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Abstract: During Laser Powder-Directed Energy Deposition (LP-DED), many complex phenomena
occur. These phenomena, which are strictly related to the conditions used during the building process,
can affect the quality of the parts in terms of microstructural features and mechanical behavior. This
paper investigates the effect of building parameters on the microstructure and the tensile properties
of AISI 316L stainless-steel samples produced via LP-DED. Firstly, the building parameters were
selected starting from single scan tracks by studying their morphology and geometrical features. Next,
316L LP-DED bulk samples built with two sets of parameters were characterized in terms of porosity,
geometrical accuracy, microstructure, and mechanical properties. The tensile tests data were analyzed
using the Voce model and a correlation between the tensile properties and the dislocation free path
was found. Overall, the data indicate that porosity should not be considered the unique indicator of
the quality of an LP-DED part and that a mechanical characterization should also be performed.

Keywords: additive manufacturing; directed energy deposition; AISI 316L stainless-steel; primary
dendritic arm spacing; tensile properties

1. Introduction

Laser Powder-Directed Energy Deposition (LP-DED) is an Additive Manufacturing
(AM) process that uses a laser beam to melt a metallic powder which is directly blown in
specific areas of the building volume. The LP-DED building process has been recently used
in several fields such as aeronautical, petrochemical, automotive, and power generation [1].
The main advantages of this AM technique are the possibility of producing large parts,
functionally graded materials, and repairing worn components [2].

The LP-DED technique requires using a proper combination of process parameters to
obtain high-quality parts [3]. When a new powder needs to be processed, it is therefore
essential to define main parameters such as the powder feed rate (F), the laser power (P),
the scanning speed (v), and the hatch and layer spacings (dX and dZ) [3]. These parameters
influence not only the morphology and the stability of each track but also their solidification
behavior and resulting microstructure [4]. The LP-DED building parameters may affect, in
fact, the thermal gradient (G), the growth rate (R), and the intensity of the fluid flows in
the melt pool [5,6]. These phenomena strongly influence the solidification mode and the
consequent microstructure.

AISI 316L stainless-steel has been widely used in the LP-DED process because it
finds applications in many industries. Therefore, the production of many components
via LP-DED has been studied lately in the literature [7]. Because of these reasons, the
LP-DED processability and the properties of this alloy have been widely investigated in
recent years [8–15].

Boisselier et al., for example, researched the effect of 316L powder properties on the
samples’ quality and suggested that the process parameters need to be optimized for each
powder batch as the particle morphology affects the flowability and the laser powder
interaction [8]. Saboori et al. considered the effect of powder reuse on the microstructure
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of 316L samples and showed that a large number of Si- and Mn-rich oxides were found
in samples built with reused powder, due to oxygen enrichment during the reuse [9].
The presence of these large inclusions remarkably affected the tensile properties of the
samples and in particular their ductility. Eo et al. analyzed the fine oxygen-rich inclusions
found in LP-DED 316L samples and identified a correlation between their content and
the building parameters used [10]. Yadollahi et al. studied the effect of the time interval
on the microstructure of 316L LP-DED samples [11]. Their study underlined the role of
thermal history and in particular, of the cooling rate on the microstructure of the part in
terms of grain size and morphology. Their findings indicated that longer time intervals
cause a higher cooling rate and, consequently, a finer microstructure. The effect of the
thermal history was also studied by Mukherjee et al., who focused on the effects of the
part geometry and orientation on 316L LP-DED samples [12]. In their study, the authors
indicated that a higher cooling rate associated with larger areas led to a finer microstructure
and cracks. Zheng et al. studied the evolution of the microstructure and the mechanical
behavior of 316L processed by LP-DED [14]. The authors illustrated the complexity of the
microstructure and found correlations with the high thermal gradient, the fluid flow that
arises in the melt pool, and the intrinsic heat treatment which the material undergoes. The
authors also investigated the effect of the laser focus and showed that it strongly affects the
geometry of the part.

In most of these studies, however, the authors used parameter sets that were selected
according to the users’ experience or based on a trial and error approach, mainly using the
porosity of the samples as a selection criterion [11]. As a result, the effect of the building
parameters on the microstructure and properties was poorly investigated.

Therefore, it is important to define the effect that LP-DED building parameters have
on microstructural features such as Primary Cellular Arm Spacing (PCAS), grain size, and
texture of 316L parts produced. The present work focuses on the impact of the LP-DED
building parameters on the microstructure and mechanical properties of 316L stainless-
steel samples. Furthermore, the Voce model was applied to find a correlation between the
tensile properties and dislocation free path.

2. Materials and Methods

A commercial AISI 316L gas atomized powder was used to produce steel samples by
LP-DED. The powder contains mainly spherical particles of about 80 µm, however, some
irregular particles, a few satellites, and some fine particles were also found (Figure 1a). The
powder particle size distribution was evaluated using a laser granulometry Analysette
22 Compact model (FRITSCH GmbH, Markt Einersheim, Germany) and is reported in
Figure 1b. The particles have a d10 = 54 µm, d50 = 79 µm, and d90 = 110 µm. It is important
to underline that a different producer provided this powder with respect to the one used in
previous works by some of the authors [7,9].
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The samples were produced using an LP-DED prototype built by Prima Additive (a
division of Prima Industrie S.p.A). This system is composed of a 3-axis CNC unit with four
coaxial multi-nozzles and an ytterbium fiber laser with 3 kW maximum power and a laser
spot value of 1.3 mm. The steel powder was delivered using a commercial powder feeder
that employs a rotating disk to regulate the powder flow. For all experiments, N2 was used
as a carrier gas and central shielding gas with 3 L/min as the flow rate. The samples were
built on 120 × 120 × 8 mm3 316L stainless-steel platforms.

To optimize the parameters, in a first experimental step, Single Scan Tracks (SSTs)
with 40 mm length and different P and v combinations were produced using a constant
powder feeder rotation. Two SSTs per each P-v sets were built varying the scan tracks
deposition sequence.

All SSTs were cut in their center, mounted in hot resin, and polished down to 0.03 µm
using colloidal silica. The SSTs’ polished cross-sections were analyzed using a Leica
DMI5000 M (Leica, Wetzlar, Germany) optical microscope. The beads geometrical features
were then measured using the ImageJ software (version: v1.51J8, National Institutes of
Health, Bethesda, MD, USA).

Subsequently, four small bulk samples (20 × 10 × 15 mm3) have been built using two
sets of building parameters selected based on the SSTs results. These parameter sets are
reported in Table 1 and will be named low power (LP) and high power (HP). The dX and dZ
values were selected according to the SST’s size to keep the same hatch and growth overlap
for both samples. The deposition strategy used is the 0/90◦ having a bidirectional scanning
in each layer. Furthermore, a contour was also deposited with the same parameters prior
the deposition of each layer in order to assure a geometrical stability of the part.

Table 1. Set of building parameters used for bulk samples.

Name P (%) V (%) dZ (mm) dX (mm)

LP 50 60 0.30 0.70
HP 60 60 0.30 0.80

The bulk samples were also cut in their center along the X–Z plane, ground with SiC
papers to 4000 grit, and polished with diamond suspensions and colloidal silica down to
0.03 µm. The dimensions of the cubes were measured and compared with the nominal
ones. The samples’ cross-sections were then analyzed by means of the optical microscope
to detect the defects such as oxides and pores. The percentage of defects (i.e., porosity)
was evaluated by image analyses using the ImageJ software. On each sample, 40 images
were taken at 100× magnification equally spaced in order to cover about 50% of the
whole surface.

An SEM TESCAN S9000G (Tescan Company, Brno, Czech Republic) equipped with an
Electron Backscatter Diffraction (EBSD) detector was used to analyze the grain morphology.
For the analyses, the samples were tilted at 70◦, and the SEM operated at 20 keV and 10 nA
using a step size of 5 µm.

After these analyses, the samples were etched using a Kalling’s n. 2 solution for 10 s
and observed at the optical microscope to evaluate the dZ value and compare it with the
theoretical one. Etched samples were also observed by a Phenom XL SEM (Thermo Fisher
Scientific, Waltham, MA, USA) to study the PCAS using the triangle method [9]. The PCAS
values were evaluated on 14 images per sample taken at 300×.

Finally, four larger samples (12 × 12 × 93 mm3) were also built with the same sets
of parameters. Two tensile samples were extracted from each of these bars as reported
in previous works [7] and were tested using a Zwick Z100 tensile machine (Zwick-Roell
GmbH & Co. KG, Ulm, Germany) connected to a contact extensometer using 8 × 10−3 s−1

as the strain rate. The tensile specimen geometry was based on the ASTM E-8 standard
with 4 mm thickness and 25.4 mm as the gauge length. The samples were obtained by
milling in order to avoid the surface-related effects as much as possible and analyze the
bulk materials’ properties [16].
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The results obtained with the tensile tests were also used to assess the strain hardening
behavior of the steel samples built with the parameter sets mentioned above. First of all,
the engineering stress and strain curves were converted into true-stress (S) and true-strain
(e) ones considering that e = ln(1 + ε) and S = σ(1 + ε), respectively.

This transformation was limited only to the uniform plastic deformation zone, i.e.,
only in that part of the curves between the yield and the maximum strength. The linear
portions of the curves can be interpolated using the Voce flow stress model. The derived
fitting parameters of the Voce equation (see below Equation (1)) are extremely important
since they are strongly related to microstructural features of the investigated material [17].

∆σ = σ − σY = A·
[
1 − exp(−BeC)

]
(1)

where A = q/k2, B = Mk2, and C = p. According to the literature [18], M is the Taylor’s
factor, q is related to the dislocation free path (λ), k2 is the recovery rate, and p is a material
constant. More specifically, q directly correlates with the grain size and dislocation density.

In this work, the Taylor’s factor was considered equal to 3, as also suggested in
Yvell et al. for 316L [19]. The parameters mentioned above were derived with a non-linear
fitting performed in Origin2018 software using the Levenberg–Marquardt least square
method. The fitting quality was measured with the standard R2 calculation and with the
average absolute relative error (AARE), which was calculated using (Equation (2)).

AARE(%) =
1
N

N

∑
i=1

∣∣∣∣Ei − Pi
E1

∣∣∣∣× 100 (2)

where E stands for experimental values, while P for the model-predicted ones.

3. Results and Discussion

In a first experimental step, the most promising P-v sets were selected by SSTs analyses.
The morphologies of the SSTs built with different combinations of power and scan speed are
reported in Figure 2a. The images clearly show that stable scan tracks were formed in most
cases and that both P and v affect their morphology. The figure shows that maintaining a
constant powder feeding, high power, and low scan speed lead to larger beads. The use of
a high laser power causes higher energy densities, and therefore, the formation of larger
melt pools. Larger melt pools implicate larger powder capture, therefore, these parameters
are also associated with higher powder efficiency values [20]. Conversely, the effect of the
scanning speed is not only correlated to the higher energy density but also to the higher
powder deposition reached as the scan speed decreases. The powder deposition represents,
in fact, the amount of powder delivered by the carrier gas and can be calculated as F*v.

For a more accurate analysis of the tracks and to discern the most promising P-v sets,
each SST was measured as shown in Figure 2b. The SST’s quality was defined based on
two main aspects: the bead’s growth (G) and the G/D ratio. As previously reported, in
fact, the G/D ratio can be a good indicator of the quality of a SST [21,22]. Low values
of G/D indicate that the scan is poorly growing and that most of the energy is used for
remelting rather than building [23]. High G/D ratios, on the contrary, could indicate a poor
interconnection with the previous layers, which might cause porosities and delaminations
in bulk components.

The process window was then divided into three areas according to the features as
reported in the legend of Figure 2.

As a result of the SSTs analysis, two sets of power and scan speed were selected:

• Low Power (LP): P = 50% and v = 60%
• Low Power (HP): P = 60% and v = 60%
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The LP parameters were selected, even if they belong to the orange area of the process
window, as they resulted in being the most promising in the optimization of a similar
powder described in previous works [7]. Furthermore, the selection of non-optimal P-v set
aimed to evaluate the validity of the selected criteria. The HP parameters, on the contrary,
were selected as they seemed to be among the most promising ones as they resulted to
be the most central in the green area of the process window (Figure 2a). This implies not
only that the SSTs were characterized by appropriate G and G/D values but also that slight
variations of the thermal conditions that can arise due to the fact that the heat accumulation
would not strongly modify the geometrical features.

Based on these data, cubes were built using 0.3 and 0.0 as hatch overlap (XOV) and
growth overlap (ZOV), respectively. These values were selected based on the knowledge
acquired using similar powders [24]. Furthermore, results reported in the literature suggest
to use similar overlap values in order to avoid a strong increase in the layer height from
the first scan track to the last one of the layer [25].

Based on the scan geometries, the displacement values (dX and dZ) for each cube
were then calculated according to Equations (3) and (4).

dX = W ∗ (1 − XOV) = W ∗
(

1 − x
W

)
(3)

dZ = G ∗ (1 − ZOV) = G ∗
(

1 − z
G

)
(4)

where x and x are the overlap distances along the X and Z directions.
A schematic representation of the tracks’ overlaps and displacements is reported in

Figure 3.
The optical images of the X–Z cross-sections of the cubes show that the samples are

dense and crack free (Figure 4). Images of the defects found in the samples are reported
in Figure 4c. Only few fine spherical pores were found in the samples together with
some micrometric oxides. The discrimination of pores and oxides by image analyses was
impractical; therefore, the defect area was evaluated.



Metals 2021, 11, 932 6 of 12

Metals 2021, 11, x FOR PEER REVIEW 6 of 12 
 

 

= ∗ 1 − = ∗ 1 −  (3)= ∗ 1 − = ∗ 1 −  (4)

where x and x are the overlap distances along the X and Z directions. 
A schematic representation of the tracks’ overlaps and displacements is reported in 

Figure 3. 

 
Figure 3. Schematic representation of two LP-DED layers build with no growth overlap and the 
0/90° scanning strategy with bidirectional scanning in each layer. 

The optical images of the X–Z cross-sections of the cubes show that the samples are 
dense and crack free (Figure 4). Images of the defects found in the samples are reported 
in Figure 4c). Only few fine spherical pores were found in the samples together with some 
micrometric oxides. The discrimination of pores and oxides by image analyses was im-
practical; therefore, the defect area was evaluated. 

The micrographs also display that the microstructures of both samples are made of a 
network of interconnected melt pools (Figure 4). Within the melt pools, a fine austenitic 
(γ) cellular structure can be distinguished (Figure 4c,d). In some regions of the cells’ 
boundaries, δ-ferrite can be detected. The morphology of the cells strongly varies in the 
melt pool as it follows the thermal gradient [26]. The microstructures of the cubes built 
with the two sets of parameters did not show relevant differences. 

The cubes were analyzed further in detail, and the results are reported in Table 2. 
From the comparison of the porosity values, the HP set of process parameters seem to be 
the most promising as it allows to achieve the highest densification. This result is in line 
with the SSTs maps’ results as the LP scan track, which did not have an optimal G/D value, 
and implicates lower densification of the bulk sample with respect to the HP one which 
was characterized by promising geometrical features. 

The detailed analyses of the PCAS of the samples revealed that the parameters affect 
the cell size. In particular, the LP parameters caused the solidification of a finer micro-
structure characterized by a smaller PCAS value. This reduced size of the cells is due to 
the higher cooling rate experienced by the LP sample correlated to the reduced energy 
density value [15,27] 

The analysis of the dZ suggested that both samples are growing slightly faster than 
expected. The total height indicates, in fact, that a slight over-building phenomenon is 
observed. Under- and over-building are pretty common issues in DED processes [28]. 
These issues are however, generally not considered to be critical for the building process. 
The variance in the build height will be autonomously compensated thanks to the appro-
priate selection of the stand-off and focal distance and to the shape of the laser beam and 
of the powder stream. Previous studies demonstrated, in fact, that the irregularity of the 

Figure 3. Schematic representation of two LP-DED layers build with no growth overlap and the 0/90◦ scanning strategy
with bidirectional scanning in each layer.

Metals 2021, 11, x FOR PEER REVIEW 7 of 12 
 

 

last layer can be compensated using a stand-off distance lower than the focal length 
[29,30]. 

It is important to underline that with simple geometries, the parameters can be easily 
kept constant during the whole building process. When more complex geometries need 
to be built, it is important to use specific programs or algorithms able to provide a stable 
and homogeneous material deposition in the whole component [31]. 

 
Figure 4. Optical micrographs of the X-Z cross-section of (a) LP and (b–d) HP sample. The samples are oriented along the 
building direction. (c,d) High magnification images show the defects and the cellular structure. 

Table 2. Data of cubes built with high power and low power parameters. 

Sample Porosity 
(%) 

PCAS 
(µm) 

dZ 
(mm) 

dZm 
(mm) 

Total Height 
(mm) 

Target Height  
(mm) 

LP 0.086 ± 0.062 4.4 ± 1.1 0.30 0,32 ± 0.05 16.7 ± 0.9 15 
HP 0.013 ± 0.012 5.2 ± 1.3 0.30 0,36 ± 0.02 16.6 ± 0.2 15 

The EBSD grain orientation maps of the X–Z plane of both samples are reported in 
Figure 5. The high angle grain boundaries (HAGBs) are indicated in black in the maps. 
From the maps, it is evident that in both cases, elongated grains were detected. The mor-
phology of the grains indicates that, as expected, they followed the thermal gradient. In 
both cases, the columnar grains have a length up to about 400 µm and a width of about 
20–100 µm. The size of these grains, which in some cases are larger than the dZ values, 
suggest that they might grow across the melt pools, indicating that an epitaxial solidifica-
tion arises during the building process [14,32]. This phenomenon is a heterogeneous nu-
cleation which has been observed in many alloys processed by AM [6,33]. In these cases, 
the grains grow parallel to the thermal gradient with a growth rate (R) which is strictly 
related to the scan speed used during the building process. 

Figure 4. Optical micrographs of the X-Z cross-section of (a) LP and (b–d) HP sample. The samples are oriented along the
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The micrographs also display that the microstructures of both samples are made of a
network of interconnected melt pools (Figure 4). Within the melt pools, a fine austenitic
(γ) cellular structure can be distinguished (Figure 4c,d). In some regions of the cells’
boundaries, δ-ferrite can be detected. The morphology of the cells strongly varies in the
melt pool as it follows the thermal gradient [26]. The microstructures of the cubes built
with the two sets of parameters did not show relevant differences.

The cubes were analyzed further in detail, and the results are reported in Table 2.
From the comparison of the porosity values, the HP set of process parameters seem to be
the most promising as it allows to achieve the highest densification. This result is in line
with the SSTs maps’ results as the LP scan track, which did not have an optimal G/D value,
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and implicates lower densification of the bulk sample with respect to the HP one which
was characterized by promising geometrical features.

Table 2. Data of cubes built with high power and low power parameters.

Sample Porosity
(%)

PCAS
(µm)

dZ
(mm)

dZm
(mm)

Total Height
(mm)

Target Height
(mm)

LP 0.086 ± 0.062 4.4 ± 1.1 0.30 0,32 ± 0.05 16.7 ± 0.9 15
HP 0.013 ± 0.012 5.2 ± 1.3 0.30 0,36 ± 0.02 16.6 ± 0.2 15

The detailed analyses of the PCAS of the samples revealed that the parameters affect
the cell size. In particular, the LP parameters caused the solidification of a finer microstruc-
ture characterized by a smaller PCAS value. This reduced size of the cells is due to the
higher cooling rate experienced by the LP sample correlated to the reduced energy density
value [15,27].

The analysis of the dZ suggested that both samples are growing slightly faster than
expected. The total height indicates, in fact, that a slight over-building phenomenon is
observed. Under- and over-building are pretty common issues in DED processes [28]. These
issues are however, generally not considered to be critical for the building process. The
variance in the build height will be autonomously compensated thanks to the appropriate
selection of the stand-off and focal distance and to the shape of the laser beam and of the
powder stream. Previous studies demonstrated, in fact, that the irregularity of the last
layer can be compensated using a stand-off distance lower than the focal length [29,30].

It is important to underline that with simple geometries, the parameters can be easily
kept constant during the whole building process. When more complex geometries need to
be built, it is important to use specific programs or algorithms able to provide a stable and
homogeneous material deposition in the whole component [31].

The EBSD grain orientation maps of the X–Z plane of both samples are reported in
Figure 5. The high angle grain boundaries (HAGBs) are indicated in black in the maps.
From the maps, it is evident that in both cases, elongated grains were detected. The
morphology of the grains indicates that, as expected, they followed the thermal gradient.
In both cases, the columnar grains have a length up to about 400 µm and a width of about
20–100 µm. The size of these grains, which in some cases are larger than the dZ values,
suggest that they might grow across the melt pools, indicating that an epitaxial solidification
arises during the building process [14,32]. This phenomenon is a heterogeneous nucleation
which has been observed in many alloys processed by AM [6,33]. In these cases, the grains
grow parallel to the thermal gradient with a growth rate (R) which is strictly related to the
scan speed used during the building process.

No preferential orientation was observed in the samples. As suggested in previous
studies, the presence of texture in AM samples is strongly related to the melt pool dimen-
sions and therefore, to the cooling conditions [34]. Stronger textures are generally found in
AM samples built with low energy densities (i.e., low power and high scan speed). The
poor texture due to high energy density values is generally associated with the stronger
turbulence of melt pools caused by the Marangoni flow and the keyhole phenomenon [35].

The stress-strain curves and the tensile properties of the samples are reported in
Figure 6 and Table 3 and compared with literature data. The data reveals that the low
power samples allow the achievement of higher tensile properties even if slightly higher
porosity values characterized the samples. These higher tensile properties could be related
to the different microstructural features and, in particular, to the PCAS values. As reported
in Table 3, in fact, the LP parameters cause the solidification of finer γ cells. As suggested
in previous work, the high Yield Strength (YS) and Ultimate Tensile Strength (UTS) of
AM 316L is mainly related to the fine cell size and dislocation densities [36,37]. Tensile
properties of 316L samples produced by LP-DED using LP parameters and a powder
provided by a different producer are also reported [7]. It can be noted that using different
powder but the same parameters lead to very similar tensile performances. For the sake of
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comparison, the tensile properties obtained in the present study are also compared with
other literature data. It can be seen that the UTS values are in line with those obtained in
other works and that slightly lower YS were obtained [38]. The comparison with the tensile
properties of 316L processed by conventional routes highlights that, as expected, LP-DED
samples have higher YS, lower elongation, and similar UTS.
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Table 3. Tensile properties of DED 316L samples compared with literature data.

Sample YS
(MPa)

UTS
(MPa)

ε
(%) Ref.

316L LP-DED LP 474 ± 9 636 ± 12 35 ± 1 This work
316L LP-DED HP 434 ± 6 615 ± 6 36 ± 1 This work
316L LP-DED LP 469 ± 3 628 ± 7 31 ± 2 [7]

316L LP-DED 534 630 37 [38]
316L Conventional manufacturing 360 625 69 [38]

The results of the study performed to analyze the strain hardening behavior are re-
ported in Figure 7 and Table 4. The dual-logarithmic plot was used as proposed by other
researchers [18,39]. Both curves in the plot show an initial not-linear increasing trend
followed by a linear stage. The blue pentagons indicate the transition among the not-linear
and linear trend. The last point of the curves represents the ultimate tensile strength, i.e.,
the last portion of the test before the samples’ geometrical instability.

Metals 2021, 11, x FOR PEER REVIEW 9 of 12 
 

 

 

Figure 6. Representative tensile curves of DED 316L samples built with high power and low 
power parameters. 

Table 3. Tensile properties of DED 316L samples compared with literature data. 

Sample YS 
(MPa) 

UTS 
(MPa) 

ε 
(%) Ref. 

316L LP-DED LP 474 ± 9 636 ± 12 35 ± 1 This work 
316L LP-DED HP 434 ± 6 615 ± 6 36 ± 1 This work 
316L LP-DED LP 469 ± 3 628 ± 7 31 ± 2 [7] 

316L LP-DED 534 630 37 [38] 
316L Conventional manufacturing 360 625 69 [38] 

The results of the study performed to analyze the strain hardening behavior are re-
ported in Figure 7 and Table 4. The dual-logarithmic plot was used as proposed by other 
researchers [18,39]. Both curves in the plot show an initial not-linear increasing trend fol-
lowed by a linear stage. The blue pentagons indicate the transition among the not-linear 
and linear trend. The last point of the curves represents the ultimate tensile strength, i.e., 
the last portion of the test before the samples’ geometrical instability. 

 
Figure 7. Log-Log plot of true strain and stress obtained with two parameter sets. The blue pentagon 
shows where the curve diverges from linearity. 
Figure 7. Log-Log plot of true strain and stress obtained with two parameter sets. The blue pentagon
shows where the curve diverges from linearity.

Table 4. Fitting parameters of Voce model. The R2 and AARE indicates a very good fitting.

S q k2 p R2 AARE [%]

Value sd Value sd Value sd

LP 33.8 12.6 0.105 0.00273 1.39 0.019 0.995 0.05
HP 13.3 11.4 0.063 0.00312 1.31 0.016 0.996 0.03

The Voce model was used to obtain all the relevant coefficients as previously described.
In particular, great attention was given to the parameter q, which is higher in the sample
obtained with lower laser power. A higher q value indicates an inferior dislocation free
path, which could be compliant with smaller dendritic structures as well as higher disloca-
tion density. Both these hypotheses are in accordance with the previous discussion and
experimental results. The higher cooling rate of the LP samples leads to smaller γ cells and
probably to a slightly higher dislocation density, leading to the differences in the plastic
flow observed and the almost negligible reduction of elongation at break.
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4. Conclusions

In this work, AISI 316L stainless-steel samples produced via LP-DED with different
sets of parameters were analyzed in terms of SSTs morphology, porosity, geometrical
stability, microstructure, and mechanical properties. The main results can be summarized
as follows:

• The SSTs morphology can be a good indicator for the selection of appropriate process
window that allows the production of dense samples. The cube built with the P-v
set indicated by the SSTs analyses and by their geometrical features is characterized
by the highest densification. On the contrary, the cube built with P-v set leading to
inappropriate G/D values is characterized by slightly higher porosity values.

• Both cubes have a microstructure made of interconnected melt pools containing fine γ
cells and some δ-ferrite at the cells’ boundaries. However, the building parameters
affect the size of the cells due to the different cooling rates which they undergo.

• The EBSD IPF maps showed that both cubes are characterized by elongated grains
that follow the thermal gradient. The grains have length values up to about 400 µm
and width of about 20–100 µm. None of the cubes were characterized by textures
which is probably due to the high energy density used during the building process.

• The tensile properties indicate that in both cases, high yield and ultimate tensile
strengths can be achieved. The comparison of the data indicates that the YS and UTS
are related to the building parameters. The samples built with LP parameters are
characterized by higher strength even if the microstructural analyses indicated that
the samples are characterized by higher porosity values.

• The Voce flow model was effectively used to analyze the plastic behavior of the
samples. The fitting results made it possible to determine a smaller dislocation-free
path for the LP samples, which is compliant with the finer dendrites of these samples
induced by the higher cooling rate.
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