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Abstract: Inertial measurement units (IMUs) enable orientation, velocity, and position estimation
in several application domains ranging from robotics and autonomous vehicles to human motion
capture and rehabilitation engineering. Errors in orientation estimation greatly affect any of those
motion parameters. The present work explains the main challenges in inertial orientation estimation
(IOE) and presents an extensive benchmark dataset that includes 3D inertial and magnetic data
with synchronized optical marker-based ground truth measurements, the Berlin Robust Orientation
Estimation Assessment Dataset (BROAD). The BROAD dataset consists of 39 trials that are conducted
at different speeds and include various types of movement. Thereof, 23 trials are performed in
an undisturbed indoor environment, and 16 trials are recorded with deliberate magnetometer and
accelerometer disturbances. We furthermore propose error metrics that allow for IOE accuracy
evaluation while separating the heading and inclination portions of the error and introduce well-
defined benchmark metrics. Based on the proposed benchmark, we perform an exemplary case
study on two widely used openly available IOE algorithms. Due to the broad range of motion and
disturbance scenarios, the proposed benchmark is expected to provide valuable insight and useful
tools for the assessment, selection, and further development of inertial sensor fusion methods and
IMU-based application systems.

Keywords: inertial sensor; inertial measurement unit; orientation estimation; attitude estimation;
magnetic disturbances; benchmark dataset

1. Introduction

Inertial measurement units (IMUs) have become small and lightweight and are there-
fore used in an increasing number of application domains. They are integrated into various
types of consumer electronics, used in autonomous drones and vehicles, and facilitate
non-restrictive human motion tracking in various health care and sporting applications [1].
Examples of the latter include rehabilitation robotics [2], feedback-controlled neuroprosthe-
ses [3,4], and rehabilitation monitoring [5,6].

An IMU measures angular rates, specific force (also called proper acceleration), and
magnetic field strength. The measurements are 3D vectors in a local coordinate system
that rotates with the object of interest to which the IMU is attached. Motion analysis using
inertial sensors usually involves the derivation of motion parameters like the orientation of
the object to which the sensor is attached and its velocity and position with respect to an
inertial frame of reference [7,8]. In order to determine those motion parameters, one must
first determine the orientation of the IMU with respect to an inertial frame of reference. In
the following, we call this step inertial orientation estimation (IOE).

Data 2021, 6, 72. https://doi.org/10.3390/data6070072 https://www.mdpi.com/journal/data

https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0003-2928-2446
https://orcid.org/0000-0002-1529-8095
https://orcid.org/0000-0002-7276-5382
https://doi.org/10.3390/data6070072
https://doi.org/10.3390/data6070072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/data6070072
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data6070072?type=check_update&version=2


Data 2021, 6, 72 2 of 20

The inertial frame of reference is commonly defined by a vertical coordinate axis,
defined by the direction of gravity, and a horizontal coordinate axis that is aligned with
the horizontal component of Earth’s magnetic field. Sensor fusion methods are employed
to combine the accelerometer and magnetometer readings with the angular velocity mea-
surements of the gyroscope that is strapdown integrated to track changes of orientation.
This fundamental problem of inertial sensor fusion has been solved by a large number
of previously proposed IOE algorithms. A good overview of existing methods is found
in [9,10]. The majority of methods represent the orientation in terms of unit quaternions.
Commonly used filter structures are complementary filters and (extended/unscented)
Kalman filters.

It is a well-known fact that the amount of information and certainty that is contained
in each measurement signal varies depending on the performed motion and environmental
factors such as vibrations and magnetic disturbances [11,12]. In a fast and jerky motion, the
accelerometer must be used much more carefully than during a smooth and slow motion.
The magnetometer measurements are known to be highly susceptible to the presence of
ferromagnetic material and electronic devices [13]. Previous research has led to adaptive
algorithms that try to compensate such variations and disturbances [14,15].

As illustrated in Figure 1, there is a general need for robust IOE algorithms that
provide accurate orientation estimates and perform well for a broad range of motions
without the need to manually adjust tuning parameters for each type of motion [16]. When
it comes to assessing the performance of IOE algorithms, a vast number of contributions
are found that evaluate specific algorithms in specific application contexts, but few papers
investigate the ability of IOE algorithms to perform across different types of motion and
environmental conditions. To the best of our knowledge, only Caruso et al. [9] provides
a systematic evaluation of multiple algorithms with respect to three different movement
speeds, and Fan et al. [17] investigates the influence of magnetic disturbances on the
attitude and heading estimates. However, there are no studies providing a systematic and
comprehensive evaluation of the impact of different magnetic disturbances, the difference
between translational and rotational motions, and different movement speeds on various
IOE algorithms.

IOE algorithm 1, parametrization 1
IOE algorithm 1, parametrization 2
IOE algorithm 2, default parametrization
hypothetical ideal IOE algorithm

3 7 7 7 ?
7 7 3 3 ?
7 3 3 7 ?
3 3 3 3 3

3
7
?

good performance
poor performance
uncertain

limited rotations,
fast translations

rapid rotations,
limited translations

fast periodic
translations

slow with magnetic
disturbances

?
unknown
conditions

Figure 1. The accuracy of inertial orientation estimation (IOE) depends on the employed algorithm,
the chosen algorithm parametrization, and the specific application scenario. There is a lack of datasets
and methods for systematic evaluation of IOE algorithm performance across a broad range of motion
characteristics and environmental conditions.

As detailed in Section 2, a thorough algorithm comparison is limited by a lack of an
extensive and openly available benchmark that includes a large number of trials comprising
a diverse set of movement types and environmental conditions and therefore allows for a
truly comprehensive evaluation and assessment of IOE solutions. Such a heterogeneous
set of trials with either only rotation, only translation, or combined movements at different
speeds and with different durations is important for two reasons. First, in order to assess the
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robustness of an IOE algorithm for a wide variety of motions and environmental conditions,
those motions and conditions must be included in the data set. Second, comparing the
errors for different trials yields insight into how algorithm performance or the choice of
optimal parameters depends on the characteristics of the motion. As magnetic disturbances
represent a major challenge in orientation estimation, it is crucial to not only consider
homogeneous magnetic fields but to also include a broad range of magnetic disturbances.

The present contribution aims at filling this gap by providing a benchmark dataset
that is particularly useful for the objective assessment and further development of IOE
algorithms. To the best of our knowledge, this the first publicly available benchmark
dataset that

• includes a broad range of different motions at various speeds
• contains separate trials with various deliberate magnetic disturbances
• contains separate trials with disturbances that affect the measured accelerations
• is already time-synchronized and contains ground truth data that requires no further

preprocessing.

We further introduce error metrics that separately consider heading, inclination, and
the total orientation error, specify well-defined benchmark metrics that can be used to
assess and compare IOE algorithm performance, and provide example code to calculate
those metrics.

The remainder of the article is structured as follows. In Section 2 we review a number
of openly available datasets that are suitable for objective performance assessment of IOE
algorithms. In Section 3 we present the new benchmark dataset and describe the contents
and file structure. In Section 4 we describe the measurement setup, the performed data
preprocessing, and introduce error metrics useful for quantifying the orientation estimation
accuracy and define reproducible benchmark metrics. Section 5 is dedicated to applying
some existing orientation estimation algorithms to the proposed benchmark. Conclusions
are presented in Section 6.

2. Brief Review of Existing Datasets for IOE Validation

Objective assessment of the accuracy of an IOE algorithm requires a highly reliable
and accurate ground truth measurement. The most widely accepted gold standard mea-
surement for the orientation of a moving object is to derive its orientation from the position
measurements of active or reflective optical markers that are tracked by a set of cameras, a
technique that is known as stereophotogrammetry or optical motion capture (OMC). In the
past two decades, a number of studies have been performed in which an IMU and optical
markers are attached to moving objects, including human body segments, aerial vehicles,
and robotic systems. While many of the datasets in these studies would be suitable for
accuracy evaluation of IOE algorithms, the datasets are often not openly available or only
available upon request to the authors, often due to privacy or ethical concerns. Further-
more, there is a lack of systematic benchmarking approaches for IOE accuracy evaluation.
Despite this general lack of datasets and methods for evaluation, a few datasets have been
made publicly available and are briefly reviewed in the following. Some of these datasets
are created for general IOE validation and some are provided for evaluation in specific
application contexts.

In total, we found five publicly available datasets that contain optical and inertial data
from a moving object in a way that it allows for accuracy evaluation of an IOE algorithm.
An overview of key features of the found datasets and the proposed dataset is given in
Table 1.
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Table 1. Overview of key features of available datasets and the proposed benchmark dataset.
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RepoIMU T-stick [18] Xsens MTi 100 Hz 29 3 3 3 7 7 7 7 7 3 7 7
RepoIMU Pendulum [18] custom [19] 90–166 Hz a 22 7 7 3 7 7 7 7 7 3 7 7

Sassari [16] 3 models 100 Hz 3 7 3 3 7 7 7 3 3 3 7 b 3
OxIOD [20] iPhone 100 Hz 132 7 7 3 7 7 7 3 3 3 7 7
EuRoC MAV [21] ADIS16448 200 Hz 6 c 7 7 3 7 3 7 7 3 3 3 7

TUM VI [22] BMI160 200 Hz 6 d 7 7 7 7 7 7 7 3 3 3 7
BROAD myon aktos-t 286 Hz 39 3 3 3 3 3 3 3 3 3 3 3

a effective rate much lower, see description. b local frames aligned by precise placement, reference frames not aligned, see description.
c only counting the Vicon room trials with full OMC ground truth. d only counting the room trials with full OMC ground truth.

In order to allow for evaluation of different aspects of an IOE algorithm, a useful univer-
sal benchmark dataset should fulfill a number of requirements. First and foremost, it should
contain a large number of trials and a wide range of movements—including isolated trans-
lation and rotation movements—conducted at different speeds. To evaluate the robustness
against magnetic disturbances, it is crucial to include both data recorded in a magnetically
undisturbed environment and recordings with deliberate magnetic disturbances.

Furthermore, the quality of both the recorded IMU data as well as the ground truth
OMC data is essential. In order to evaluate the performance in state-of-the-art applications,
a state-of-the-art IMU with a sufficiently high sampling rate should be employed. Addition-
ally, care should be taken to avoid artifacts due to errors in the reference system or in the
recording of the IMU data. Figure 2 shows four examples of artifacts found in the publicly
available datasets. The effects of such issues in the recorded data can often dominate the
overall estimation error. In the best case, this makes the resulting observations less distinct
and in the worst case, it could lead to wrong conclusions. Therefore, measurement data
should be carefully checked before it is used for evaluation.

As can be seen in Table 1, each of the previously published datasets covers some of
the mentioned aspects but none of them fulfill all previously mentioned requirements
for a universal IOE benchmarking dataset. In the following, we will discuss each dataset
in detail.

2.1. RepoIMU Dataset (T-Stick Trials)

To the best of our knowledge, the dataset RepoIMU [18] is, up to now, the only dataset
aimed at IOE evaluation with a dedicated publication. The dataset consists of two distinct
sets of trials, recorded with a T-stick and a pendulum.

The T-stick data consists of 29 trials with a duration of approximately 90 s each. As
the name implies, the IMU is attached to a T-shaped stick equipped with six reflective
markers. Each trial consists of either slow or fast rotation around one primary sensor axis
or translation along one primary sensor axis. Data from an XSens MTi IMU and a Vicon
Nexus OMC system is synchronized and provided at 100 Hz.
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The authors explicitly state that the coordinate system of IMU and ground truth
are not aligned and propose a method to compensate one of the two required rotations
(cf. Section 4.2) by a method based on quaternion averaging. Unfortunately, some of the
trials contain gyroscope clipping (Figure 2a) and artifacts in the ground truth orientation
(Figure 2c) that have a significant effect on the obtained errors. Therefore, careful prepro-
cessing and exclusion of some trials should be considered when using the dataset for IOE
accuracy evaluation.
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Figure 2. Examples of artifacts found in existing datasets. (a) Gyroscope clipping leading to large
errors in angular rate strapdown integration. (b) Repeated samples in IMU data, leading to a very low
effective sampling rate. (c,d) Two examples of artifacts found in the OMC ground truth orientations,
potentially caused by interpolation of gaps and swapped markers.

2.2. RepoIMU Dataset (Pendulum Trials)

The second part of the RepoIMU datasets consists of data from a triple pendulum
on which IMUs are mounted. The measurement data is provided at 90 Hz or 166 Hz.
However, the IMU data contains frequently repeated samples, as shown in Figure 2b. This
is typically a result of artificial upsampling or transmission problems where lost samples
get replaced by copying the last received sample and effectively reduces the sampling rate.
The sampling rate that is obtained when repeated samples are discarded is around 25 Hz
and 48 Hz for the accelerometer and gyroscope, respectively. Due to this fact, we cannot
recommend using the pendulum trials for high precision IOE accuracy evaluation.

2.3. Sassari Dataset

The dataset published in [16] is targeted to the validation of a parameter-tuning
approach based on the orientation difference of two IMUs of the same model. To facilitate
this, six IMUs from three manufacturers (Xsens, APDM, Shimmer) are placed on one
wooden board. Rotation around specific axes and free rotation around all axes are repeated
at three different speeds. The data is synchronized and provided at 100 Hz. The local
coordinate frames are aligned by precise manual placement. The authors clearly describe
how they calculate the obtained error metrics, including a method of using the initial
orientation to align the reference frames.
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This makes the dataset valuable for validating IOE accuracy. The inclusion of different
speeds and multiple IMU types increases the value of this dataset. However, all motions are
performed in a homogeneous magnetic field and purely translational movements are not
included. The total movement duration of all 3 trials is 168 s, with the longest movement
phase lasting 30 s.

2.4. OxIOD Dataset

The Oxford Inertial Odometry Dataset (OxIOD) [20] is an extensive collection of
inertial data recorded by smartphones (primarily an iPhone 7 Plus) at 100 Hz, consisting of
158 trials and covering a distance of over 42 km with an OMC ground truth being available
for 132 trials. Being targeted for inertial odometry, it does not include isolated rotation and
translation movements, which are useful for systematic assessment of IOE performance in
various conditions, but instead covers a broad range of everyday motions.

Due to that different focus, some information (e.g., the alignment of the coordinate
frames) is not described in detail. Furthermore, the ground truth orientation contains
frequent irregularities (e.g., spikes in the orientation that are not accompanied by similar
jumps in the IMU data, see Figure 2d for one example). In order to use this dataset for IOE
assessment, careful preprocessing should be considered.

2.5. EuRoC MAV Dataset

The EuRoC MAV dataset [21] features indoor flight data of a micro aerial vehicle
(MAV) and is aimed at visual-inertial 3D environment reconstruction. The six Vicon room
trials offer a synchronized and aligned OMC-based ground truth and are suitable for IOE
accuracy evaluation. Note that camera images and 3D point cloud data are also included,
which are not relevant in the IOE context.

Magnetometer data are not included which limits the evaluation to the inclination
component (cf. Section 5). It is noteworthy that due to the nature of the data, the motion
mostly consists of horizontal translation and rotation around the vertical axis, and the
inclination does not vary significantly throughout the trials. As the vibrations due to the
flight are clearly visible in the raw accelerometer data, the EuRoC MAV dataset provides a
unique test case for orientation estimation with disturbed accelerometer data.

Note that there is a similar but older dataset of the same research group [23]. However,
the data files for this dataset do not seem to be available anymore (checked on 22 June 2021).

2.6. TUM VI Dataset

The TUM VI dataset [22] for visual-inertial odometry consists of 28 trials with a
handheld object equipped with a camera and an IMU. Due to this application focus,
most trials only include OMC ground truth data at the beginning and at the end of
the trial. However, the six room trials include full OMC data and are suitable for IOE
accuracy assessment.

Time synchronization is straightforward using provided time stamps, and the local
and global coordinate systems of the OMC ground truth are aligned to the IMU frame
(cf. Section 4.2). Similar to the EuRoC MAV data, the motion mostly consists of horizontal
translation and rotation around the vertical axis, and magnetometer data is not included.

2.7. Summary

All reviewed datasets have in common that inertial measurements have been recorded
alongside an optical ground truth. While some datasets [16,18] are specifically recorded for
evaluating the accuracy of IOE algorithms, others [20–22] are recorded with a different focus
but still contain the necessary data for this task. The datasets [16,18] contain recordings
with isolated rotation and/or translation movements at different speeds, but the number of
trials and the length of the movement duration is limited. As discussed above, trials with
magnetic disturbances are crucial for objective performance evaluation of high-end IOE
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algorithms. However, none of the datasets contain recordings performed in deliberately
and realistically disturbed magnetic fields.

Due to the described lack of a universal benchmark dataset, publications proposing
new IOE algorithms commonly use data for evaluation that is only available to the re-
spective authors (see, e.g., [24,25]) and the errors reported in different publications cannot
be compared. We, therefore, conclude that there is a considerable need for an extensive
benchmarking dataset for IOE accuracy assessment.

3. Dataset Description

We propose the Berlin Robust Orientation Estimation Assessment Dataset (BROAD).
This benchmark dataset for orientation estimation consists of a diverse collection of trials,
covering different movement types, speeds, and both undisturbed motions as well as
motions with deliberate accelerometer disturbances as well as motions performed in the
presence of magnetic disturbances. The dataset is publicly available at https://doi.org/10.1
4279/depositonce-12033 (accessed on 22 June 2021) and also https://github.com/dlaidig/
broad (accessed on 22 June 2021) under the terms of the CC-BY 4.0 license.

3.1. Trials

The proposed benchmark dataset consists of 39 trials. We distinguish the performed
trials based on different criteria:

• the type of motion: rotation, translation, and combined (rotational and
translational motions)

• the speed at which the motion was performed: slow and fast
• whether the trial consists of one uninterrupted continuous motion or of several

segments with short breaks in between: no breaks, with breaks
• whether there are deliberate disturbances that affect the accelerometer measurements:

undisturbed, tapping, and vibrating smartphone
• the magnetic environment in which the motion takes place: undisturbed (homoge-

neous indoor magnetic field), stationary magnet, attached magnet, office environment.

An overview of the performed trials can be found in Table 2. The considered distur-
bances are as follows. In the tapping trials, the IMU was repeatedly tapped using a finger,
leading to spikes in the measured accelerations. In two trials, a vibrating smartphone
was placed on the 3D-printed rigid body, causing significant high-frequency disturbances
in the accelerometer measurements while at the same time disturbing the magnetometer
measurements. In the stationary magnet trials, a small neodymium magnet was placed in
the vicinity of the resting place, and part of the motion was deliberately performed close
to the magnet. In the attached magnet trials, the magnet was placed on the rigid body at
distances of 1, 2, 3, 4, and 5 cm. The office environment (Figure 3) consisted of various
types of ferromagnetic material and electronic devices chosen to represent a typical indoor
workplace environment. The mixed trial consisted of various short challenging motion
phases, both disturbed and undisturbed.

All trials contain a rest phase of approximately 30 s at the beginning and at the end
during which the rigid body with the IMU is resting on a table. A separate annotation
signal in the provided data files shows whether the IMU is at rest or in motion. This
annotation was performed manually based on plots of the measurement data.

The 39 trials have a total duration of 8478 s when considering rest and motion phases
and 5274 s when only considering phases with movement. The duration of a single motion
phase ranges from 15 to 358 s. For the 39 trials, the root mean square (RMS) value of the
angular velocity norm during motion ranges from 22 to 490 °/s (slow trials: 22 to 124◦/s,
fast trials: 151 to 490 °/s) with peak values (99th percentile) of up to 1116◦/s. The RMS
value of the acceleration norm (with 9.81 m/s2 removed) ranges from 0.5 to 23 m/s2 (slow
trials: 0.5 to 1.6 m/s2, fast trials: 1.6 to 23 m/s2) with peak values (99th percentile) of up to
67 m/s2. The RMS values of all trials are shown in Figure 4 and cover a wider range than
publicly available datasets.

https://doi.org/10.14279/depositonce-12033
https://doi.org/10.14279/depositonce-12033
https://github.com/dlaidig/broad
https://github.com/dlaidig/broad
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Table 2. Overview of the 39 trials included in the proposed benchmark dataset.

undisturbed slow fast
rotation 1, 2, 3, 4 *, 5 * 6, 7, 8 *, 9 *
translation 10, 11, 12, 13 *, 14 * 15, 16, 17 *, 18 *
combined 19, 20 21, 22, 23

disturbed (medium speed)
tapping 24, 25
vibrating smartphone 26, 27
stationary magnet 28, 29, 30 *, 31 *
attached magnet (1–5 cm) 32, 33, 34, 35, 36
office environment 37, 38
mixed (disturbed and undisturbed) 39 *

* several motion phases with breaks in between.

data transceiver

laptop

mobile phone

power socket and chargers

metal frames
(table and chair)

Figure 3. Office environment used to provide a realistic indoor scenario with magnetic disturbances.
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Figure 4. RMS values of the angular velocity and accelerometer norm for the undisturbed slow,
undisturbed fast, and disturbed trials of the proposed dataset in comparison to the publicly available
datasets (only considering trials suitable for IOE accuracy evaluation, cf. Section 2). The BROAD
dataset covers a wider range of motions than publicly available datasets.
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3.2. File Format

The benchmark dataset consists of the 39 trials as presented in Table 2. Each trial is
stored in a separate file, and the filename indicates the trial number and the type of trial
(e.g., “01_undisturbed_slow_rotation_A”). A machine-readable “trials.json” file is included
which can be used to automatically find and filter all trials.

The measurement data are provided both as an HDF5 data file and a Matlab data file
(.mat) with identical content. Each file contains the following variables:

imu_gyr IMU gyroscope measurements in rad/s

imu_acc IMU accelerometer measurements in m/s2

imu_mag IMU magnetometer measurements in µT

opt_quat OMC ground truth orientation as a unit quaternion (w component first, ENU
reference frame)

opt_pos OMC ground truth position in m

movement Boolean array (0/1) indicating movement phases

sampling_rate sampling rate of the measurements in Hz (2000/7 Hz ≈ 286 Hz, HDF5:
stored as an attribute)

info short description of the file contents (HDF5: stored as an attribute)

The data are already synchronized and aligned as described in Section 4.2. In order to
obtain comparable results, orientation estimation algorithms should be run over the whole
trial data but when calculating errors, the movement array should be used to exclude the
rest phases.

3.3. Example Code

In addition to the measurement data, we provide example code written in Python. The
code implements the evaluation and benchmark metrics described in Sections 4.3 and 4.4,
respectively, and re-creates Figures 8 and 9 from the case study in Section 5. Please refer to
the information provided in the README.md file for instructions on how to run the code.

4. Materials and Methods
4.1. Hardware Setup

IMU data were recorded at a sampling rate of 286 Hz using a commercially available
nine-axis inertial sensor (myon aktos-t, myon AG, Schwarzenberg, Switzerland). Ground
truth data at 120 Hz were obtained via an Optitrack OMC system (NaturalPoint, Inc.,
Corvallis, OR, USA) consisting of eight Flex13 cameras.

In order to ensure a highly precise ground truth orientation, the IMU and five reflective
optical markers were placed on a rigid but lightweight 3D-printed structure, which is
shown in Figure 5, with a minimum distance of 187 mm between any two corner markers.
At those marker distances, the mean position accuracy of 0.6 mm of the optical system
corresponds to an angular orientation accuracy of approximately 0.2°.

The IMU input ranges were set to ±2000◦/s, ±16 g, and ±1 mT. In the recorded trials,
turn-on gyroscope bias was found to be 0.17◦/s on average (per sensor axis), with 0.50◦/s
being the maximum value. To simulate realistic conditions, this gyroscope bias is contained
in the recorded data files. We determined further sensor characteristics (for each sensor
axis) from a 49 min recording of the IMU being at rest. The noise standard deviations
in x, y, and z direction were found to be 0.10◦/s, 0.09◦/s, and 0.12◦/s for the gyroscope,
0.044 m/s2, 0.050 m/s2, and 0.074 m/s2 for the accelerometer, and 0.71 µT, 0.70 µT, and
0.68 µT for the magnetometer. The gyroscope random walk was 0.36 °/

√
h, 0.30 °/

√
h, and

0.41 °/
√

h (Allan deviation for observation time of 1 s), and the bias instability was 6.5◦/h,
4.0◦/h, and 4.3◦/h (minimum Allan deviation).
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187m
m

Figure 5. Custom 3D-printed rigid body used in the experiments. The IMU is attached to the
center of the board using tape. Four reflective optical markers are attached to the ends of the X-
shaped structure to increase the distance between markers. A fifth marker is used to ensure that the
orientation can uniquely be determined from the marker positions.

4.2. Data Preprocessing

In order to create a benchmark dataset that is suitable for IOE accuracy evaluation,
several preprocessing steps are needed. In the following section, we provide a high-
level overview of the performed preprocessing steps as it is common practice in similar
publications. Detailed descriptions are given in Appendices B and C.

Highly precise time synchronization of the IMU and OMC data streams is crucial
because even very short time delays can have a significant effect on the observed orientation
estimation errors. Synchronization was performed via optimization based on the measured
angular velocity norm and an angular velocity derived from the OMC orientations. In
addition to a time offset, a time drift correction factor was determined in order to account
for small deviations from the nominal sampling frequencies of both measurement systems.
The resulting parameters were used to interpolate the OMC ground truth data to the exact
sampling time instants of the IMU data.

In order to obtain an accurate ground truth for the IMU orientation, the different
local and global coordinate frames of both measurement systems have to be aligned [26].
See Figure 6 for an illustration of the different coordinate systems. The local coordinate
systems of the IMU S (determined by sensor manufacturing and calibration) and the
rigid body B (determined by the placement of optical markers) can agree well (<1◦) when
care is taken to ensure precise placement, but even this small deviation might affect the
results. The IMU reference frame E is determined by gravity and the horizontal projection
of the local Earth magnetic field. In contrast, OMC systems provide marker position
measurements in a different reference frameM that is defined by the camera positioning
and a calibration procedure.

For a precise evaluation of the actual IOE errors, the constant offsets between S
and B and between E andM must be determined [26]. This is done by minimizing the
disagreement between the gyroscope and accelerometer measurements and corresponding
quantities derived from the OMC measurement data. This alignment method is performed
using a separate alignment recording that was performed on each measurement day. In
those recordings, the IMU and the board are carefully and slowly rotated in all directions in
order to ensure a sufficiently rich motion. The obtained alignment parameters are then used
to calculate ground truth orientations from the OMC measurements of the 39 motion trials.
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Figure 6. Illustration of the different local coordinate systems and reference frames. IOE algorithms
estimate the orientation of the sensor frame S with respect to a frame of reference E , defined by
gravity and the local magnetic field. The OMC reference system tracks the orientation of a rigid body
B, defined by reflective markers, relative to a reference frameM that is defined during calibration
and, in general, does not coincide with E .

4.3. Metrics for Orientation Accuracy

For any of the performed motions, the orientation estimated by an IMU-based algo-
rithm can be compared with the corresponding optical ground truth measurement. Along
with the dataset, we provide example code to obtain the proposed metrics.

We use unit quaternions to represent rotations and orientations. For the convenience
of the reader, the notation is briefly explained in Appendix A. The disagreement between
two unit quaternions representing orientations is well described by the shortest angular
distance e between both orientations. For any estimated sensor orientation SEq(t) and
corresponding ground-truth orientation SEqOMC(t) this error is

qe(t) = SEq−1
OMC(t)⊗ SEq(t) =: [ qw qx qy qz ]

ᵀ (1)

e(t) := 2 arccos |qw|. (2)

This angular performance parameter well describes the overall accuracy of the esti-
mated orientation, and root-mean-square values can be used to quantify the performance
of a motion interval of interest.

It is important to note that the error e yields only very limited insights into the potential
cause of estimation errors. It is therefore highly desirable to distinguish between the portion
of the error that results from inaccurate heading estimation as well as the portion that
results from inaccurate inclination estimation. While the accuracy of the former depends
primarily on the sensor fusion between gyroscopes and magnetometers, the accuracy of
the latter primarily depends on sensor fusion between gyroscopes and accelerometers. In
magnetically disturbed environments, the heading component of the error might easily be
ten times larger than the inclination component of the orientation error.

While different definitions of heading have been used in the literature, we use a
heading/inclination decomposition of quaternions that is particularly useful for the current
purpose. The rotation between any given two orientations can always be decomposed into
a rotation around the vertical axis and a rotation around a horizontal axis, as illustrated
in Figure 7. We call the first rotation heading and the second rotation inclination. Note
that this is not equivalent to the decomposition based on Euler angles as proposed, e.g.,
in [27]. In that decomposition, the inclination quaternion is a concatenation of two rotations
and, in general, the rotation axis of that inclination quaternion is not horizontal. The
decomposition proposed in Figure 7 does not exhibit this disadvantage.
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E E

E E

measured
orientation

ground
truth

heading
−74° @ [ 0 0 1 ]ᵀE

heading
−74° @ [ 0 0 1 ]ᵀE

inclination
61° @ [−0.1 1 0 ]ᵀE

inclination
61° @ [ 0.9 0.3 0 ]ᵀE

total rotation
93° @ [ 0.4 0.6 − 0.7 ]ᵀE

Figure 7. Decomposition of an exemplary orientation difference into heading and inclination. Head-
ing is a rotation around the vertical axis and inclination is a rotation around a horizontal axis. Note
that in contrast to other decompositions that are used in literature, the angles commute.

To implement the desired decomposition, the following two steps are carried out.
First, we express the orientation error in the global frame E as follows.

[qe]E (t) := SEq(t)⊗
(
S
Eq−1

OMC(t)⊗ SEq(t)
)
⊗ SEq−1(t) (3)

= SEq(t)⊗ SEq−1
OMC(t). (4)

We then decompose the orientation error [qe]E (t) =: [ qw qx qy qz ]ᵀ into a rotation
around the vertical z-axis and the shortest possible residual rotation. The absolute rotation
angle of the former is called the heading error eh and the absolute rotation angle of the
latter is called the inclination error ei. Analytic expressions for those errors can be derived
by expressing the residual inclination rotation quaternion as a function of the heading
rotation angle and then maximizing the w-component of this residual quaternion. This
leads to the following definitions:

eh(t) := 2 arctan
∣∣∣∣ qz

qw

∣∣∣∣ (5)

ei(t) := 2 arccos
√

q2
w + q2

z . (6)

The proposed decomposition facilitates the interpretation of the overall estimation
error with respect to potential sources of inaccuracy when comparing the orientations
obtained by an IOE algorithm to the OMC ground truth. In general, large inclination
errors ei(t) indicate non-ideal fusion of accelerometer with gyroscope measurements while
large heading errors eh(t) are mostly caused by magnetic disturbances. The error e(t) is a
suitable metric for the overall orientation estimation error. The sum of both error portions
is always larger or equal to the overall orientation error while each portion for itself is
smaller than that overall error.

Note that for the special case of orientation estimation from gyroscope and accelerom-
eter measurements only, absolute heading information is not available. While, in this case,
the heading error eh(t) has a large offset and exhibits a slow drift, the inclination error ei(t)
is a suitable metric for assessing the accuracy of magnetometer-free IOE algorithms.

We can use the previously defined error metrics e(t), eh(t), and ei(t), which are defined
for each time instant, to assess the performance of a given IOE algorithm in different
scenarios. In order to assess the overall performance for one trial, we use the root mean
square error (RMSE) of the respective metric while only considering the motion phases
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(as labeled in the data files). When considering a set of trials, we report the mean of the
RMSE values obtained for each trial as a metric for the overall accuracy. In both cases,
small RMSE values indicate good performance.

4.4. Benchmark Metrics

In order to allow for a simple and well-defined performance comparison between
different IOE algorithms, we define two benchmark metrics that can be obtained from the
BROAD dataset for any given IOE algorithm: the trial-agnostic generalized performance
(TAGP) and the individual trial-optimized performance (ITOP). Both metrics are based on
the average RMSE that is obtained as follows:

1. run the IOE algorithm on all 39 trials with a given parameter setting
2. for each trial, calculate the orientation RMSE (i.e., the RMS of e(t)) while only consid-

ering the labeled motion phases
3. average all 39 RMSE values.

The TAGP is the smallest achievable average RMSE over all 39 trials that can be
obtained with a common parameter setting for all trials. The ITOP is the smallest achievable
average RMSE over all 39 trials that can be obtained with individual parameter tuning for
each trial.

In Section 5 we will demonstrate how to obtain those metrics and how to use the
proposed benchmark for further in-depth evaluation.

5. Case Study on the Proposed Benchmark Dataset

In the following exemplary case study, we demonstrate the usefulness of the proposed
benchmark and show how it can be employed to achieve an objective and broad assess-
ment and comparison of IOE algorithms under different conditions by answering several
exemplary research questions. To this end, we evaluate the performance of two popular ori-
entation estimation algorithms, the complementary filters proposed in [24] (Algorithm A)
and [28] (Algorithm B). For both filters, we employ the commonly used C implementa-
tion by Sebastian Madgwick (https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/,
accessed on 22 June 2021).

Consider orientation estimation in an application setting in which we do not have
knowledge regarding speed and type of motions and in which we cannot guarantee an
undisturbed environment. Our aim is to find robust parameter settings for Algorithms A
and B that minimize the average error over all possible scenarios. This specific research
question is equivalent to finding the parameter settings associated with the TAGP. In order
to determine this value, we calculate the average RMSE as defined in Section 4.4 for many
different parameter values. For Algorithm A, we use linearly spaced values of the single
tuning parameter β (0.01 to 0.3 in steps of 0.01). As Algorithm B has two tuning parameters,
a fusion weight Kp (similar to β) and a parameter for gyroscope bias estimation Ki, we
search a linearly spaced grid of parameter values (Kp: 0.02 to 2.0 in steps of 0.02, Ki: 0 to
0.004 in steps of 0.0001). The result is shown in Figure 8. We can see that, for this broad
range of motions, a value of β = 0.12 yields the lowest overall errors for Algorithm A and
that for Algorithm B the lowest overall error is obtained for the parameter combination is
Kp = 0.74, Ki = 0.0012.

Besides this research question, the details presented in Figure 8a can be used to
answer various minor research questions: Consider an application for which only the
inclination error is relevant and therefore should be minimized. As can be seen in Figure 8a,
β = 0.05 should be chosen for this case. Analogously, we see that accurate heading
estimation requires larger values for β, with the optimum being at β = 0.15. The line
plot representation also allows us to answer the question of how non-ideal values for β
influence the error: We can see that the error gradient is much steeper when β is too small
than when it is too large, i.e., if in doubt, larger values for β should be chosen.

https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
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Figure 8. Orientation estimation RMSE (averaged over all trials) obtained with Algorithms A [24]
and B [28] for different values of the tuning parameters. For various motions at different speeds, a
parameter choice of β = 0.12 yields the lowest overall errors for Algorithm A. For Algorithm B, the
parameter combination Kp = 0.74, Ki = 0.0012 yields the lowest overall errors.

In order to take an in-depth look at the strengths and weaknesses of a given IOE
algorithm, we pose the following research question: How does the estimation accuracy of
Algorithms A and B depend on the type of motion and environmental conditions? Unlike
available datasets, the BROAD benchmark is well suited for answering this question. This
can be achieved for example as follows. We calculate the average inclination, heading, and
total RMSE for the groups of trials as defined in Table 2 with the TAGP parametrization.
Furthermore, we determine the minimum achievable error when using ideal parameters
for each trial. In Figure 9 the TAGP performance is shown with bars, and the minimum
achievable error is indicated with black dots.

We see that for the TAGP benchmark metric, Algorithm A reaches a score of 4.96°
and Algorithm B reaches a score of 7.49°, i.e., Algorithm A yields a better overall perfor-
mance. Furthermore, the breakdown into trial groups allows for a detailed evaluation
of the estimation accuracy in various scenarios. For example, we can see that, for both
algorithms, pure rotational movements yield lower errors than translational movements.
For Algorithm A, the error for combined motions is larger than for translational movements
while for Algorithm B the error obtained for combined motions is smaller than for pure
translational movements. Unsurprisingly, faster movements lead to larger errors with both
algorithms. As can be seen in Figure 9, the estimation errors do not show any notable
difference between long continuous movement phases and short phases with breaks in
between. The decomposition into heading and inclination error in combination with the
magnetic disturbances included in the dataset allows for insight into potential sources of
errors. In the undisturbed trials, heading and inclination almost equally contribute to the
total error, while for the attached-magnet trials and Algorithm B, the heading error is twice
as large as the inclination error.

Combining the results of the two algorithms in Figure 9 enables us to easily answer
another research question: Which of the algorithms provides the best overall accuracy and
which algorithm is more accurate for any given motion scenario? To further facilitate the
comparison of the algorithm performance, we plot the error difference for each group of
trials as lines originating from the center of Figure 9. We see that when using the common
robust parameter settings, the performance of Algorithm A is better than the performance
of Algorithm B when considering the average performance of all trials. Algorithm A also
yields lower or almost equal errors for most trial groups except for the vibration and office
environment trials, where the performance of Algorithm B is better.
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Figure 9. Averaged RMSE errors for Algorithms A [24] and B [28] for various groups of trials. The bars show errors with
the trial-agnostic parameters, and the black dots indicate the minimum error achievable with individual parameters for
each trial. The lines originating from the center show the difference of the errors obtained with Algorithm A and B. It can be
seen that for most groups of trials, Algorithm A yields smaller errors.

The differences between TAGP and ITOP performance allow us to answer another
research question: How well do algorithms A and B generalize, i.e., can they provide
near-optimum performance for a wide variety of motions with a single common parameter
choice? The ability to generalize is a desirable property since individual parameter tuning
depending on the expected motion is often not possible in practice [16]. In Figure 9, we
see that for Algorithm B the ITOP errors are much smaller than the TAGP errors whereas
for Algorithm A the difference between individually tuning and a common parameter
choice is much smaller. This shows that there is more potential for parameter tuning with
Algorithm B while Algorithm A generalizes better.

As a final research question, we aim to determine how well the two considered IOE
algorithms perform compared to other state-of-the-art algorithms. Since Algorithm A and
B are complementary filters, we choose two algorithms based on Kalman filters for which
an implementation is available in [9]: the method proposed by Ligorio and Sabatini [29]
(Algorithm C, LIG in [9]) that yielded the best performance in [9] and the computationally
efficient method proposed by Guo et al. [30] (Algorithm D, GUO in [9]). To answer this
question, we determine the benchmark metric TAGP for all algorithms.

The results are shown in Figure 10. As can be seen, Algorithm D yields an overall
performance that is very similar to the performance of Algorithm B. With a TAGP of 3.98°,
Algorithm C provides the best overall performance and outperforms Algorithm A by
around 1°. The breakdown of the TAGP into heading and inclination components shows
that, while the errors are lower for both heading and inclination, a larger part of the overall
improvement can be attributed to more accurate inclination estimates.
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Figure 10. TAGP for Algorithms A [24], B [28], C [29], and D [30]. The overall performance of Algo-
rithm D is comparable to the performance of Algorithm B, while Algorithm C slightly outperforms
Algorithm A.

6. Conclusions

The validation of novel IOE algorithms is typically performed with not-openly-
available application-specific datasets that only contain certain types of motions. This
makes it difficult to compare performance across different algorithms, to gain insight into
the robustness of different algorithms in a broad range of scenarios, and to investigate
the influence of tuning parameters. There is a lack of publicly available datasets that are
suitable for robust IOE accuracy evaluation.

The proposed BROAD benchmark contributes towards filling this gap. In contrast to
previously published datasets, it encompasses a wide range of undisturbed motions as
well as motions in disturbed environments. As shown in the exemplary case study with
two widely used orientation estimation algorithms, this benchmark dataset allows for

1. the determination of robust algorithm parameters for a given IOE algorithm that
perform well for a broad range of motions and environmental conditions,

2. an in-depth analysis of strength and weaknesses of a given IOE algorithm in different
scenarios, while considering heading and inclination separately,

3. a detailed comparison of the performance of different algorithms with respect to a
wide range of possible application and motion scenarios,

4. an objective comparison of different literature algorithms as well as targeted devel-
opment of new algorithms with improved performance by using the well-defined
benchmark metrics described in Section 4.4.

The exemplary case study is by no means comprehensive and there are many fur-
ther possibilities for using the benchmark dataset. This includes the assessment of online
gyroscope bias estimation methods, for which gyroscope turn-on bias at different realis-
tic magnitudes could be added to the data, as well as evaluation of different magnetic
disturbance rejection approaches.

The BROAD benchmark is particularly useful for the objective assessment of IOE
algorithms across different types of motions and environmental conditions and is therefore
expected to contribute to the advancement of IMU-based motion analysis.

To further broaden the development of robust and accurate IOE algorithms for human
motion analysis, future research will aim at complementing the BROAD dataset by adding
existing or newly recording data from human motion trials with a reliable, synchronized,
and aligned optical ground truth. Furthermore, future research will aim at providing bench-
mark measurements obtained with different IMU hardware, and at using the benchmark
to develop and validate IOE algorithms.
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Appendix A. Quaternion Notation

Unit quaternions in vector notation are used to represent rotations and orienta-
tions [31]. We denote quaternion multiplication by ⊗ and, to simplify the notation,
implicitly regard three-dimensional vectors as quaternions with zero real part. When
a quaternion is used to represent orientations, left upper and lower indices are used to
indicate the coordinate frames. For example, we denote the IMU orientation commonly
reported by IOE algorithms as SEq, i.e., the rotation from an inertial reference frame E to the
coordinate system of the sensor S .

Appendix B. Time Synchronization

As both the IMU measurement and the OMC recording were started and stopped
manually and both systems record data at different sampling rates, the measurements need
to be time-synchronized. We obtain this by the following procedure:

Denote the sampling time of the IMU as Ts and the sampling time of the OMC system
as Ts,OMC. First, we derive a optical angular velocity ωOMC(tk) from the optical orientation
B
Mq(tk):

[ qw qx qy qz ]
ᵀ := B

Mq(tk−1)
−1 ⊗ B

Mq(tk) (A1)

ωOMC(tk) :=
2 arccos qw

Ts,OMC

[ qx qy qz ]ᵀ∥∥[ qx qy qz ]ᵀ
∥∥ (A2)

We then low-pass filter each component of the inertial angular velocity ω(tk) and the
optical angular velocity with a cutoff frequency of 10 Hz.

By nonlinear least-squares optimization, we determine the time offset t0 and the
scaling factor s of the nominal OMC sampling rate that minimizes the RMSE between the
norms of both angular rates, i.e.,

e :=

√√√√ 1
N

N

∑
k=1

(‖ω(tk)‖ −
∥∥ωOMC(t′k)

∥∥)2 (A3)

https://dx.doi.org/10.14279/depositonce-12033
https://dx.doi.org/10.14279/depositonce-12033
https://github.com/dlaidig/broad
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with

t′k := s
Ts,OMC

Ts
+ t0. (A4)

To ensure robust convergence, we first determine an initial estimate of the time offset
by evaluating this cost function with time offsets at a regular interval. In a second step, we
parametrize an additional offset and the clock scaling as a time shift at the beginning and
at the end of the measurement.

As the final step, we use the obtained time shift and OMC sampling rate to resample
the measured OMC data to the IMU sampling instants.

Appendix C. Coordinate System Alignment

While the IMU-based IOE algorithms yield the orientation of the sensor coordinate
system S with respect to a frame of reference E defined by the vertical direction and the
local magnetic field, the optical system determines the orientation of the marker cluster B
with respect to an internal reference coordinate systemM. This is illustrated in Figure 6.

Note that the rotation between the S frame and the B frame SBq and the rotation
between theM frame and the E frame MEq are constant throughout the entire duration
of the motion and only depend on the installation of the markers and the calibration of
the optical ground truth system as well as the local magnetic field inside the room and
the attachment of the IMU on the rigid body. To evaluate whether the orientation SEq that
is estimated by the IMU-based method is accurate, the S frame and the B frame as well
as the E frame and theM frame must be aligned with each other so that the IMU-based
orientation can be compared with the ground truth measurement. We now explain how
the rotation between S and B and between E frame and theM can be determined based
on any measurement that contains inertial and optical data from a sufficiently rich motion.

Assume that the inertial and optical data is already synchronized by the method
described in Appendix B. During this synchronization, we deliberately only considered
the norm of the optical angular velocity ωOMC(tk) and the gyroscope measurements ω(tk),
as the 3D vectors are given in the local coordinate systems B and S , respectively. We
can exploit the direction of those vectors to determine the relative orientation SBq. When
also considering a fixed gyroscope bias bω ∈ R3, it can be expected that the correct SBq
minimizes the following cost function:

egyr :=

√√√√ 1
N

N

∑
k=1

ω(tk)− bω − SBq−1 ⊗ωOMC(tk)⊗ SBq. (A5)

Using the central second-order finite difference, we derive an optical acceleration
signal aOMC(tk) from the OMC position measurements. In order to make this mea-
surement agree with the IMU accelerometer measurements, knowledge of both SBq and
B
Mq is needed. In the M frame, the measured gravitational acceleration is [g]M =
M
Eq−1 ⊗ [ 0 0 g ]ᵀ ⊗MEq, with a fixed but unknown g ≈ 9.8 m/s2. We express the IMU

accelerometer measurements in theM frame using the OMC orientation B
MqOMC(tk):

[a]M(tk) =
B
MqOMC(tk)⊗ SBq⊗ (a(tk)− ba)⊗ ( BMqOMC(tk)⊗ SBq)−1. (A6)

ba ∈ R3 denotes an unknown but constant accelerometer bias. Using those quantities, we
define the following cost function:

eacc =

√√√√ 1
N

N

∑
k=1
‖aOMC(tk) + [g]M − [a]M(tk)‖2. (A7)
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We can then determine the parameters SBq,MEq, b!, ba, and g that minimize the sum
of both cost functions, i.e., e = egyr + eacc. Note that for a unique solution, we set the
z-component ofMEq to zero, which ensures a consistent heading. To increase robustness,
we low-pass filter the optical and inertial measurements with a cutoff frequency of 10 Hz.
This problem can be solved by standard nonlinear optimization methods. It is generally
well-behaved, and the solution is straightforward to find.

The heading component of MEq is determined in a second step: We transform the
magnetometer measurements in the E frame using the OMC orientation and the results
from the previous step and, for each sample, calculate the angle of the measurement in the
horizontal plane. Finally, the mean of the obtained heading angles is used to determine the
heading ofMEq.

References
1. Seel, T.; Kok, M.; McGinnis, R.S. Inertial Sensors—Applications and Challenges in a Nutshell. Sensors 2020, 20, 6221. [CrossRef]

[PubMed]
2. Passon, A.; Schauer, T.; Seel, T. Inertial-Robotic Motion Tracking in End-Effector-Based Rehabilitation Robots. Front. Robot. AI

2020, 7. [CrossRef] [PubMed]
3. Kotiadis, D.; Hermens, H.J.; Veltink, P.H. Inertial Gait Phase Detection for Control of a Drop Foot Stimulator: Inertial Sensing for

Gait Phase Detection. Med. Eng. Phys. 2010, 32, 287–297. [CrossRef]
4. Seel, T.; Laidig, D.; Valtin, M.; Werner, C.; Raisch, J.; Schauer, T. Feedback Control of Foot Eversion in the Adaptive Peroneal

Stimulator. In Proceedings of the 22nd Mediterranean Conference on Control and Automation, Palermo, Italy, 16–19 June 2014;
pp. 1482–1487. [CrossRef]

5. Nguyen, H.; Lebel, K.; Bogard, S.; Goubault, E.; Boissy, P.; Duval, C. Using Inertial Sensors to Automatically Detect and Segment
Activities of Daily Living in People with Parkinson’s Disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 197–204. [CrossRef]

6. Werner, C.; Schneider, S.; Gassert, R.; Curt, A.; Demkó, L. Complementing Clinical Gait Assessments of Spinal Cord Injured
Individuals Using Wearable Movement Sensors. In Proceedings of the 2020 42nd Annual International Conference of the IEEE
Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 3142–3145. [CrossRef]

7. Woodman, O.J. An Introduction to Inertial Navigation; Technical Report UCAM-CL-TR-696; Computer Laboratory, University of
Cambridge: Cambridge, UK, 2007.

8. Kok, M.; Hol, J.D.; Schön, T.B. Using Inertial Sensors for Position and Orientation Estimation. Found. Trends® Signal Process. 2017,
11, 1–153. [CrossRef]

9. Caruso, M.; Sabatini, A.M.; Laidig, D.; Seel, T.; Knaflitz, M.; Della Croce, U.; Cereatti, A. Analysis of the Accuracy of Ten
Algorithms for Orientation Estimation Using Inertial and Magnetic Sensing under Optimal Conditions: One Size Does Not Fit
All. Sensors 2021, 21, 2543. [CrossRef]

10. Nazarahari, M.; Rouhani, H. 40 Years of Sensor Fusion for Orientation Tracking via Magnetic and Inertial Measurement Units:
Methods, Lessons Learned, and Future Challenges. Inf. Fusion 2020. [CrossRef]

11. Weber, D.; Guehmann, C.; Seel, T. Neural Networks Versus Conventional Filters for Inertial-Sensor-Based Attitude Estimation. In
Proceedings of the 2020 IEEE 23rd International Conference on Information Fusion (FUSION), Rustenburg, South Africa, 6–9 July 2020.

12. Caruso, M.; Sabatini, A.M.; Knaflitz, M.; Gazzoni, M.; Croce, U.D.; Cereatti, A. Accuracy of the Orientation Estimate Obtained
Using Four Sensor Fusion Filters Applied to Recordings of Magneto-Inertial Sensors Moving at Three Rotation Rates. In
Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Berlin, Germany, 23–27 July 2019; pp. 2053–2058. [CrossRef]

13. de Vries, W.H.K.; Veeger, H.E.J.; Baten, C.T.M.; van der Helm, F.C.T. Magnetic Distortion in Motion Labs, Implications for
Validating Inertial Magnetic Sensors. Gait Posture 2009, 29, 535–541. [CrossRef]

14. Ligorio, G.; Sabatini, A.M. Dealing with Magnetic Disturbances in Human Motion Capture: A Survey of Techniques.
Micromachines 2016, 7, 43. [CrossRef] [PubMed]

15. Fan, B.; Li, Q.; Wang, C.; Liu, T. An Adaptive Orientation Estimation Method for Magnetic and Inertial Sensors in the Presence of
Magnetic Disturbances. Sensors 2017, 17, 1161. [CrossRef]

16. Caruso, M.; Sabatini, A.M.; Knaflitz, M.; Gazzoni, M.; Croce, U.D.; Cereatti, A. Orientation Estimation through Magneto-Inertial
Sensor Fusion: A Heuristic Approach for Suboptimal Parameters Tuning. IEEE Sens. J. 2021 , 21, 3408–3419. [CrossRef]

17. Fan, B.; Li, Q.; Liu, T. How Magnetic Disturbance Influences the Attitude and Heading in Magnetic and Inertial Sensor-Based
Orientation Estimation. Sensors 2018, 18, 76, [CrossRef] [PubMed]

18. Szczęsna, A.; Skurowski, P.; Pruszowski, P.; Pęszor, D.; Paszkuta, M.; Wojciechowski, K. Reference Data Set for Accuracy
Evaluation of Orientation Estimation Algorithms for Inertial Motion Capture Systems. In Computer Vision and Graphics;
Chmielewski, L.J., Datta, A., Kozera, R., Wojciechowski, K., Eds.; Lecture Notes in Computer Science; Springer International
Publishing: Cham, Switzerland, 2016; pp. 509–520. [CrossRef]
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