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Marco Ancona ,1 Alessandro Bentivoglio,1 Michele Caraglio ,2 Giuseppe Gonnella,3 and Alessandro Pelizzola 4,5

1SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
2Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria

3Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, 70126 Bari, Italy
4Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

5INFN, Sezione di Torino, via Pietro Giuria 1, 10125 Torino, Italy

(Received 23 September 2020; revised 19 February 2021; accepted 26 May 2021; published 29 June 2021)

We investigate the possibility of extending the notion of temperature in a stochastic model for the RNA or
protein folding driven out of equilibrium. We simulate the dynamics of a small RNA hairpin subject to an external
pulling force, which is time-dependent. First, we consider a fluctuation-dissipation relation (FDR) whereby
we verify that various effective temperatures can be obtained for different observables, only when the slowest
intrinsic relaxation timescale of the system regulates the dynamics of the system. Then, we introduce a different
nonequilibrium temperature, which is defined from the rate of heat exchanged with a weakly interacting thermal
bath. Notably, this “kinetic” temperature can be defined for any frequency of the external switching force. We
also discuss and compare the behavior of these two emerging parameters, by discriminating the time-delayed
nature of the FDR temperature from the instantaneous character of the kinetic temperature. The validity of our
numerics are corroborated by a simple four-state Markov model which describes the long-time behavior of the
RNA molecule.

DOI: 10.1103/PhysRevE.103.062415

I. INTRODUCTION

Many natural and physical systems evolve under nonequi-
librium conditions. They can be living or biological systems
where chemical energy is continuously converted in move-
ment or mechanical work, or slow processes where relaxation
times to equilibrium exceed measurable timescales. Statistical
physics, from its foundation, has always tried to conceive a
theoretical framework for the study of nonequilibrium sys-
tems. Yet, a list of general results akin to those existing for the
equilibrium counterparts is still lacking. Recently, fluctuation
relations [1–8] and macroscopic fluctuation theories [9,10]
have provided major advances in the statistical description
of nonequilibrium phenomena. However, a substantial gap
between our current understanding of nonequilibrium funda-
mentals and what we know for equilibrium still remains.

One of the most established concepts in equilibrium
thermodynamics and statistical mechanics is temperature.
Temperature has a genuine statistical origin, as it represents
the average kinetic energy in large systems with several de-
grees of freedom. When in contact with a second system
(often a thermal bath), temperature regulates heat exchanges
between the two. Extending this notion to the nonequilib-
rium context is one of the grand challenges of the current
theoretical approaches to nonequilibrium physics. For glassy
systems, which display nonequilibrium aging properties,
mean-field models and simulations suggest the emergence
of an equilibrium-like temperature, defined via a relation
similar to the fluctuation-dissipation theorem (FDT) [11–14].
The idea is to identify the parameter that replaces the bath
temperature in a fluctuation-dissipation relation (FDR)
[8] between the time-delayed correlation and the lin-

ear response of the same observables as an effective
temperature.

More precisely, one exploits the relation (setting kB = 1):

Teff(�t )χO(�t ) = CO(�t ), (1)

where the self-correlation CO quantifies the spontaneous fluc-
tuations of a given observable O and χO is the integrated
linear response function representing the response of a sys-
tem to an external perturbation. In the long time-delay limit,
�t � tc, being tc some transient timescale, many interesting
systems, including those with aging dynamics [15–19], active
matter [8,20–31] and polymer physics [32], reach a regime in
which Teff(�t ) saturates to a constant Teff that under certain
conditions can be interpreted as an effective temperature reg-
ulating all thermal and heat exchange properties of the system
[14,16,17,32].

Despite this, the possibility of defining an effective tem-
perature for many classes of nonequilibrium systems is still
to be assessed. Only few experiments support the validity
of the effective temperature notion, while many theoretical
and numerical results raise important questions on the real
meaning of such quantity, by inspecting its dependence on the
specific considered observable [21,33], or asking whether it
has a relevant role in regulating the nonequilibrium thermo-
dynamics [34]. Therefore, it could be useful to reconsider the
concept of effective temperature in some simple but realistic
model where timescales are under control.

Small fluctuating systems offer a convenient possibility to
investigate on the role of effective temperature, since they
are completely characterized in equilibrium conditions, and
their study is still feasible when driven out of equilibrium
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[7]. An important example of such category is represented
by small biopolymers, such as RNA or DNA fragments, and
short proteins. They can adopt different structural conforma-
tion under some environmental conditions (bath temperature,
salt concentrations, external pulling forces, etc.). Such small
molecules can be often equivalent to a two-state system, as
they can be in either a folded configuration or an unfolded
conformation. In such systems, a possible pathway towards
nonequilibrium is to force the folding-unfolding transitions by
an external random force, which prevents the system to equi-
librate. In particular, one can ask how the folding-unfolding
dynamics of proteins or RNA molecules are affected by this
external drive, and whether the nonequilibrium properties
can be characterized by the effective temperature mentioned
above. Recently, the emergence of an effective temperature in
randomly pulled biomolecules has been experimentally ascer-
tained by Dietrich et al. [35]. By going in this direction, an
analysis of the typical relaxation timescales and a comparison
of the fluctuations (correlations) of the various observables in
such class of systems can help to shed light on the role of the
effective temperature.

In this paper, we consider a model, originally introduced in
Refs. [36–40], that can realistically reproduce equilibrium and
dynamic behaviors of small RNA molecules and proteins. In
the context of equilibrium, this model has been exactly solved
in references [41–43], and successfully used to predict the
equilibrium and dynamical behavior of several biomolecules
[44–58]. Here, we use this model to examine the nonequilib-
rium properties of an RNA hairpin: we measure integrated
correlation and response functions of different observables,
and we evaluate the typical relaxation timescales which play
an essential role in determining the emergence of an effec-
tive temperature. Our results are broadly in line with the
experimental findings in Ref. [35]. Then, we also compare
the effective temperature defined via the FDT-like relation in
Eq. (1) with another “kinetic” temperature, which quantifies
the extent of heat exchanged between the RNA fragment and
a weakly coupled system at a different temperature.

The paper is organized as follows. In Sec. II we define
the model used, and we briefly describe the main feature of
the RNA fragment that we have analyzed. An outline of the
main results on the equilibrium properties of this molecule
are shown in Sec. II A. In Sec. II B we present preliminary
simulations in nonequilibrium conditions. We show some rep-
resentative time series of the system, describing its qualitative
response to the external random force. In Sec. III, we recall
the rudiments of the fluctuation-dissipation relation (FDR)
out of equilibrium, and we introduce two possible nonequi-
librium temperatures for our system. In Sec. IV, we develop
an analytically solvable four-state model, which poses the
guidelines to understand our numerics. Then, the simulation
results on the effective temperature calculated via the FDR
are presented in Sec. V, for a large range of the relevant
parameters; there, we compute the effective temperature for
two different variables, the end-to-end length of the molecule,
L (Sec. V A), and the number of native contacts Nc (Sec.
V B). A detailed discussion on the relevant timescales of this
system is proposed throughout the whole section, by means of
a direct comparison with the four-state model predictions. In
the Sec. V C, we evaluate a kinetic temperature for our model.

Therein, we also discuss the analogies and differences with
the FDR effective temperature.

II. MODEL AND METHODS

A N-residues-long protein or RNA is modeled as a 1D
lattice of N + 2 sites, where the N bulk sites represent the
residues/bases and the boundary sites are the terminal ends.
Each site is labeled by a dichotomous variable mk , with
k = 1, . . . , N , which describes its nativeness: if mk = 1 the
kth residue is native, while if mk = 0 it is not. Boundary
conditions are specified by m0 = mN+1 = 0. Similarly, any
segment of the molecule enclosed within the ith and jth site
can be native or nonnative. A native i j-stretch is defined as
a sequence of consecutive native residues (mk = 1 for k =
i + 1, j − 1) delimited by two nonnative sites at the bound-
aries (mi = mj = 0). Then, the auxiliary variable Si j ≡ (1 −
mi )(1 − mj )

∏ j−1
i+1 mk is linked to the nativeness of stretches,

being equal to 1 if the i j-stretch is native and 0 otherwise.
Due to the 3D folding of the protein or RNA chain, in a
folded structure, each atom of a residue i is in contact with
the atoms of another residue j if their distance is lower than
a threshold distance that we set equal to 4 Å. The number
of atomic contacts and the distances in three-dimensional
real space between residues in the folded structure are given,
respectively, by the matrix elements ni j and li j . Such matrices
are input values of the model, depend on the particular protein
or RNA considered, and are extracted from the relative file
in the Protein Data Bank (PDB) [59]. We assume that each
atomic contact is associated with an energy term −ε, so that a
pair of residues (i, j) with ni j atomic contacts will contribute
to the total energy with an energetic loss of −εni j , when the
molecule is in its native configuration. In the same condition,
if an external constant force f acts on one terminal end of the
chain, then a further energetic contribution comes from the
term − f li jσi j , where σi j = ±1 is another binary variable of
the model representing the orientation of the i j-stretch with
respect to the force direction. Given a particular configuration
({mk}, {σi j}), we define

Nc ≡
N−1∑
i=1

N∑
j=i+1

ni j

j∏
k=i

mk, (2)

which represents the total number of native atomic contacts,
while

L ≡
N+1∑
i=0

N∑
j=i+1

li jSi jσi j (3)

is the end-to-end length.
In the presence of a constant pulling force f > 0, the equi-

librium properties of the RNA or protein can be described by
its Hamiltonian:

H = −εNc − f L. (4)

We assume that only nativelike residues which belong to the
same native stretch can lower the energy of the system. This is
encoded in the product

∏ j
k=i mk in Eq. (2), which is nonzero

only if mk = 1 holds for k = i, i + 1, .., j − 1, j. In this way,
we mimic the cooperative folding in real protein or RNA
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molecules. Similarly, we assume that only native stretches
(Si j = 1) contribute to the end-to-end length L, as can be
seen in Eq. (3). For instance, if the molecule is kept at zero
temperature and small force, the equilibrium configuration is
the one with all the bulk residues native (mi = 1 for every
i = 1, . . . , N and S0,N+1 = 1), which means that the whole
molecule is in the native conformation, and its effective length
is the folded length measured by experiments. For a system in
contact with a thermal bath at a finite temperature T , each
configuration ({mk}, {σi j}) can be visited by the system, with
a probability which is only proportional to the Boltzmann
weight exp(−βH), where β = 1/T (kB = 1). Therefore, T/ε

and f /ε are the control parameter at equilibrium, while out-
of-equilibrium ε, f , and T will be considered separately (see
below).

In this work we have simulated the 22-nucleotides PG5A
RNA hairpin, for which the input data needed, ni j and li j , can
be extracted from the PDB file in Ref. [59] (code 1F9L). The
dynamical properties of this and similar RNA hairpins have
been widely studied, both experimentally [60] and numer-
ically [51,61,62], at equilibrium and under nonequilibrium
conditions. Here, instead, we focus on the thermodynamic
properties of this RNA segment, mainly to illustrate the emer-
gence of effective temperatures in nonequilibrium conditions.
This model has been used to successfully describe in and out-
of-equilibrium dynamical properties of several other proteins
(such as protein PIN1 [49], ubiquitin [50], fibronectin [53],
and GFP [54]), and can be used to further explore the emer-
gence of effective temperature in more complicated proteins
or RNA chains. However, in this paper we restrict ourselves
to the analysis of the PG5A RNA hairpin, as it is instructive to
comprehensively illustrate the emergence of nonequilibrium
temperatures in wide ranges of parameters, which may not
be feasible for systems with a larger number of degrees of
freedom.

To investigate the stochastic dynamics of the PG5A RNA
hairpin, we perform Monte Carlo simulations. We consider a
time-dependent random force f (t ) that switches intermittently
between the two values fbias ± � f , with a typical switching
time τe, or, equivalently, such that

〈 f (t )〉 = fbias,

〈 f (t ) f (t ′)〉 = f 2
bias + (� f )2e−2|t−t ′ |/τe ,

(5)

that are, respectively, the mean value and the covariance of
a two-state telegraph process for symmetric jumps about the
bias [63]. In the algorithm, at each Monte Carlo time step
(MC ts), the force value can switch with a rate 1/τe. The
equilibrium condition is met when � f = 0.

In simulation in and out of equilibrium, the state of both a
randomly chosen kth site and an i j-stretch can modify as fol-
lows: mk → 1 − mk , σi j → −σi j , according to the Metropolis
rule. The simulations were equilibrated for 5 × 104 MC ts,
and then were run for at least 2 × 104 MC ts.

A. Equilibrium properties of PG5A RNA hairpin

In equilibrium conditions (i.e., f constant), the system
displays a folding-unfolding crossover [51,61]. In terms of
the nativeness of the nucleotides, this crossover can be char-

FIG. 1. Equilibrium phase diagrams for L and Nc. In this figure
we show the L (a) and Nc (b) values in the f –T space (fixed ε). We
also draw the crossover line (bright red dashed line), which consists
of the points in the f –T diagram for which 2/3 of the nucleotides are
nativelike. This is the criterion used in Ref. [51] to individuate the
folding-unfolding crossover at different bath temperatures. (a) This
panel shows the crossover between two different regimes. In the
yellow region, the molecule is fully extended, and oriented towards
the force direction. In the purple/black region the RNA chain is
either in the hairpin configuration, and thus it is folded (below the
crossover line), or it is unraveled, but does not align with the force
(bottom–right corner of this panel). For both cases, L is below the
value L ∼ 5nm. (b) The number of native contacts Nc correctly pre-
dicts the order-disorder transition for this RNA. Indeed, the crossover
line between the native or ordered configuration and the nonnative or
disordered one locates in the red region, which corresponds to 1/2 of
the native contacts to be nativelike (Nc 	 250).

acterized by the mean number of nativelike residues m ≡
(1/N )

∑N
i=1〈mi〉. When RNA is stable in the native configu-

ration (small T, f ), the order parameter m is approximately 1,
while in the totally disordered RNA (T large) m is about 1/3
[51]. Therefore, the folding-unfolding crossover line can be
individuated for those force and temperature values for which
2/3 of the residues are native. Such criterion has been used
to locate in the f –T diagram the crossover points between
the ordered and the disordered macrostates, and to find the
correspondent energy landscapes [51]. In Fig. 1, we report the
crossover line found by following this criterion. We observe
that the end-to-end length L cannot be used to individuate
the crossover between the native or ordered regime and the
nonnative or disordered one. Indeed, for high temperatures
and low forces, such observable is not able to capture the
nativeness of the RNA structure. Indeed, for large T and small
values of f , the probability distribution associated with L
is symmetric and centered in L 	 0 (not shown), yielding a
mean value similar to the one in the ordered phase. This is
shown in Fig. 1(a), where L values are plotted in the f –T
space. Clearly, for T � 333K , f � 8pN, there is a deviation
of the red region, which signals intermediate values of L,
from the real crossover line obtained with the aforementioned
criterion. Conversely, a good order parameter which describes
this crossover is the number of native contacts Nc. In Fig. 1(b)
we show the total number of native atomic contacts in the f –T
space. Note that the phase diagram is qualitatively similar to
the one shown in Ref. [51] for m (compare to Fig. 1 in that
paper), with a sharp crossover between the native/folded and
the nonnative/unfolded macrostates of the RNA molecule.
Moreover, the crossover line overlaps with the red region in
the phase diagram (1/2 of contacts are native). Both diagrams
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FIG. 2. Time series of in and out-of-equilibrium RNA. Representative time series of the relevant observables L and Nc (purple solid lines)
and typical force profiles (green dashed lines), for equilibrium and τe = 1000, 10 000, see Eq. (5). The simulations were run for T = 300,
fbias = fc = 15.3pN, � f = 0 (a, b) and � f = 10pN (c–f), ε = 13.92. (a, b) At equilibrium, L and Nc switch with a typical timescale of the
system at this temperature. Large fluctuations in L are manifest in the unfolded basin. (c, d) For small τe, the switching force produces a
decrease in the typical transition time of L and Nc between the two states. However, the dynamics of observables do not follow force jumps.
(e, f) Conversely, for large τe, the RNA molecule is able to respond to the intermittent hops of the stochastic force. Thus, L trajectory tend to
mimic the force profile, while Nc trajectory anticorrelates with force values.

in Fig. 1 are obtained by analytical calculations, since par-
tition function, and thus mean values of any quantities, can
be exactly computed by means of Eq. (4), as demonstrated
in Ref. [41]. The value of ε is equal to 13.92, that is the
temperature scale factor which reproduces the experimental
critical unfolding temperature in the absence of a pulling force
(Tc = 333K).

We finally remark that, due to the finite length of the PG5A
RNA chain, such folding-unfolding transition shows up as
a sharp crossover between two macrostates, with a marked
bistability in proximity of the crossover line. Indeed, thermal-
induced transitions between the folded or ordered and the
unfolded or disordered phases occur at the unfolding force
fc = 15.3pN, as shown in the representative time series in
Figs. 2(a) and 2(b), respectively, for L and Nc. This corre-
sponds to the crossover value reported in Refs. [51,61] and
Fig. 1 at the bath temperature T = 300 K. The crossover line
in Fig. 1 is interpreted as a real order-disorder transition line
in the thermodynamic limit, where the order parameter m (or
Nc) can exhibit a discontinuous jump at the transition values
of the control parameters f and T . Therefore, in the rest of
the paper we will refer to the crossover line and the unfolding
force fc, by unambiguously using terms as “transition line”
and “critical force.”

From the timeseries in Figs. 2(a) and 2(b), it is also possible
to find a rough estimation of the conversion factor between
Monte Carlo and real time units, at equilibrium. Comparing
the real unfolding/refolding times of the PG5A RNA hairpin
given in Ref. [61] to the residence times calculated in our
model, we find that 1 MC ts corresponds to about 10−4–10−3

ms.

B. Out-of-equilibrium dynamics of PG5A RNA hairpin

We now switch to a nonequilibrium context, i.e., f is
time–dependent as detailed in Sec. II, with expectation value
and correlation defined as in Eq. (5). In Fig. 2 we show
the time series of L and Nc in nonequilibrium conditions
(� f = 10pN), at T = 300 K, for the representative values of

the force timescale, τe = 1000, 10 000. In the former case, the
typical residence times spent in the folded and the unfolded
states reduces for both L and Nc. In such conditions, those
are also associated with the “longest” relaxation timescale
of the system, or, in other words, the time that the system
needs to uncorrelate from its initial state. However, since the
molecule is not able to respond immediately, for such value of
τe the RNA dynamics differs significantly from the force time
profile [see Figs. 2(c) and 2(d)]. Conversely, for τe = 10000,
the switching dynamics follows the force dynamics, since
the system has enough time to respond to the force jumps.
In Figs. 2(e) and 2(f) is clearly shown that the end-to-end
length (number of native contacts) time series is correlated
(anticorrelated) with the force time profile. For large τe, the
“longest” relaxation time is approximately τe/2, as we will
show below.

III. NONEQUILIBRIUM TEMPERATURES

The characterization of the thermodynamic state of an
out-of-equilibrium system via an effective temperature is
an attempt to understand a nonequilibrium problem into an
equilibrium framework. In equilibrium conditions, all the def-
initions of T lead to the same outcome, which is usually
the bath temperature, as this measure is uniquely related to
the mechanism of heat dissipation, which is the only factor
that governs the dynamics. Generally, this latter consideration
does not hold out of equilibrium, and, thus, a comparison
between different temperature definitions is in order.

In this section we define two different effective temper-
atures which will be calculated for our model, the FDR
temperature, TFDR, and the kinetic temperature, Tkin, respec-
tively. The two definitions inform about two different aspects
of nonequilibrium systems: while the former is more related
to the time-delayed properties of the systems (which are quan-
tified by two-times correlation and response functions), the
latter is rather associated with the instantaneous exchange of
heat in the nonequilibrium stationary state.
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A. FDR effective temperature

To introduce the FDR for our model, we need to define the
integrated correlation function and the integrated linear re-
sponse function. Suppose that X is a generic observable of the
system, which assumes the value x(t ) at time t , and the system
is described by the Hamiltonian H0 − g(t )X , where g(t ) is the
time-dependent intensive variable conjugated to X . At time
t0 = 0 a small steplike perturbation δg is applied, such that
Ht>t0 = H0 − [g(t ) + δg]X . Thus, the integrated correlation
and response functions are given by

CX (t ) ≡ 〈[x(t0) − x(t )]x(t0)〉ss, (6)

χX (t ) ≡ 〈x(t ) − x(t0)〉
δg

, t � t0, (7)

where the symbol 〈..〉ss denotes the expectation value in the
nonequilibrium steady state (NESS), while 〈..〉 is the expecta-
tion value computed in the presence of the small perturbation
δg → 0. Note that CX and χX are monotonically increasing
functions of time, which satisfy CX (t0) = χX (t0) = 0, and
χX (∞) ≡ χ∞, where χ∞ is the (asymptotic) susceptibility. At
equilibrium, they are strictly related by the FDT, which in its
integrated version reads as follows:

χX (t )

Ceq
X (t )/T

= 1, (8)

where T is the bath temperature. The superscript “eq” means
that the average has to be performed in the equilibrium steady
state. Moreover, at equilibrium, Eq. (8) works for any variable
X at any time t > t0. Such theorem is violated out of equi-
librium. In spite of this, a relation similar to Eq. (8) can be
written also for systems in their nonequilibrium steady state:

Y (t ) ≡ ∂χX (t )

∂ (CX (t )/T )
. (9)

Equation (9) represents a formulation of FDR, where Y (t ) is
the violation parameter [15,34]. Y (t ) is the slope of the para-
metric curve χX (CX /T ) in Eq. (9) at each time t > t0; thus,
in general, the aforementioned parametric function displays a
nonzero curvature. Nonetheless, for a large class of systems
and observables, such a factor is independent of t after some
time threshold τc (see Sec. IV), and an effective temperature
TFDR can be defined, such that

Y ≡ T/TFDR, t � τc. (10)

In this latter case, and FDT-like relation is restored by sub-
stituting in Eq. (8) the bath temperature T with the parameter
TFDR. Clearly, the equilibrium limit verifies Y (t ) = 1 and τc =
0, which implies Eq. (8).

Equations (6) and (7) can be calculated either in equilib-
rium or in nonequilibrium conditions, as long as an unique
steady state exists. The integrated response function can be
computed much more easily than the usual response function
in numerical simulations. Therefore, from now on, we will
only use CX (t ) and χX (t ) as a measure of the correlations and
the response to a perturbation for the observables L and Nc

introduced in Sec. II.

B. The kinetic temperature

In this subsection, we introduce a nonequilibrium temper-
ature of a different nature, which we will refer to as “kinetic”
temperature, Tkin. Its definition is based on the rate of heat that
would be exchanged between the whole system and another
(virtual) thermal bath, which serves as a “thermometer.” Then,
we explain a simple and computationally efficient way to
evaluate such kinetic temperature.

We imagine our system to be in contact with a second
weakly interacting bath, at temperature Tth �= T . Therefore,
this second bath is virtually able to exchange heat with the
system (or equivalently with a subset of degrees of freedom)
without modifying its state. The rate of heat that would be
absorbed is, on average,

〈Q̇X 〉 =
∑



∑

′∈∂X 


P0(
)[E (
′) − E (
)]W
,
′ . (11)

X is the variable (or the set of variables) weakly coupled with
the second thermal bath at temperature Tth and 
 indicates
the global state of the system (in our case, it is determined
by the microscopic variables {mk, σi j}). P0(
) is the NESS
probability distribution associated with 
. E (
) is the energy
of the system when in the state 
, and W
,
′ is the transition
rate from the state 
 to the state 
′. ∂X 
 is the set of states
which can be reached in those transitions that modify only the
variable X . For models where it is not possible to split all pos-
sible transitions into subsets regarding different observables,
one can still define a single kinetic temperature by considering
all possible transitions in the second summation in Eq. (11).
The dependence on Tth is implicit in the transition rates W
,
′ ,
while P0(
) and E (
) are independent of Tth, since the
second bath is only weakly interacting. For the Metropolis
dynamics, we have W
,
′ ≡ min{1, e−βth[E (
′ )−E (
)]}, where
βth = 1/Tth. Observe that the heat exchanged per unit of time,
〈Q̇X 〉 can depend on the particular observable X . Reasonably,
the thermometer measures the effective temperature Tkin of
the system when 〈Q̇X 〉 = 0, or, in other words, the second
thermal bath will be at temperature Tth = Tkin when no heat
is exchanged (on average). This latter condition defines the
kinetic temperature of the system.

Thus, the kinetic temperature can be operatively computed
in a simulation run in its NESS, as follows:

(i) The energy E (
) is calculated at each time step;
(ii) If a transition occurring at time t , 
 → 
′, modifies

the value (or values) of the variable (or the set of variables) X ,
the variation in energy E (
′) − E (
) is stored;

(iii) then, for some temperature Tth, every variation in en-
ergy of the type in (ii) is weighted with the corresponding
transition rate W
,
′ and the summation in Eq. (11) is per-
formed;

(iv) the temperature Tth is systematically varied, and the
procedure in (iii) repeated to calculate 〈Q̇X (Tth)〉, until the
condition 〈Q̇X (T ∗

th )〉 ≈ 0 is met. The value T ∗
th estimates Tkin.

Note that for such procedure to be applicable, the prior
knowledge of the transition rates W
,
′ is needed. For a Monte
Carlo dynamics, for example, such requirements are always
satisfied. In Sec. V C, we calculate the kinetic temperatures
relative to the microscopic observables mi and σi j .
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IV. FOUR-STATE MODEL

To better understand the numerical results presented in the
following section, we map our RNA into a simpler system,
which can be either in the folded and ordered state or in the
unfolded and disordered one, following the effective four-state
model described in Ref. [35]. We remark that this framework
is generic and indeed our analytical predictions hold for any
four-state system that follows the same transition rules.

The observable that describes the system is labeled by
s = s±, and it is forced by an external two-state drive, labeled
by x = x±. The states of this effective four-state model are
(s, x) ≡ {1, 2, 3, 4} = {(s+, x+), (s+, x−), (s−, x+), (s−, x−)}
and the master equation which governs the dynamics is

∂t P(t ) = MP(t ), (12)

where P(t ) ≡ P(s,x)(t ) is a four-state probability vector, such
that

∑
s=s±,x=x± P(s,x)(t ) = 1, at every time t . The matrix ele-

ment Mi j is the transition rate from state i to state j. Thus, the
matrix M reads

M =

⎛
⎜⎝

M11 1/τe M13 0
1/τe M22 0 M24

M31 0 M33 1/τe

0 M42 1/τe M44

⎞
⎟⎠, (13)

given that Mj j = −∑
i,i �= j Mi j , with i, j = 1, 2, 3, 4. Eigen-

values λk and right (left) eigenvectors Pk (Qk) of M are
such that MPk = λkPk (QkM = Qkλk), for k = 0, 1, 2, 3.
The quantities μk = −λk are nonnegative and represent the
inverse of the typical timescales of the system. Since the sys-
tem reaches the steady state eventually, we have that μ0 = 0,
and the corresponding right eigenvector is P0, the stationary
probability distribution. Then, for every k > 0, τk ≡ 1/μk

defines the timescales of the system. One finds

μ1 = 2

τe
,

μ(2,3) =
(

1

τe
+ M12 + M21 + M34 + M43

2

)

±
[

1

τ 2
e

+ (M34 − M12 + M34 − M21)2

4

] 1
2

. (14)

Correlation and response function are defined as in Eqs. (6)
and (7):

C(t ) = 〈s0s0〉 − 〈s0st 〉, (15)

χ (t ) = ∂〈st − s0〉
∂ (δg)

∣∣∣∣∣
δg=0

, (16)

where st is the value assumed by the stochastic variable in
exam at time t , and δg is the small steplike perturbation
applied to the bias of the external drive labeled by x. After
some calculations, both correlation and response functions
can be written as a combinations of the components Pk

(s,x) of
the eigenvectors of M:

C(t ) =
3∑

k=1

(∑
s,x

sPk
(s,x)

)
�k (1 − e−μkt ), (17)

χ (t ) =
3∑

k=1

(∑
s,x

sPk
(s,x)

)
γk (1 − e−μkt ), (18)

�k =
∑
s,x

sQk
(s,x)P

0
(s,x), (19)

γk = 1

μk
QkδMP0. (20)

We now discuss the three timescales τk , their relation with the
FDR in Eq. (9) and the existence of an effective temperature.
First, note that γk in Eq. (20) depends on δM, which represent
the first order correction to the transition matrix M produced
by the external perturbation to the NESS. One can show that
γ1 = 0 [64], while �1 �= 0. Therefore, on a timescale of the
order of τ1 = τe/2, the ratio Y (t )/T = ∂χ (t )/∂C(t ) is time-
dependent, causing the violation, or curvature, of the FDR in
Eq. (10) [see also Eqs. (21) and (22)]. From Eq. (14), it is
also easy to verify that μ2 > μ1, thus it is always τ2 < τ1.
Therefore, the mode associated with μ2 in both Eqs. (17) and
(18) relaxes with a typical time faster than τ1 = τe/2, which is
in turn associated with the curvature term of FDR. This mode
converges faster than the violation transient time, and is thus
irrelevant for our analysis at large times, see Eq. (10). On a
timescale of the order of τe/2 or larger, Eqs. (17) and (18)
reduce to

C(t ) ≈ AC (1 − e−2t/τe )

+ BC (1 − e−t/τ3 ), (21)

χ (t ) ≈ Aχ (1 − e−t/τ3 ), (22)

where AC,χ and BC are prefactors. Thus, for our purposes, two
of the three timescales, τ1 and τ3, are relevant at large times; in
particular, τ3 ≡ τs is the slowest intrinsic relaxation timescale
of the system under an external perturbation.

From Eqs. (21) and (22) one can find the parametric func-
tion C[χ (t )]:

C[χ (t )] ≈ AC

[
1 −

(
1 − χ (t )

Aχ

) 2τs
τe

]
+ BC

Aχ

χ (t ). (23)

It emerges that, if τe is sufficiently small, the violation
region is restrained to an initial transient, namely, the con-
tribution of the first term in the right-hand side of Eq. (23)
becomes negligible. In particular, this occurs when the cur-
vature d2χ [C(t )]/dC(t )2 of Eq. (9) is about zero. By using
Eqs. (23) and (22), the inverse curvature can be calculated as
follows:

∂2C

∂χ2
≈ AC

[
2τs

A2
χτe

(
1 − 2τs

τe

)
e− 2

τs ( τs
τe

−1)t

]
. (24)

Therefore, the condition for a negligible curvature is

t >
τs

2(τs/τe − 1)
≡ τc, (25)

which reduces to τc ≈ τe/2 in the limit of τe � τs. This is the
case only when τe < τs, which turns out to be the condition
allowing a thermal-like regime at late times (see also the Sup-
plemental Material in Ref. [35]), as the violation parameter is
a constant, Y (t ) ≡ Y , see Eq. (10). Vice versa, if τe > τs, then
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the curvature in Eq. (24) is always different from zero, which
means that no effective temperature can be detected (or the
violation parameter in Eq. (9) is always time-dependent).

Such model can be exploited to calculate explicitly the
kinetic temperature defined in Sec. IV B. Assuming that
the external drive which oscillates between the values x± =
xbias ± �x is conjugated to the observable labeled by st , at
time t , then the energy difference in the right–hand side in
Eq. (11) is readily found: E (st+1, x) − E (st , x) = −x(st+1 −
st ). After some algebra, one finds the following expression of
the violation parameter Y kin ≡ T/Tkin in the limit of large τe:

Y kin 	 1 − T

�x(s+ − s−)

1 − w

τeλw
, (26)

Hence, for sufficiently large τe, Y kin approaches to the equilib-
rium value as τ−1

e . More details on the calculations are shown
in Appendix B.

V. RESULTS

In the following three subsections we present a system-
atic analysis of the FDR in Eq. (9). Therein, we show the
correlation function and the integrated response for different
values of the parameters, and the corresponding relaxation
timescales. We also show the parametric plots χX (CX ), and
we compare the TFDR obtained for two different bath tempera-
tures, T = 200, 300 K. In Sec. V A, we present the simulation
results obtained for the end-to-end length L, in Sec. V B
we replicate the analysis for another observable, the total
number of native contacts, Nc. In Sec. V C, we calculate the
kinetic temprature defined via Eq. (11). Then, we discuss all
the nonequilibrium temperatures which emerge from different
definitions and observables, and we compare the results with
the predictions of the four-state model.

A. Effective temperature for the end-to-end length

To compute the effective temperature T L
FDR, which is asso-

ciated with the end-to-end length L, we evaluate numerically
Eq. (9). The system is prepared in a NESS, at bath temperature
T , with a pulling force f = fbias ± � f , which switches with
rate 1/τe. In such state, for t0 = 0, the integrated correlation
in Eq. (6) reads

CL(t ) = 〈L2(0)〉ss − 〈L(0)L(t )〉ss. (27)

At time t0, a small steplike perturbation δ f θ (t − t0) in the
force bias ( fbias → fbias + δ f ) is applied, shifting on average
the end-to-end length by a quantity 〈L(t ) − L(0)〉. Thus, from
Eq. (7), the integrated response function can be readily found:

χL(t ) = 〈L(t ) − L(0)〉
δ f

. (28)

The response function is defined in the limit δ f → 0. We
perform two sets of simulations for different values of the
parameters, respectively, T = 300 K, fbias = fc = 15.3 pN,
δ f = 1 pN and T = 200 K, fbias = fc = 30 pN, δ f = 0.5 pN.
Such values of the force bias correspond to the equilibrium
folding-unfolding transition at the given temperatures (the
former is also the experimental unfolding force at room tem-
perature, the latter is predicted by our model, see also Fig. 1).

The chosen values of δ f are sufficiently small to prevent non-
linear contributions from significantly affecting the measure
of χL(t ). The amplitude of the time-dependent pulling force
is � f = 10.0 pN for both the cases (the same value has been
used to produce the time series described in Sec. II B). Finally,
we span a large range of switching times, from τe = 102 to
τe = 104. In Figs. 3(a) and 3(d) we show C(t ) as a function of
time. Note that, as τe increases, the asymptotic value of C(t )
becomes larger. Surprisingly, the susceptibility χ (t ) decreases
with τe, which is apparently counterintuitive, see Figs. 3(b)
and 3(e). In fact, one would expect high-frequency external
drives to lower the ability of the system to respond to external
perturbations, as it acts to increase the disorder. Contrarily,
in our system, the action of the switching force generates a
significant raise of the susceptibility χ∞ when τe becomes
smaller. This is because the constant force bias fbias deter-
mines the direction of the molecule, which is chiefly oriented
parallel to the direction of the force (L is always positive at
the transition, for T = 200 K and T = 300 K, see Figs. 1 and
2). In other words, this results in a partial ordering of the
native stretches, namely, a prevalence of σi j = +1. Therefore,
high-frequency external drives aid the system to respond to
external perturbations, similar to what happens in the Ising
model below the critical temperature, where the susceptibility
increases as the temperature raises. This tendency is inverted
when the RNA molecule is disordered, which occurs for very
small forces and high temperatures, where L ∼ 0 and the
fraction of the positively oriented stretches, σi j = +1, equals
the fraction of the negatively oriented ones, σi j = −1 (not
shown).

The simple model in Sec. IV suggests that the correlation
C(t ) and the response function χ (t ) can be fitted by the fol-
lowing expressions:

C(t ) ≈ aC + bC (1 − e−t/τ f
C ) + cC (1 − e−t/τ s

C ),

χ (t ) ≈ aχ + bχ (1 − e−t/τ s
χ ),

(29)

where aC,χ , bC,χ , cC , τ
f

C , and τ
s, f
C,χ are fitting parameters, and

the superscripts f , s refers to “fast” and “slow” frequency
mode. Note that the fitting expressions in Eq. (29) differ from
Eqs. (21) and (22). Indeed, fluctuations are not considered
in the simple model described before; conversely, they are
present in the full model, as shown in Fig 1. They affect
correlation and response functions in the very early times,
and we take into account of such fluctuations by adding the
constants aC,χ to the expressions in Eqs. (21) and (22). We
also remark that the response function does not decay with τe

(as suggested by the simple four-state model), and, therefore
it can only be τ s

χ ≡ τs.
We can now comment Figs. 3(c) and 3(f), where we show

the relaxation timescales as a function of the switching time
τe. Interestingly, the slowest timescale of the integrated cor-
relation, τ s

C , is a nonmonotonical function of τe for both
T = 200, 300 K. This is not the case for the behavior of τ s

χ ,
which seems to decrease monotonically towards the τe → ∞
equilibrium value. Moreover, when there is a clear separation
between the two relevant timescales, i.e., for τe � τs, we have
that τ s

χ 	 τ s
C ≡ τs, with a good overlap, especially for T =

200 K. Correspondingly, the fast mode evolves with a typical
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FIG. 3. CL (t ), χL (t ) and relaxation timescales. In this figure, the integrated correlation CL (t ) and response χL (t ) curves are represented for
two value of the bath temperature T = 200, 300 K for different τe (arrows point to smaller τe). The response curves are realized by applying
a perturbation at t = 0. Two values of the perturbation were used to minimize nonlinear effects, δ f = 1.0 pN (T = 300 K) and δ f = 0.5 pN
(T = 200 K) (a) Correlation and (b) response functions for T = 300 K. The asymptotic values of correlation C∞ slightly increases as τe

increases. Contrarily, the asymptotic susceptibility χ∞ decreases with τe. (c) Relaxation timescales for T = 300 are shown as a function of τe.
The slowest timescale, τ s

χ (blue squares), reaches the plateau at τe � 1000, which is also the location of the minimum of τ s
C (τe) (red circles).

The fast timescale τ
f

C (green triangles) grows as τe/2 for small τe. (d) Correlation and (e) response functions for T = 200 K. The integrated
response function χ rapidly decreases with τe. (f) Relaxation timescales for T = 200 are shown as a function of τe. The relaxation timescales
display the same qualitative behavior as before. For small τe, τ s

C is more susceptible than in the case T = 300 K, and τ
f

C 	 τe/2. For large τe,
τ s

C and τ s
χ approximately match with the ones in panel (c).

timescale of τe/2, as expected from the theory [in this case
the fit is more accurate for T = 300 K, see Fig. 3(c)]. We also
observe that, for large τe, the switching dynamics at long times
takes over the relaxation dynamics of the perturbed system,
which reflects in a substantial difference between τ s

C and τ s
χ .

Indeed, for such values of τe the slowest relaxation timescale
is τe/2. We also recognize that this is the regime in which
the violation parameter is time-dependent. The intersection
between the τ s

χ and the τe line in Figs. 3(c) and 3(f) separates
approximately the regime in which the violation parameter Y
is constant from the regime in which Y (t ) is time-dependent.

When τe < τs, a linear regime for large t emerges in the
parametric plot in Figs. 4(a) and 4(b). Such behavior signals
the appearance of an effective temperature, T L

FDR, which devi-
ates from the one of the bath. In particular, we always find
TFDR > T , which means that the activity of the system ef-
fectively converts to thermal-like fluctuations [14,34,35]. The
effective temperature appears after a certain time, τc, which is
consistent with previous predictions and experiments on sev-
eral systems [35]. The existence of such time τc is ascertained
by the presence of an initial transient where T ∂χ/∂C 	 1, see

also Fig. 8 in Appendix A. The occurrence of a transient time
is due to the violation of the FDR introduced by the “fast”
mode 2/τe in the correlation C(t ), and is very pronounced
in the T = 300 K parametric plot in Fig. 4(a). Conversely,
when τe > τs, namely, when the force timescale is larger then
the intrinsic relaxation timescale, no linear regime emerges,
and the effective temperature cannot be defined. We remark
that the behavior of the parametric plot in Fig. 4(a) differs
from the one shown in Fig. 4(b) (and from the other cases
shown in the following subsecton). A “plateau” in the para-
metric plot appears at intermediate values of C(t ). It should
be noted that such values correspond to a timescale of the
order of τc ≈ τe/2, whereas in this paper we focus on the
definition of TFDR which appear at times much larger than
τe. Even though this behavior might reveal some interesting
physics at these intermediate timescales, we will address the
investigation of such behavior to future works. In Fig. 4(c)
we show the violation parameter Y L(T ) = T/T L

FDR, see also
Eq. (10), obtained by a linear fit of the curves in the parametric
plots in Figs. 4(a) and 4(b), as a function of τe, for T = 300 K
and T = 200 K. Note that the effective temperature T L

FDR is
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FIG. 4. FDR and effective temperature for L. Simulation were performed for τe = 100, 300, 1000, 1600, 5000, 10000 (arrows point to
larger τe). Parametric plot χ (C/T ) for (a) T = 300 K and (b) T = 200 K. We observe a linear regime for τe � 1600, with a slope which
progressively lowers as τe increases. For τe = 5000, 10 000 no linear regime is detected, corresponding to the out-of-equilibrium condition
at which no TFDR emerges. This reflects in a nonvanishing curvature of the parametric plots (yellow and blue curves). Black solid lines were
drawn to show the slope of the parametric curves in the linear regime, where the curvature is minimum (see Appendix A). Dashed lines are
continuations of the fitting lines. (c) Violation parameter as a function of τe, for the two values of bath temperature T . For τe � 1000 the ratio
T/TFDR is the same for the two values of bath temperature T (see inset).

always an increasing function of τe. Interestingly, increasing
the switching time τe decreases the deviation

�Y L = Y L(T1) − Y L(T2), (30)

where T1 = 300 and T2 = 200; see inset in Fig. 4. Remark-
ably, for τe � 1000 the curves overlap, accordingly with the
statistical error of the fit, as shown in the inset of Fig. 4(c).

B. Effective temperature for the total number of native contacts

Several lines of evidence point to the fact that the effective
temperature defined via a fluctuation-dissipation relation is
dependent on the particular observable [21,33]. However, it
seems that especially for systems with slow relaxation and
aging, such differences in the effective temperatures tend
to disappear [15]. Various results suggest that, when a very
slow relaxation timescale governs the long-time dynamics of
the system, every frequency-dependent observable show the
same parametric plot, and, then, the same TFDR [15,21]. Here,
we question whether some of these properties are present in
our folding-unfolding RNA dynamics. We replicate the same
analysis in Sec. V A for another variable which describes our
system, the number of native contacts Nc. Such choice is nat-
ural, since in the Hamiltonian in Eq. (4) Nc is already coupled
with its conjugate intensive variable, −ε, which represents
the energetic gain of a single atomic contact between two
residues, when in their native configuration.

Therefore, to compute the effective temperature T Nc
FDR for

a given set of the parameters, we prepare the NESS with
the same protocol used before (by driving the system out
of equibrium via a switching force fbias ± � f ). Then, we
perturb the system at time t0 by increasing the value of ε

by a small quantity δε (δε = 0.01, 0.02 at T = 200, 300 K,
respectively). Alike in Sec. V A, we evaluate the integrated
correlation and response functions:

CNc (t ) = 〈
N2

c (0)
〉
ss − 〈Nc(0)Nc(t )〉ss, (31)

χNc (t ) = 〈Nc(t ) − Nc(0)〉
δε

. (32)

We range the force switching time τe from 102 to 104 MC ts.
The results are qualitatively the same: Increasing τe produces
an increase of the long-time integrated correlation C(t ), as
well as a decrease of the susceptibility χ∞; see Figs. 5(a), 5(b),
5(d), and 5(e). The corresponding “long” relaxation timescale
τ s
χ displays the same seemingly monotonic behavior as in the

end-to-end length case. Differently from the previous case,
the asymptotic value of τ s

χ (large τe) varies with the bath
temperature T , as shown in Figs. 5(c) and 5(f). Thus, there
is a strong dependence on T of the relaxation properties of the
observable Nc, even for large τe. However, the general features
of the nonequilibrium correlation and response functions also
hold for this variable, that is τ

f
C 	 τe/2 for small τe, τ s

C 	 τe/2
for large τe.

In Fig. 6 it can be seen that the parametric plots deviates
from the equilibrium line [χNc = CNc (T )/T ] much more in
the T = 200 K case than in the T = 300 K case. Moreover,
for T = 300 K the region of violation of the FDR in Eq. (9)
(nonzero curvature) is much less pronounced here than in the
cases shown in Fig. 4. This is due to the reduced fluctuations in
the basins associated with the folded or ordered and unfolded
or disordered states; compare Fig. 2(e) with Fig. 2(f). In fact,
such difference is much less marked when the extents of fluc-
tuations into the two basins resemble each other, as in the T =
200 K case (not shown). Nonetheless, a region of thermal-like
behavior of fluctuations emerges for both T , validating the
generality of the hypothesis made in Sec. III. Indeed, a linear
regime T Nc

FDR arises for sufficiently small τe. As τe increases,
the linear trend starts at larger times (τc increases), enlarging
the violation region, until, for large enough switching times
(τe � 2500), the whole parametric plot displays a nonzero
curvature (see also Appendix A). The strong dependence of
the nonequilibrium slow relaxation timescale is more evident
in the effective temperature T Nc

FDR. In Fig. 6(c) we show the
violation parameter as a function of τe, for both the bath
temperatures. Although the qualitative behavior is similar to
the one in Fig. 4(c) for the effective temperature T L

FDR, here the
deviation between the two curves is statistically significant,
as shown in the inset of Fig. 6(c). There, we can see how
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FIG. 5. CNc (t ), χNc (t ) and relaxation timescales. The integrated correlation CNc (t ) and response χNc (t ) curves are represented for two value
of the bath temperature, (a,b) T = 300 K and (d,e) T = 200 K, for different τe (arrows point to smaller τe). The response curves are realized by
applying a perturbation δε = 0.02 (T = 300 K) and δε = 0.01 (T = 200 K) at t = 0. Two values of the perturbation were used to minimize
nonlinear effects. As for the end-to-end length, the asymptotic values of correlation C∞ (respectively, response χ∞) increase (resp. decrease)
as τe increases, especially in the T = 200 K case. Relaxation timescales as a function of τe are shown for (c) T = 300 and (f) T = 200 K.
The plateau of τ s

χ , is reached at τe 	 1000 in both curves, but, unlike the L case, the two curves differs substantially. Even though the starting
points of the plateau are approximately the same (τe 	 1000), their asymptotic values are consistently separated [∼2.5 × 103 for T = 300 K
(c), ∼2 × 103 for T = 200 K (f)].

the difference �Y Nc = T1/T Nc
1,FDR − T2/T Nc

2,FDR, with T1 = 300
and T2 = 200 is constantly nonzero in the entire range of
switching times.

C. Comparison between FDR and kinetic temperature

In this subsection, we evaluate a “kinetic” temperature,
which is calculated from the rate of heat exchanged by the
system and a second thermal bath. It is still useful to compute

FIG. 6. FDR and effective temperature for Nc. Simulation were performed for different values of the switching time of the pulling force
(τe = 100, 300, 1000, 1600, 2500, 5000, 10 000, arrows point to larger τe). Parametric plot χ (C/T ) for (a) T = 300 K and (b) T = 200 K.
Alike Fig. 4, the fit in the minimum curvature interval (solid black lines) and their continuations (dashed black lines) are shown. (c) Unlike the
L case, here we have a marked difference in the behavior of T/T Nc

FDR for the two values of bath temperature T used. The discrepancy is more
relevant for large τe, since the FDR temperature departs significantly from the equilibrium value. In the inset we show the discrepancy �Y Nc ,
which remains approximately constant for each value of τe � 1000.
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FIG. 7. Effective and kinetic temperatures. The violation param-
eter relative to the FDR and the kinetic temperatures are here plotted,
as a function of τe. (a) Comparison of the violation parameters for
different values of the parameters, shown also in Figs. 4(c) and
6(c). Note that there is no apparent match between the values of
the violation parameter defined via FDR, except for large τe, when
T = 200, 300 K, in the L case. (b) The ratio T/Tkin is shown in this
panel, as a function of τe, for both the variables σ and m. In this case,
Tkin displays a totally different behavior from the FDR temperature,
as it decreases with τe. Observe also that the deviations from the bath
temperature T are small, even for high-frequency drives. Solid lines
represent the functional behavior predicted by the four-state model.

the kinetic temperature associated to different variables, as
already done in the previous subsections. In light of this,
we will consider the native stretches orientations σi j and the
nativeness of the RNA bases mi. To calculate the kinetic
temperature for the variables σ ≡ {σi j} (respectively, m ≡
{mi}) independently, which we will denote with T σ

kin (respec-
tively, T m

kin), we apply the procedure in Sec. III B by computing
the variation in energy [step (ii)], while mi (respectively, σi j) is
constant. For instance, to find T σ

kin, we only consider the con-
tribution E [σt+1, mt , f (t )] − E [σt , mt , f (t )] to the total heat
exchanged at time t + 1.

In Fig. 7 we show a comparison amongst all the effective
temperatures computed via FDR and the kinetic temperature
calculated from the exchanged heat, for different values of τe

and T . In Fig. 7(a) we restrict to the effective temperatures
TFDR calculated in Sec. V. Note that the close-to-equilibrium
condition here is represented by small τe. For such values
an effective temperature can always be defined by FDR, but
is very close to the bath temperature T (the FDR tempera-
ture is closer to the equilibrium temperature for T = 300 K).
For larger values of τe, there is no apparent collapse in the
effective temperature curves at the same bath temperature,
whereas in the case of T L

FDR, when τe � 1000 the two curves
overlap within the error bars. Interestingly, this occurs when
the effective temperature T σ

kin measured by the “thermometer”
is almost equal to T , as shown in Fig. 7(b).

In Fig. 7(b), the effective temperature Tkin is represented
as a function of τe, obtained for m and σ with the above-
mentioned procedure. Deviations from the bath temperature
are signaled for small τe. By increasing τe, the effective tem-
perature approaches T . Note that such procedure allows to
define an effective temperature for any value of the driv-
ing switching time, and that, differently from the FDR, the
close-to-equilibrium condition is for large values of τe. For
large switching times, a small departure of T m

kin from the bath
temperature is detected, while the deviation of the kinetic
temperature T σ

kin from the bath temperature T is almost null

for both T = 300 K and T = 200 K, and large τe, as the
ratio T/T σ

kin 	 1. Additionally, we also provide a direct com-
parison between T σ

kin(τe) obtained from our simulations and
the behavior predicted in Eq. (26). We find that the function
1 − a/τe (being a a fitting parameter) fits perfectly the curves
in Fig. 7(b) for the variable σi j , which is conjugated to the
amplitude of the force in the hamiltonian [see Eqs. (3) and
(4)]. This results assesses the validity of the four-state model
for large τe.

VI. DISCUSSION AND CONCLUSIONS

In this paper we explore the possibility of extending the
notion of temperature in a nonequilibrium context, for a bi-
ological system similar to the one experimentally studied in
Ref. [35]. We consider a model for the RNA or protein folding
whose equilibrium properties have been widely studied in
previous works. Using this model, we offer an extensive de-
scription of the nonequilibrium properties of the PG5A RNA
hairpin, and, therein, we focus on the emergence of different
effective temperatures related to several variables. We perform
our measures in the nonequilibrium steady state, or NESS,
which is prepared by forcing the molecule by means of an
external random switching force of switching time τe.

First, we study the FDR in Eq. (9), by computing nu-
merically correlation and response function. We perform the
same procedure for two different observables, the end-to-end
length of the molecule, L, and the number of native contacts,
Nc. The analysis of the FDR produces results qualitatively in
accordance with those in Ref. [35], for both the observables.
Two timescales are relevant, the intrinsic relaxation timescale
τs and the switching time of the drive τe. One finds that
when τs > τe, an effective temperature can be defined. In this
regime, a linear trend in the correlation-response parametric
plot appears at large times. In particular, the violation pa-
rameter Y decreases as τe increases, and, in the same NESS,
assumes different values for different observables. This de-
pendence has also been proved analytically in previous works
[33].

Second, we propose a different temperature definition,
which takes into account the mean instantaneous heat ex-
changed with another weakly-interacting bath. Differently
from the FDR effective temperature, the “kinetic” tempera-
ture defined below (i) reflects the instantaneous dissipative
properties of the system and (ii) is related to the change of
the values of some microscopic variables of the model. This
procedure mimics the equilibrium prescription of measuring
temperatures by using a “thermometer.” The temperature at
which this bath does not exchange energy with the system,
is defined as the kinetic temperature, which can be treated as
another nonequilibrium characteristic of the system. Interest-
ingly, such kinetic temperature is well-defined for every force
switching timescale τe, is higher for small τe and tends to the
equilibrium temperature for large τe.

We should also remark that both Tkin and TFDR display the
same behavior as a function of the drive amplitude, as they
grow when � f increases. One can find, by using the simple
four-state model described in Sec. V A, that TFDR,kin − T ∝
� f 2 + O(� f 3). Simulations on the full model are in accor-
dance with this prediction (not shown). Therefore, it can be
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assessed that both the effective temperature TFDR and Tkin

measure how far the system is from equilibrium. Nonetheless,
the behavior of the two temperature, and the related viola-
tion parameters, with respect to the frequency of the drive is
opposite. We also verified that the heat exchanged between the
hairpin and the thermal bath at temperature T is proportional
to the difference Tkin − T (not shown), as expected for two
systems at different but similar temperatures which are kept
in contact. Additionally, in the four-state model, under the
condition M31 = M24, at fixed x, one can find that

P0
(s+,x)

P0
(s−,x)

= exp{−[E (s+, x) − E (s−, x)]/Tkin}, (33)

confirming that Tkin is a possible measure of nonequilibrium
temperature in the steady state. We address to future work
further assessments of the robustness of the “kinetic” tem-
perature. In this regards, a study of the fluctuations of the
exchanged energy E (
′) − E (
) might be significant.

In Ref. [30] the conceptual difference between a FDR
effective temperature and a “kinetic” temperature (defined
straightforwardly via the kinetic energy) has been explored
in the context of active matter. Here, we find that the two
effective temperatures are intrinsically different, as they cap-
ture different features of the nonequilibrium dynamics. The
FDR describes the long time-delay thermodynamic behavior
of a nonequilibrium system; if FDR hold, then the system
respond equally to both a small “external” perturbation and to
an “internal” perturbation (or fluctuation), similarly to what
happens at equilibrium. Thus, we found that the appearance
of an effective temperature TFDR is strictly connected to the
long relaxation timescale. Conversely, the kinetic temper-
ature is more related to the instantaneous thermodynamic
properties, which can mainly inform of the frequency of the
time-dependent external drive.

As a conclusion, we observe that, in previous works, a
theoretical framework on the linear response for system out
of equilibrium has been developed. There, the connection be-
tween the time-symmetric contribution to the linear response,
also called frenesy [34], and the effective temperature has
been established [65]. In nonequilibrium conditions, the in-
tegrated FDR reads χ (t ) = [C(t ) + K (t )]/2, where C(t ) is an
equilibriumlike correlation, while K (t ) has a frenetic (time-
symmetric) origin, which reduces to C(t ) in the equilibrium
limit. This latter is an exclusive nonequilibrium contribution;
it would be interesting to calculate such terms in our model,
both analytically and numerically, evidencing their depen-
dence on the relevant parameters, and work is in progress
along these lines.
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FIG. 8. Violation parameter and curvature of χ (C). In this figure,
the first and second derivative of the parametric plot are shown, in
the representative case of Nc at T = 200 K. (a) Purple and cyan
points represent the violation parameter of the parametric plots in
Fig. 6 at each sampled point C(ti ), for τe = 300 and τe = 5000,

respectively. Note that the violation parameter is close to 1 at small
C, and decreases to smaller values as C increases. Solid colored lines
are the interpolating weighted splines. For τe = 300 the violation pa-
rameter becomes approximately horizontal, signaling the presence of
a thermal-like regime, while for τe = 5000, the violation parameter
changes linearly with C. The fits of the minimum curvature interval
are shown (black solid lines), as well as the threshold used to cut off
the noisy region at large C. (b) The curvature [i.e., the slope of the
linear fit in panel (a)] obtained from the raw data (purple points) and
the interpolated points (green points). For τe � 1600 the curvature is
approximately null, as expected in a thermal-like regime.

APPENDIX A: CURVATURE AND FITTING PROCEDURE

In this Appendix we describe the fitting procedure used
to extract the violation parameter Y (t ) shown in Figs. 4(c)
and 6(c). To find the crossover between the linear [Y (t ) is
constant] and the nonlinear [Y (t ) is time-dependent] regimes,
we compute T ∂χ (t )/∂C(t ), for both the observables L and
Nc, for any τe used in our simulations. The first derivative is
calculated with a simple forward difference scheme:

∂χ (t )

∂C(t )
≈ χ (ti+1) − χ (ti )

C(ti+1) − C(ti )
, (A1)

where ti,i+1 are two subsequent sampled times. If the para-
metric plot is linear, the first derivative of the parametric plot
should be horizontal, which corresponds to a null curvature
[T ∂2χ (t )/∂2C(t ) = 0].

In Fig. 8(a), we show a representative plot of the
T ∂χ (t )/∂C(t ) as a function of C(t ), for the simulations per-
formed for the observable L at T = 200 K; to filter out the
noise, we also show a weighted spline which interpolates the
points (solid colored curves) as a guide to the eye. From
the simple four-state model (see main text), the linear region
of the parametric plot should appear for t � τc, being τc a
certain critical time scale of the order of τe. Hence, we search
for the interval with the minimum ∂2χ (t )/∂C(t )2 within
[C(τe/2),C∗], where C∗ is a threshold value chosen arbitrarily
to exclude the noisy region for large C (vertical dashed lines).
Then, we perform a linear fit of both the raw data and the
interpolating points in the selected interval; the slope of the
fitting line represents the curvature T ∂2χ (t )/∂2C(t ). Note
that for τe = 300, the fitting line is approximately horizontal,
or, in other words, an effective temperature can be defined.
Conversely, for τe = 5000 the fit produces a nonnull slope,
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TABLE I. Fitting parameters.

T X τe aC bC cC aχ bχ

300 L 100 31.9 ± 2.0 20.3 ± 0.02 27.8 ± 2.0 19.7 ± 0.07 28.5 ± 0.08
300 L 300 37.6 ± 0.2 23.2 ± 0.04 23.9 ± 0.2 19.0 ± 0.09 27.3 ± 0.09
300 L 1000 33.6 ± 0.1 29.7 ± 0.1 24.7 ± 0.08 16.7 ± 0.1 26.3 ± 0.1
300 L 1600 31.2 ± 0.3 34.2 ± 0.3 24.2 ± 0.08 15.9 ± 0.1 25.0 ± 0.1
300 L 5000 −193 ± 1302 266 ± 1302 21.9 ± 0.03 12.8 ± 0.1 22.3 ± 0.1
300 L 10000 −119 ± 245 196 ± 245 20.7 ± 0.05 11.3 ± 0.09 20.7 ± 0.09
200 L 100 4.2 ± 0.8 116.5 ± 0.07 8.9 ± 0.8 83.2 ± 0.1 9.4 ± 0.2
200 L 300 5.7 ± 0.5 125.2 ± 0.1 6.2 ± 0.5 76.0 ± 0.2 9.9 ± 0.3
200 L 1000 −24.2 ± 4.4 164 ± 4 5.3 ± 0.2 64.6 ± 0.2 6.6 ± 0.3
200 L 1600 −18.6 ± 0.9 163 ± 1 6.2 ± 0.4 55.7 ± 0.3 6.6 ± 0.3
200 L 5000 −95 ± 5 246 ± 6 5.3 ± 0.1 49.1 ± 0.2 5.4 ± 0.2
200 L 10000 −45.1 ± 0.8 215.1 ± 0.9 4.4 ± 0.1 22.0 ± 0.2 5.1 ± 0.2
300 Nc 100 33 ± 4 1761.2 ± 0.4894 9 ± 45 1713 ± 2 49 ± 2
300 Nc 300 27.1 ± 8 1861.3 ± 0.5012 2 ± 8 1667 ± 2 34 ± 2
300 Nc 1000 −58 ± 3 2057 ± 3 19 ± 1 1598 ± 2 44 ± 2
300 Nc 1600 −167 ± 8 2221 ± 8 23 ± 1 1503 ± 2 41 ± 2
300 Nc 2500 −782 ± 84 2903 ± 85 26 ± 1 1382 ± 2 54 ± 2
300 Nc 5000 −9353 ± 23 220 11 565 ± 23 220 40.1 ± 0.9 1163 ± 4 65 ± 4
300 Nc 10000 56 ± 12 2232.47 ± 8 53 ± 17 935 ± 24 139 ± 24
200 Nc 100 91 ± 7 3208.1 ± 0.8 −0.6 ± 8.1 2550 ± 2 81 ± 2
200 Nc 300 58 ± 4 3432 ± 1 −0.5 ± 4 2366 ± 4 41 ± 4
200 Nc 1000 −225 ± 6 3862 ± 6 11 ± 5 1962 ± 3 34 ± 3
200 Nc 1600 −444 ± 8 4129 ± 9 11 ± 3 1733 ± 1 26 ± 1
200 Nc 2500 −2340 ± 77 6174 ± 78 8.96015 ± 1 1411 ± 4 49 ± 4
200 Nc 5000 −13 163 ± 5540 17 165 ± 5541 11 ± 2 998 ± 5 51 ± 5
200 Nc 10000 −762 ± 30 4862 ± 38 48.448 ± 14 641 ± 27 67 ± 27

which means that no effective temperature can be detected.
In Fig. 8(b), the curvatures for each value of τe are plotted; a
clear crossover between a noncurve regime and a regime in
which the curvature is nonzero appear, signaling the upper
limit of the range of τe in which TFDR can be defined. We
should remark that such procedure gives robust results for any
case studied in the paper.

The violation parameter Y (t ) has been found by fitting the
T ∂χ (t )/∂C(t ) plots (raw data) with the function f (C) = Y ,
in the interval of minimal curvature. The obtained values of Y
has been reported in Figs. 4(c) and 6(c), along with the relative
statistical error on the fit. For completeness, in Table I we
report the values of the parameters (and the relative statistical
errors) in Eq. (29) obtained by fitting the curves in Figs. 3(a),
3(b), 3(d), and 3(e) and Figs. 5(a), 5(b), 5(d), and 5(e), using a
nonlinear least-squares Marquardt-Levenberg algorithm [66].

APPENDIX B: KINETIC TEMPERATURE IN THE
FOUR-STATE MODEL

In this Appendix we aim to calculate the kinetic tem-
perature for the four-state model described in Sec. V. In
particular, we solve Eq. (11) to find an explicit expression
of the rate of absorbed heat, then we set 〈Q̇X 〉 = 0 to find
the kinetic temperature. In fact, as detailed in the main
text, we imagine that our system can exchange heat with a
second weakly-interacting thermal bath at temperature Tth.
Hence, the kinetic temperature of the system is the temper-
ature Tkin = T ∗

th at which it corresponds a vanishing flow of
energy between the system and the second bath; in other

words, when Tkin = T ∗
th one finds 〈Q̇X 〉 = 0. From Eq. (13),

one can evaluate the stationary probability distribution P0 =
(P0

(s+,x+ ) P0
(s+,x− ) P0

(s−,x+ ) P0
(s−,x− ) ) as the eigenvector of M asso-

ciated with the null eigenvalue (μ0 = 0). A direct calculation
gives

P0
(s+,x+ ) = �

[
M13(M24 + M42) + (M13 + M24)

τe

]
,

P0
(s+,x− ) = �

[
M24(M13 + M31) + (M13 + M24)

τe

]
,

P0
(s−,x+ ) = �

[
M31(M24 + M42) + (M31 + M42)

τe

]
,

P0
(s−,x− ) = �

[
M42(M13 + M31) + (M31 + M42)

τe

]
,

(B1)

where

� = τe

2τe(M13 + M31)(M24 + M42) + ∑
M

(B2)

is a normalization constant which ensures that
∑

P0
(s,x) =

1, with
∑

M = M13 + M31 + M24 + M42; if s = s± and x =
±�x are conjugated in the Hamiltonian (being �x > 0 and
s+ − s− > 0), then the energy change at time t in the presence
of the external drive x is E (st+1, x) − E (st , x) = −x(st+1 −
st ). Thus, if we define λth the intrinsic rate of exchange of
heat between the system and the second bath, then Eq. (11)
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reads

〈Q̇X 〉 = λth�x(s+ − s−)
{[

P0
(s+,x+ ) + P0

(s−,x− )

]
wth

− [
P0

(s−,x+ ) + P0
(s+,x− )

]}
, (B3)

where wth ≡ exp{−βth�x(s+ − s−)}, with βth = 1/Tth. From
Eq. (B3), one can find the kinetic violation parameter as a
function of the bath temperature T , the amplitude �x of the
switching external drive and the transition rates between the
four states of the model. By setting 〈Q̇X 〉 = 0, it follows

T

Tkin
= T

�x(s+ − s−)
ln

[
P0

(s+,x+ ) + P0
(s−,x− )

P0
(s−,x+ ) + P0

(s+,x− )

]
. (B4)

By putting the expressions in Eq. (B1) into Eq. (B4), it follows

T

Tkin
= T

�x(s+ − s−)
ln

(
1 + λτe

μτe + 1

)
, (B5)

where λ and μ are a suitable combination of the transition
rates Mi j . Note that for τe → 0, we have Tkin → ∞. More
interesting is the limit of low frequencies of the external
drive. For τe → ∞, it has to be T = Tkin; therefore, it follows
μ = λw/(1 − w), where w ≡ exp[−β�x(s+ − s−)]. Thus,
for τe � 1/λ, we have

T

Tkin
	 1 − T

�x(s+ − s−)

(1 − w)2

τeλw
. (B6)

In Fig. 7 we show T σ,m
kin as a function of τe. In particular, since

σi j is conjugated to � f in the hamiltonian, the asymptotic
expression in Eq. (B6) correctly approximate the behavior
of T σ

kin.
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