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Abstract— This paper deals with the performance/ 

temperature tradeoff in an ultra-low voltage, ultra-low power 

rail-to-rail dynamic voltage comparator made solely by digital 

standard cells. The digital nature of the comparator makes its 

design technology portable also enabling its operation at very 

low supply voltages down to deep sub-threshold. In particular, 

as sub-threshold circuits have a significant temperature 

dependence, this paper focuses on the comparator performance 

under different supply voltages and temperatures.  

Measurements performed on a 180nm testchip show correct 

operation under rail-to-rail common-mode input at a supply 

voltage ranging from 0.6V down to 0.15V. Moreover, the 

measurements under temperature variations of offset, clock-to-

output delay, and power in the range from -25 °C to 75 °C show 

the respective performance trade-offs.  
 

   Keywords—Temperature dependence, standard cell-

based, technology portable, low design effort, low area Dynamic 

comparator, fully-synthesizable, ultra-low voltage, ultra-low 

power, sensor nodes, Internet of Things.  

I. INTRODUCTION 

 Circuit techniques for operation over a wide range of 
supply voltages are crucial to meet the tight power and cost 
constraints of always-on miniaturized self-powered sensor 
nodes whose need to fit the power budget of millimeter-scale 
harvesters targeting the Internet of Thing (IoT) applications 
[1][2]. For this reason, circuit solutions based on digital 
standard cells have been explored to push the supply voltage 
down to deep sub-threshold, and reduce the human design 
effort for a low cost. Mostly and/or fully-
digital/synthesizable building blocks such as OTAs [3][4][5] 
Filters [6], ADCs [7][8][9] DACs[10], and comparators 
[11][12] recently proposed in the literature are inherently 
more amenable for aggressive voltage scaling, automated 
design and design/technology porting than their analog 
counterparts. These design approaches deal with the challenge 
of keeping reliable performance [13] while enabling other 
interesting capabilities such as a graceful quality degradation 
at overscaled voltages [10].  
 In particular, this paper focuses on the performance 
evaluation under different supply voltage and temperature 
conditions of a Rail-to-Rail Dynamic Voltage Comparator 
(RRDVC) [11][12] that thanks to its digital nature, can 
operate with the widest operating supply voltage (at the best 
of the authors’ knowledge) down to 0.15V with power 
consumption down to the sub-picoWatts level. This makes the 
circuit well suited for battery-less systems that are directly 
powered by harvesters, which are becoming very popular due 
to their low cost and small form factor [1][2]. However, the 
aggressive voltage scaling makes the circuit highly sensitive 
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Fig. 1 Proposed fully-synthesizable RRDVC with complementary 
NAND/NOR input stage and dual-input SR latch: a)  gate-level structure, b) 

truth table of the dual-input SR latch  [12]. 

 
to temperature variation. In fact, the performance of ICs 
operating in sub-threshold is highly affected by the 
temperature variation. In consideration of that, the 
temperature dependence of key comparator performance like 
offset, clock-to-output delay, and power consumption are 
discussed for the first time herein based on measurement 
results on a recent 180nm demonstrator published in [12].  

In Section II the operating principles of the RRDVC are 

briefly recalled. Then, in Section III the RRDVC measured 

performance from near-threshold (600mV) down to deep sub-

threshold (150mV) of offset, clock-to-output delay, and 

power across the -25°C - 75°C temperature range are shown. 

In Section IV the conclusion will be drawn.  
 

II. FULLY SYNTHESIZABLE RRDVC OPERATING PRINCIPLE 

The RRDVC [12] considered in this paper is sketched in Fig. 
1. Such a circuit combines the digital outputs of the 3-inputs 
NANDs-based dynamic voltage comparator (DVC) [8] (Fig. 
2a) with its “complementary” 3-inputs NORs-based DVC 
version for rail-to-rail operation. The 3-inputs NAND  gates 
(I4 and I5 in Fig. 1a) operate correctly and generate the 
expected outputs S1 and R1 when the common-mode input is 
closer to !"" than to ground. In this case, the 3-inputs NOR 
gates (I2 and I3 in Fig. 1a) fail and their outputs are stuck at 
the pre-charged value (i.e., ground), and do not affect the DVC 
output. Vice versa, when the common-mode input is closer to 
the ground, the 3-inputs NOR gates properly operate. Both 
the 3-inputs  NOR  and  the  3-inputs  NAND   gates   operate 
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Fig.2. NAND3-based DVCs [8] (sub-block input stage of Fig.1a)  a) gate-level 
and b) transistor-level view, c) equivalent circuit during output transition. 
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Fig.3. Proposed fully-synthesizable comparator with complementary 

NAND/NOR input stage and dual-input SR latch: a) layout, b) die photo  

 
properly when the common-mode input is around the mid-
range. 

For sake of simplicity, the RRDVC operation is explained 
only referring to the NAND-based DVC sub-block referring 
to Fig. 2 originally proposed in [8]. The sampling clock is tied 
to the inputs C1 and C2 and thus connected to the gate 
terminals of MN3_1, MP3_1, and MN3_2, MP3_2. The 
inputs A1 and A2 of the NAND3 gates are at the gate 
terminals of transistors MN1_1, MP1_1, and MN1_2, MP1_2. 
These inputs represent respectively the non-inverting (#$%&) 

and inverting ( #$%' ) input of the DVC. The NAND3s 
terminals B1 and B2 are connected to the gate terminals of 
MN2_1, MP2_1, and MN2_2, MP2_2, and also respect to the 
outputs OUT2 and OUT1 of the NAND3 gates in a cross-
coupled fashion. At the high-to-low clock transition, OUT1 
and OUT2 are pre-charged to !"", and transistors MN2_1 and 
MN2_2 are on, due to the cross-coupled feedback connection. 
At the low-to-high clock transition, the transistors MP3_1 and 
MP3_2 are turned off, thus disabling the precharge of OUT1 
and OUT2 and the sampling phase starts. The transistors 
MN3_1 and MN3_2 are turned on so that the pull-down 
networks of the two NAND gates are enabled: the transistors 
MN2_1 and MN2_2 are still on immediately after the rising 
clock edge since OUT1 and OUT2 are still at VDD. 
 Assuming a positive input differential voltage #"( =
#$%& ) #$%', OUT1 is pulled down by MN1_1 faster than 

OUT2, since the gate voltage of MN1_2 is lower than the gate 
voltage of MN1_1. Therefore, OUT1 reaches !*+,  before 
OUT2, where !*+,  is the threshold voltage of NMOS 
transistors. The inherent positive feedback forces OUT1 to be 
latched low, and OUT2 to be latched high. Opposite 
considerations with a negative differential input #"( can be 
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Fig.4. Measured input offset voltage vs. #-( at different temperatures of the 

RRDVC at a) !""=0.15V, b) !""=0.3V, and c) !""=0.6V 

 
done. This behavior constitutes the basic operation of an   
analog comparator although it is built by means of digital 
standard cells. Similarly works the NOR-based DVC for 
common-mode input is closer to ground.  

III. EXPERIMENTAL RESULTS UNDER TEMPERATURE 

VARIATIONS 

The performance/temperature trade-off of the RRDVC in Fig. 

1 across different supply voltage and the -25°C to -75°C 
temperature range is now explored referring to a demonstrator 
laid-out and fabricated in 180nm CMOS [12] reported in Fig. 
3. Minimum-sized standard cells have been used to keep the 
power to a minimum, sacrificing speed and offset for the 
specific instance of the RRDVC. Of course, the usual wide 
range of area/ power/speed trade-offs can be achieved with 
proper cell strength. In fact, the strength of the input logic 
gates also affects the comparator offset, based on Pelgrom’s 
law offset dependence on the reciprocal of the square root of 
the cell strength [14]. In other words, input offset reductions 
come at the cost of higher area and thus power [14]. Same for 
the propagation delay. 
 Fig. 4 shows the offset voltage versus the input common-
mode range for supply voltages of 0.15V, 0.3V, and 0.6V and 

across the -25°C - 75°C temperature range for the minimum 
size RRDVC fabricated in 180nm. The offset has a more 
significant dependence on the common-mode input at the very 
low supply voltage of 0.15V. The worst-case offset of the 
proposed DVC in the rail-to-rail input range is 22mV at the 
supply voltages of 0.15V, 10mV at 0.3V, and 13mV at 0.6V. 
Although the offset increases lowering the supply voltage. 
From the measurement results, the temperature slightly affect 
the offset whenever it worsen his value.  
 The joint impact of temperature and differential input 
mode #"( (common-mode input #-() on the clock-to-output  
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Fig. 5. Clock-to-output propagation delay of the RRDVC versus differential 

input voltage #"( measured for #-(=!""/2 and at different temperatures for 

a) !""=0.15V, b) !""=0.3V, and c) !""=0.6V. 

 
the lower is the delay whereas the power consumption is  
higher, whereas the temperature dependence delay is shown 
in Fig. 5 (Fig. 6). As expected, in the deep subthreshold 
(0.15V-0.3V !""), the higher the temperature, 
is almost negligible in near-threshold (600mV !"" ). In 
particular, the impact of the differential input voltage #"( on 
the propagation delay is plotted in Fig. 5 versus the 
differential input #"( under #-(=!""/2.  

Because of the larger sensitivity of the current to the gate-

source voltage in the sub-threshold and the deep sub-

threshold region, the sensitivity of the propagation delay to 

the input differential voltage expectedly increases at lower 

supply voltages. The maximum slope at room temperature of 

the voltage-delay curve for is 25µs/V at !""=0.6V, 1.5ms/V 

at !""=0.3V, and reaches the highest value of 21.6ms/V at 

!""=0.15V and the temperature slightly affects the slope 

versus the differential input voltage #"( 

In Fig. 6, the clock-to-output propagation delay of the 

RRDVC was measured across the entire rail-to-rail input 

common-mode range for a differential input voltage #"( .of 

10 mV. The propagation delay is expectedly maximum at 

#-(=!""/2, due to the cross-conduction current at inputs 

with intermediate common-mode range. This phenomenon is  

more evident in near-threshold condition (at 0.6V in Fig. 6c). 
 The above-mentioned measurement results refer to an 
RRDVC with a minimum input gates' strength. Thus, the 
offset and the delay at room temperature could be reduce 
increasing the above-mentioned strength whereas the specific 
application will require increasing performance. Anyhow, the 
design choice targets an RRDVC suitable for direct powering 
from  mm-scale  harvesters  under  any  supply  voltage  and 
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Fig. 6. Clock-to-output propagation delay of the RRDVC vs. common-

mode input voltage #-(  measured for a differential input voltage 

#"(=10mV and at different temperatures for a) !""=0.15V, b) !""=0.3V, 

and c) !""=0.6V 

 
 temperature condition. The latter strongly affects the power 
consumption more and more from near-threshold (0.6V) 
towards a more aggressive voltage scaling in subthreshold  
(0.3V) and deep subthreshold (0.15V) regions.  
  At room temperature, the maximum power 

consumption is respectively 6.2pW (27pW), 24pW (89pW) 

and 1.95nW (2.22nW) for a supply voltage equal to 0.15V, 

0.3V and 0.6V, at 10Hz (10kHz) clock frequency. 

 The power consumption across temperatures from -25°C 

to 75°C at a 10-Hz (10-kHz) clock frequency ranges from 
0.3pW (0.5pW) to 0.1nW (0.1 nW) for a supply voltage of 
!"" =0.15V from 2pW (37pW) to 0.3nW (0.36nW) for 
!""=0.3V and from 0.15nW (0.4nW) to 6.47nW (7.25nW) for 
!""=0.6V as shown by the measured plots in Fig. 7 (Fig. 8).  
 Comparing the power consumption in deep subthreshold 

at 0.15V at different clock frequencies (Fig. 7a and Fig. 8a), 

the temperature in the range -25°C to 75°C produces a power 

consumption variation of three orders of magnitude that is 

slightly affected by the switching activity of the clock. Thus, 

the leakage power consumption is the dominant one.  

 A more varying power consumption across the above-

mentioned temperature range is progressively more evident 

in subthreshold (at 0.3V in Fig. 7b and Fig. 8b) and in near-

threshold (at 0.6V in Fig. 7c and Fig. 8c). In other words, 

increasing the supply voltage the overall power consumption 

is dominated by the dynamic power consumption due both to 

the switching clock and the cross-conduction. The latter one 

depends both on the supply voltage  !""  and the input 

common-mode #-( and it is more evident in the middle of 

the input dynamic range of the RRDVC (for #-( 0 !""/2).  
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IV. CONCLUSION 

The performance variation under temperature variation of 

an RRDVC designed and laid-out exploiting digital 

(automated) design tools enabling operation down to 0.15V 

was explored in this paper. Measurements have shown how 

the RRDVC performance is affected by the temperature 

variations in the range from -25°C to 75°C reaching up to 

three order of magnitude in difference. In particular, the 

power consumption ranges from sub-picoWatt to sub-

nanoWatts at !"" = 0.15 V, and from sub-nanoWatts to 

nanoWatts for !""=0.6 V. On this basis, the standard cell-

based RRDVC is suitable to operate under unregulated 

supply and powered by mm-scale harvesters under any 

temperature condition in low-cost and ultra-compact IoT 

sensor nodes. 
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