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Effect of Different Good Solvents in Flash

Nano-Precipitation via Multi-scale Population Balance

Modeling-CFD coupling approach

Alessio D. Lavino1, Marco Ferrari∗, Antonello A. Barresi, Daniele Marchisio

Department of Applied Science and Technology, Institute of Chemical Engineering,
Politecnico di Torino, 10129 Torino, Italy

Abstract

A computational and modeling approach is used to highlight the key factors

that affect polymer nanoparticles (NP) formation in flash nano-precipitation

(FNP), when the good solvent, e.g., acetone, is replaced by acetonitrile,

tetrahydrofuran and tert-butanol. A population balance model is coupled

with computational fluid dynamics to study the kinetics effects on FNP. The

mean NP size is predicted in terms of mean radius of gyration via the Flory

law of real polymers. The effect of different good solvents is modeled in terms

of solute-solvent interactions, using the Flory-Huggins theory and Hansen sol-

ubility parameters. Promising results show how the proposed methodology is
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able to investigate the role played by different good solvents, analyzing single

factors at the time. A deep insight into both the dynamics of mixing and

the dynamics of aggregation is therefore reached and the main mechanisms

involved are pointed out, showing a good agreement with experimental data.

Keywords: Flash Nano-Precipitation, Hansen Solubility Parameters,

Flory-Huggins Theory, Population Balance Model, CFD

1. Introduction1

Nanoparticles (NP) production has been widely investigated in the last2

decade, due to the wide range of its applications such as cosmetics, pharma-3

ceuticals, textiles, agriculture, and food science (Das et al., 2009; Demetzos,4

2016; Nelson, 2002; Prasad et al., 2014; Wu and Guy, 2009). The control5

of the final NP size and particle size distribution is of paramount impor-6

tance, especially in controlled drug delivery systems applications, in which7

a threshold dimension must not be exceeded to guarantee the correct drug8

release at the targeted area inside the blood stream (Hans and Lowman,9

2002; Petitti et al., 2008). In particular, polymer NP formation received10

a lot of attention from both experimental and modeling approaches, in or-11

der to determine the key parameters that govern the final NP targeted size12

(Celasco et al., 2014; Valente et al., 2012a,b; Zelenková et al., 2018). Due to13

their biological applications, polymers must be biocompatible and non-toxic;14

here, poly-ε-caprolactone (PCL) is used, since it has been considered one15

of the best candidates for this purpose (Who et al., 2000). One of the most16

used techniques for NP production is represented by the so-called flash nano-17

precipitation (FNP). It consists in the mixing of a ‘good solvent’ in which the18
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polymer is dissolved and a ‘bad solvent’ (also named as anti- or non-solvent),19

which is miscible with the good solvent but not compatible with the polymer.20

The anti-solvent destabilizes the mixture inducing polymer aggregation and21

precipitation of the formed NP. The phenomenon that governs NP forma-22

tion just described above is also labelled as solvent displacement (Saad and23

Prud’homme, 2016).24

Several studies have been already carried out to understand fluid dynam-25

ics effects at macro- and micro-scales (Johnson and Prud’homme, 2003b;26

Liu and Fox, 2006) for the confined impinging jets mixer (Johnson and27

Prud’homme, 2003a) (CIJM) and also for different geometries, such as the28

vortex mixer (VM) (Marchisio et al., 2009, 2008), the multi-inlet vortex mixer29

(MIVM) (Liu et al., 2008), the T-mixer (Gradl et al., 2006) and the Y-mixer30

(Choi et al., 2005). Other experimental (Lince et al., 2008) and modeling31

(Cheng et al., 2010; Di Pasquale et al., 2012; Lavino et al., 2015, 2017) at-32

tempts also showed the importance of accounting for the kinetics besides33

the thermodynamics for FNP. However, numerous are still the open topics34

under debate that need to be addressed. One of them is represented by the35

effect of different good solvents in NP formation via FNP and has become36

a crucial aspect of the industrial NP production. Here, the interesting case37

of NP formation in CIJM is considered, with PCL as solute and water as38

anti-solvent. Four different good solvents are investigated: acetone (ACT),39

acetonitrile (ACN), tetrahydrofuran (THF) and tert-butanol (TBA).40

The experimental procedure for polymeric NP production through solvent41

displacement has been extensively applied throughout the years, testing dif-42

ferent polymers; in particular, it was validated for PCL, obtaining also good43
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incorporation efficiency with different loading substances (Barresi et al., 2015;44

Celasco et al., 2014; Ferri et al., 2017; Lavino et al., 2019; Lince et al., 2008,45

2009, 2011; Massella et al., 2018; Valente et al., 2012a,b; Zelenková et al.,46

2015, 2014). In experiments, water quenching (i.e. sudden dilution with47

distilled water) is employed as stabilization technique over time of the pre-48

cipitated NP (Barresi et al., 2015; Ferri et al., 2017; Zelenková et al., 2015,49

2014), preventing further aggregation in the reactor outlet (Barresi et al.,50

2015; Saad, 2007) and preserving the particle distribution. This is implicitly51

taken into account in our modeling approach by ‘freezing’ the predicted NP52

sizes at the outlet of the mixer (Lavino et al., 2017, 2019; Lince et al., 2009)53

allowing a consistent comparison with the experimental data, as it will be54

explained more clearly in the theoretical and modeling section of this work.55

Experiments showed how different NP size and size distribution may be56

reached by just changing the good solvent (Ferri et al., 2017; Zelenková et al.,57

2015), a crucial aspect in several industrial contexts. At this level of descrip-58

tion, from the experiments side, it is hard to fully understand the parameters59

that play a key role in determining different mean NP size at the outlet of the60

process. Hence, modeling and simulations are here employed to further exam-61

ine those aspects and, eventually, to analyze them separately. A population62

balance model (PBM) which uses molecules as building blocks coupled with63

computational fluid dynamics (CFD) approach is used, already proposed and64

validated in an our previous work (Lavino et al., 2017), where the presence65

of the drug is neglected, as also in this present work. The main novelty of the66

proposed methodology consists in the incorporation of the thermodynamics67

theory of Flory-Huggins interaction parameter (Hansen, 2007) inside the ki-68
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netic model (PBM-CFD) to study the different good solvent effects on the69

final predicted NP size. Recent efforts also showed at the molecular scale70

the importance of accounting for the thermodynamics on the polymer con-71

formation in mixtures (Gartner and Jayaraman, 2018; Lavino et al., 2018,72

2020; Martin and Jayaraman, 2016). More specifically, the Flory-Huggins73

interaction parameter χ is here correlated to the mean radius of gyration,74

expressed, in turn, in terms of Flory law (Flory, 1953). The solubility of PCL75

is accounted for by using the Hansen solubility parameters (HSP) for the dif-76

ferent solvents investigated in this work. This modeling approach brings the77

advantage of considering thermodynamic quantities inside the kinetic model,78

such as the Flory-Huggins χ parameter and the HSP, extensively reported in79

literature for a wide range of solvents and, more importantly, shows how to80

correlate them to the prediction of the final mean NP size. In this way, it is81

possible to readily obtain a transferable model, when different good solvents82

are used in FNP. Kinetics and thermodynamics are therefore intertwined in83

a unique modeling tool and used to investigate the effect of different good84

solvents on NP precipitation, showing a promising way to reach a deeper85

understanding of the Hansen approach, for the specific case of particulate86

systems. Another very important advantage is the possibility to analyze sin-87

gle factors at a time, unlike experiments, getting a deeper insight into the88

main phenomena. In this way, the dynamics of mixing is studied separately89

from the dynamics of aggregation, highlighting the physical and modeling90

properties that mainly influence polymer aggregation, when different good91

solvents are used.92

The paper is structured as follows: modeling and theoretical backgrounds93
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are presented in section 2, with particular attention to the multi-scale kinetic94

model (CFD and population balance model) together with the thermodynam-95

ics of NP formation by solvent displacement; then, operating conditions and96

numerical details are reported in section 3. The main results are discussed97

in section 4 and, finally, conclusions and future developments are presented98

in section 5.99

2. Theoretical Background100

This section is dedicated to the theoretical background and the modeling101

strategy adopted in this work. The theory presented here is divided into102

two main subsections: i. the kinetic model, in which the main equations103

of the population balance model (PBM) and computational fluid dynamics104

(CFD) are presented; ii. the thermodynamic model, used to study the solute-105

solvent interactions, with a particular focus on the theory of real polymers106

in solution.107

The PBM-CFD coupling approach is able to describe the effect of kinetics108

on NP precipitation by accounting for the interplay of many factors, such as109

the inlet flow rate, the turbulent mixing and the particles-collision dynamics110

(details thereof will be presented in section 2.1), which have been proven to111

strongly affect the final NP size at certain operating conditions (Lavino et al.,112

2017). More specifically, the PBM predicts the mean particles size at the113

outlet of the mixer, as well as the evolution of the particles size distribution,114

also named cluster mass distribution (CMD), as it will be labelled from now115

on. On the other hand, the thermodynamics of real polymers is used to build116

up a modeling bridge, able to embrace the different good solvent effects, and117
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strictly interconnected to the PBM, as it will be explained in section 2.2.118

Regarding the flow field, the steady-state Favre-averaged continuity and119

Navier–Stokes equations are solved in the CFD code, together with the equa-120

tions for the turbulent kinetic energy, k, and the turbulent dissipation rate,121

ε, in line with the standard k− ε turbulence model (Andersson et al., 2012).122

As these equations are very well known and already implemented in the CFD123

code, they are omitted here for a sake of brevity and the readers can refer to124

our previous work Di Pasquale et al. (2012) for further details. The Favre-125

average approach (Favre, 1965) is necessary, since two fluids with different126

densities are involved. The fluid can still be considered incompressible, but127

density fluctuations are taken into account in this way.128

The effect of turbulent fluctuations on NP formation is modeled by the di-129

rect quadrature method of moments, coupled with the interaction-by-exchange-130

with-the-mean (DQMOM-IEM) method (Marchisio and Fox, 2005), in which131

two nodes/environments are employed for the quadrature procedure. Below,132

two subsections are dedicated respectively to the PBM (aggregation dynam-133

ics and micro-mixing models) and the thermodynamics of real polymers in134

solution, presenting the main modeling details employed in this work.135

2.1. Population Balance Model for FNP136

A population balance model (PBM) is employed to describe the evolution137

of the cluster mass distribution (CMD). Being this model extensively pre-138

sented in our previous work, here we report only the definition of the CMD139

and the kinetic equation in which the moments of the CMD are transported.140

For a complete detailed description of the PBM, please refer to Lavino et al.141

(2017). The CMD is modeled with a number density function, f(x, n), de-142
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fined in such a way that the quantity f(x, n)dn represents the number den-143

sity of NP, or molecular clusters, containing n macromolecules at position x.144

The term ‘macromolecule’ is here referred to as PCL molecule of molecular145

weight MW = 14000 g mol−1. The variable n is labelled as dimensionless146

cluster mass or aggregation number and it can be treated as a continuous147

variable, since it varies from one to very large numbers. In the pure good sol-148

vent stream the PCL is completely dissolved and no aggregation takes place.149

Therefore, the CMD corresponds to a Dirac delta function centred in n = 1.150

By normalising the CMD with the Avogadro number (necessary to keep the151

simulations numerically stable), the CMD in the good solvent stream (initial152

conditions) corresponds to the initial polymer molar concentration.153

The PBM is here solved with the quadrature method of moments (QMOM)154

approach (Marchisio and Fox, 2013). Let us recall the definition of the generic155

jth-order moment:156

m(j) =

∫ ∞
0

f(n)njdn. (1)

The advantage is twofold: on one hand, the computational cost is heavily157

reduced, compared to other discretized methods (Marchisio and Fox, 2013);158

on the other hand, the moments of the CMD represent physical measur-159

able quantities. Indeed, m(0) is the total cluster number density, m(1) is a160

conserved quantity and corresponds to the total number density of macro-161

molecules, whereas the ratio between m(1) and m(0) results in the average162

number of macromolecules per NP or molecular cluster. Here the first four163

moments are used (i.e., j = 0, . . . , 3), corresponding to a quadrature approx-164

imation with two nodes.165
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By applying the moment transform and the Favre average 〈·〉, the steady-166

state transport equation for the jth-order moment of the CMD f(n) reads as167

follows:168

∂

∂x
·
(
ρ̄〈U〉

〈
m(j)

〉)
− ∂

∂x
·

(
ρ̄Γt

∂
〈
m(j)

〉
∂x

)
=

=
ρ̄

2

〈∫ ∞
0

∫ ∞
0

[
(n+ n′)

j − nj − n′j
]
β(n, n′)f(n)f(n′)dndn′

〉
, (2)

where Γt ≈ νt/0.7, is the turbulent diffusivity which is much larger than the169

Brownian diffusivity and is calculated from the turbulent viscosity, νt, by170

assuming a turbulent Schmidt number of 0.7 (Andersson et al., 2012), ρ̄ is171

the time-averaged fluid density and 〈U〉 is the Favre-averaged fluid velocity,172

as the particle Stokes number is much less than unity (Baldyga and Orciuch,173

2001). The aggregation kernel, β(n, n′), that appears in the source term on174

the right hand side of Eq. (2) represents the rate with which two clusters175

(or, equally, nanoparticles) collide and aggregate (second order point process176

(Marchisio and Fox, 2013)). The source term consists of two contributions:177

a negative term that states the disappearance of two clusters containing178

respectively n and n′ polymer macromolecules, and the appearance of the179

aggregate cluster (positive term) formed by n + n′ macromolecules. In line180

with this purely-aggregative modelling approach, nucleation and growth do181

not explicitly appear in the PBM formulation, which can be eventually taken182

into account into the aggregation kernel (aggregation efficiency). This is a183

direct consequence of the choice of the PBM internal variable which is n,184

number of molecules that belong to a cluster. For further details, please re-185
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fer to Lavino et al. (2017). It is noteworthy to stress that molecular dynamics186

investigations (Di Pasquale et al., 2014) have shown that the freely-jointed187

chain model (Rubinstein and Colby, 2003) can be applied in this mathemat-188

ical formulation, so that a cluster made by n molecules of molecular weight189

Mw will behave as a cluster made by one single PCL molecule of molecular190

weight n·Mw. This assumption affects the formula used for the mean clusters191

size, in terms of Flory law, as it will be shown in section 2.2.192

The aggregation kernel accounts for two mechanisms: Brownian motions193

and turbulent fluctuations. Here, the assumption is that these two contri-194

butions are simply additive, and it holds on the physical evidence that at195

low initial polymer concentration in good solvent stream, Brownian aggrega-196

tion dominates over the turbulent one, and vice versa at high initial polymer197

concentration. Applying the Stokes-Einstein formulation (Elimelech et al.,198

1998), the aggregation kernel in function of the mean radius of gyration of199

the two NP, or molecular clusters, that are self-assembling or aggregating200

assumes the following expression (Cheng et al., 2010):201

β(n, n′) = η
2kBT

3µ

(JRg(n, xs)K + JRg(n
′, xs)K)

2

JRg(n, xs)KJRg(n′, xs)K
+

+ 1.2944η

√
ε

ν
(JRg(n, xs)K + JRg(n

′, xs)K)
3
, (3)

where µ is the molecular viscosity of the suspending liquid (i.e. mixture202

of the good and bad solvents and therefore function of the good solvent203

molar fraction xs (Lavino et al., 2017)), kB is the Boltzmann constant, ε is204

the turbulent dissipation rate, ν is the mixture kinematic viscosity and J·K205
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represents the ensemble-average.206

The term η stands for an aggregation efficiency, only dependent on the207

initial supersaturation ratio. It is represented by a stepwise function: zero for208

undersaturated solutions and one for supersaturated solutions. The super-209

saturation ratio is defined as the ratio between the local PCL concentration210

and its equilibrium one. Their expressions are reported in our previous work211

(Lavino et al., 2017). When the supersaturation ratio is locally greater than212

unity, or in other words when the local PCL concentration is greater than its213

local solubility (i.e., equilibrium concentration), which in turn depends on214

the local solvent composition, self-assembly and aggregation are triggered;215

namely PCL molecular self-assemble forming NP that then further aggre-216

gate forming the final NP. The main assumption is that molecules are more217

stable when in a molecular cluster and therefore they self-assemble or aggre-218

gate irreversibly. This implies that the energy barrier for particle formation219

is null and therefore particle formation, under these conditions, can be in-220

terpreted as spinodal decomposition rather than nucleation. In line with the221

classical nucleation theory this model is applicable only when the initial su-222

persaturation is very large, as also found out in our previous work, where the223

model was originally validated by Lavino et al. (2017). An accurate quantifi-224

cation of the precipitated PCL with respect to what is left in solution during225

FNP still remains an unsolved issue; when the supersaturation ratio is much226

larger than unity, it is reasonable to assume that most of PCL precipitates227

out with the operating conditions investigated in this work.228

JRg(n, xs)K represents the ensemble-averaged radius of gyration, depen-229

dent on the aggregation number n and on the good solvent molar fraction230
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xs. It is expressed in terms of the Flory law, as explained in subsection 2.2.231

Moreover, the dynamics of mixing is also considered, as turbulence fluc-232

tuations and local mixing gradients (supersaturation) affect PCL aggrega-233

tion. More specifically, the solvent mixture fraction is described in terms of234

probability density function (PDF) for the good solvent mass fraction, ξ, in235

the good solvent-water mixture. As anticipated above in the text, mixing is236

treated with the DQMOM-IEM approach with only two nodes/environments.237

This turns out to be a strategic approach in modeling a binary mixture when238

no reaction occurs (Di Pasquale et al., 2012; Gavi et al., 2007). In line with239

the DQMOM-IEM, the weights and weighted abscissas in the two environ-240

ments 1 and 2 are directly solved through suitable transport equations:241

∂

∂x
(ρ̄〈U〉p1)−

∂

∂x

(
ρ̄Γt

∂p1
∂x

)
= 0, (4)

and p2 = 1− p1 (the PDF integrates to unity), together with:242

∂

∂x
(ρ̄〈U〉p1ξ1)−

∂

∂x

(
ρ̄Γt

∂

∂x
(p1ξ1)

)
=

= ρ̄γMp1p2 (ξ2 − ξ1) +
ρ̄Γt

ξ1 − ξ2

(
p1
∂ξ1
∂x

∂ξ1
∂x

+ p2
∂ξ2
∂x

∂ξ2
∂x

)
. (5)

The right-hand side of Equation (5) represents the molecular mixing, also243

referred to as micro-mixing term, mathematically closed with the IEM ap-244

proach (Fox, 2003); γM =
Cφ
2
ε
k

is the micro-mixing rate, where Cφ is a pa-245

rameter that depends on the local Reynolds number (Fox, 2003) and ε and246

k are respectively the turbulence dissipation rate and the turbulent kinetic247
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energy. More details can be found in Gavi et al. (2007). By inverting the248

subscripts 1 and 2, the transport equation related to p2ξ2 can be obtained.249

ξ1 and ξ2 can be interpreted as local good solvent mass fractions in the250

two ”environments”, representing turbulent composition fluctuations. The251

Favre-averaged mass fraction can be calculated as follows:252

〈ξ〉 =

∫ 1

0

p(ξ)ξdξ ≈ p1ξ1 + p2ξ2, (6)

where p(ξ) is the PDF related to the mixture fraction ξ. According to Equa-253

tion (6), also the good solvent volume fraction can be defined as:254

〈ξv〉 = p1ξ1,v + p2ξ2,v, (7)

where ξi,v is the volume fraction in the environment i = 1, 2, function of the255

mass fraction through the relation ξi,v = [1 + (1/ξi − 1) · ρs/ρw]−1, with ρs256

and ρw the good solvent and water densities, respectively.257

2.2. Thermodynamics of real polymers in solution258

This section is referred to the thermodynamic model that is incorporated259

into the PBM-CFD model. Let us recall the Flory theory of real polymers260

in solution (Flory, 1953). The polymer conformation in a given mixture261

is the balance between attractive and repulsive forces among the repeated262

units, taken into account through the so called excluded volume v. The263

polymer conformation is strictly related to the nature of the solvent and,264

more specifically, the polymer mean squared radius of gyration, appearing in265

Eq. (3), can be expressed via the Flory law, that can in turn be extended to266

molecular clusters or NP containing n polymer molecules, as shown in our267
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previous work:268

JRg
2(n, xs)K = ks(xs)(nMw)2νs(xs), (8)

where, as mentioned, the freely-jointed chain hypothesis is applied for a269

molecular cluster containing n PCL molecules, Mw is the molecular weight270

of a single PCL molecule and ks(xs) and νs(xs) are the Flory parameters,271

dependent, in turn, on the good solvent molar fraction xs and on the na-272

ture of the solvent, as indicated by the subscript s. As far as the acetone is273

concerned as good solvent, molecular dynamics calculations have been per-274

formed and interpolated and the corresponding functional forms determined275

in a previous work (Di Pasquale et al., 2014):276

ks(xs) = kref (xref ) = 0.0064 exp (−3.15xref ), (9)

νs(xs) = νref (xref ) = 0.30 + 0.45xref − 0.15x2ref , (10)

where the subscript ’ref ’ is introduced and from now on it will refer to as the277

reference solvent, namely the solvent for which all the necessary information278

is already provided from previous studies (acetone in this case).279

When the repulsive forces dominate on the attractive ones among the280

monomers, the excluded volume v assumes a positive value and the polymer281

shows a more stretched (coil) conformation, corresponding to a good solvent282

condition, and the Flory exponent is equal to 3/5. On the contrary, when283

the monomer attractive forces prevail, the excluded volume v is negative and284

the polymer exhibits a globule conformation. The latter case corresponds to285
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a bad solvent condition and the Flory exponent is equal to 1/3. When the286

two forces counterbalance each other, the excluded volume is null and the287

polymer assumes an ideal conformation, related to the so called ’θ-condition’.288

At the θ-condition, the Flory exponent is equal to 1/2. The close proximity to289

the bad solvent condition is crucial to be locally reached in FNP, in order to290

induce the spontaneous self-assembly of the polymer molecules in molecular291

cluster or NP.292

As a matter of fact, then, the polymer conformation is strictly depen-293

dent on the nature of the surrounding solvent; therefore, the Flory-Huggins294

interaction parameter, χs,p, is introduced in this modeling framework, being295

this one a direct measure of the energetic interaction of two components, e.g,296

a solute p and a solvent s, in turn, strictly correlated to the solubility of297

the solute in that specific solvent. The solubility is here taken into account298

by using the Hansen solubility parameters (HSP). The model presented in299

this work correlates the radius of gyration with the interaction parameter χ300

and the HSP, in order to be able to properly define the Flory parameters301

(ks(xs) and νs(xs)) functional forms in Eq. (8), when different good solvents302

are employed.303

Before getting into the HSP theory, a brief mention to the Hildebrand304

approach is mandatory. The Hildebrand solubility parameter (Hildebrand305

and Scott, 1950) of a substance corresponds to the cohesive energy per unit306

volume (it quantifies the work necessary to keep molecules close to each307

other) and reads as follows:308

δ =

(
∆Hv −RT

V

)1/2

, (11)
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where ∆Hv is the vaporization enthalpy, R is the gas constant, T is the309

absolute temperature and V is the molar volume.310

Hansen (2007) proposed a decomposition of the Hildebrand parameter311

into three different contributions, leading to the so-called Hansen solubility312

parameters (HSP):313

δ =
(
δ2D + δ2P + δ2H

)1/2
, (12)

where δD considers the dispersion attractive forces (non-polar), δP accounts314

for the permanent dipole-permanent dipole interactions and δH for the hy-315

drogen bonds. The main advantage of the HSP approach is that polar effects316

are explicitly considered, differently from the Hildebrand parameter that is317

more suitable for apolar systems. The ability of a given solvent to solubilize318

a solute (e.g., polymer) is expressed in terms of solubility ‘distance’ from the319

solute itself and takes the form of the radius of a sphere in Hansen solubility320

space {δD, δP , δH} (Hansen, 2007):321

Ra2(δ) = 4(δD,s − δD,p)2 + (δP,s − δP,p)2 + (δH,s − δH,p)2, (13)

where Ra(δ) is the solubility ‘distance’, in terms of sphere radius in the322

Hansen space, and the subscripts s and p refer respectively to the solvent323

and the polymer. The term ‘4’ is added in order to make the shape of this324

functional form more spherical and less elliptical. The whole derivation can325

be found in Hansen (2007). The Flory-Huggins parameter relative to the326

interaction between the solvent and the polymer χs,p can be expressed as a327
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function of the HSP through:328

χs,p =
1

2
·
(
Ra(δ)

2Rm

)2

, (14)

where Ra(δ) is the solubility distance, function of the HSP, as reported in329

Eq. (13) and Rm represents the radius of the solubility sphere, namely the330

maximum solubility distance (in Hansen solubility space) that allows the sol-331

vent to dissolve the solute. It is worthwhile to stress again that in Hansen332

phase space the coordinates are square roots of energies per unit volume;333

therefore, talking about ‘solubility distances’ refers implicitly to ‘energetic334

distances’ contributions between two components. The parameter Rm is de-335

fined in such a way that the dependence of the solubility parameters on the336

polymer molecular weight is accounted for, thanks to the following expres-337

sion:338

R2
m = 0.5(1 + 1/r1/2)RT/Vm, (15)

where Vm is the molar volume of the solvent and r is the degree of poly-339

merization, which can be calculated as the ratio between the total PCL340

macromolecule and the single repeated unit molecular weights.341

Solvents characterized by Ra > 2Rm are classified as non-solvents (or bad342

solvents) with respect to that specific solute. On the contrary, all the solvents343

that belong to the Hansen solubility sphere (Ra/2Rm smaller than unity)344

are classified as good solvents for that solute. In terms of χs,p interacting345

parameter, what stated above is equivalent to infer that when χs,p < 1/2 the346

system is in good solvent condition, namely the solute molecule shows a more347
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stretched conformation because the solvent-solute interactions are preferred348

over the solute-solute ones; χs,p > 1/2 corresponds to bad solvent condition,349

namely the solute molecule shows a more globule conformation because the350

solute-solute interactions are preferred over the solvent-solute ones; χsp =351

1/2 is the θ-condition, corresponding to ideal conformation of the solute352

molecule occurring when the solute-solvent and solute-solute interactions are353

energetically equivalent.354

As stated above, it is the local close proximity to bad solvent condition355

that energetically (and also entropically) drives the spontaneous PCL self-356

assembly. Under these conditions, the radius of gyration of a single polymer357

molecule, Rg, can be expressed as a function of the Flory-Huggins parameter,358

χs,p (Rubinstein and Colby, 2003):359

Rg ≈
b2

|v|1/3
N1/3 =

bN1/3

(2χs,p − 1)1/3
, (16)

where b is the Kuhn length (representative of the monomer length) and N360

is the number of repeated units that form the polymer chain. The expres-361

sion reported in Eq. (16) is for real polymers in solution, since the negative362

excluded volume v is taken into account, as well as the Flory exponent 1/3363

appears, meaning that the single polymer molecule is surrounded by a bad364

solvent.365

Starting from the relationship reported in Eq. (14), combined with Eq. (16),366

the whole procedure to find the Flory parameters functional forms for an un-367

known good solvent is developed and extensively explained in the following368

section.369

18



3. Operating conditions and numerical details370

3.1. Experimental background371

Details about the experimental set-up which this modeling work is based372

on are here reported. As already stated, PCL is the polymer employed as so-373

lute in the FNP process investigated in this work. It is especially suitable for374

NP production in the pharmaceutical field and for biological applications,375

since PCL is bio-compatible and non-toxic (Who et al., 2000); among the376

other advantages, it is also permeable to low molecular weight drugs and can377

therefore be used for diffusion controlled delivery systems (Le Roy Boehm378

et al., 2000). The experimental procedure for PCL NP production has been379

extensively validated throughout the years (Barresi et al., 2015; Celasco et al.,380

2014; Ferri et al., 2017; Lavino et al., 2019; Lince et al., 2008, 2009, 2011;381

Massella et al., 2018; Valente et al., 2012a,b; Zelenková et al., 2015, 2014).382

In the experimental context, the NP stabilization over time is of paramount383

importance and, in order to prevent further aggregation at the mixer outlet384

(Barresi et al., 2015; Saad, 2007) and to preserve the particle size distribu-385

tion, the outlet CIJM stream is usually quickly diluted in ultra-pure water386

and gently stirred to stabilize the NP suspension. Dilution, also labelled as387

‘quench’, avoids the size increase due to Ostwald ripening effects (Barresi388

et al., 2015; Ferri et al., 2017; Zelenková et al., 2015, 2014) and keeps the389

precipitated NP stable up to 20 days (Le Roy Boehm et al., 2000). The390

water quench volume can have an effect of the final NP size (Barresi et al.,391

2015; Ferri et al., 2017), therefore all the experimental data shown here are392

obtained by quenching with the same water amount.393

Although several polymers have been tested for NP production via FNP394
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(Saad, 2007), very little experimental data are available in literature - to the395

best of the authors knowledge - showing the effect of different good solvents396

for the same specific type of polymer. As this represents the aim of this397

work, only experimental studies using PCL as polymer solute have produced398

enough data to guarantee a consistent comparison with our modeling results.399

The experimental measurements were conducted via Dynamic Light Scat-400

tering (DLS) in diluted samples. By means of this technique the hydrody-401

namic radius, RH , is estimated as the ratio between the 7th- and the 6th-order402

moments of the NP distribution. However, from our modeling point of view,403

those quantities can be determined only with a numerical regression since the404

highest order moment we solve numerically is of order three (only two nodes405

in the aggregation model solved via QMOM). Therefore, it turns out to be406

more reasonable to express the mean particle size in terms of ratio between407

1st- and 0th-order moments of the radius of gyration, Rg, distribution. De-408

spite the hydrodynamic radius is generally greater than the radius of gyration409

(Bhattacharjee, 2016), we made the approximation: RH ≈ Rg which holds410

particularly for spherical NP. Ultimately, it is an acceptable assumption for411

narrow CMD characterized by small poly-dispersity indexes (Barresi et al.,412

2015; Ferri et al., 2017).413

3.2. Experimental set up414

Four different good solvents are investigated in this work: acetone (ACT),415

acetonitrile (ACN), tetrahydrofuran (THF) and tert-butanol (TBA). As stated416

above, the acetone is labelled as the reference solvent, since a full modeling417

description thereof was already provided from previous molecular dynamics418

(Di Pasquale et al., 2014) and CFD simulations (Di Pasquale et al., 2012;419
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Lavino et al., 2017). The geometrical dimensions of CIJM are: inlet and out-420

let diameters respectively equal to 1 and 2 mm. The width of the chamber421

is equal to 4.76 mm and its height is two times the width, in line with our422

previous work (Di Pasquale et al., 2012; Lavino et al., 2017).423

3.3. Numerical details424

Ansys Fluent 15 is used in this work and the QMOM and DQMOM-425

IEM routines are implemented via suitable user-defined functions (UDF)426

and scalars (UDS). The computational grid consists of about 120.000 uni-427

form hexahedral cells (for half of the actual geometry); a grid refinement428

is present near the impinging plane and in the region around the two in-429

let flows. The SIMPLE algorithm is used for the pressure-velocity coupling,430

whereas spatial discretization is treated with the first-order upwind scheme.431

Turbulence inside the mixer is modelled via the standard k − ε with en-432

hanced wall treatment near the wall, as this can be considered an adequate433

approach for this system (Gavi et al., 2007). Outlet boundary conditions are434

set to zero normal gradients for all flow variables, except for pressure; in this435

way, outflow boundary values are not imposed but are calculated from the436

interior. The geometrical details of the simulated domain correspond to the437

ones reported in the previous subsection. The initial values of the moments438

of the CMD, m(j), are linked to the initial PCL concentration through the439

relationship: m(j) = cPCLin ρ/(Mwρs), where cPCLin represents the initial PCL440

concentration in good solvent stream (expressed in mg mL−1), Mw is the441

PCL molecular weight, ρs and ρ are the good solvent and the mixture den-442

sity (see Lavino et al. (2017)), respectively. The aforementioned relationship443

turns out to be independent of the moments order j = 0, . . . , 3, as the PCL is444
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initially dissolved in the good solvent (stable conditions) and, consequently,445

the corresponding CMD is a Dirac delta centred in n = 1. According to the446

quadrature-based moments method employed in this work, the mean radius447

of gyration of a population of NP, 〈Rg〉, is calculated as follows:448

〈Rg〉 =

∑N
α=1JRg(nα)K∑N

α=1 ωα
, (17)

where ωα and nα are the weights and nodes of the quadrature approximation449

calculated from the moments of the CMD: m(j), where for N = 2 we have:450

j = 0, . . . , 3. It is worth stressing that 〈Rg〉 is the mean radius of gyration451

of a population of nanoparticles, each characterized by its own individual452

ensemble-averaged radius of gyration, indicated as JR2
g(n)K in Eq. (8). The453

comparison with experiments is done in terms of 〈Rg〉 exiting the CIJM. As454

stated above, during experiments the aggregation is limited and the particles455

are stabilized by quench water immediately after precipitation, preventing456

in this way further aggregation. It is reasonable to conclude, therefore, that457

measuring an average property at the outlet of the mixer from our simu-458

lations is totally equivalent to measure experimentally the given property459

immediately after quenching, via dynamic light scattering. However, it is460

worthwhile to mention that uncertainties present in the current work and the461

derivation of the models (Flory parameters, aggregation kernel, etc.) keep462

the predicted NP dimensions always included into the uncertainty range of463

the experimental results (Ferri et al., 2017; Lavino et al., 2017).464

It is important to stress here that the choice of the good solvent has465

multiple effects on the FNP process. Indeed, by changing the good solvent466

we simultaneously change the thermodynamics of the interaction between the467
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polymer chains and the good solvent and bad solvent mixture, the kinetics of468

polymer molecule self-assembly and the dynamics of mixing of the two feed469

streams (i.e., good and bad solvent). As mentioned in the introduction, the470

main objective of this work is to quantify each of these effects (on the final471

NP size and CMD) separately.472

Density, viscosity and molar volume of the good solvents represent the473

physical-chemical properties that are expected to play a role in the FNP pro-474

cess. The density of the good solvent affects the fluid dynamics in the CIJM475

and the position of the impinging plane. The viscosity of the good solvent476

determines, via the Stokes-Einstein law already included in the aggregation477

kernel reported in Eq. (3), the kinetics of molecules and molecular cluster478

self-assembly/aggregation. The molar volume of the good solvent defines the479

final good solvent molar fraction (for a given volume ratio between good and480

bad solvents). They are schematically listed in Table 1.481

Table 1: Physical-chemical properties of the good solvents, Reynolds number, Res, range
and initial PCL concentrations investigated in this work. The good solvent-to-water inlet
flow rate ratio is equal to unity.

Good
solvent

Density,

kg m−3
Viscosity,

Pa·s
Molar volume,

cm3mol−1 Res range a
Initial PCL

concentration,
mg mL−1

ACT 780.85 3.10 × 10−4 74.38 1069 – 6414 3.0 6.0 9.0
ACN 771.45 3.26 × 10−4 53.21 1004 – 6026 3.0 6.0 9.0
THF 874.78 4.34 × 10−4 82.43 855 – 5133 3.0 5.0
TBA 777.89 3.46 × 10−3 95.29 95 – 573 5.0

a Res refers to the good solvent inlet jet stream (see Eq. (18)), ranging from 20 to 120 mL min−1.

As it can be seen in Table 1, acetone and acetonitrile have similar values482

of density and viscosity; instead, acetonitrile has a smaller molar volume;483

this may become a crucial factor that affects the mean NP size, as it will484

be shown in section 4. On the contrary, THF has higher density, viscosity485
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and molar volume with respect to acetone and acetonitrile. More generally,486

despite all the solvents investigated here present similar physical properties,487

it is noteworthy to stress that TBA exhibits one order of magnitude higher488

viscosity. The way in which the density fluctuations are taken into account,489

as well as the local viscosity and molar fraction dependence on molar volumes,490

are reported in an our previous work (Lavino et al., 2017), and therefore here491

omitted for the sake of brevity.492

Although experiments and simulations are conducted by varying the inlet493

flow rate, the mean radius of gyration of the NP exiting the CIJM is evaluated494

as a function of Reynolds number, Res, referred to the good solvent inlet jet495

stream and its definition reads as follows:496

Res =
ρsdinuj
µs

(18)

where din is the CIJM inlet diameter, uj is the mean inlet jet velocity, ρs497

and µs are the good solvent density and viscosity respectively, as reported498

in Table 1. When comparing the dynamics of aggregation for different good499

solvents, the Reynolds number includes the inlet operating conditions as well500

as the physical properties of the good solvent to make the outcome of this501

work a general discussion, as it will be clearer in section 4.502

Solvents and polymer Hansen solubility parameters (HSP), as well as the503

corresponding distances from PCL, Ra, are listed in Table 2.504

The distances from PCL are representative of the solvent affinity with505

the polymer. More specifically, the lower is the distance (last column in506

Table 2), the higher is the solvent-solute affinity. As expected, the water sol-507

ubility distance is the highest value, much higher than the Hansen solubility508
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Table 2: Hansen solubility parameters (HSP) and distances, Ra, from PCL (Eq. (13)) for
all the components of the investigated system.

δD, MPa1/2 δP , MPa1/2 δH , MPa1/2 Ra, MPa1/2

PCL 17.0 4.8 8.3 -
THF 16.8 5.7 8.0 1.0
ACT 15.5 10.4 7.0 6.5
TBA 15.2 5.1 14.7 7.4
ACN 15.3 18.0 6.1 13.8
Water 15.6 16.0 42.3 35.9

sphere radius for PCL, Rm ≈ 9.8 MPa1/2 (calculated by means of swelling509

tests Bordes et al. (2010)), proving therefore to behave as bad solvent. In510

the Hansen phase space, acetone, THF and TBA belong to the Hansen sol-511

ubility sphere, behaving as good solvents. In the case of acetonitrile, the512

distance from PCL is shown to be slightly higher than the sphere radius.513

It is worthwhile mentioning that Bordes et al. (2010) obtained this value of514

Rm by performing swelling tests in which PCL initial concentration was two515

orders of magnitude higher than the one employed in this work. It is there-516

fore reasonable to assume that Rm would be much higher in this context,517

so that also acetonitrile leads to a full PCL solubilization, as seen in our518

experiments (Ferri et al., 2017), and consequently behaving as good solvent519

in these operating conditions.520

In this analysis, the solute is the PCL and the solvent is the ‘good solvent-521

water’ mixture. Being the second phase made by a binary mixture, all the522

solubility parameters (e.g., HSP) and physical properties (e.g., molar volume)523

involved in the following calculations are weighted on the good-bad solvents524

volume and molar fractions. The binary mixture phase will be therefore525
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generically labelled as ‘solvent’ from now on. The single PCL macro-molecule526

molecular weight Mw = 14000 g mol−1 and the repeated unit molecular527

weight Mo = 114 g mol−1. The term r appearing in Eq. (13) corresponds to528

the degree of polymerization, here simply evaluated as Mw/Mo.529

Let us recall that in FNP the PCL solubility limit is overcome and the530

self-assembly induced only thanks to the presence of the bad solvent, which531

is a local effect. Furthermore, the mixing is generally very fast and efficient,532

leading to a well micro-mixed system in almost all the domain of the CIJM533

(Gavi et al., 2007). Hence, the assumption of considering the polymer chain534

at the mean good solvent molar fraction x̄s holds, after mixing occurs, in535

the range x̄s ∈ [0.15, 0.25] for all the good solvents, since the good solvent-536

to-water ratio in volume is constant and equal to unity. Consequently, the537

three-components phase diagram (water, good solvent and PCL) can be ap-538

proximated as a two-components one (the polymer as solute and the binary539

mixture as solvent) (Flory, 1953). In these conditions, the single PCL ra-540

dius of gyration dependence on χs,p can be expressed by means of Eq. (16),541

since the binary mixture behaves as a bad solvent, leading the single macro-542

molecules to self-assemble. This concept will be confirmed by looking at the543

χs,p values, reported in Table 3 later on.544

By using the relation reported in Eq. (16) for two different solvents s1545

and s2 (e.g., s1 = acetonitrile-water and s2 = acetone-water), and assuming546

that the Kuhn length b (mainly a solute property) does not change too much547

for any solvent used, the following ratio can be readily obtained:548

JRg(n = 1)Ks1
JRg(n = 1)Ks2

≈ (2χs2,p − 1)1/3

(2χs1,p − 1)1/3
= Sf , (19)
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where Sf is a scaling ratio, function of the solely Flory-Huggins parameters549

χs1,p and χs2,p, calculated starting from the HSP through Eq. (14). The550

adopted strategy consists in setting s2 as the reference solvent, i.e., acetone-551

water in this case, for which the functional forms of Flory parameters are552

known from MD (Di Pasquale et al., 2014). By rearranging Eq. (19) as a553

function of the reference solvent, the following equality holds:554

√
ks1(xs1)M

2νs1(xs1)
w = Sf ·

√
kref (xref )M

2νref (xref )
w , (20)

where, as stated above, the subscript ref refers to the acetone-water mix-555

ture. Scaling factors Sf and Flory-Huggins parameters χs,p referred to the556

solvent-polymer systems investigated in this work, namely acetone-water,557

acetonitrile-water, THF-water and TBA-water, evaluated at mean good sol-558

vent molar fraction x̄s, are reported in Table 3.559

Table 3: Flory-Huggins parameter, χs,p, for acetone, acetonitrile, THF and TBA as good
solvents with the relative scaling factors obtained from Eq. (19), at mean good solvent
molar fraction, x̄s.

Solvent x̄s
Flory-Huggins parameter, Scaling factor,

χs,p Sf

ACT-water 0.20 0.926 1.00
ACN-water 0.25 1.007 0.94
THF-water 0.18 0.873 1.05
TBA-water 0.16 1.251 0.83

By looking at Table 3, the Flory-Huggins parameter is always greater than560

1/2 (θ-condition) for each solvent investigated here. This confirms what was561

already stated above: the systems are in bad solvent conditions and the single562

PCL macromolecules are spontaneously led to aggregate.563
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At this point, an iterative procedure can be carried out, based on Eq. (20)564

and on the values reported in Table 3. More specifically, Eq. (20) still presents565

two degrees of freedom, that are the Flory constant and exponent functional566

forms. By putting νs1(xs1) = νref (xs1) as starting value, ks1(xs1) is univo-567

cally determined and with this new set of Flory parameters, say k∗s1(xs1) and568

ν∗s1(xs1), simulations can be performed and the deviation against the experi-569

mental data is detected. Based on the deviation with respect to experiments,570

the Flory exponent is suitably adjusted to a new functional form, say ν∗∗s1 (xs1)571

and, by means of Eq. (20), a new functional form for k∗∗s1(xs1) is obtained.572

With this new set of Flory parameters, simulations are performed until this573

iterative procedure leads to an acceptable accordance against experiments.574

This corresponds to the Flory parameters reported in Table 4.575

Table 4: Flory parameters functional forms for acetone (reported in Eq. (9) and (10)),
acetonitrile, THF and TBA.

Good solvent ks(xs) νs(xs)

ACT 0.0064 exp (−3.15xs) 0.30 + 0.45xs − 0.15x2s
ACN 0.0055 exp (−3.15xs) 0.30 + 0.40xs − 0.10x2s
THF 0.0047 exp (−3.15xs) 0.30 + 0.62xs − 0.32x2s
TBA 0.0056 exp (−3.15xs) 0.30 + 0.42xs − 0.12x2s

The adjustment of the Flory parameters functional forms deserves further576

explanations. Regarding the Flory constant, ks(xs), only the proportionality577

constant of the exponential is adjusted with respect to the function referred578

to acetone, Eq. (9). As far as the Flory exponent νs(xs) is concerned, it579

corresponds to a parabolic profile (Eq. (10)); therefore, three conditions are580

needed: two of them are represented by the exponent value in pure good581

and pure bad solvent, that are respectively 3/5 and 1/3, in line with the582
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Flory theory. The third condition is the only degree of freedom that the583

user needs to fulfill and it might correspond to its value at the mean good584

solvent molar fraction, νs(x̄s), that is suitably adjusted during the iterative585

procedure presented above.586

4. Results587

First, only the dynamics of mixing is shown in order to assess the im-588

portance of changes in physical properties when different good solvents are589

used in FNP. In Figure 1 two quantities related respectively to macro- and590

micro-mixing are reported for all the four solvents investigated here and for591

two feeding flow rates. The first one is represented by the good solvent vol-592

ume fraction, 〈ξv〉 (see Eq. (7)). It is clear how in general the macro-mixing593

is very efficient for all the solvents since in almost the whole domain 〈ξv〉594

approaches to 0.5, as expected by using an inlet volume flow rate ratio equal595

to unity. Two different flow rates are here considered: 40 mL/min and 100596

mL/min. Further mathematical details about the macro-mixing are reported597

in Appendix A.598

Besides macro-mixing, it is worthwhile to evaluate also the micro-mixing,599

being this one a fundamental aspect of FNP (Di Pasquale et al., 2012). As600

already mentioned, the mixture fraction is modeled via the DQMOM-IEM601

for which the corresponding transport equation is reported in section 2.1. A602

particular focus is given now to the micro-mixing term of that transport equa-603

tion which corresponds to γMp1p2 (ξ2 − ξ1), where γM is the micro-mixing604

rate, namely expressing the rate with which good solvent and bad solvent605

mix at the molecular level. pi and ξi correspond respectively to the weights606
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Figure 1: Good solvent volume fraction, 〈ξv〉 (Eq. (7)), and micro-mixing term,
γMp1p2 (ξ2 − ξ1) (Eq. (A.4)), for which a further mathematical and physical analysis
is reported in section 2.1 and in Appendix A. Two inlet flow rates are here reported: 40
mL min−1 (left side) and 100 mL min−1 (right side).

and abscissas (or nodes, or environments) of the quadrature formula, in the607

two environments i = 1, 2, in line with the DQMOM approach (Marchisio608

and Fox, 2005). The whole micro-mixing term describes how fast the micro-609

mixing variance is dissipated by turbulence (Fox, 2003; Liu and Fox, 2006).610

The entire mathematical framework is here omitted, being already presented611

in our previous works (Di Pasquale et al., 2012; Lavino et al., 2017) and a612

further mathematical elaboration is provided in Appendix A, in which the613
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relationship between micro-mixing term and micro-mixing variance is clearly614

stated.615

At this level of description, Figure 1 points out that the micro-mixing term616

is very similar for acetone, acetonitrile and THF; a different trend is detected617

for TBA, for which micro-mixing turns out to be less efficient compared with618

the other good solvents. It is noteworthy to stress here that the numerical619

values in the contour plots must be interpreted as absolute values, since620

negative terms may come out from the local value of the abscissas in the621

two environments of the quadrature. Indeed, this is proven by looking at622

the region in which the turbulence is created and dissipated, which is where623

molecular-mixing or micro-mixing occurs. It is clearly less shrunk around624

the impinging plane than in other solvents, showing wider spatial gradients625

in the mixer domain. This might be induced by the viscosity that in the626

case of TBA is shown to be much larger (one order of magnitude) than in627

the other solvents. These results, by just looking at the mixing dynamics of628

the system, already allows us to predict a different scenario for TBA with629

respect to acetone, acetonitrile and THF.630

Let us move now on the dynamics of aggregation. In the case of the first631

three solvents (i.e., acetone, acetonitrile, THF), whose dynamics of mixing,632

only depending on their physical properties, is shown to be the same, it is633

worthwhile to conduct the following analysis. For the sake of brevity, let us634

consider only acetone and a ‘virtual’ solvent, characterized by the acetoni-635

trile physical properties (Table 1) and by acetone functional forms of Flory636

parameters, namely Eq. (9) and (10). By simulating these two solvents with637

the solely Brownian aggregation kernel active, we can quantify the dynamics638
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of self-assembly of polymer molecules into clusters and of small clusters into639

larger clusters (before turbulent aggregation takes over). Although the same640

functional forms of the acetone Flory parameters are considered here also641

for the ‘virtual’ solvent, the results show a very different profile, in terms of642

mean radius of gyration of the NP at the outlet of the mixer. This result643

is depicted in Figure 2 and tells us that, although the dynamics of mix-644

ing is identical between acetone and the ‘virtual’ solvent, the aggregation645

behaves in a very different way. The only physical explanation of that is646

attributable to one physical property and, more specifically, lies on the dif-647

ferent molar volumes of the two solvents (look at Table 1), because the other648

physical properties (density and viscosity) are very similar to each other, as649

also demonstrated by looking at the respective Reynolds number values (see650

Table 1). The molar volumes affect the molar fraction of the mixture, xs, as651

reported in Table 3 concerning its mean value, after mixing takes place. The652

Flory parameters functional forms are, in turn, function of molar mixture653

fraction. This analysis demonstrates that the differences between good sol-654

vents about the dynamics of aggregation only depend on Flory parameters.655

Furthermore, it is shown how the modeling approach presented in this work656

can be suitably employed to quantify the relative importance of the different657

mechanisms involved in particles formation.658

At this point of the current analysis, it is straightforward that the gap659

against experiments must be bridged by suitably adjusting the functional660

forms for ks(xs) and νs(xs) for all the solvents investigated here. As outcome661

of the iterative procedure presented in section 3 (see Eqs. (19) and (20) and662

Table 3), the final functional forms of the Flory parameters are determined663

32



1000 10000

100

200

300

Re
s

〈R
g
〉 

(n
m

)

Figure 2: Mean radius of gyration, 〈Rg〉, as a function of Reynolds number referred to
the good solvent inlet jet stream, with only Brownian aggregation for PCL initial con-
centrations equal to 6.0 mg/mL in acetone (triangles) and the ‘virtual’ solvent (squares),
characterized by the acetonitrile physical properties and by the acetone functional forms
of Flory parameters.

and listed in Table 4. These new functional forms are able to guarantee a664

good agreement with experiments, as depicted in Figure 3 (TBA- and THF-665

water systems) and Figure 4 (acetone- and acetonitrile-water systems). The666

range of PCL initial concentrations in the good solvent stream spans from667

3.0 to 9.0 mg mL−1. The experimental error bars are also included.668

Note that the accordance of the current model with experiments is in669

line with the results found out in our previous work (Lavino et al., 2017).670

As far as acetone, acetonitrile and THF are concerned, the agreement is671

excellent starting from medium PCL initial concentration in good solvent672

stream of about 5 mg/mL, namely the predicted NP dimensions are included673
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Figure 3: Mean radius of gyration, 〈Rg〉, of the NP exiting the CIJM versus the Reynolds
number referred to the good solvent inlet jet stream as measured in experiments (black
symbols) and as predicted by the purely-aggregative model (dashed line, empty symbols)
for PCL-14000 initial concentrations equal to 3.0 (top panel) and 5.0 (bottom panel)
mg/mL in THF (diamonds) and TBA (inverted triangles).

into the uncertainty range of the experimental results. In the case of TBA,674

where the mixing dynamics is less efficient than in the other three good sol-675

vents, the model shows to be transferable, by means of the Flory-Huggins676

solubility theory. The experimental profile is qualitatively caught by this677

purely-aggregative model, reproducing the negligible effect of the kinetics678

on the final mean radius of gyration (flat profile of NP size as function of679

the inlet good solvent Reynolds number) (Johnson and Prud’homme, 2003b;680
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Figure 4: Mean radius of gyration, 〈Rg〉, of the NP exiting the CIJM versus the Reynolds
number referred to the good solvent inlet jet stream as measured in experiments (black
symbols) and as predicted by the purely-aggregative model (dashed line, empty symbols)
for PCL-14000 initial concentrations equal to 3.0 (top), 6.0 (middle) and 9.0 (bottom)
mg/mL in acetone (triangles) and acetonitrile (squares) as the good solvents.
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Zelenková et al., 2015). This behaviour is also explained by looking at the681

Res range experienced by TBA in FNP with respect to the other systems,682

as clearly shown in Figures 3 and 4. Indeed, Res ranges of acetone, ace-683

tonitrile, and THF are almost the same as well as one order of magnitude684

higher than TBA inlet Reynolds number, mainly due to the TBA viscosity685

(see Table 1). In the case of TBA, Res value presumes that the turbulence686

is not completely developed inside the CIJM leading to less efficient mixing687

dynamics - as already stated - and, therefore, to a less important effect of688

fluid dynamics on the final mean NP size with respect to the other good sol-689

vent systems, as reproduced by both experiments and simulations. Results690

show, however, a quantitative gap against experiments, which, on the con-691

trary, is not observed in the case of THF (bottom panel in Figure 3) at the692

same PCL initial concentration (5 mg/mL). It is worthwhile to stress that693

this gap cannot be numerically overcome by using the proposed computa-694

tional tuning (described in section 3, in order not to break the physics of the695

system, namely having higher values of Flory parameters for TBA than in696

acetone (look at Figure 5) which, instead, is shown to have a better affinity697

with PCL (lower solubility distance in Hansen phase space). At low initial698

polymer concentration (3 mg/mL in ACT, ACN, and THF and 5 mg/mL699

in TBA), the mismatch observed between experimental data and simulation700

results should be due to nucleation phenomena which at low supersaturation701

ratios dominate over aggregation and that are not explicitly taken into ac-702

count in this purely-aggregative model. At constant PCL inlet concentration703

(around 5 mg/mL), nucleation might be more important for TBA than in the704

other systems, in which turbulence is demonstrated to play a secondary role705
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in the aggregation for PCL inlet concentration under 5 mg/mL by our previ-706

ous CFD analysis (Lavino et al., 2017). The trends reported in Figure 4 are707

consistent with those shown in Figure 3 and with our previous work where708

the current CFD-PBM model was developed and validated. It is instructive709

to point out a deeper analysis regarding the trend observed for the simulated710

data of the acetonitrile case at 9 mg/mL (bottom panel, Figure 4) where our711

simulations show a minimum at high Res values (i.e., high flow rates). This712

trend was also observed in our previous work (Lavino et al., 2017) at very713

high initial PCL concentration in acetone streams and is due to a twofold,714

contrasting effect of turbulence. On one side, indeed, turbulence promotes a715

more efficient mixing leading to smaller nanoparticles; on the other, at high716

initial polymer concentrations, turbulent aggregation dominates, inducing717

the formation of bigger nanoparticles. Contrarily to the acetone case that718

was observed in both experimental and simulated data (please refer to Lavino719

et al. (2017)), for the acetonitrile this starts happening in our simulations720

first, at high flow rates, which means that the turbulent aggregation is over-721

estimated by the current model. This leads us to conclude that a step-wise722

aggregation efficiency of the PBM source term fails in the description of the723

particle formation process when the system is either too diluted (nucleation724

phenomena dominate) or too concentrated at high flow rates (i.e., high Res725

number) and works very well otherwise.726

The Flory exponent profiles (Table 4) are depicted in Figure 5. The727

inset shows the νs values corresponding to the different mean good solvent728

molar fractions x̄s (discrete symbols), assuming the perfect mixing between729

the good and the bad solvent streams, already mentioned in the section 3.730
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This perfect mixing condition corresponds to a single good solvent volume731

fraction value of 0.5 but different molar fractions, due to the different molar732

volumes of the good solvents. It is important to point out here that, from733

a qualitative point of view, the effect of the good solvent on the final mean734

NP size can be predicted looking at the Flory exponent evaluated at the735

mean good solvent molar fraction νs(x̄s). At the mean good solvent molar736

fraction x̄s, the inset shows the following relation for different good solvents:737

νTHF(x̄THF) > νACN(x̄ACN) > νACT(x̄ACT) > νTBA(x̄TBA). This justifies,738

indeed, the fact that PCL aggregates more in THF than in acetonitrile, in739

acetone and finally in TBA at constant PCL inital concentration, in line740

with experiments (Ferri et al., 2017; Zelenková et al., 2015). Therefore,741

the approach described here is able to reproduce the experimental evidences742

highlighting the fundamental role played by the good solvent molar fraction.743

Note that the νs(x̄s) values are very close to each other, denoting the high744

sensitivity of the Flory exponent on final mean NP size.745

Figure 5 also depicts the affinity order found out in terms of HSP and746

solubility distance from PCL shown in Table 2, namely THF > ACT >747

TBA > ACN for which the solubility distances from PCL are respectively748

1.0, 6.5, 7.4 and 13.8 MPa1/2. Hence, at constant molar fraction, νs is di-749

rectly proportional to the good solvent affinity with PCL (in terms of sol-750

ubility distance). This implies that the polymer chain increases in size and751

assumes a more stretched conformation, according to the thermodynamics752

of real polymers in solution. However, operating at constant good-solvent-753

to-water ratio in volume leads to a mean good solvent molar fraction in the754

order: x̄ACN > x̄ACT > x̄THF > x̄TBA, because of the different molar volumes755
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Figure 5: Flory exponent νs profiles in function of good solvent molar fraction for acetone
(red), acetonitrile (green), THF (blue) and TBA (purple) (Table 4). The discrete symbols
correspond to the Flory exponent at the outlet mean good solvent molar fraction νs(x̄s)
(inset).

of the good solvents. This affects the Flory parameters and, consequently,756

aggregation, the final NP size and CMD.757

In Figure 6 the mean-squared radius of gyration of a NP is reported758

for acetone (red), acetonitrile (green), THF (blue) and TBA (purple) in759

function of the aggregation number. The crossover between the red and760

green profiles (acetone and acetonitrile) shows the two different tendencies761

and contributions in case of single PCL molecule (JRg(n = 1)K higher in762

acetone) and at high aggregation number, n, in which JRg(n)K is higher763
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in acetonitrile than in acetone. This means that, despite the single PCL764

macromolecule occupies a smaller volume in acetonitrile, the PCL NP is765

bigger in acetonitrile, namely more PCL macromolecules form the same766

cluster (or NP) in acetonitrile (m(1)/m(0) is therefore greater than in ace-767

tone). Therefore, the Flory theory combined together with the solubility768

affinity with PCL implies the following order of the single PCL macro-769

molecule dimension: THF > ACT > ACN > TBA, as also indicated by770

the Sf values in Table 3. However, the combination of good solvent mo-771

lar volume (leading to different molar fractions) and the aggregation kernels772

(dependent on Flory parameters) produces the following aggregation order:773

THF > ACN > ACT > TBA.774

Figure 6: Mean squared radius of gyration, JRg
2K, as a function of the number of molecules

(Eq. (8)) that form a cluster (aggregation number, n) for acetone (red), acetonitrile (green),
THF (blue) and TBA (purple) at the respective outlet mean good solvent molar fraction
x̄s.
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5. Conclusions775

In this work the effect of different good solvents in flash nano-precipitation776

(FNP) is studied, from a modeling point of view. A population balance model777

(PBM) based on molecules as building blocks is coupled with computational778

fluid dynamics (CFD) and implemented in a commercial CFD code. Mo-779

ments of the cluster mass distribution (CMD) are transported and closed780

by using the quadrature method of moments (QMOM) (Marchisio and Fox,781

2013). The CMD is defined in such a way that it represents the number of782

polymer molecules inside a cluster/NP. The turbulent mixing effects on NP783

formation are accounted for with the direct quadrature method of moments784

coupled with the interaction and exchange with the mean (DQMOM-IEM)785

method, in line with our reference work, in which this modeling approach786

was tested and validated (Lavino et al., 2017).787

The novelty of the current approach consists in coupling PBM and CFD788

with thermodynamics of polymers in solution. More specifically, the Flory-789

Huggins interaction parameter χ is considered, taking into account therefore790

the energetic contribution related to the polymer in the mixture, and is here791

correlated to the prediction of the mean radius of gyration of the NP. All this792

is done by taking advantage of the solubility theory in mixtures, in terms of793

Hansen solubility parameters (HSP). In this way, different good solvents are794

studied, with water as anti-solvent and poly-ε-caprolactone (PCL) as solute,795

in confined impinging jets mixer (CIJM). Four different good solvents are796

considered: acetone (ACT), acetonitrile (ACN), tetrahydrofuran (THF) and797

tert-butanol (TBA), taking the acetone as the reference solvent, being this798

one already investigated at the molecular scale with molecular dynamics in799
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a previous work (Di Pasquale et al., 2014).800

Thanks to the proposed approach, kinetics and thermodynamics are in-801

tertwined in a unique modeling tool used to investigate separately the dy-802

namics of mixing from the dynamics of aggregation, addressing the main803

factors that play a key role in such a complex process. CFD simulations804

demonstrate that acetone, acetonitrile and THF are characterized by the805

same macro- and micro-mixing dynamics, whereas TBA shows a different806

micro-mixing behaviour, strongly dependent on its viscosity, that is one or-807

der of magnitude higher than the other solvents and water. Results also show808

that the molar volume, combined together with the HSP, provides a good809

prediction of the final mean NP size when different good solvents are em-810

ployed in FNP. Furthermore, functional forms for the Flory parameters are811

determined, by combining the Flory-Huggins solubility theory with a suitable812

computational tuning. In this way, it is shown that the proposed modeling813

approach is transferable and adaptable to different scenarios, leading to a814

good prediction of the experimental results from quantitative and qualita-815

tive points of view. This is valid also in the case of TBA which presents a816

different mixing dynamics that, in turn, affects the final NP profile in func-817

tion of the inlet Reynolds number. The detected limitations, in terms of818

accordance with experiments, might be overcome by introducing nucleative819

effects in the aggregation source term of the PBM. In conclusion, although820

the phenomena involved are very complex and this is not indeed the ultimate821

model for FNP, this model is able to capture the main effects experimentally822

observed since both kinetics and thermodynamics are considered.823

Future work may be done by investigating these good solvent-water sys-824
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tems at the molecular scale with full-atom and coarse-grained molecular dy-825

namics simulations, aiming at confirming or refining the results obtained in826

this work, with more detailed molecular models.827
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Appendix828

Appendix A. Mixing modeling and micro-mixing variance829

In this appendix, further mathematical details concerning the mixing830

modeling are provided. More specifically, it will be shown how the micro-831

mixing variance can be related to the mixing transport equation, in particular832

to one of its terms: the micro-mixing term. In this modeling framework, as833

reported in the main text, the mixture fraction is transported by means of834

the direct quadrature method of moment coupled with the interaction and835

exchange with the mean method (DQMOM-IEM) (Marchisio and Fox, 2013).836

Besides the micro-mixing model introduced in the main text in section837

2.1, a large-scale or macro-scale variance 〈ξ′2〉macro is defined as follows:838

〈ξ′2〉macro = (〈ξ〉 − ξ̄)2, (A.1)

quantifying how different the local mean mixture fraction 〈ξ〉 is from the ideal839

value ξ̄ that it would assume if the mixing were perfect. In the analyzed case,840

for instance, ξ̄v = 0.5 in volume. For the analyzed cases, this tells us that841

the macro-mixing is very efficient, leading the macro-mixing variance to zero842

in almost all the CIJM, as shown in Figure 1.843

The micro-mixing variance is defined as (Liu and Fox, 2006):844

〈ξ′2〉 = 〈ξ2〉 − 〈ξ〉2. (A.2)

We can rearrange the last expression as follows:845
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〈ξ′2〉 = 〈ξ2〉 − 〈ξ〉2 = p1ξ
2
1 + p2ξ

2
2 − (p1ξ1 + p2ξ2)

2 =

= p1ξ
2
1(1− p1) + p2ξ

2
2(1− p2)− 2p1p2ξ1ξ2 =

= p1p2(ξ
2
1 + ξ22 − 2ξ1ξ2) = p1p2(ξ2 − ξ1)2, (A.3)

where the property p1 = 1 − p2 is applied. By using the results shown in846

Eq. (A.3), the first term on right hand side of Eq. (5) that contains the micro-847

mixing rate can be expressed as follows (the fluid density ρ̄ is here omitted848

for simplicity of notation):849

γMp1p2 (ξ2 − ξ1) =
γM

(ξ2 − ξ1)
〈ξ′2〉, (A.4)

strictly dependent on the micro-mixing variance 〈ξ′2〉. The quantity ex-850

pressed in Eq. (A.4) is the one reported in the contour plots in Figure 1851

and can be thought of as a measure of how the micro-mixing variance is dis-852

sipated by turbulence (included in the definition of γM) at the micro-scale.853
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