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Abstract

In this paper we present a new multiphase computational model for polydisperse turbulent gas-
liquid flows. In this model the gas phase is transported by a single convection equation and the effect
of turbulent dispersion is addressed by including a diffusion term. In order to close the system of
equations, the gas phase velocity is calculated by employing the slip velocity concept or by solving
an ordinary differential equation. This procedure shares similarity with the Euler-Lagrange (E-L)
method, in which the gas velocity is updated by bubble Lagrangian tracking, and with the Euler-
Euler (E-E) method, and for this reason it is called the Quasi-Eulerian-Eulerian (Q-E-E) method.
In order to account for polydispersity one single transport equation is added to describe the effects
of bubble breakage and coalescence on the bubble size distribution. The novel Q-E-E method was
implemented in the open-source code OpenFOAM-7 and was used to simulate turbulent gas-liquid
flows with three different geometries operating under different conditions. The predictions for the
dynamical vortex structures, local phase fraction, global gas holdup, bubble size distribution and
vertical/horizontal liquid velocities were verified against the solution provided by the E-L solver, or
against published experimental data. Good agreement was found and extremely small computational
costs were detected.

Keywords: Computational fluid dynamics, Bubbly flow, Eulerian-Eulerian model, OpenFOAM,
Bubble column, Bubble size distribution

1. Introduction

Bubbly flows are omnipresent in engineering and are found in many applications, ranging from
the chemical to the nuclear industry. For bubble-driven flows, the bubble movement is the main
source of momentum for the flow field; these flows are often characterized by low liquid velocities and
relatively high superficial gas velocities. The bubble-driven flow in ducts and columns with a small
aspect ratio is usually complicated. Recirculating flow is quite common even at relatively low gas
flow rates [30], which can speed up mass and heat transfer. If the gas superficial velocity is high, it
leads to intense interaction between bubbles and bubble breakage and coalescence can be dominating.
In vertical bubbly flows with a high aspect ratio, the small bubbles migrate to the wall resulting in a
steeper velocity gradient in the near-wall region. On the opposite, the large bubbles migrate towards
the center [71, 15]. The velocity profile resembles that of single phase flows. In all the cases, there
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is a strong coupling between the gas bubbles spatial distribution, the liquid velocity, the momentum
exchange between gas and liquid and the resulting flow structure is quite complex.

Besides experimental investigations, bubbly flows can be also analyzed by using computational
models, which cannot be solved analytically except in very special cases. For process design and
analysis, computational fluid dynamics (CFD) has become an important and indispensable tool.
Specifically, the simulation methods for gas-liquid flows in CFD can be divided mainly into three
categories. In the first category one finds multiphase direct numerical simulation methods, based on
the simple idea of directly tracking the interface between the involved phases. In the case of bubbly
flows this implies tracking the evolution of the gas-liquid interface around each bubble. This is an
extremely accurate method, but characterized by very high computational costs. These methods
will not be discussed here, since they are usually restricted to very low Reynolds numbers and are
suitable for dilute gas-liquid flows. Readers interested in the details are referred to the specialized
literature [55].

In the Eulerian-Lagrangian (E-L) method [10, 29] the continuous phase is processed via the
Eulerian framework, while the individual bubble motion is simulated through the solution of the
corresponding Newton equation of motion. Bubbles trajectories are calculated and by considering
fixed control volumes the coupling with the continuous phase can be finalized. These discrete bubbles
can be coarse-grained into larger bubble clusters to speed up the simulation and the bubble cluster
is usually called parcels [64]. The E-L method features no numerical diffusion as the most important
merit.

In the Eulerian-Eulerian (E-E) method [5, 51, 61], both phases are evolved in the Eulerian frame-
work, and a different set of Navier-Stokes equations can be constructed for each phase. The coupling
between these phases is achieved by the so-called momentum interfacial exchange term appearing in
the momentum equations. In quadrature-based moments methods (QBMM) [46], the dispersed phase
is described by the generalized population balance equation while the continuous phase is controlled
by the traditional Eulerian equations. Depending on the closure of the disperse phase velocity, this
method can be easily extended to poly-disperse systems and bubble coalescence and breakage can be
included. This method was investigated extensively in our previous works [38, 40, 39, 36]. Another
promising method is the mixture model [45, 26] and one of its most popular implementation is based
on the so-called algebraic slip model [65]. In the mixture model, instead of describing each phase
by using its own continuity and momentum balance equation, only one continuity equation and one
momentum balance equation are solved for the mixture of the two phases. All of these models except
the E-L method do not keep track of the individual bubbles but represent an averaged description
in which the space domain may contain a fraction of both the continuous and the disperse phases.
Readers are suggested to other works for more information on the derivation and application of these
mathematical models [25, 43, 68].

However, none of these methods is satisfactory. The governing equations of the E-E method
are quite complex, which implies that complicated numerical techniques are needed to handle the
phase segregation problem and the phase coupling [53, 37]. Handling the numerical diffusion in
the E-E method is also non-trivial, since high-order spatial discretization schemes usually generate
boundedness problems, resulting in turn in catastrophic divergence. The realizability of the moments
in the E-QBMM cannot be easily ensured either and dozens of moment equations are needed to be
solved for a three-dimensional test case. Meanwhile, fine meshes cannot be used in the traditional
E-L method since the bubble size should be smaller than the cell size in order to calculate the
momentum transfer between phases accurately [11]. Statistical noise cannot be avoided either. For a
given desired accuracy, this greatly increases the computational cost and a large number of numerical
bubbles are required to eliminate statistical noise. For the mixture model, the boundary condition of
the mixture velocity needs to be carefully treated and it is mainly used for gas-solid settling problems
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with very small slip velocity [1, 48].
Is it possible to have a computational model that simplifies the governing equations of the multi-

phase flow beyond these existing methods? The answer to this question seems to be yes. Sokolichin
et al. [62] developed a simplified gas-liquid model from the two-phase E-E method. The spirit of
this method is that, if one sums up the momentum equation of the gas and the liquid and neglects
the terms involving the gas density (ρg � ρl), a liquid momentum equation without phase fraction is
constructed. In this model, the governing equations fully correspond with the mass and momentum
balance equations and the equation of state of a single-phase flow. Meanwhile, a phase fraction
depended acceleration term exists in the momentum equation. This term is used to describe a force
which is directed upwards and is proportional to the local gas holdup. Therefore, the gas-liquid flow
can be interpreted as a one-phase flow with an additional buoyancy source term in the momentum
balance. However, this method is restricted to a very low local phase fractions. Ferry and Balachan-
dar proposed a so-called fast or equilibrium Eulerian-Eulerian method for small particle response
times τ [18, 19]. They express the particle velocity as an expansion in τ to remove the particle
momentum partial differential equation. This equation is first-order accuracy with respect to τ but
and higher-order equations can also be derived. It was further extended to account near-wall approx-
imation, which can accurately capture the high shear region behavior [20]. The very same approach
was also used in other works to simulate particle-laden flows for small Stokes flows [60, 59]. Only
the concentration field needs to be solved for particles of certain size range. Another possible similar
simplification originates from the E-L method. If one replaces the Lagrangian particles equation
with a gas phase convection equation under the Eulerian framework, the time consuming Lagrangian
tracking is not necessary and the Lagrangian noise can be avoided. However, the equation system
is not closed since the gas phase velocity is unknown. Therefore, the gas phase velocity needs to be
modelled and a closed set of equation is finally obtained and can be solved.

The methods described so far are generally all solved assuming a monodisperse population of bub-
bles with constant and given size. However real bubbly flows are characterized by bubble breakage
and coalescence, leading to polydispersity. To account for these effects the bubble size distribution
must be calculated by solving the population balance equation (PBE). Different methods were pro-
posed to solve the PBE, such as the class method (CM) [32], the quadrature method of moments
(QMOM) [47] and they were employed to reconstruct number density functions in many works
[23, 70, 67, 57, 12, 21, 22, 8, 31]. However, these methods require large computational resources
[38, 36] and a cheaper alternative could be the so-called one primary and one secondary particle
method (OPOSPM) [17, 2, 3], which conserves only the total gas bubble number density and the
total gas bubble volume density (i.e. volume fraction). In this method two transport equations
for the total number density and the total volume fraction of the gas bubbles are solved together
with a one-quadrature point for closing the unclosed integrals in the PBE. This method can be fur-
ther simplified to a one-equation model for the solution of the PBE based on the mathematically
consistent d30 instead of the classical mean droplet diameter. Yet another computationally cheap
alternative is the interfacial area transport equation (IATE) method [69, 27] which considers the
gas-liquid specific surface area as one of the most important parameters and is based on the solution
of the corresponding transport equation (for the interfacial area). The effect of bubble coalescence,
due to the random turbulent collisions between bubbles, and of the wake entrainment process, due
to the relative motions of the bubbles, can be accounted for. As far as bubble breakup is concerned
instead the impact of turbulent eddies is considered. A similar method was also developed in [33, 34].

In this work, we present a new fast multiphase computational model for turbulent gas-liquid
bubbly flows accounting for polydispersity. The unknown gas convection velocity is modelled by 1)
employing the slip velocity method or 2) solving an ordinary differential equation. This equation
resembles the E-L method, but the actual Lagrangian particle tracking is removed to achieve compu-
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tational efficiency. It also resembles the Eulerian quadrature-based moments methods (E-QBMM), in
which the velocity is modelled by the velocity polynomial assumption [46]. For these reasons we call
this computational model the Quasi-Eulerian-Eulerian (Q-E-E) method. The first “Eulerian” denotes
that the gas bubbles are convected by a single transport equation under the Eulerian framework, the
second “Eulerian” denotes that the liquid phase continuity and momentum balance equations are
employed. An additional transport equation was included to address bubble coalescence and break-
age. The fluid phase equations and the additional transport equation for bubble coalescence and
breakage are coupled by the drag force. We then validate the model predictions by comparison with
predictions and experiments obtained in two classical gas-liquid bubble columns and one relatively
new airlift column reported in the literature. To the author’s best knowledge this method, although
quite straightforward but was never published before nor implemented nor validated. It is eventually
worth mentioning that the model has been implemented in OpenFOAM and is available for download
and use.

The remainder of the document is as follows: in Section 2, the governing equations and numerical
discretization of the Q-E-E method are discussed. The solver development and implementation are
also described. In Section 3 and 4, the Q-E-E method solver is validated against three test cases.
Finally, conclusions are drawn in Section 5.

2. Governing equations

The multiphase system is composed by different phases. It is common to assume the liquid
phase as continuous phase and model it under the Eulerian framework [4]. In this manner, without
taking account for mass transfer, the mass conservation equation for the incompressible liquid phase
(continuous phase) is described by the following continuity equation:

∂αc

∂t
+∇ · (αcUc) = 0 (1)

where αc is the phase fraction of the liquid phase, and Uc is the velocity. The momentum conservation
of the liquid phase can be described by the volume-averaged incompressible momentum equation:

ρc
∂(αcUc)

∂t
+ ρc∇ · (αcUc ⊗Uc) = −αc∇p+ αc∇ · τc + αcg −M, (2)

where p is the average pressure, ρc is the density, g is the gravity acceleration vector, and M is the
momentum interface exchange term to account for the momentum exchange between the gas phase
and liquid phase, which will be discussed in the next section; τc represents the stress tensor, which
can be calculated by:

τc = µc

[
∇Uc + (∇Uc)

T
]
− 2

3
µc (∇ ·Uc) I−

2

3
ρkI. (3)

where k is the turbulent kinetic energy. Equation (1) and (2) are employed in the E-L, E-E and
E-QBMM to predict the liquid phase flow field.

For the gas phase, it is quite common to address it as a disperse phase. The dispersed phase can
be modelled with different procedures. In the Lagrangian framework, the position and velocity of
the bubbles can be computed by solving the force balance over the individual bubbles:

dX

dt
= Ud, (4)
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md
dUd

dt
= F, (5)

where X is the position vector, Ud is the bubble velocity, md is the bubble mass, and F is the force
exerted on discrete bubbles, which requires a certain degree of modelling. Here we assume the bubble
mass is constant and that there is no net momentum exchange due to mass transfer. Among the
many relevant fluid-bubble interaction forces, the most important is produced by the stresses of the
continuous phase on the bubble surface, resulting in the drag and buoyancy forces. The balance
of these forces determines the terminal bubble velocity. The bubble phase fraction (αd) and liquid
phase fraction (αc) can be updated by using the following equations:

αd =

∑
Vd

Vcell

, αc = 1− αd, (6)

where Vd is the single bubble volume in a cell and Vcell is the cell volume.
The gas phase can be also modelled in the Eulerian framework resulting in equations similar to

Eq. (1) and Eq. (2):
∂αd

∂t
+∇ · (αdUd) = 0 (7)

where αd is the phase fraction of the gas phase, and Ud is the average gas bubble velocity. The
momentum conservation can be described by the volume-averaged incompressible momentum balance
equation:

ρd
∂(αdUd)

∂t
+ ρd∇ · (αdUd ⊗Ud) = −αd∇p+∇ · τd + αdg + M, (8)

where ρd is the density and τd represents the stress tensor.
On the other hand, one can also use the generalized population balance equation for the gas

phase, which can be written as follows [46]:

∂f

∂t
+∇X · (Udf) +∇Ud

· (Af) = S, (9)

where f is the number density function for the gas phase phase, characterizing the number of bubbles
per unit volume with a certain velocity and size, A is the acceleration term, which is given by:

A = − 1

ρd

∇p+ g +
1

ρd

M. (10)

The solution of Eq. (9) is usually achieved in terms the moments of the number density function and
the corresponding closure problem is usually overcome by using a quadrature approximation.

Equation (4) and Eq. (5) can be solved via a meshless method by updating the Lagrangian bubble
location without any numerical problems. Equations (1) - (6) constitute the set of equations employed
in any E-L method. In the E-L method, numerical problems arise and need special treatments. For
example, the phase fraction is a strictly bounded value (0 6 αd < 1). It should be smaller than
one otherwise a vacuum state of the liquid phase can occur in certain cells. This also explains the
reason why the bubble size should be smaller than the cell size and why a two-dimensional E-L
simulation is not strictly applicable. Meanwhile, the bubble location tracking algorithm should be
highly efficient otherwise the whole algorithm would be quite slow. It is suggested to employ the face
penetrating method to locate the bubble location, but it sometimes fails and the bubble disappears
if the bubble moves just through the cell vertices instead of the cell faces [14]. Equations (1), (2),
(7) and (8) constitute the equations typically employed in the E-E method. The resulting transport
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equations are quite complex and difficult to solve. Depending on the source terms, the mathematical
characteristic also changes and the numerical scheme should respect it. Equations (1), (2) and (??)
constitute the equations employed in the E-QBMM. This equation system is not closed and sub-
models are necessary. Moreover, it is not trivial to maintain the realizability of the moments if a
high-order scheme is used [58, 35, 54].

2.1. Gas phase velocity formulation

The governing equations employed in the Q-E-E method can be derived from the existing method
using justifiable approximations. It can be seen from Eq. (1) and Eq. (2) that once the phase fraction
αd is calculated, they can be used to solve for the continuous phase velocity Uc and pressure p. In the
E-E method, αd is convected by Eq. (7), in which Ud is unknown. In the E-QBMM, the unknown Ud

is calculated from the moments, this method was also called the velocity-polynomial-approximation
(VPA) method. On the other hand, considering a stagnant liquid environment (Uc = 0), it was
proven that the balance between the buoyant force and the drag force can be achieved. Eventually,
the bubble will ascent at a nearly constant velocity, namely the so-called terminal velocity. The force
balance equation can be written as follows:

ρdVdg

(
1− ρc

ρd

)
=

3

4
CD

ρc

d
|Ud|UdVd, (11)

where Vd is the volume of single bubble, d is the bubble diameter, and CD is the drag coefficient
which requires a certain degree of modelling and different models were proposed. For example, in
the Schiller and Naumann model, it can be calculated as follows:

CD =

{
24
(
1 + 0.15Re0.687

)
/Re, Re 6 1000,

0.44, Re > 1000,
(12)

where Re is the Reynolds number defined by:

Re =
ρcd|Uc −Ud|

µc

, (13)

where µc is the viscosity of the liquid phase. Substituting Eq. (12) into Eq. (11), the bubble terminal
velocity can be calculated. Simulations showed that the bubble terminal velocity and the drag
coefficient are strongly dependent on the bubble diameter under turbulent conditions [62, 66]. For
air bubbles in clean water with size ranging from 3 mm to 5 mm, the bubble terminal velocity is
approximately constant and equal to 0.23 m/s. If the Reynolds number is larger than 2000, CD
ranges from approximately 0.3 to 3 as measured in experiments. Therefore, it is safe to calculate the
bubble velocity from the following equation:

Ud = Uc + Us, (14)

where Us is the slip velocity. This slip velocity assumption was also used in the mixture/drift-flux
model. A similar approximation was also employed in other works and the justification was proven
by several authors [4, 19]. In this work, we adopt a similar approach and we assume a constant slip
velocity due to the reason that the bubble terminal velocity typically ranges only from 0.2 m/s to
0.25 m/s. A similar procedure was also adopted in other works [63]. In this manner, the gas phase
velocity can be calculated and the capability of this method is investigated in this work. This is the
first procedure investigated in this work.

6



Besides Eq. (14), an iterative procedure can be used to obtain the gas phase velocity, which is
more consistent with the theory. In the field of E-L and E-QBMM, the gas phase velocity can be
updated with the following ordinary differential equation (ODE):

dUd

dt
= g − 1

ρd

∇pc +
1

τ
(Uc −Ud) , (15)

where τ is the relaxation time. Substituting the Bernoulli equation:

∇pc = ρcg (16)

into Eq. (15) leads to:
dUd

dt
= g

(
1− ρc

ρd

)
+

1

τ
(Uc −Ud) . (17)

When the Euler-implicit time scheme is employed to solve Eq. (17), the velocities for the next time
step can be written as follows:

Ut+∆t
d =

Ut
d + ∆t (SpUc + Su)

1.0 + Sp∆t
, (18)

where

Su = g

(
ρd − ρc

ρd

)
, Sp =

3

4

µc

ρdd2
CDRe. (19)

Since Eq. (19) is dependent on Re, which is further dependent on Ud, an iterative procedure should be
adopted. In practise, Eq. (19) can be solved 5 - 10 times to obtain a convergent gas phase velocity.
Since no differential equation is evolved, the iterative procedure is quite fast and can be easily
implemented. In this manner, the gas phase velocity can be obtained without assigning the value of
the slip velocity. It should be noted here that other momentum interfacial exchange terms (e.g., lift
force) can be included in Su as reported in Eq. (19) and the solving procedure is straightforward.
This is the second procedure investigated in this work.

Another problem that arises is how to model the bubble path dispersion. It is well known that
the width of the rising bubble swarm increases with the height of the column. Thus, radial mixing
takes place in the gas phase. But this effect cannot be recognized because only a convective term
exists in the gas phase transported equation. Under turbulent flow conditions, Eq. (7) should be
averaged and the following equation can be obtained:

∂αd

∂t
+∇ · (αdUd) +∇ ·

(
α′dU

′
d

)
= 0, (20)

where α′dU
′
d needs to be modelled. The last term on the left-hand side of Eq. (20) allowed us to

have a turbulent diffusion term in the phase transported equation. In this work, we adopted the
approach extensively employed in the field of slurry simulations [13, 49]. In this model, the turbulent
dispersion term was modelled by the following assumption:

∇ ·
(
α′dU

′
d

)
= −∇ ·

(νt
σ
∇α
)
, (21)

where νt is the turbulent kinematic viscosity of the liquid phase, determined in turn by turbulence
model, and σ is the turbulent Schmidt number for gas bubble phase fraction. The turbulent Schmidt
number may be interpreted as the ratio of turbulent momentum transport to the turbulent transport
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of the mass associated to the gas phase. However, the numerical value of it is not well established in
the literature because no single constant value can be used. In the proposed model, we simply set
the turbulent Schmidt number for volume fractions equal to 1.0, since this value results in the best
overall agreement with the experimental data. The turbulent kinematic viscosity of the liquid can be
calculated from the turbulence model. In this work, the standard k − ε model was employed, which
can be written as follows:

∂ε

∂t
+∇ · (Uε)−∇ · (Dε∇ε) = C1G

ε

k
− 2

3
C1ε∇ ·U− C2

ε

k
ε, (22)

∂k

∂t
+∇ · (Uk)−∇ · (Dk∇k) = G− 2

3
∇ ·Uk − ε, (23)

where

G = νt

(
∇U +∇UT − 2

3
(∇ ·U)I

)
: ∇U. (24)

Once the k and ε equation was solved, the turbulent viscosity can be calculated by

νt = Cµ
k2

ε
. (25)

2.2. Polydispersity and bubble size distribution

To account for bubble breakage and coalescence, another model is needed. The QMOM or EQ-
MOM was implemented in our previous works but they are not suitable for this work due to the
large demand of computational resources [42, 41, 39]. Therefore, we adopted a simpler procedure as
reported in [33, 34]. In this method, the total bubble number density is calculated as follows:

n =
αd

π/6d3
. (26)

From the values of n at each point in the computational domain, the local average bubble size d
can be calculated. An additional transport equation is solved for n, accounting for the transport of
bubbles (by convection and turbulent diffusion) and changes in bubble size (and therefore bubble
number) by breakage and coalescence according to [33, 34]:

∂n

∂t
+∇ · (Udn)−∇ · (νt∇n) = Sbreak − Scoal, (27)

where Sbreak is the source term to account for bubble breakage and Scoal is the sink term to account
for bubble coalescence. The rate of bubble break-up is assumed to be related to the collision rate
with turbulent eddies of similar size, since larger eddies merely transport the bubbles and smaller
eddies have insufficient energy. The collision rate with eddies depends on the turbulent velocity, for
which the bubble size is assumed to lie within the inertial sub-range of turbulence. Additionally,
break-up is conditional on exceeding a critical value of bubble Weber number, Wec, representing the
ratio of turbulent shear forces to the restoring surface tension forces. Following these considerations,
the expression for the break-up is assumed to be: [33, 34, 69]

Sbreak = Cbr
Ut

1.4d

√
1.0− −Wec

We
exp

(
−Wec

We

)
,We > Wec, (28)
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where Cbr is user-defined breakage coefficient, and Ut is taken to be the velocity of eddies in the
inertial sub-range of the turbulent eddy spectrum, which may be written as:

Ut = 1.4(εd)1/3. (29)

The bubble Weber number defines the tendency for bubbles to break up or remain stable, which can
be written as:

We =
ρcUtd

σ
, (30)

where σ is the surface tension beween the gas and liquid phases. The bubble coalescence can be
modelled by random collision process or wake induced collision process. In this work, we consider
random collision, though the wake induced collision can be included straightforwardly. In the theory
of random collision, the bubble coalescence sink term can be written as [33, 34, 69]

Scoal = n2CturbUt
d2

α
1/3
maxα

1/3
d

(
1− exp

(
−Cturb2

α
1/3
maxα

1/3
d

α
1/3
maxα

1/3
d − α1/3

maxα
1/3
d

))
, (31)

where Cturb, Cturb2 are user-defined coalescence coefficients, and αmax is the maximum packing limit
for the bubbles. Eq. (20), Eq. (14), Eq. (1), Eq. (2) together with the equations of the turbulent
model Eq. (22), Eq. (23) and the bubble diameter equation Eq. (27) form the governing equations of
the Q-E-E method, which is suitable for polydisperse turbulent bubbly flows. It can be solved in the
same way as in the single phase flow by some iterative procedure under the finite volume method,
which will be discussed in the next section.

2.3. Numerical discretization

In this section, we summarise the iterative solving procedure based on the PISO algorithm [28].
The solving procedure of the Q-E-E method resembles the procedure of the E-QBMM and the E–L
method. The spirit of PISO algorithm is to use the momentum to obtain a non-divergence free
velocity field, then use the continuity equation to construct a pressure Poisson equation to update
the velocity field to ensure divergence free. The pressure equation is suggested to be solved 2 - 3
times within a time step. Special numerical techniques are necessary to prevent oscillations, especially
when there are gradient terms and large body forces in the source term of the momentum equation.

In order to obtain a smooth solution, the pressure term (gradient term), gravity term and others
are neglected at this step and the discretized form of Eq. (2) can be written as follows:

aPUP +
∑

aNUN = SP , (32)

where aP is the matrix diagonal coefficients, aN is the matrix non-diagonal coefficients, UP is the
unknown velocity defined at the cell center, and UN is the known velocity for the cell neighbours.
The subscript d was neglected for brevity. Eq. (32) constitutes a matrix system which can be solved
by any sparse linear system to obtain the predicted velocity. However, in practise, it is not solved
and this step can be safely replaced by a one step Jacobian point iterative procedure. The solution
of this one step iterative procedure produces the predicted velocity:

HbyAP =
−
∑
aNUN + SP
aP

. (33)

Due to the crude approximation, HbyA is meaningless and needs to be corrected. The convergent
velocity and pressure should obey the continuity equation. The discretized continuity equation can
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be written as
(αt+∆t

c,P − αtc,P )∆VP

∆t
+
∑(

αc,fU
t+∆t
f · Sf

)
= 0, (34)

where ∆t is the time step, and ∆VP is the cell volume. Owing to the Rhie and Chow interpolation,
the cell face velocity can be expressed by [56]

Ut+∆t
f = HbyAf −

1

aP
αc,f (∇p)f + αc,f

1

aP
g − 1

aP
Mf . (35)

Substituting Eq. (35) into Eq. (34) leads to

∑ α2
c,f

aP
(∇p)f =

(αt+∆t
c,P − αtc,P )∆VP

∆t
+
∑(

αc,f

(
HbyAf +

αc,f

aP
g − 1

aP
Mf

)
· Sf
)
. (36)

The continuous form of Eq. (36) is the so-called pressure Poisson equation and its solution gives
the pressure of the continuous phase. It should be noted here that the term associated with g is
the gravity/buoyancy term and the term associated with M is the momentum exchange interfacial
term. In some works, it was claimed that the effect of the buoyancy term is larger than that of the
momentum exchange term. In this work, the effect of the buoyancy term was evaluated. In summary,
the solving procedure consists of the following steps:

1. From the initial field, calculate the momentum exchange term and construct the velocity matrix
system as reported in Eq. (32); Calculate the predicted velocity as reported in Eq. (33) by the
one point Jacobian method;

2. Solve the pressure Poisson equation as reported in Eq. (36) to update pressure.

3. Reconstruct the velocity from the pressure as reported in Eq. (35). Repeat step 2 and 3 two or
three times and a convergent velocity/pressure field of the continuous phase can be obtained.

4. Update the dispersed phase velocity by using Eq. (14) (i.e. constant slip or procedure 1) or
Eq. (18) (i.e. ODE or procedure 2) and calculated the phase transported equation as reported
in Eq. (20). Update the continuous phase fraction by αc = 1− αd.

5. Correct the turbulence equations and bubble size equation and move to the next time step.

The implementation of the algorithm mentioned previously is straightforward and it is briefly
discussed here. The velocity matrix system can be constructed by:

fvVectorMatrix UcEqn

(

fvm::ddt(alphac , Uc) + fvm::div(alphaPhic , Uc)

- fvm::Sp(fvc::ddt(alphac) + fvc::div(alphaPhic), Uc)

+ continuousPhaseTurbulence ->divDevRhoReff(Uc)

==

- fvm::Sp(dragSp , Uc)

);

in which the drag force was discretized semi-implicitly. The predicted velocity HbyA can be solved
by

HbyA = UEqn.H ()/ UEqn.A ();

The face velocity of the continuous phase as reported in Eq. (35) can be implemented by

Kd = 0.75*alphad*muc/sqr(diameter )*CdRe;
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preDispersed = Kd*Ud;

surfaceScalarField phicForces

(

fvc::flux(rAUc*preDispersed/rhoc)

- (

fvc:: interpolate(rAUc*(Su)) & mesh.Sf ()

)

+ alphacf*rAUcf*(g & mesh.Sf ())

);

surfaceScalarField phiHbyA

(

"phiHbyA",

(

fvc::flux(HbyA)

+ alphacf*rAUcf*fvc:: ddtCorr(Uc , phic)

+ phicForces

)

);

where CdRe is CDRe. Afterwards, the pressure Poisson equation can be implemented by

fvScalarMatrix pEqn

(

fvm:: laplacian(sqr(alphacf )*rAUcf , p)

==

fvc::ddt(alphac) + fvc::div(alphacf*phiHbyA)

);

and the velocity can be reconstructed by

Uc = HbyA

+ rAUc*fvc:: reconstruct (( phicForces - pEqn.flux ()/ alphacf )/rAUcf );

All the governing equations are implemented in the open-source CFD code OpenFOAM and
wrapped into a new solver called QEEFoam. In this work, the code and test cases are open-sourced.
Readers are referred to the supplementary files for download.

3. Test cases and numerical details

The predicted results obtained with the QEEFoam are compared with the measurements available
in the literature both for qualitative and quantitative comparisons. The first test case (Test A)
simulated in this work is a partially aerated rectangle bubble column investigated by Becker et
al. [6]. The second test case (Test B) is a rectangle bubble column investigated by Dı́az et al.
[16]. The third test case (Test C) is an airlift bubble column investigated by Mandalahalli et al.
[44]. The first two cases are characterised by a simple geometry with a complicated flow structure,
which are suitable for numerical investigation. Depending on the experimental conditions, the flow
regimes resulting from time/volume-averaged procedures can differ considerably from the unsteady
flow structures. The fully developed vortex flow has been proved to be a very useful tool to evaluate
the hydrodynamic properties of bubble columns. The last test case is rather new and the geometry
is quite different from the previous two. It could be a good test case for further validation.
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Figure 1: Bubble column geometry investigated experimentally by Becker et al. (left) [6], Dı́az et al. (middle) [16].
Airlift column geometry investigated experimentally by Mandalahalli et al. (right) [44].

The column was filled with tap water (i.e. continuous liquid phase) at room temperature and
atmospheric pressure, while the air was fed through an aluminium sparger. A sketch of the setup
is shown in Fig. 1. A fully orthogonal hexahedral grid measuring 52 (height) × 32 (width) × 18
(depth) cells for test A and 40 (height) × 21 (width) × 9 (depth) cells for test B were generated by
blockMesh utility, as we confirmed that these non-uniform hexahedral grids are enough to capture
the plume oscillations in our previous investigations. A similar mesh resolution was also reported in
other works [16, 37, 52, 50]. The sparger inlet was generated by topoSet and createPatch utilities,
through which gas enters the domain was modelled as a rectangle with an area equal to 0.001197 m2

and 0.00021 m2, respectively. This simplification has been proven to be efficient for meshing, and
previous works have shown that the results are not sensitive to the inlet shape [16, 9]. For test case
C, a non-uniform hexahedral grid was employed. The diameter of bubbles in test A, B and C is 3
mm, 5.05 mm and 2.2 mm, respectively. Different gas superficial velocities were used and will be
reported in the following sections. The buoyancy force, drag force and the turbulent dispersion force
were considered in all the test cases in the Q-E-E simulations. Second order with a limiter convection
scheme was used for all variables. In our test cases, the unbounded problem of the phase fraction
and bubble number density was not shown.

Some results were also compared with that predicted by the OpenFOAM E-L solver DPMFoam.
In the E-L simulations, rebounded wall boundary and “escape” boundary were given for the bub-
bles. The bubble number injected per second to the computational domain was calculated from the
superficial gas velocity as

n =
UsSoutlet

Vbubble

, (37)

where n the bubble number injected per second, Soutlet is the surface vector, Us is the gas superficial
velocity, and Vbubble is the bubble volume. Sizes of the bubble were assumed to be uniform. Bubble
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collision is not considered and therefore a two-way coupling was assumed. In all the simulations, the
liquid phase was assumed to be stagnant at the beginning. The non-slip velocity boundary condition
was given for the liquid velocity. For the liquid pressure, a zero gradient with the hydrodynamic
correction was applied. The standard turbulent wall function was applied for turbulent variables.

As previously mentioned two algorithms are tested for the calculation of the gas bubble velocity:

1. by assuming a constant gas-liquid slip velocity and by using Eq. (14),

2. by updating the gas bubble velocity with the solution of the ODE discretized in Eq. (18).

4. Results and discussions

4.1. Test case A

In this test case, the gas was injected on the left side of the bottom. One can certainly expect
that vortexes may exist due to the non-symmetric injection. It was also shown in previous works
that the dynamic liquid circulation is quite complex and can only by predicted by three-dimensional
simulations [50, 63]. Therefore, our algorithm and implementation should capture such quasi-periodic
transient liquid circulations. The predicted and measured horizontal liquid velocities for test case
A at different positions with slip velocity method and ordinary differential equation method were
reported in Fig. 2 and table 1. It can be seen that the quasi-periodic transient liquid circulations
were successfully captured. The horizontal liquid velocity at point A is slightly larger than that
predicted for point B since point A locate at the left side, which is in good agreement with that
as measured in the literature [6, 63]. The effect of the turbulent dispersion term on the period of
bubble plum oscillation (POP) is negligible (within 10 %) as it is seen in table 1. Meanwhile, it
can be found that the user-defined slip velocity has a substantial effect on the POP. A larger slip
velocity corresponds to large relative velocity and the coupling between the gas and liquid phase is
stronger, which implies a small relaxation time and smaller POP. It was also shown that a vertical
slip of 0.2 m/s predicted the best results compared with the experimental data. Such slip velocity
value agrees well with the experimental founding as mentioned in section 2. On the other hand, the
ODE method predicts quite good POP as well, since the gas phase velocity was predicted by solving
the ODE system and the user-defined slip velocity is not necessary.

With dispersion term Without dispersion term
Slip vel. method 0.15 m/s 54 s 53 s
Slip vel. method 0.2 m/s 40 s 37.5 s
Slip vel. method 0.25 m/s 35 s 30 s

ODE method 39 s 37 s

Table 1: Comparison of predicted and experimentally measured POP for the test case A with/without turbulent
dispersion term. Different vertical slip velocity was used. Measured POP: 41 s.

The prediction of the oscillating phase fraction, velocity, and streamlines coloured by pressure at
different time instants (∆t = 2 s) for the test case A by the slip velocity method are reported in Fig.
3. Results predicted by the ODE method was not shown for brevity since the difference is negligible.
They show a surprisingly good agreement with experiments. Several liquid circulation cells can be
observed in the column, typically no more than 4 circulation zones can be found. The vortex at
the top tends to increases its size. When the upper vortex reaches a critical size, it starts to move
downwards. The size of the largest vortex is as large as half of the column. Once these large vortexes
reached the bottom, they are smeared due to the wall and new vortexes are generated at the top.
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(a) Slip velocity method, Uy = 0.25 m/s
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(b) Slip velocity method, Uy = 0.2 m/s
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(c) ODE method
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(d) Experimental data

Figure 2: Calculated horizontal liquid velocities for test case A at different positions by slip velocity method and ODE
method. Black line: (0.035 0.9 0.04), red line: (0.45 1.05 0.04). Solid line: with turbulent dispersion term. Dashed
line: without turbulent dispersion term.
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At this point, the ”cycle” is repeated again. Meanwhile, the center of the vortex has a relatively
low pressure, which is consistent with the vortex theory. It can be seen that such a dynamic vortex
movement can be surprisingly captured by our code. On the other hand, the transient phase fraction
shows similar oscillating plumes. After the gas was injected from the bottom, it was dispersed by the
turbulent dispersion term and moved forward due to buoyancy. The time-averaged vertical liquid
velocity by the slip velocity method and ODE method at different positions were reported in Fig.
4. The predicted results by the ODE method seem to be better, whereas those predicted by the
slip velocity method (0.25 m/s) were overshot and those predicted by the slip velocity method of
0.15 m/s were undershot. On the other hand, when the slip velocity method was 0.2 m/s. Good
agreements with experimental results [6, 63] were observed. This test case shows that the flow field
can be successfully predicted by the slip velocity method and the ODE method, where the results
may be influenced by the user-defined slip velocity and a fitting procedure may be necessary for the
first one. All these results show that our method is capable of predicting the turbulent bubbly plume.

Figure 3: Prediction of the oscillating phase fraction (top, [0:0.03]), velocity (middle, [0:0.4]), and streamlines (bottom,
colored by pressure, [-0.07:0.04]) at different time instants (∆t = 2 s) for the test case A.
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(d) ODE method

Figure 4: Comparison of the time-averaged upward liquid velocity with experimental data (points) at different heights
on the mid-depth plane (from bottom to top: y/H = 0.11, 0.22, 0.35, 0.49, 0.6, 0.7, 0.78, 0.89).

4.2. Test case B

In this test case, the gas was injected in the middle of the bottom, which implies the geometry is
quite symmetric. Nonetheless, it was also shown in previous work that the dynamic liquid circulation
is quite complex, as also confirmed by experiments [16]. In the experiments, different gas superficial
velocities were employed. The predicted horizontal liquid velocity at different positions was reported
in Fig. 5. The drag model developed by Grace et al. was employed [24]. Since the slip velocity
method was investigated in the previous case, in this teat case, the magnitude of the slip velocity was
assumed to be 0.25 m/s. Specifically, the predicted values of the gas POP were reported in table 2.
It can be seen that the results predicted by the Q-E-E method agree well with the simulated results
reported in the literature [16] and our previous works [37, 42, 9] in which the E-E and E-QBMM
were used to simulate bubbly flows. Specially, the POP predicted by the slip velocity method is
comparable with that predicted by the ODE method, which implies that a slip velocity of 0.25 m/s is
suitable for this test case. It should be noted here that a 0.2 m/s slip velocity seems to be better for
the previous case. This slip velocity acts as a tuning parameter in our method and a fitting procedure
is required.

The predicted gas POP when the superficial velocity was assumed as 0.012 m/s with and without
the gravity term exerted on the continuous phase is reported in Fig. 6. It can be seen that the
predicted gas POP with or without the gravity term differs within 5%. Meanwhile, it was found that
the momentum interfacial exchange term’s effect is very important, which implies that the coupling
of the gas and liquid phases by the momentum transfer is quite important. Similar predictions were
also obtained with the E-L simulations solved by DPMFoam, which are not shown here for brevity.
Such finding may contradict with others where the phase coupling was seen as more important than
the momentum coupling. The prediction of the oscillating phase fraction and time-averaged phase
fraction with and without turbulent dispersion term were reported in Fig. 7. It is obvious that the
predicted gas phase fraction was quite sharp if the turbulent dispersion term was neglected in the
transported equation, which is consistent with the theory. With the turbulent dispersion force, those
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(c) ODE method
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(d) ODE method

Figure 5: Calculated horizontal liquid velocity for test case B operated at different superficial gas velocities (left:
0.0024 m/s, right: 0.0071 m/s) at different positions (black line: x = 0.1 m, y = 0.225 m, z = 0.02 m; red line: x =
0.05 m, y = 0.225 m, z = 0.02 m) by slip velocity method (|Us| = 0.25 m/s) and ODE method.
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(a) SchillerNaumann drag model
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(b) Grace drag model
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(c) Tomiyama drag model

Figure 6: Calculated horizontal liquid velocity for test case B operated with (black solid line) or without (red dashed
line) gravity term by slip velocity method. Different drag models were employed. Position: x = 0.1 m, y = 0.225 m,
z = 0.02 m. Superficial gas velocities is 0.012 m/s.
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bubbles also move deeper into the column. If one compares the predicted transient phase fraction
with the experiments, it is also obvious that the predicted results with turbulent dispersion term are
more accurate.

Gas superficial velocity Experiments Predictions by slip vel. Predictions by ODE
0.0024 m/s 11.37 s 11.5 s 11.4 s
0.0071 m/s 5.69 s 6.3 s 5.45 s
0.012 m/s 4.3 s 4.9 s 4.1 s

Table 2: Comparison of predicted and experimentally measured POP for the test case B with turbulent dispersion
term by the slip velocity method and ODE method.

Figure 7: Prediction of the oscillating phase fraction and time-averaged phase fraction with and without turbulent
dispersion term by the ODE method.

The time-averaged gas hold-up and vertical liquid velocity at different positions with and without
turbulent dispersion term are reported in Fig. 8. Here the gas superficial velocity is 0.012 m/s.
Different drag coefficients were employed and only the results predicted by the slip velocity method
are reported. Predictions obtained by the E-L method are also used as a comparison. It can be seen
that the phase fraction predicted without the turbulent dispersion term shows an over-estimated
double peak, which can be also seen in Fig. 7. This double peak comes from the periodic oscillating
flow fields. On the other hand, results predicted with the turbulent dispersion term by the Q-E-E
method agree well with those predicted by the E-L method. The drag model also has an effect on
the predictions but the effect can be neglected. The predicted vertical liquid velocities by the Q-E-E
method also agree well with that predicted by the E-L method. It can be observed that the resulting
time-averaged flow pattern consists of a non-uniform velocity distribution presenting an upward flow
in the column center and a downward flow along the column walls, a liquid circulation mode. This
type of flow differs considerably from the instantaneous flow pattern previously described. The
calculated global gas hold-up by the Q-E-E method at different superficial gas velocities is reported
in Fig. 9. It can be seen that the predictions agree well with the experiments. All these results
reveal that the dynamic vortex flow fields in a symmetric geometry can be predicted by the Q-E-E
method and the results are surprisingly good. The prediction of the bubble size distribution of test
case B with different gas superficial velocities was reported in Fig. 10. It can be seen that the
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bubble’s diameter is larger at the center of the column than those at sides. Contour plots of the
diameter show that, with the increase of the gas superficial velocity, smaller bubbles tend to stay in
the liquid recirculation path, whereas bigger bubbles are concentrated into the central plume zone
where coalescence and breakup occur with faster rates due to turbulence. Such results were also
observed in other works where a quadrature-based moments method was used [7].
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(c) Vertical liquid velocity, z = 0.02 m
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(d) Vertical liquid velocity, z = 0.03 m

Figure 8: Time-averaged gas hold-up and vertical liquid velocity at different positions for test Case B. Gas superficial
velocity is 0.012 m/s. Different drag coefficients were employed. Solid line: with turbulent dispersion term. Dashed
line: without turbulent dispersion term by the slip velocity model. Black: Grace drag model, red: SchillerNaumann
drag model, blue: Tomiyama drag model. Black line-points: data simulated by E-L method with SchillerNaumann
drag model.

4.3. Test case C

The feature of test case C is that it is a new test case and the geometry is quite complex. The
Q-E-E method should be able to predict accurate results no matter what the geometry it is. The
time-averaged gas hold-up at different positions with different gas superficial velocities are reported
in Fig. 11. It is seen that the profile of the time-averaged local gas fraction above the sparger
plate (z = 0.25 m) shows an expected M-shape profile, which was also observed in the experiments.
The peaks correspond to the gas fraction at the centers of the spargers. With increasing superficial
velocity, there is an increase in the overall number of bubbles and thus an increased gas fraction.
The turbulent dispersion effect was negligible, since the bubbles were just injected into the column
and the flow was not fully developed. For the middle section (z = 0.35 m), the effect of the turbulent
dispersion cannot be omitted and it can be seen that the phase fraction can be only predicted
accurately when the turbulent dispersion was included, otherwise a over-estimated double peak was
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Figure 9: Comparison between experimental (black circles) and calculated global gas hold-up (red circles) at different
superficial gas velocities for test case B slip velocity method.

Figure 10: Prediction of the bubble size distribution of test case B with different gas superficial velocity (left: 0.012
m/s, middle: 0.0071 m/s, right: 0.0024 m/s).
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predicted. The predicted phase fraction at the upper riser section was underestimated (z = 0.58
m). Improvements can be obtained by selecting other drag models or by fitting the bubble breakage
and coalescence parameters. Meanwhile, the polydisperse predictions showed a significant difference
with monodisperse results for high gas superficial velocity (0.0032 m/s). The difference of the results
between monodisperse and polydisperse predictions for small gas superficial velocity is negligible.
This can be explained by the fact that bubble breakage and coalescence is not frequent for these
operating conditions. On the other hand, the difference of the results between monodisperse and
polydisperse predictions for large gas superficial velocity is notable. This was also observed in test
case B since the bubble coalescence and breakage are dominant for flows operated under larger
superficial gas velocities.

5. Conclusions

In this work, a fast Eulerian-based approach which is suitable for polydisperse turbulent gas-
liquid flow was proposed and implemented in open-source CFD code OpenFOAM-7 as QEEFoam.
This method solves only one set of Navier-Stokes equations for the liquid phase. The gas phase
was transported under the Eulerian framework by a convection equation. Turbulent effects can be
included by adding a turbulent dispersion term in the gas phase equation.

The unknown gas phase velocity is calculated by:

1. assuming a constant slip velocity between the gas bubble and the surrounding liquid phase

2. solving an ODE for the gas bubble velocity which accounts for the interfacial forces acting on
the bubbule

A user-defined slip velocity is needed for the first method, while no empirical parameters are
necessary for the second one. The bubble size is determined by including a transport equation for
the total bubble number density. Bubble breakage and coalescence are modelled as source and sink
terms. The whole equation system can be solved by any iterative solution procedure (e.g., PISO
algorithm). Our algorithm and implementation are validated against three test cases characterized
by different geometries and by different gas superficial velocities. The uncertainty associated with the
constant slip velocity assumption and the effect of turbulent dispersion are assessed. The importance
of the drag momentum exchange term is also assessed.

Predictions for the local/global gas phase fraction, period of oscillation the gas bubble plume and
horizontal/vertical transient/time-averaged liquid velocity are compared with experimental data or
simulation results predicted by the E-L method. Our results show that the methodology is capable of
adequately describing the very complex dynamic flow fields in the bubble columns. Good agreements
between the predictions with experimental data can be obtained. The slip velocity method can
predict comparable results with that predicted by the ODE system if a suitable velocity is chosen,
with slightly smaller computational costs. Compared with the existing CFD-PBE coupling algorithm
(e.g., QMOM or CM), QEEFoam, which solves for the total bubble number density transport equation,
is stable and fast. In conclusion, our algorithm seems a very promising and fast strategy for the
simulation of industrial polydisperse turbulent gas-liquid flow.

Appendix

In order to compare the computational efficiency, the running times of reactingTwoPhaseEulerFoam
and QEEFoam were reported in Fig. 12 (∆t = 0.01 s). All the simulations were launched by one CPU
processor (Intel i7-5820K).
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Figure 11: Time-averaged gas hold-up different positions by the ODE method for test case C. Gas superficial velocity
is 0.008 m/s (left) and 0.032 m/s (right). Solid line: with turbulent dispersion term. Dashed line: without turbulent
dispersion term. Line-points: experimental data. Black: monodisperse. Red: polydisperse.
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Figure 12: Comparison of the computing efficiency between QEEFoam and reactingTwoPhaseEulerFoam for test case B.
A: monodisperse QEEFoam (slip vel. method, 327 s). B: monodisperse QEEFoam (ODE method, 413 s). C: polydisperse
QEEFoam (slip vel. method, 362 s). D: monodisperse reactingTwoPhaseEulerFoam (732 s).
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