝑣(𝐱) ≤ 𝑓𝑒𝑛𝑣(𝐱𝑃𝑎𝑟𝑒𝑡𝑜) are simultaneously verified. 

The decision variable vector 𝐱 includes all the optimization variables of the problem, i.e. the fluxes involved in the 

different production units and the variables related to the modification of the customers’ thermal profiles (i.e. demand 

side management). Hence, it can be considered as composed by two different decision variable vectors 𝐩 (for the 

production) and 𝐝 (for the demand). The two objective functions 𝑓𝑒𝑐𝑜 and 𝑓𝑒𝑛𝑣 are directly dependent on the decision 

variable vector 𝐩 ∈ 𝑃, while 𝐝 ∈ 𝐷 establishes a set of inequality constraints on the production side (depending on the 

thermal load evolution to be supplied). Consequently, the feasible region of the decision vector 𝐩 is 𝑃(𝐝) and Eq. (1) can 

be rewritten in the following form: 

 

 min
𝐩∈𝑃(𝐝),   𝐝∈𝐷

(𝑓𝑒𝑐𝑜(𝐩), 𝑓𝑒𝑛𝑣(𝐩)) (2) 

   

Due to the assumption of constant efficiencies of the generation units, the two objective functions 𝑓𝑒𝑐𝑜 and 𝑓𝑒𝑛𝑣 are linear 

with respect to the production decision vector 𝐩. On the other hand, the relationship of 𝑃 with the demand decision vector 



𝐝 is nonlinear. In particular, the values of the demand decision vector 𝐝 determine, by means of a non-linear relationship 

given by a thermo-fluid dynamic model of the district heating network, the evolution of the thermal load at production 

plant Φ𝑡, which is used to establish multiple inequality constraints on the production optimization variables 𝐩. Hence, the 

feasible domain of the production optimization variables can be expressed as 𝑃(Φ𝑡(𝐝)). These dependencies will be 

addressed later on in this section. Therefore, the optimization problem is, on the whole, a nonlinear programming problem 

(NLP). 

In order to exploit the linearities of the problem, it has been decided to decompose it into two different levels: the upper-

level deals with the optimization of the demand, which is solved by means of a genetic algorithm, while the lower-level 

solves the production optimization using a deterministic algorithm suitable for linear programming. As a result, the 

formulation of the problem becomes: 

 

 min
𝐝∈𝐷

   (𝑓𝑒𝑐𝑜(𝐩), 𝑓𝑒𝑛𝑣(𝐩)) 

(3) 
 s.t.      min

    𝐩∈𝑃(Φ𝑡(𝐝)).
  (𝑓𝑒𝑐𝑜(𝐩), 𝑓𝑒𝑛𝑣(𝐩)) 

   

As suggested by Wang et al. [43], the lower-level multi-objective optimization problem has been reformulated as a single-

objective optimization problem, with an aggregated objective function obtained using the weighted sum method. In the 

aggregated objective function, the normalized expressions of 𝑓𝑒𝑐𝑜 and 𝑓𝑒𝑛𝑣 appear (respectively 𝑓′𝑒𝑐𝑜 and 𝑓′𝑒𝑛𝑣). The 

weighting coefficient 𝛼 (which is bounded between 0 and 1) is automatically handled by the upper-level genetic algorithm. 

This decomposition brings to a new formulation of the optimization problem, expressed by Eq. (4), in which 𝛼 is 

systematically manipulated by the upper-level genetic algorithm and no more adjusted by the lower-level optimization. 

 

 min
𝐝∈𝐷

  (𝑓𝑒𝑐𝑜(𝐩), 𝑓𝑒𝑛𝑣(𝐩)) 

(4) 
 s.t.   min

𝐩∈𝑃(Φ𝑡(𝐝)).
  (𝛼𝑓′𝑒𝑐𝑜(𝐩) + (1 − 𝛼) 𝑓′𝑒𝑛𝑣(𝐩)) 

 

Therefore, at each iteration of the multi-objective upper-level genetic algorithm, which is used to find the optimal set of 

demand side variables, a single-objective lower-level deterministic optimization is carried out to optimize the variables 

related to the production plant. Moreover, a simulation of the thermo-fluid dynamic behavior of the district heating 

network is needed at each iteration to evaluate Φ𝑡 in order to determine the search space of the production optimization 

variables. 

The approach developed in this paper can be used also when more objective functions are considered. In this case, the 

problem formulation can be written as follows: 

 

 min
𝐝∈𝐷

  (𝑓1(𝐩), … , 𝑓𝑘(𝐩)) 

 
 s.t.   min

𝐩∈𝑃(Φ𝑡(𝐝)).
  ∑ (𝑤𝑘𝑓′𝑘 𝑘

(𝐩)) 

where 𝑤𝑘 are the weighting factors, handled by the upper-level optimizer and defined such that ∑ 𝑤𝑘𝑘 = 1. 

A synthesis of the bi-level multi-objective optimization approach is reported in the flowchart in Figure 3. The different 

steps are discussed in the next subsections. 

 
 

Figure 3 Flowchart of the bi-level multi-objective optimization algorithm 

𝐝, α 

Φ𝑡(𝐝), α 
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𝐝∈𝐷

   (𝑓𝑒𝑐𝑜(𝐩), 𝑓𝑒𝑛𝑣(𝐩)) 

Thermo-fluid 

dynamic model 

Lower-level optimization: 
Dual-simplex algorithm 

min
𝐩∈𝑃(Φ𝑡(𝐝))

   𝛼𝑓′
𝑒𝑐𝑜

(𝐩) + (1 − 𝛼)𝑓′𝑒𝑛𝑣 (𝐩) 

 



 

3.1 Upper-level optimization: demand-side management 

 

In order to evaluate the total operation cost and the daily carbon emission for the system considered, it is needed to know 

the evolution of the thermal, cold and electricity loads during the day. In this analysis, the cold and electricity loads at 

plant level were supposed to be known in advance and fixed. As concerns the thermal load, it was assumed as flexible. In 

particular, it was hypothesized that the expected thermal request of each user can be subjected to anticipations up to 30 

minutes. This limitation was introduced to avoid undermining the thermal comfort of the users. Moreover, for technical 

reasons, anticipations were allowed to be operated every 5 minutes (e.g. 5 min, 10 min, 15 min etc. up to 30 min). 

The anticipation time of the buildings were used as independent variables for the demand-side management optimization. 

They were included in the decision vector 𝐝, having so many elements as the number of buildings connected to district 

heating (58 in the case-study considered). Each decision variable 𝑑𝑖 is related to the anticipation time of the 𝑖-th building 

Δ𝑡𝑖 according to the following relationship:  

Δ𝑡𝑖 = 5 [𝑚𝑖𝑛] ⋅ 𝑑𝑖 

 

𝑑𝑖 can only assume an integer value and is bounded below by 0 (no anticipation, Δ𝑡𝑖 = 0 𝑚𝑖𝑛) and above by 6 (maximum 

anticipation allowed, Δ𝑡𝑖 = 30 𝑚𝑖𝑛). 

To relate anticipations with the thermal load at plant level, the solution of the whole thermo-fluid dynamic problem in the 

district heating network is required. Then, once all the energy loads at plant level are known, the use of a tool for 

production optimization is recommended to obtain proper input flows for the different technologies in order to minimize 

the objective function considered. Therefore, the problem formulation turns out to be mixed-integer nonlinear. 

The genetic algorithm (GA) was adopted to solve the upper-level optimization of this complex MINLP problem. This 

choice was motivated by the successful results obtained by numerous works using GA for DSM applications, since it 

allows to easily manage MINLP formulations and avoids the risk of getting stuck to local minima [24], [40]. The Global 

Optimization Toolbox of MATLAB was used for this purpose. 

 

3.2 Thermo-fluid dynamic model 

 

A suitable physical model is needed to evaluate the thermal load at plant level once the thermal profiles of the buildings 

are known. Differently from the electricity and cooling loads, the heating load at plant level is not fixed throughout the 

optimization procedure, due to the possibility of performing thermal demand side management. For this reason, the 

behavior of the district heating network was simulated at each iteration of the genetic algorithm. 

In this study, a one-dimensional thermo-fluid dynamic model was adopted. The complex structure of the network was 

described by means of the graph theory [44]: each pipe was treated as a branch starting from a node, which corresponds 

to the inlet section, and ending in another node, which is the outlet section. The topology of the network was taken into 

account within the incidence matrix 𝐀, which has as many rows as the number of nodes, 𝑁𝑁, and as many columns as the 

number of branches, 𝑁𝐵. Each element of the incidence matrix 𝐴𝑖𝑗 is equal to 1 if the 𝑖-th node is the inlet node of the 𝑗-

th branch, −1 if it is the outlet node, and 0 if the 𝑖-th node and the 𝑗-th branch are not related to each other. 

The model, which was applied to both the supply and return lines of the district heating network, is based on the 

conservation equations of mass, momentum and energy, which are reported in Eqs. (5-7) 

 

 

 
𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
= 0 (5) 

 

 𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
= −

𝜕𝑝

𝜕𝑥
− 𝐹𝐹𝑅𝐼𝐶𝑇 + 𝐹1 (6) 

 

 
𝜕(𝜌𝑐𝑝𝑇)

𝜕𝑡
+

𝜕(𝜌𝑐𝑝𝑢 𝑇)

𝜕𝑥
+ 𝜑𝑙𝑜𝑠𝑠 = 0 (7) 

 

 

where 𝐹𝐹𝑅𝐼𝐶𝑇  takes into account the viscous forces, 𝐹1 represents the source term accounting for the effect of local fluid 

dynamic resistance due to valves or junctions and the effects of pressure rise due to pumps, and 𝜑𝑙𝑜𝑠𝑠 accounts for the 

thermal losses. Regarding Eq. (7) it is worth to mention that the conductive term was neglected. 

The model was considered in a pseudo-dynamic form: the hydraulic problem, composed of Eq. (5) and Eq. (6), was 

approximated as steady-state because of the rapidity of the fluid-dynamic perturbations, which reach the whole network 

in a period of time of few seconds, while the energy equation, Eq. (7), was solved dynamically, because temperature 

perturbations travel at the fluid velocity and could take a long time to be propagated within the network. 

The conservation equations were integrated according to the finite volume method [45]. More in detail, the continuity 

and energy equations were integrated over control volumes including each junction node and half of the branches entering 

or exiting that node. As concerns the momentum equation, control volumes including each branch with the two delimiting 

nodes were considered. The integrated form of the conservation equations is the following: 



 

 𝐀 ⋅ 𝐆 + 𝐆𝐞𝐱𝐭 = 𝟎 (8) 

 

 𝐆 = 𝐘 ⋅ 𝐀𝐓 ⋅ 𝐏 + 𝐘 ⋅ 𝛕 (9) 

 

 𝐌 ⋅ �̇� + 𝐊 ⋅ 𝐓 = 𝐠 (10) 

 

where arrays 𝐆 (length: NB), 𝐏 (length: NN), and 𝐓 (length: NN) are the unknowns of the problem, containing respectively 

the mass flow rates in each branch and the pressures and temperatures in each node of the system. The other terms are: 

the abovementioned incidence matrix 𝐀 (size: NN × NB); array 𝐆𝐞𝐱𝐭 (length: NN), which contains the mass flow rates 

injected in or extracted from the system; fluid dynamic conductance matrix 𝐘 (size: NB × NB), accounting for the pressure 

losses; vector 𝛕 (length: NB), which represents the pressure rise due to pumps; the mass matrix 𝐌 (size: NN × NN); the 

stiffness matrix 𝐊 (size: NN × NN); the known terms vector 𝒈 (length: NN). 

The interested reader is referred to Sciacovelli et al. [46] for a detailed description of the algorithm used for the solution 

of this thermo-fluid dynamic problem. In the case of a three-shaped network, mass-flow rates can be easily computed 

from the solution of Eq. (8), since they are independent from the pressure distribution within the network. For this reason, 

Eq. (9) was ignored in this analysis. A diagram including the resolution method adopted and the boundary conditions 

provided to the algorithm is reported in Figure 4. The whole procedure was implemented within the MATLAB® 

environment; in order to solve the linear systems, the function mldivide was used. The simulation time step used for the 

simulation is 5 𝑚𝑖𝑛. The network problem was solved at each iteration of the genetic algorithm due to the different 

thermal request of the users. The solution allowed an accurate estimation of the thermal load at plant level Φ𝑡,𝑝𝑙𝑎𝑛𝑡 , which 

was evaluated as: 

 

 Φ𝑡,𝑝𝑙𝑎𝑛𝑡(𝑡) = 𝐺𝑝𝑙𝑎𝑛𝑡(𝑡)𝑐𝑝(𝑇𝑝,𝑠𝑢𝑝𝑝𝑙𝑦 − 𝑇𝑝,𝑟𝑒𝑡𝑢𝑟𝑛(𝑡)) (11) 

 

where the total mass-flow rate 𝐺𝑝𝑙𝑎𝑛𝑡 and the return temperature at the production plant 𝑇𝑝,𝑟𝑒𝑡𝑢𝑟𝑛 are outputs of the model. 

Validation of the one-dimensional thermo-fluid dynamic model described in this paragraph can be found in previous 

works [34], [47]. 

 
Figure 4. Schematic of the algorithm adopted for the solution of the thermo-fluid dynamic problem.  

 

3.3 Lower-level optimization: production optimization 

 

The last step of the optimization tool presented in this paper consists in optimizing the thermal, cold and power fluxes 

within the production plant. The goal is to effectively distribute the production among the available components so that 

Mass flow rate 

boundary conditions 

𝑮𝒆𝒙𝒕(𝒅) 

at time 𝑡𝑖 

Solution of the continuity equation 

𝑮𝑖 = −𝑨\𝑮𝒆𝒙𝒕
𝑖  

Solution of the energy equation 

𝑻𝑖 = (𝐌𝒊 + 𝐊𝑖)\(𝐟𝑖 + 𝐌𝑖𝐓𝑖−1) 

𝑡𝑖 < 𝑡𝑒𝑛𝑑 
yes 

no 

Temperature 

boundary conditions 

𝑇𝑗 

at time 𝑡𝑖 

𝐆(𝑡𝑖) 

𝐓(𝑡𝑖) 

𝐆(𝑡) ,  𝐓(𝒕) 



the daily operation costs or the carbon emissions are minimized. This is possible only once the thermal, cold, and electric 

loads are known. Consequently, this step is subsequent to the thermo-fluid dynamic simulation of the district heating 

network, needed to properly evaluate the thermal load at plant level. 

The objective function considered in this lower-level optimization was an aggregate of the economic objective function, 

expressed by Eq. (12), and the environmental objective function, expressed by Eq. (13). 

 

𝑓𝑒𝑐𝑜 =  ∑(𝑐𝑔(Φ𝑔,𝐶𝐻𝑃
𝑖 + Φ𝑔,𝐻𝑂𝐵

𝑖 ) + 𝑐𝑒,𝑖𝑛
𝑖 Φ𝑒,𝑖𝑛

𝑖 − 𝑐𝑒,𝑜𝑢𝑡
𝑖 Φ𝑒,𝑜𝑢𝑡

𝑖 ) Δ𝑡𝑠

𝑁𝑇𝑆

𝑖=1

 (12) 

 

𝑓𝑒𝑛𝑣 =  ∑(𝑒𝑔(Φ𝑔,𝐶𝐻𝑃
𝑖 + Φ𝑔,𝐻𝑂𝐵

𝑖 ) + 𝑒𝑒(Φ𝑒,𝑖𝑛
𝑖 − Φ𝑒,𝑜𝑢𝑡

𝑖 ))

𝑁𝑇𝑆

𝑖=1

 Δ𝑡𝑠 (13) 

 

As suggested by the expressions, the economic objective function and the environmental objective function are 

represented by the sum of, respectively, the operating costs and the emissions in each time interval 𝑖 of the day, which is 

divided into a number of time steps 𝑁𝑇𝑆 equal to 96, each one equal to Δ𝑡𝑠 = 15 𝑚𝑖𝑛.  

The economic objective function is represented by the daily operating cost. The expenses for the operation of the plant 

are due to the amount of natural gas consumed by the cogeneration and the boiler units and to the electricity purchased 

from the grid, while revenues are available if electricity is sold. The specific cost of the natural gas 𝑐𝑔 was supposed to 

be constant. In contrast, the specific costs of the electricity purchased (𝑐𝑒,𝑖𝑛
𝑖 ) or sold (𝑐𝑒,𝑜𝑢𝑡

𝑖 ) to the grid vary in time. 

The same applies for the environmental objective function. CO2 emissions are due to the natural gas burned by the 

cogeneration and the boiler units and to the electricity purchased from the grid. Coherently, the electricity sold to the grid 

was considered as a revenue. In this case, the specific emission coefficients (𝑒𝑔 for natural gas and 𝑒𝑒 for electricity) were 

all assumed constant during the day. With regard to the emission coefficient for the external electricity production 𝑒𝑒, the 

value to disposition from ISPRA [48] for Italy was used. 

As previously explained, the two objective functions were combined by means of the following relationship: 

 

 𝑂𝐹 = 𝛼𝑓′𝑒𝑐𝑜 + (1 − 𝛼) 𝑓′𝑒𝑛𝑣 

 

(14) 

where 𝑂𝐹 represents the aggregated objective function and 𝛼 is the weighting coefficient, bounded between 0 and 1. The 

economic and environmental objective functions have been normalized according to the following relationships: 

𝑓𝑒𝑐𝑜
′ =

𝑓𝑒𝑐𝑜 − min 𝑓𝑒𝑐𝑜

max 𝑓𝑒𝑐𝑜 − min 𝑓𝑒𝑐𝑜

 

𝑓𝑒𝑛𝑣
′ =

𝑓𝑒𝑛𝑣 − min 𝑓𝑒𝑛𝑣

max 𝑓𝑒𝑛𝑣 − min 𝑓𝑒𝑛𝑣

 

 

The two objective functions (and, as a consequence, the aggregated objective function) are linearly dependent on: 

1. the natural gas required for the operation of the cogeneration unit Φ𝑔,𝐶𝐻𝑃
𝑖 ; 

2. the natural gas required for the operation of the heat-only boiler Φ𝑔,𝐻𝑂𝐵
𝑖 ; 

3. the electric power purchased from the grid Φ𝑒,𝑖𝑛
𝑖 ; 

4. the electric power sold to the grid Φ𝑒,𝑜𝑢𝑡
𝑖 ,  

each one considered as an average value during the 𝑖-th time step (with 𝑖 = 1: 𝑁𝑇𝑆). These are the independent variables 

of the problem, which were obtained as an output of the lower-level optimization problem, along with other decision 

variables: 

5. the electric power needed by the electric heat pump to produce heat Φ𝑒,𝐸𝐻𝑃𝑇
𝑖 ; 

6. the electric power needed by the electric heat pump to produce cold Φ𝑒,𝐸𝐻𝑃𝐶
𝑖 ; 

7. the heat required by the absorption heat pump Φ𝑡,𝐴𝑅𝑈
𝑖 ; 

8. the heat absorbed or released by the thermal storage Φ𝑡,𝑠𝑡
𝑖 ; 

9. the cooling power absorbed or released by the cold storage Φ𝑐,𝑠𝑡
𝑖 ; 

10. the electricity absorbed or released by the electric storage Φ𝑒,𝑠𝑡
𝑖 . 

Because of the storage tanks installed in the system, it was not possible to solve the production optimization independently 

at each time step. Hence, the operation optimization was solved by considering as decision variables the 10 above-

mentioned flows for each time step 𝑖, with 𝑖 = 1: 𝑁𝑇𝑆. Since 𝑁𝑇𝑆 is equal to 96, the total number of decision variables in 

a day for the production optimization part, included in the array 𝐩, is 960: 

 

𝐩10NTS
×1  = [Φ𝑔,𝐶𝐻𝑃

1    Φ𝑔,𝐻𝑂𝐵
1    Φ𝑒,𝑖𝑛

1    Φ𝑒,𝑜𝑢𝑡
1    Φ𝑒,𝐸𝐻𝑃𝑇

1    Φ𝑒,𝐸𝐻𝑃𝐶
1    Φ𝑡,𝐴𝑅𝑈

1    Φ𝑡,𝑠𝑡
1    Φ𝑐,𝑠𝑡

1    Φ𝑒,𝑠𝑡
1  

 

   Φ𝑔,𝐶𝐻𝑃
2    Φ𝑔,𝐻𝑂𝐵

2    Φ𝑒,𝑖𝑛
2    Φ𝑒,𝑜𝑢𝑡

2    Φ𝑒,𝐸𝐻𝑃𝑇
2    Φ𝑒,𝐸𝐻𝑃𝐶

2    Φ𝑡,𝐴𝑅𝑈
2    Φ𝑡,𝑠𝑡

2    Φ𝑐,𝑠𝑡
2    Φ𝑒,𝑠𝑡

2  ⋯ 

(15) 



 

⋯ Φ𝑔,𝐶𝐻𝑃

𝑁𝑇𝑆    Φ𝑔,𝐻𝑂𝐵

𝑁𝑇𝑆    Φ
𝑒,𝑖𝑛

𝑁𝑇𝑆    Φ𝑒,𝑜𝑢𝑡

𝑁𝑇𝑆    Φ𝑒,𝐸𝐻𝑃𝑇

𝑁𝑇𝑆      Φ𝑒,𝐸𝐻𝑃𝐶

𝑁𝑇𝑆      Φ𝑡,𝐴𝑅𝑈

𝑁𝑇𝑆    Φ𝑡,𝑠𝑡

𝑁𝑇𝑆      Φ𝑐,𝑠𝑡

𝑁𝑇𝑆      Φ𝑒,𝑠𝑡

𝑁𝑇𝑆
 
]T  

 

All the variables are continuous. Their lower and upper bounds (contained in the vectors 𝐥𝐛 and 𝐮𝒃) are reported in Table 

1. Except for the storage flows, which assume negative values when the charging process occurs, all the other variables 

are bounded from below by zero. The upper bounds, instead, correspond to the maximum power that each component can 

provide, depending on its size. The variables Φ𝑒,𝑖𝑛
𝑖  and Φ𝑒,𝑜𝑢𝑡

𝑖 , representing the electricity purchased and sold to the grid, 

are not bounded from above: they can assume any positive value. 

 

 

 

 

 

 

 

 

 

 
Table 1. Upper and lower bounds for the design variables of the lower-level production optimization. 

Design variable Lower bound Upper bound 

𝚽𝒈,𝑪𝑯𝑷
𝒊  0 𝑘𝑊 4000 𝑘𝑊 

𝚽𝒈,𝑯𝑶𝑩
𝒊  0 𝑘𝑊 4000 𝑘𝑊 

𝚽𝒆,𝒊𝒏
𝒊  0 𝑘𝑊 − 

𝚽𝒆,𝒐𝒖𝒕
𝒊  0 𝑘𝑊 − 

𝚽𝒆,𝑬𝑯𝑷𝑻

𝒊  0 𝑘𝑊 500 𝑘𝑊 

𝚽𝒆,𝑬𝑯𝑷𝑪

𝒊  0 𝑘𝑊 200 𝑘𝑊 

𝚽𝒕,𝑨𝑹𝑼
𝒊  0 𝑘𝑊 600 𝑘𝑊 

𝚽𝒕,𝒔𝒕
𝒊  −600 𝑘𝑊 600 𝑘𝑊 

𝚽𝒄,𝒔𝒕
𝒊  −400 𝑘𝑊 400 𝑘𝑊 

𝚽𝒆,𝒔𝒕
𝒊  −1000 𝑘𝑊 1000 𝑘𝑊 

 

 

 

Moreover, the design variables need to satisfy 9 inequality constraints for each time step. The first three inequality 

constraints are related to the thermal, cooling and electricity balance. At each time step 𝑖 = 1: 𝑁𝑇𝑆 and for each energy 

vector 𝑗 = 1: 3 (heat, cool and electricity), the following condition must be satisfied: 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗
𝑖 ≥ 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑗

𝑖. 

This means that production must be greater than consumption at any time and for each energy vector. Note that the 

inequality arises from the possibility to dissipate heat, cold and electricity. 

In the described system, the thermal production is carried out by means of the heat-only boiler, the cogeneration unit and 

the electric heat pump. At each time step 𝑖, a thermal power equal to Φ𝑡,𝐻𝑂𝐵
𝑖 , Φ𝑡,𝐶𝐻𝑃

𝑖  and Φ𝑡,𝐸𝐻𝑃𝑇
𝑖  is respectively delivered 

by each one of these units. Instead, the thermal consumption is due to the absorption refrigeration unit, whose required 

heat Φ𝑡,𝐴𝑅𝑈
𝑖  is a design variable, and to the users’ thermal load Φ𝑡

𝑖 , which is equal to Φ𝑡
𝑖 = Φ𝑡,𝑝𝑙𝑎𝑛𝑡(𝑖) and is obtained 

using the thermo-fluid dynamic model of the district heating network. The thermal load is constant at each lower-level 

optimization step, since it just depends on the demand-side management part and on the decision vector 𝐝, which was 

addressed by the upper-level optimization. Finally, the thermal storage can absorb or produce thermal power: in the 

charging phase Φ𝑡,𝑠𝑡
𝑖 < 0, while in the discharging phase Φ𝑡,𝑠𝑡

𝑖 > 0. If Φ𝑡,𝑠𝑡
𝑖 = 0 the thermal storage is not used. Hence, 

the thermal balance for each one of the time steps of the simulation reads as follows: 

 

 Φ𝑡,𝐻𝑂𝐵
𝑖 + Φ𝑡,𝐶𝐻𝑃

𝑖 + Φ𝑡,𝐸𝐻𝑃𝑇
𝑖 + Φ𝑡,𝑠𝑡

𝑖 ≥ Φ𝑡,𝐴𝑅𝑈
𝑖 + Φ𝑡

𝑖  (16) 

 

Regarding the cooling balance, the units devoted to the production are the electric heat pump and the absorption 

refrigeration unit. The cooling power delivered by these units is labelled as Φ𝑐,𝐸𝐻𝑃𝐶
𝑖  and Φ𝑐,𝐴𝑅𝑈

𝑖 . The cooling consumption 

is only due to the cooling load attributed to the users Φ𝑐
𝑖 . As for the thermal storage, the cold storage can produce or 

consume cooling power Φ𝑐.𝑠𝑡
𝑖  depending on its sign. In view of these considerations, the cooling balance can be written 

in the following form: 

 

 Φ𝑐,𝐸𝐻𝑃𝐶
𝑖 + Φ𝑐,𝐴𝑅𝑈

𝑖 + Φ𝑐,𝑠𝑡
𝑖 ≥ Φ𝑐

𝑖  (17) 



 

Finally, electricity is produced by the cogeneration unit and by the photovoltaic system. Moreover, it can be purchased 

from the external grid. These units respectively supply at each time step a power equal to Φ𝑒,𝐶𝐻𝑃
𝑖 , Φ𝑒,𝑃𝑉

𝑖  and Φ𝑒,𝑖𝑛′
𝑖 . As 

far as Φ𝑃𝑉
𝑖  is concerned, this quantity is supposed to be known in advance, depending on the solar radiation forecast 

available. Regarding the electricity consumption, electric power is absorbed by the electric heat pump for heat and cold 

production (Φ𝑒,𝐸𝐻𝑃𝑇
𝑖  and Φ𝑒,𝐸𝐻𝑃𝐶

𝑖 ) and by the electricity required by the users Φ𝑒
𝑖 . Also, some electric power Φ𝑒,𝑜𝑢𝑡′

𝑖  can 

be sold to the external grid. The electric power absorbed or released by the electric storage is Φ𝑒,𝑠𝑡
𝑖 . Thus, the electricity 

balance at each time step is as follows: 

 

 Φ𝑒,𝐶𝐻𝑃
𝑖 + Φ𝑒,𝑃𝑉

𝑖 + Φ𝑒,𝑖𝑛′
𝑖 + Φ𝑒,𝑠𝑡

𝑖 ≥ Φ𝑒,𝐸𝐻𝑃𝑇
𝑖 + Φ𝑒,𝐸𝐻𝑃𝐶

𝑖 + Φ𝑒
𝑖 + Φ𝑒,𝑜𝑢𝑡′

𝑖  (18) 

 

 

In order to relate the thermal, cold and electricity balances to the independent variables of the optimization problem, the 

output power of each production unit needs to be expressed as a function of the input power. Because of the low capacity 

of the technologies considered in this work, the efficiencies and coefficients of performance (COP) can be considered as 

constant with a good level of approximation. The following relationships were used: 

 

 Φ𝑡,𝐻𝑂𝐵
𝑖 = 𝜂𝐻𝑂𝐵Φ𝑔,𝐻𝑂𝐵

𝑖  (19) 

 Φ𝑡,𝐶𝐻𝑃
𝑖 = 𝜂𝐶𝐻𝑃𝑇

Φ𝑔,𝐶𝐻𝑃
𝑖  (20) 

 Φ𝑒,𝐶𝐻𝑃
𝑖 = 𝜂𝐶𝐻𝑃𝐸

Φ𝑔,𝐶𝐻𝑃
𝑖  (21) 

 Φ𝑡,𝐸𝐻𝑃𝑇
𝑖 = 𝐶𝑂𝑃𝐸𝐻𝑃𝑇

Φ𝑒,𝐸𝐻𝑃𝑇
𝑖  (22) 

 Φ𝑐,𝐸𝐻𝑃𝐶
𝑖 = 𝐶𝑂𝑃𝐸𝐻𝑃𝐶

Φ𝑒,𝐸𝐻𝑃𝐶
𝑖  (23) 

 Φ𝑐,𝐴𝑅𝑈
𝑖 = 𝜂𝐴𝑅𝑈Φ𝑡,𝐴𝑅𝑈

𝑖  (24) 

 Φ𝑒,𝑖𝑛′
𝑖 = 𝜂𝑡𝑟Φ𝑒,𝑖𝑛

𝑖  (25) 

 Φ𝑒,𝑜𝑢𝑡
𝑖 = 𝜂𝑡𝑟Φ𝑒,𝑜𝑢𝑡′

𝑖  (26) 

 

 

By substituting Eqs. (19-26), the balances become: 

 

 𝜂𝐻𝑂𝐵Φ𝑔,𝐻𝑂𝐵
𝑖 + 𝜂𝐶𝐻𝑃𝑇

Φ𝑔,𝐶𝐻𝑃
𝑖 + 𝐶𝑂𝑃𝐸𝐻𝑃𝑇

Φ𝑒,𝐸𝐻𝑃𝑇
𝑖 + Φ𝑡,𝑠𝑡

𝑖 ≥ Φ𝑡,𝐴𝑅𝑈
𝑖 + Φ𝑡

𝑖  (27) 

 𝐶𝑂𝑃𝐸𝐻𝑃𝐶
Φ𝑒,𝐸𝐻𝑃𝐶

𝑖 + 𝜂𝐴𝑅𝑈Φ𝑡,𝐴𝑅𝑈
𝑖 + Φ𝑐,𝑠𝑡

𝑖 ≥ Φ𝑐
𝑖  (28) 

 𝜂𝐶𝐻𝑃𝐸
Φ𝑔,𝐶𝐻𝑃

𝑖 + Φ𝑒,𝑃𝑉
𝑖 + 𝜂𝑡𝑟Φ𝑒,𝑖𝑛

𝑖 +Φ𝑒,𝑠𝑡
𝑖 ≥ Φ𝑒,𝐸𝐻𝑃𝑇

𝑖 + Φ𝑒,𝐸𝐻𝑃𝐶
𝑖 + Φ𝑒

𝑖 +
Φ𝑒,𝑜𝑢𝑡

𝑖

𝜂𝑡𝑟

 (29) 

 

Besides the energy balance, six more inequality constraints for each time step 𝑖 are added to take into account the operation 

of the storage systems within the production plant. For each of the three storages, two constraints are required at each 

time step. The former is linked with the maximum energy that each storage is able to deliver, which depends on the energy 

stored in the previous time steps: 

 

∫ Φ𝑡,𝑠𝑡(𝑡)𝑑𝑡
𝑡𝑖

0

≤ 0 (30) 

∫ Φ𝑐,𝑠𝑡(𝑡)𝑑𝑡
𝑡𝑖

0

≤ 0 (31) 

∫ Φ𝑒,𝑠𝑡(𝑡)𝑑𝑡
𝑡𝑖

0

≤ 0 (32) 

 

Instead, the latter is related with the maximum energy that each unit can store, depending on its capacity. The capacities 

of the thermal, cold and electricity storages, labelled as 𝐶𝑡, 𝐶𝑐 and 𝐶𝑒, are respectively 1600 kWht, 1200 kWhc and 5000 

kWhe. All the storages were considered as ideal: the power losses were not taken into account. 

 

| ∫ Φ𝑡,𝑠𝑡(𝑡)𝑑𝑡
𝑡𝑖

0

| ≤ 𝐶𝑡   (33) 

| ∫ Φ𝑐,𝑠𝑡(𝑡)𝑑𝑡
𝑡𝑖

0

| ≤ 𝐶𝑐 (34) 



| ∫ Φ𝑒,𝑠𝑡(𝑡)𝑑𝑡
𝑡𝑖

0

| ≤ 𝐶𝑒 (35) 

 

The nine expressions reported in Eqs. (27-35) considered for each time step 𝑖 = 1: 𝑁𝑇𝑆
 can be summarized using the 

following inequality constraint: 

 

 𝐀𝑰𝑪 𝐩 ≤ 𝐛𝑰𝑪 (36) 

 

where 𝐩 is the decision variable of the lower level optimization, devoted to production optimization, 𝐀𝑰𝑪 is a known 

matrix of coefficients (of dimensions 9𝑁𝑇𝑆
× 10𝑁𝑇𝑆

, since 9 is the number of inequality constraints for each time step 

and 10 the number of decision variables for each time step) and 𝐛𝑰𝑪 is a vector of known coefficients (9𝑁𝑇𝑆
× 1). 

To sum up, the lower-level optimization consists in a linear programming problem, which can be written in the form: 

 

 

 

 Minimize 𝐜𝐓𝐩  

 subject to 𝐀𝑰𝑪 𝐩 ≤ 𝐛𝑰𝑪  

 and  𝐥𝐛 ≤ 𝐩 ≤ 𝐮𝐛  

 

where the vector 𝐜 takes into account the combination of specific costs and emissions associated with each variable. 

This linear programming optimization problem was solved (at each iteration of the upper-level genetic algorithm) using 

the dual simplex method, through the MATLAB Optimization Toolbox function linprog. Finally, at each iteration, the 

solution 𝐩 was used to evaluate, 𝑓𝑒𝑐𝑜 and 𝑓𝑒𝑛𝑣. 

 

 

4. RESULTS AND DISCUSSION 

 
The proposed approach was applied to the case-study described in Section 2. The results of the multi-objective 

optimization are reported and discussed in this section. 

The non-optimized configuration is presented beforehand. In Figure 5, the non-optimized thermal load at production plant 

(obtained without demand side management actions) is reported, together with the cooling load and the electricity load, 

which remain the same throughout the optimization. This configuration involves thermal, cold and power peaks of 

respectively 7.6 MW, 0.4 MW and 3.5 MW. 

 

 
Figure 5. Heat load (non-optimized case), cooling load and electricity load of the district energy system at plant level during a 

typical winter day. 

4.1 Economic optimization 

 

A pure economic optimization was carried out as first step. The optimized profile of the thermal load at plant level is 

represented and compared to the non-optimized case in Figure 6. The economic optimization allows a significant 

modification of the heat load at production plant, by applying load shifting to 28 users out of 58. The thermal load is 

reduced up to 5.3 MW, which is reduced of 30.2% with respect to the non-optimized configuration. 

The optimized configuration of the production plant was computed by means of the linear programming optimizer, 

considering the total daily cost – reported in Eq. (12) – as objective function. The resulting optimal solution is illustrated 

in Figure 7, where production and consumption of heat, cold and electricity are represented separately. From the analysis 

of the figure, it is possible to notice that the heat demand, including the thermal needs of the absorption refrigerator, is 

mainly satisfied using the combined heat and power plant and the heat-only boiler. The electric heat pump is used just 



once, when the electric demand is low. The thermal storage is used, when possible, to shift the production in more 

convenient instants. Concerning cooling, it is almost exclusively supplied by the absorption refrigeration unit, except for 

a time step in which the electric heat pump is active. Even in this case, the storage is used to shift the cooling production 

in order to avoid tightening up the heat consumption when the thermal load is high. Finally, the electricity demand, 

including the consumptions for the electric heat pump (which are actually negligible), is covered with the photovoltaic 

system, when available, and then with the combined heat and power unit and the electric power purchased from the 

external grid. A massive usage of the electric storage helps managing with the variable cost of grid’s electricity. 

This demand side management setup, combined with the afore-mentioned layout of the production plant, guarantees a 

total daily cost of 4742 €. With this configuration, the corresponding carbon dioxide emissions would be of 24971 

kgCO2/day. A comparison can be performed with the results of an economic optimization without demand-side 

management (production optimization only). In this case, the total daily cost would have been equal to 4840 €, whereas 

in absence of production optimization the generation units are switched on according to a priority order (and without 

storage units) leading to a daily operation cost of 5790 €. This means that the production optimization allows a 16.4% 

reduction in the cost with respect to the non-optimized case, while the combination with demand-side increases the 

savings of a further 1.7%. 

 

 
Figure 6. Evolution of the heat load at production plant during the day: comparison of the non-optimized case with the configuration 

obtained with the economic optimization.  

 

 
Figure 7. Optimized operation of the production plant resulting from the economic optimization. 

 

4.2 Environmental optimization 

 

As a second step of the analysis, the environmental optimization was performed. The optimization results suggest 

applying modifications on the demand-side to 33 users out to 58. These modifications bring to a different thermal load at 

production plant, as illustrated in Figure 8. This profile is slightly different from the one obtained with the economic 



optimization. In this case, the thermal peak amounts to 5.0 MW, which corresponds to a reduction of about 34.5% with 

respect to the base case. 

The resulting configuration of the production plant, which was obtained using the environmental objective function 

described by Eq. (13), is reported in Figure 9. Differently from the previous case, the heat demand is mainly supplied 

with the electric heat-pump, while the combined heat and power unit is used only when the request exceeds the heat pump 

capacity. The heat-only boiler is never operated. The heat pump is used also for cooling purposes, instead of the absorption 

refrigeration unit, which was adopted in the case of the economic optimization. The heat and cold storages are used to 

partially shift the demand to more convenient time for the electricity production. Concerning the electricity, the demand, 

including the electric load and the consumptions of the electric heat pumps, is satisfied by the photovoltaic system (when 

the solar radiation is available), the combined heat and power unit (when it is turned on because of the thermal demand) 

and the electricity purchased from the grid. The electric storage is used to avoid purchasing from the grid when the price 

is high. 

The main differences with respect to the economic optimization are the greater usage of electricity purchased from the 

external grid, even for heating and cooling purposes. The electric heat pump turns out to be, from an environmental point 

of view, a better option than the combined heat and power unit, the boiler, and the absorption refrigeration unit. This is 

due to the greater efficiency of the external electricity production system with respect to the system considered in this 

case study. 

The value of the environmental objective function obtained with these settings is of about 19826 kgCO2/day. Instead, the 

economic counterpart is 9638 €/day. 

As in the previous case, the results can be compared to the ones provided by production optimization only (without 

demand-side management) and by the implementation of a priority order for the selection of the production units. These 

two strategies respectively lead to about 20130 kgCO2/day and 20300 kgCO2/day. Thus, considering the emissions, the 

percentage reduction guaranteed by the production optimization and by the presence of the storages is only 0.8%, while 

the combination of demand and production optimization allows a 2.3% reduction in the carbon dioxide emissions (i.e. 

1.5% more with respect to production optimization only). 

 

 

 
Figure 8. Evolution of the heat load at production plant during the day: comparison of the non-optimized case with the configuration 

obtained with the economic optimization and with the environmental optimization. 



 
Figure 9. Optimized operation of the production plant resulting from the environmental optimization. 

 

4.3 Multi-objective optimization 

 

Finally, due to the conflicting nature of the two solutions obtained with the economic optimization and the environmental 

optimization, a multi-objective optimization was carried out – following the methodology developed in Section 2 – in 

order to identify the whole set of Pareto solutions of the problem. 

The Pareto curve is reported in Figure 10. The results of the two single-variable optimizations are highlighted in blue and 

green, while the grey circles represent the intermediate optimal solutions: as the weighting factor 𝛼 increases, the multi-

objective optimization assigns a larger weight to the economic objective function with respect to the environmental 

objective function; as a consequence, 𝑓𝑒𝑐𝑜 decreases and 𝑓𝑒𝑛𝑣 increases. Regarding the peak reduction, they vary in a range 

between 29.4% and 40.2%, with respect to the case without demand-side management. Since various papers have 

analyzed the potential of demand-side management in thermal networks, these results can be compared to other works in 

the literature. The average value in the present work is 34.4%. This is in line with the results obtained by other DSM 

studies that reported peak reductions up to 35% depending on the external conditions [35], [36].  

The discontinuity in some areas of the Pareto front can be associated to the upper limits of certain production units (related 

to their size). This can be noticed observing the values assumed by the production variables, reported in Figure 11. In this 

figure, the energy delivered by each production unit of the plant (calculated as the time integral of the 

thermal/cold/electricity power of each unit over the whole day) is represented along the whole Pareto front. The following 

conclusions can be drawn: 

• On the thermal side, a greater usage of the electric heat pump increases the production cost, but it helps cutting 

down the carbon emissions. When the optimization privileges the environmental impact of the production 

system, at a certain point the electric heat pump reaches its maximum power: in this case, the combined heat and 

power unit is used to satisfy the reminder of the thermal demand. On the other hand, the combined heat and 

power unit is preferred in case of greater values of 𝛼 due to its low costs of production. When this unit reaches 

its maximum power, the remaining heat demand is supplied either by the heat-only boiler (if more weight is 

given to the total cost) or by the electric heat pump (if more weight is given to the emissions value). 

• On the cooling side, the production is performed either with the electric heat pump (environmental optimization) 

or with the absorption refrigeration unit (economic optimization). In a certain interval of the Pareto curve, both 

the cooling production units are used, depending on their convenience in different instants of time. 

• Finally, concerning the electricity production, the photovoltaic energy is always totally used. The choice between 

using the combined heat and power unit or purchasing electricity of the grid depends on the weight assigned to 

each objective function, following a similar reasoning as in the thermal case. 

For a better understanding of the graph, it is worth remembering that all the production units are related to each other. 

Hence, the behavior of each of them has an influence on the whole system.  

 



 
Figure 10. Result of the multi-objective optimization: the Pareto front. 

 

 
Figure 11. Variation of the energy production along the Pareto curve. 

 
A trade-off between economic and environmental benefits is selected among the Pareto front solutions and this is 

described in the current section. The optimal solution analyzed brings to a total cost of 5560 €/day and to carbon dioxide 

emissions equal to 22226 kgCO2/day. The weighting factor is approximately equal to 0.48. The thermal load at production 

plant for the trade-off case is reported in Figure 12. In this configuration the thermal request of 50 users out of 58 are 

shifted. This allows a reduction of the thermal peak up to 4.8 MW (-37% with respect to the non-optimized case). 

The corresponding layout of the production plant is illustrated in Figure 13. In this case, the thermal production is mainly 

performed with the cogeneration unit; when this is not sufficient to cover the whole thermal demand, the electric heat 

pump is used. Cold is produced by means of the electric heat pump. Finally, regarding electricity, it is produced by the 

photovoltaic system and the cogeneration unit; when these units reach their limits, electricity is purchased from the grid. 

The aforementioned solution is be identified in the curve represented in Figure 14, by an orange point.  

The aim of Figure 13 is to report the variation introduced by each Pareto solution with respect to the solution provided 

by a pure economic optimization. As it may be noticed, a pure environmental optimization introduces savings in the 

carbon dioxide emissions up to -20.6%; however, the total cost experiences a dramatic rise (+103.3%). A more realistic 

solution would be to establish a predefined trade-off value, between the two objective functions: the example provided in 

the figure consists in fixing the maximum increase in the cost to +25% with respect to the result of the economic 

optimization; in this way, reduction in the carbon footprint up to -12.1% would be possible. 



 
Figure 12. Evolution of the heat load at production plant during the day: comparison of the non-optimized case with the 

configuration obtained with an intermediate Pareto solution (𝛼 ≈ 0.48). 

 

 
Figure 13. Optimized operation of the production plant for an intermediate Pareto solution (𝛼 ≈ 0.48). 

 

 
Figure 14. Result of the multi-objective optimization: variation of the Pareto solutions with respect to the results provided by the 

pure economic optimization. 

 

5. CONCLUSIONS 

 



In this paper, a global multi-objective optimization approach for the economic and environmental optimization of a 

complex multi-energy system was presented. The proposed tool allows the simultaneously optimization of production 

and demand, since it considers at the same time a) the possibility to perform demand-side management to shave the 

thermal peak, b) a network dynamic simulator (to correctly evaluate the thermal load at production plant level) and c) an 

optimizer for the smart management of the production technologies, including the storage units. The approach proposed 

allows quantifying the best operations for the production technologies and storages, along with the best set of time-shifting 

for the building thermal demand (i.e. best demand side management).  

The proposed tool is based on a bi-level optimization structure: the upper-level deals with demand-side management and 

uses the genetic algorithm to find the best combination of anticipations to be applied to the thermal load of each customers; 

it also includes a physical model of the district heating network in order to properly reproduce the dynamic effects related 

with the anticipations; the lower-level optimization is devoted to the production optimization, which is obtained by means 

of a linear programming algorithm.  

The economic optimization brought to a total cost of about 4700 €/day, while the corresponding carbon emissions would 

be approximately 25000 kg/day. In contrast, if the system is optimized with an environmental objective function, the 

production technologies are switched on according to different logics, allowing a reduction in the emissions up to 19800 

kg/day; however, in this case, the daily cost increases reaching 9600 €. Due to the competing nature of the two objective 

functions, a multi-objective optimization was proposed to find the whole set of optimal solutions, represented in the Pareto 

front. This allows finding different optimal configurations of the system, depending on the trade-off established between 

the increase in the total cost and the carbon emissions reduction. Reduction in the carbon footprint of the system of about 

-12% would be possible if a 25% increase in the total expense is considered as acceptable (with respect to the result of a 

single-variable economic optimization). 
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