
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

TextCode: A Tool to Support Problem Solving Among Novice Programmers / Corno, Fulvio; De Russis, Luigi; Sáenz,
Juan Pablo. - STAMPA. - (2021), pp. 1-5. (Intervento presentato al convegno IEEE Symposium on Visual Languages
and Human-Centric Computing 2021 tenutosi a Online nel October 10-13, 2021)
[10.1109/VL/HCC51201.2021.9576164].

Original

TextCode: A Tool to Support Problem Solving Among Novice Programmers

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/VL/HCC51201.2021.9576164

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2910086 since: 2021-11-05T11:16:31Z

IEEE

TextCode: A Tool to Support Problem Solving
Among Novice Programmers

Fulvio Corno
Dip. di Automatica e Informatica

Politecnico di Torino
Turin, Italy

fulvio.corno@polito.it

Luigi De Russis
Dip. di Automatica e Informatica

Politecnico di Torino
Turin, Italy

luigi.derussis@polito.it

Juan Pablo Sáenz
Dip. di Automatica e Informatica

Politecnico di Torino
Turin, Italy

juan.saenz@polito.it

Abstract—Several tools have been developed to support novices
learning to program. Most of them focus on the code and provide
features regarding the visualization of the data structures or
the debugging. However, in introductory programming courses,
students are typically given exercises in the form of a problem
written in natural language; and the first challenge they face
is understanding the problem, identifying the relevant informa-
tion, and then translating that information into code. To our
knowledge, little attention has been paid to proposing tools
targeted at supporting this problem-solving step, even though
it is crucial for deriving a correct solution. In this paper, we
present an IDE to encourage novices to understand the problem
before start coding, decompose it down into subproblems, explore
alternative implementations for each subproblem, and arrange
these implementations to build a general solution. Finally, the
adopted problem-solving approach is discussed.

Index Terms—novices, programming, problem solving

I. INTRODUCTION

Getting started with programming is difficult. It requires
motivation, practice, and, most importantly, abstract thinking
and deep understanding instead of surface memorization [1].
Contrary to the common perception, learning to program
does not only concerns the syntax and semantics of the
programming languages but, more fundamentally, the iterative
process of refining mental representations of computational
problems and solutions, as well as mapping those representa-
tions to code [2]. Programming entails skills that go far beyond
becoming familiar with the language [3], [4].

In introductory programming courses, undergraduate stu-
dents are typically given exercises in the form of a problem
written in natural language; and they must implement a
solution expressed as a computer program. In this context,
the first challenge novices face is understanding the problem,
identifying the relevant information, and then translating it into
code. However, they often struggle in understanding the as-
signment and decomposing the problem [5], [6]. Furthermore,
the introductory courses generally do not address the cognitive
aspects of programming, including problem-solving strategies
and programming practices [2], and neither the development
environments explicitly support such cognitive aspects. Thus,
when solving programming problems, novices usually lack

metacognitive awareness —the ability to think about and
reflect on their problem-solving process— and fail to make
progress to a working solution [7]. What is worse, some
novices come to consider that devoting time to planning is
suggestive of lower programming intelligence [8] even though
planning is extensively recognized as a good practice [9].

During the last few years, the number of languages, tools,
and development environments for computing education has
flourished [10]. Nevertheless, traditional IDEs treat code as
the primary artifact [11], and the IDEs for novice begin-
ners mainly concern: visualization tools that make the data
structures and the code execution visible, e.g., [12], [13];
graphical programming tools that enable to drag and drop
the code to produce syntax error-free programs, e.g., [14]; or
automated assessment systems that can automatically grade
students’ code and provide immediate feedback, e.g., [15],
[16]. However, less attention has been paid to supporting
problem-solving strategies, even though they are crucial for
deriving a correct solution.

In this paper, we present TextCode, an IDE specifically de-
signed to support problem solving among novice programmers
in an introductory university course. In our proposed IDE, the
graphical interface arrangement and the interaction design is
aimed at encouraging the developers to follow a set of steps to
reach the final solution. Namely, these steps refer to reading
and understanding the programming problem statement before
start coding, decomposing it down into subproblems, exploring
alternative implementations for each subproblem, and arrang-
ing these implementations to build a general solution.

II. BACKGROUND & RELATED WORK

Medeiros et al. [17] conducted a systematic literature review
on teaching and learning introductory programming in higher
education. Upon analyzing a significant number of research
works, they identified the crucial skills for a novice learning to
program, the main challenges faced by novices, and the chal-
lenges faced by the teachers. Most of the literature reviewed
remarked that problem solving was a crucial skill for novices
learning to program and, at the same time, the main challenge
they face. Indeed, various authors and the Computer Science
Curricula [18] agree that programming courses’ primary goal
should be fostering problem-solving abilities and algorithmic978-1-6654-4592-4/21/$31.00 ©2021 IEEE

thinking rather than teaching the syntactic specificities of a
given programming language.

Although problem solving refers to understanding the con-
text of a problem, identifying critical information, and creating
a plan to solve it [19], the reasons behind students’ weaknesses
in problem solving are not reported in detail in the literature.
It is uncertain whether those limitations regard the lack of
understanding of the programming problem statement, or the
lack of knowledge of a strategy to solve them, or the absence
of a step-by-step plan to implement the strategy [17]. Against
this backdrop, and taking into account that the main challenge
faced by educators is the necessity for proper approaches and
tools for teaching programming at the introductory level, the
review shows the need to design tools specifically targeted at
the problem formulation stage.

Koulouri et al. [20] conducted a quantitative evaluation over
four years to assess the impacts of three factors —choice of
programming language, problem-solving training, and the use
of formative assessment— on learning to program in CS1
courses. The outcomes indicated that problem-solving training
positively affects the students’ programming ability. According
to the authors, novice programmers usually start writing the
code without examining and analyzing the problem. However,
it is essential to realize that a programming exercise at its core
is a problem that can be solved by first decomposing it into
steps and then expressing them as code. In the same vein,
Lishinski et al. [21] used various kinds of course assignments
(projects and tests) to evaluate programming outcomes and
determined that problem-solving ability significantly correlates
with performance on programming assignments.

In the optics of tools that aim at increasing the novice’s
understanding of the code, Adeli et al. [11] conducted an
empirical study to determine how the right information at the
right time and right place enables novices to overcome the dif-
ficulties associated to understanding the code. By combining
relevant information and code fragments on a canvas-based
IDE, the cognitive load of the participants was decreased,
allowing them to efficiently seek critical information and
develop consistent mental models of the codebase. Similarly,
Lichtschlag et al. [22] present a prototype to increase pro-
grammers’ software comprehension by integrating hand-drawn
sketches into a development environment and linking these
sketches to source code. For their part, Biegel et al. [23]
created a prototype tool for visualizing and exploring the
developers’ mental model through a two-dimensional canvas
in which visual representations of source code entities could
be freely arranged.

In this context, while the currently available tools —whether
they are visualization, graphical programming, automated as-
sessment, or even tutoring tools— are directly focused on
the solution expression, TextCode aims at supporting problem
solving starting from the text of the programming assignment.
Specifically, the IDE is intended to encourage the developers
to follow a set of steps to reach the final solution, and to
that extent, to raise awareness among the novices about the
problem-solving process they bear in mind when solving a

programming problem.

III. USAGE SCENARIO

We implemented the IDE as a web application using the
React framework. Programmers can easily access and use it
potentially from anywhere and without any platform restric-
tion or prerequired software components. To show how the
TextCode IDE looks and works, Figure 1 illustrates a usage
scenario:

(a) The student starts with a programming problem statement
written in natural language.

(b) After reading the text, the student clicks the “Code it”
button, and both the “Canvas” panel and the “Sortable
list” panel (B and C) appear. Before clicking the button,
only the “Programming problem statement” panel (A) is
visible.

(c) The student selects a text fragment in the problem state-
ment that they retains relevant (information that impacts
the coding) and drags and drops it into the Canvas (B).
Once dropped, the selected text fragment highlights with
a given color and an empty code snippet (bordered in the
same color) is created on the Canvas. Each text fragment
is assigned a different color.

(d) The student writes into the corresponding snippet the code
to solve the subproblem that the associated text fragment
pose. They is free to create as many code snippets as they
wants for the same text fragment. To do it, the user has
to select and drag the text fragment again into the canvas
(B). At the moment, Python is the programming language
that TextCode supports.

(e) When a code snippet is ready, the student drags it to
the Sortable list panel (C). In that area, the snippets are
also vertically draggable so that the user can sort them
in an ordered list. After the first snippet is dropped into
the Sortable list panel (C), “Code preview and execution
output” panel (D) immediately becomes visible. As the
user changes the code within the snippets in the sortable
list or rearranges them, the Code preview and execution
output updates accordingly, to display the consolidated
code. However, in this panel, the code is read-only.
Additionally, since there might be various code snippets
to solve the same subproblem (linked to the same text
fragment), the user can experiment with these alternative
implementations by exchanging them on the sortable list.

(f) When the student has finished composing the code, they
can run it, and the results display in the lower part of
the Code preview and execution output panel (D). Finally,
the programmer clicks the “Verify snippets” button (E) to
check whether the text fragments upon which they built
their solution match those indicated by the instructor who
prepared the programming problem statement. To that end,
a modal window appears, displaying the code fragments
that on the instructor’s criteria should have been selected
along with an explanatory remark in the form of comment
for each one of them.

Fig. 1. TextCode is an IDE that allows the user to (i) visualize the programming problem statements; (ii) select text fragments and link them to code snippets
where they writes the code to solve the subproblem that the associated fragment pose; (iii) arrange the code snippets to build a general solution; (iv) experiment
with alternative solutions to the subproblems by exchanging code snippets associated with the same text fragment; (v) execute the final solution.

IV. DESIGN AND FEATURES OF TEXTCODE

We now revisit the features of Figure 1 with a focus on
design motivations and implementation details. We refined
TextCode interface design over several rounds of discussions
with four experts (a full professor and three postdocs with
experience preparing and delivering introductory programming
courses in different universities and various languages) that
during the last year were involved in developing and assess-
ing an introductory undergraduate programming course with
approximately 200 students.

The resulting graphical interface is structured around four
panels, one for each of the problem-solving steps outlined
by the experts during our discussions: i) understanding the
programming problem statement before start coding, ii) de-
composing it down into subproblems, iii) exploring alternative
implementations for each subproblem, and iv) arranging these
implementations to build a general working solution.

A. Programming problem statement

The first panel to the left (A) corresponds to the text
editor. In this area, the programming problem statements are
written in natural language by the instructors, who prepare
them, and are displayed to the developers, who will work
on their solution. As can be observed in Figure 1, the text
editor provides various formatting options. In this manner, the
examples of the inputs, the expected outputs, the name of the
variables that the program should manipulate, and eventual
subtitles, listings, or keywords, remain as identifiable and easy

to understand as possible to the novices. These formatting
options become important because if students misinterpret
the problem statement, they will probably not create a valid
conceptual model of the assignment and will fail to develop
a working solution [7]. Naturally, the formatting options are
just available for those who prepare the programming problem.
Instead, for the students, the text is not editable.

From the instructors’ perspective, they prepare a set of
programming problem statements using the text editor. They
also highlight and save the text fragments in the problem
description that, in their opinion, might correspond to relevant
information. They might also add an explanatory remark in
the form of comment for each text fragment highlighted.
Later, the developer sees that comment when they finishes
implementing their solution and wants to obtain feedback
on their decomposition into subproblems (described in detail
below). From the novices’ point of view, the first and only
thing they see is the text editor with a programming problem
statement. After reading the text, they highlight text fragments
that, on their criteria, are relevant and drag and drops them into
the second panel.

B. Canvas
The second panel is a canvas (B) where the code snippets

are created and can be moved freely by dragging and dropping
them. Specifically, each time the user drops a selected text
fragment from the text editor into the canvas, a new empty
code snippet is created. Additionally, after adding the code
snippet, a highlighting color is assigned to the text fragment

and the snippet’s border to visually represent the link between
them. One text fragment may have associated several code
snippets, and novices can create as many code snippets as
needed. This cardinality one-to-many enables the programmer
to propose various implementations of the same subproblem.
For instance, a text fragment that requires the implementation
of a cycle can be solved by at least two code snippets: one
of them using for and the other using while. Similarly, as
illustrated in Figure 1, the text fragment “append the smallest
unprocessed element from either list” (highlighted in purple) is
structured around three code snippets, one for each condition
that must be verified in the context of the sample exercise.
Nevertheless, our approach does not rely on direct translation
of the problem statement into implementation constructs or
prose elements converted to formal representations. Instead,
TextCode relies on mapping, aiding developers in considering
whether their programming decisions are consistently linked
to some information in the text. Finally, once the developer
has written the code in a snippet, they drags the snippet and
drops it into the next panel: the code snippets’ sortable list.
Furthermore, the user can delete the snippets by dragging and
dropping them to the lower part of the canvas. When all the
snippets linked with a highlighted text fragment are deleted,
such highlighting deletes as well.

C. Sortable list

In the third panel (C), the snippets are arranged into a
sortable list. By dragging and dropping them upwards or
downwards, the novice can set the snippets’ order and com-
pose the final solution to the programming problem statement.
In this sortable list panel, the snippets are still editable.
Additionally, the user can remove the snippet from the list by
dragging and dropping it into the canvas panel. In this way,
for instance, if there were two code snippets with alternative
implementations of the same text fragment, users could easily
experiment by exchanging them from the canvas to the list
and vice-versa. This feature, in our opinion, has a pedagogical
value since it allows novices to experiment with various ways
to solve the same sub-problem and get proficient in the use of
several code constructs.

D. Code preview and execution output

The last panel (D) encompasses two components: the code
previewer in the upper half and the execution output in the
lower half. The previewer displays the concatenated code
from all the snippets’ sortable list into a single container. It
is not editable. Instead, it updates every time a snippet in
the sortable list is modified. The previewer’s purpose is to
provide the novice a consolidated view of the code composed
through the snippets in the sortable list. The lower part of the
panel displays the outputs resulting from the previewer’s code
execution. The output shown in Figure 1 results from executing
all the code snippets. However, after running them, the two
first snippets and the last one were dragged and dropped into
the canvas for demonstrative purposes. Lastly, in the upper
part of the interface (E), there is the “Verify snippets” button.

It enables the novice to see, over the programming problem
statement, the text fragments that the instructor considered
relevant and a comment written by them (in natural language),
explaining their choice and pointing out aspects to be consid-
ered for the implementation.

V. DESIGN CONSIDERATIONS AND CONCLUSIONS

In this paper, we presented TextCode, an IDE to support
problem-solving skills among university students learning to
program. The tool strives to encourage developers to read and
understand the problem before starting coding, decomposing it
down into subproblems, exploring alternative implementations
for each subproblem, and arranging these implementations to
build a general solution. We believe that providing a tool
whose design emphasizes the problem-solving steps, start-
ing from understanding the programming problem statement,
can raise metacognitive awareness among novices and help
them build a working solution. Furthermore, we consider that
our tool counteracts the novices’ misconceptions about the
problem-solving steps as time-spending, non-useful activities
from a practical point of view.

Moreover, stemming from the discussions with the four
experts, the design decisions of the tool were oriented to-
ward supporting the cognitive aspects of programming. In
particular, our chosen approach concerns subgoal learning, a
strategy widely used in STEM areas to help students break
down problem-solving procedures into subgoals (functional
parts of the overall procedure) and distinguish the primary
elements of the problem-solving process [24]. We consider that
encouraging novices, directly from the IDE, to decompose the
problem, solve the subproblems individually, and then arrange
them in the general solution can improve their confidence in
two ways: first, by noticing that programming is a step-by-
step, incremental process in which, on every completed step,
no matter how simple it appears, they are making progress; and
secondly, by realizing that they can deal with a problem that
at first glance seems overwhelming if, instead of immediately
thinking into coding, they first understand what the problem
is demanding and can associate each their programming deci-
sions to the problems’ requirements and specificities.

The upcoming version of the tool will include semantics into
the colors used to highlight the text fragments. In this manner,
depending on the color, the developer can also recognize
whether the text fragment implies a variable’s declaration, the
creation of a function, or a constructor’s definition. This fea-
ture might become particularly relevant in an Object-Oriented
Programming context, where developers are also required to
identify the entities present in the problem description, along
with their attributes and methods. Similarly, while Python is
the programming language that the IDE currently supports, it
might be extended to support other languages. Finally, future
work will regard conducting a full-scale evaluation in the
context of an undergraduate introductory programming course
to evaluate the IDE’s usability and assess to what extent it
effectively supports the novices’ problem-solving process.

REFERENCES

[1] F. B. Tek, K. S. Benli, and E. Deveci, “Implicit theories and self-
efficacy in an introductory programming course,” IEEE Transactions
on Education, vol. 61, no. 3, pp. 218–225, 2018.

[2] D. Loksa and A. J. Ko, “The role of self-regulation in programming
problem solving process and success,” in Proceedings of the 2016 ACM
Conference on International Computing Education Research, ser. ICER
’16. New York, NY, USA: Association for Computing Machinery, 2016,
p. 83–91. [Online]. Available: https://doi.org/10.1145/2960310.2960334

[3] D. Loksa, A. J. Ko, W. Jernigan, A. Oleson, C. J. Mendez, and M. M.
Burnett, “Programming, problem solving, and self-awareness: Effects
of explicit guidance,” in Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, ser. CHI ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 1449–1461.
[Online]. Available: https://doi.org/10.1145/2858036.2858252

[4] Y. Qian and J. Lehman, “Students’ misconceptions and other difficulties
in introductory programming: A literature review,” ACM Trans.
Comput. Educ., vol. 18, no. 1, Oct. 2017. [Online]. Available:
https://doi.org/10.1145/3077618

[5] A. Robins, J. Rountree, and N. Rountree, “Learning and
teaching programming: A review and discussion,” Computer Science
Education, vol. 13, no. 2, pp. 137–172, 2003. [Online]. Available:
https://doi.org/10.1076/csed.13.2.137.14200

[6] R. Lister, B. Simon, E. Thompson, J. L. Whalley, and C. Prasad,
“Not seeing the forest for the trees: Novice programmers and
the solo taxonomy,” in Proceedings of the 11th Annual SIGCSE
Conference on Innovation and Technology in Computer Science
Education, ser. ITICSE ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 118–122. [Online]. Available:
https://doi.org/10.1145/1140124.1140157

[7] J. Prather, R. Pettit, B. A. Becker, P. Denny, D. Loksa, A. Peters,
Z. Albrecht, and K. Masci, “First things first: Providing metacognitive
scaffolding for interpreting problem prompts,” in Proceedings
of the 50th ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 531–537. [Online]. Available:
https://doi.org/10.1145/3287324.3287374

[8] J. Gorson and E. O’Rourke, “How do students talk about intelligence?
an investigation of motivation, self-efficacy, and mindsets in computer
science,” in Proceedings of the 2019 ACM Conference on International
Computing Education Research, ser. ICER ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 21–29. [Online].
Available: https://doi.org/10.1145/3291279.3339413

[9] A. Ebrahimi, “Novice programmer errors: language constructs
and plan composition,” International Journal of Human-Computer
Studies, vol. 41, no. 4, pp. 457–480, 1994. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S107158198471069X

[10] M. M. McGill and A. Decker, “Construction of a taxonomy for
tools, languages, and environments across computing education,” in
Proceedings of the 2020 ACM Conference on International Computing
Education Research, ser. ICER ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 124–135. [Online]. Available:
https://doi.org/10.1145/3372782.3406258

[11] M. Adeli, N. Nelson, S. Chattopadhyay, H. Coffey, A. Henley, and
A. Sarma, “Supporting code comprehension via annotations: Right
information at the right time and place,” in 2020 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 2020, pp.
1–10.

[12] J. n. Velázquez-Iturbide, I. Hernán-Losada, and M. Paredes-Velasco,
“Evaluating the effect of program visualization on student motivation,”
IEEE Transactions on Education, vol. 60, no. 3, pp. 238–245, 2017.

[13] J. C. Roberts, P. D. Ritsos, J. R. Jackson, and C. Headleand, “The
explanatory visualization framework: An active learning framework for
teaching creative computing using explanatory visualizations,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24, no. 1,
pp. 791–801, 2018.

[14] M. Verano Merino and T. van der Storm, “Block-based
syntax from context-free grammars,” in Proceedings of the 13th
ACM SIGPLAN International Conference on Software Language
Engineering, ser. SLE 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 283–295. [Online]. Available:
https://doi.org/10.1145/3426425.3426948

[15] H. Keuning, J. Jeuring, and B. Heeren, “A systematic literature review
of automated feedback generation for programming exercises,” ACM
Trans. Comput. Educ., vol. 19, no. 1, Sep. 2018. [Online]. Available:
https://doi.org/10.1145/3231711

[16] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen,
M. Devlin, and J. Paterson, “A survey of literature on the
teaching of introductory programming,” in Working Group Reports
on ITiCSE on Innovation and Technology in Computer Science
Education, ser. ITiCSE-WGR ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 204–223. [Online]. Available:
https://doi.org/10.1145/1345443.1345441

[17] R. P. Medeiros, G. L. Ramalho, and T. P. Falcão, “A systematic literature
review on teaching and learning introductory programming in higher
education,” IEEE Transactions on Education, vol. 62, no. 2, pp. 77–90,
2019.

[18] Joint Task Force on Computing Curricula, Association for Computing
Machinery (ACM) and IEEE Computer Society, Computer Science
Curricula 2013: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science. New York, NY, USA: Association
for Computing Machinery, 2013.

[19] S. Lehoczky and R. Rusczyk, The Art of Problem Solving, Volume 1:
the Basics. AoPS Inc., 2006.

[20] T. Koulouri, S. Lauria, and R. D. Macredie, “Teaching introductory
programming: A quantitative evaluation of different approaches,” ACM
Trans. Comput. Educ., vol. 14, no. 4, Dec. 2015. [Online]. Available:
https://doi.org/10.1145/2662412

[21] A. Lishinski, A. Yadav, R. Enbody, and J. Good, “The influence
of problem solving abilities on students’ performance on different
assessment tasks in cs1,” in Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, ser. SIGCSE ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p.
329–334. [Online]. Available: https://doi.org/10.1145/2839509.2844596

[22] L. Lichtschlag, L. Spychalski, and J. Bochers, “Codegraffiti: Using hand-
drawn sketches connected to code bases in navigation tasks,” in 2014
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2014, pp. 65–68.

[23] B. Biegel, S. Baltes, I. Scarpellini, and S. Diehl, “Code basket: Making
developers’ mental model visible and explorable,” in 2015 IEEE/ACM
2nd International Workshop on Context for Software Development, 2015,
pp. 20–24.

[24] R. K. Atkinson, R. Catrambone, and M. M. Merrill, “Aiding transfer
in statistics: Examining the use of conceptually oriented equations
and elaborations during subgoal learning,” Journal of Educational
Psychology, vol. 95, no. 4, pp. 762–773, 2003. [Online]. Available:
https://doi.org/10.1037/0022-0663.95.4.762

