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Summary

Due to the continuous increase in the number and complexity of the genomics
and biological data, new computer science techniques are needed to analyse these
data and provide valuable insights into the main features. The thesis research topic
consists in designing and developing bioinformatics methods for complex systems
in life sciences to provide informative models about biological processes. The thesis
is divided into two main sub-topics. The first sub-topic concerns machine and deep
learning techniques applied to the analysis of aberrant genetic sequences like, for
instance, gene fusions. The second one is the development of statistics and deep
learning techniques for heterogeneous biological and clinical data integration.

Referring to the first sub-topic, a gene fusion is a biological event in which two
distinct regions in the DNA create a new fused gene. Gene fusions are a relevant
issue in medicine because many gene fusions are involved in cancer, and some of
them can even be used as cancer predictors. However, not all of them are necessarily
oncogenic. The first part of this thesis is devoted to the automated recognition of
oncogenic gene fusions, a very open and challenging problem in cancer development
analysis.

• In this context, an automated model for the recognition of oncogenic gene
fusions relying exclusively on the amino acid sequence of the resulting proteins
has been developed. The main contributions consist of: 1. creation of a proper
database used to train and test the model; 2. development of the methodology
through the design and the implementation of a predictive model based on a
Convolutional Neural Network (CNN) followed by a bidirectional Long Short
Term Memory (LSTM) network; 3. extensive comparative analysis with other
reference tools in the literature; 4. engineering of the developed method
through the implementation and release of an automated tool for gene fusions
prioritization downstream of gene fusion detection tools.

• Since the previous approach does not consider post-transcriptional regulation
effects, new biological features have been considered (e.g., micro RNA data,
gene ontologies, and transcription factors) to improve the overall performance,
and a new integrated approach based on MLP has explicitly been designed.
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In the end, extensive comparisons with other methods present in the liter-
ature have been made. These contributions led to an improved model that
outperforms the previous ones, and it competes with state-of-the-art tools.

The rationale behind the second sub-topic of this thesis is the following: due to
the widespread of Next Generation Sequencing (NGS) technologies, a large amount
of heterogeneous complex data related to several diseases and healthy individuals
is now available (e.g., RNA-seq, gene expression data, miRNAs expression data,
methylation sequencing data, and many others). Each one of these data is also
called omic, and their integrative study is called multi-omics. In this context, the
aim is to integrate multi-omics data involving thousands of features (genes, micro-
RNA) and identifying which of them are relevant for a specific biological process.
From a computational point of view, finding the best strategies for multi-omics
analysis and relevant features identification is a very open challenge.

• The first chapter dedicated to this second sub-topic focuses on the integrative
analysis of gene expression and connectivity data of mouse brains exploiting
machine learning techniques. The rational behind this study is the explo-
ration of the capability to evaluate the grade of physical connection between
brain regions starting from their gene expression data. Many studies have
been performed considering the functional connection of two or more brain
areas (which areas are activated in response to a specific stimulus). While,
analyzing physical connections (i.e., axon bundles) starting from gene expres-
sion data is still an open problem. Despite this study is scientifically very
relevant to deepen human brain functioning, ethical reasons strongly limit
the availability of samples. For this reason, several studies have been car-
ried out on the mouse brain, anatomically similar to the human one. The
neuronal connection data (obtained by viral tracers) of mouse brains were
processed to identify brain regions physically connected and then evaluated
with these areas’ gene expression data. A multi-layer perceptron was applied
to perform the classification task between connected and unconnected regions
providing gene expression data as input. Furthermore, a second model was
created to infer the degree of connection between distinct brain regions. The
implemented models successfully executed the binary classification task (con-
nected regions against unconnected regions) and distinguished the intensity
of the connection in low, medium, and high.

• A second chapter describes a statistical method to reveal pathology-determining
microRNA targets in multi-omic datasets. In this work, two multi-omics
datasets are used: breast cancer and medulloblastoma datasets. Both the
datasets are composed of miRNA, mRNA, and proteomics data related to
the same patients. The main computational contribution to the field consists

iv



of designing and implementing an algorithm based on the statistical condi-
tional probability to infer the impact of miRNA post-transcriptional regula-
tion on target genes exploiting the protein expression values. The developed
methodology allowed a more in-depth understanding and identification of
target genes. Also, it proved to be significantly enriched in three well-known
databases (miRDB, TargetScan, and miRTarBase), leading to relevant bio-
logical insights.

• Another chapter deals with the classification of multi-omics samples. The
literature’s main approaches integrate all the features available for each sam-
ple upstream of the classifier (early integration approach) or create separate
classifiers for each omic and subsequently define a consensus set rules (late
integration approach). In this context, the main contribution consists of in-
troducing the probability concept by creating a model based on Bayesian and
MLP networks to achieve a consensus guided by the class label and its prob-
ability. This approach has shown how a probabilistic late integration classi-
fication is more specific than an early integration approach and can identify
samples out of the training domain.

• To provide new molecular profiles and patients’ categorization, class labels
could be helpful. However, they are not always available. Therefore, the
need to cluster samples based on their intrinsic characteristics is revealed and
dealt with in a specific chapter. Multi-omic clustering in literature is mainly
addressed by creating graphs or methods based on multidimensional data
reduction. This field’s main contribution is creating a model based on deep
learning techniques by implementing an MLP with a specifically designed
loss function. The loss represents the input samples in a reduced dimensional
space by calculating the intra-cluster and inter-cluster distance at each epoch.
This approach reported performances comparable to those of most referred
methods in the literature, avoiding pre-processing steps for either feature
selection or dimensionality reduction. Moreover, it has no limitations on the
number of omics to integrate.
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Chapter 1

Introduction

In life sciences, understanding and analyzing the main biological phenomena is
of crucial importance. A myriad of data ranging from genomics, image analysis,
medical record traces, and various state-of-the-art databases can describe biological
phenomena [229]. Therefore, tackling a biophysical problem involves information
of different types. In this sense, it is necessary to consider what data is available
to analyze the actual problem and which computational issues it involves[101].

Besides the diversity of information, biological systems are inherently involved
as they are made up of multiple components. Some of these are regulatory aspects
and are well known, while the role of other molecules and their interactions is still
a large area of discovery [138].

Therefore, it is necessary to consider the information available and the mean-
ing of interpreting and analyzing a complex system. Complex systems typically
require complex modeling to obtain biological information relevant and specific to
the problem[125, 60].

Among the many types of data concerning biological processes, spatial data,
information from various databases, and omics data have been considered in this
thesis.

The term omics refers to a set of complex data that includes, for example, ge-
nomics (i.e., information on DNA), transcriptomics (mainly RNA), proteomics, and
phospho-proteomics (proteins)[111, 29]. Therefore, some complex computational
approaches will be presented to process biological data and significantly contribute
to significant biological problems. These methods involve both analytical tech-
niques and machine and deep learning techniques for interpreting various complex
systems.

The first part of this thesis is devoted to studying and analyzing gene fusions,
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a biological phenomenon in which, following a genetic alteration, two genes join
and can generate an oncogenic protein molecule. However, not all gene fusions are
oncogenic. Therefore it is a significant challenge to create automatic tools for the
prioritization of gene fusions, i.e., to show which of these have a higher probability
of being involved in oncogenic processes.

The main methodological contribution consists of creating ad-doc models for the
analysis of gene fusion proteins. These methods involve convolutional networks and
long short-term memory networks applied directly to the fusion sequence instead of
the gene fusion product’s protein domains. These approaches outperform the main
state-of-the-art tools and contribute significantly to this sector.

Also, post-transcriptional regulation features that characterize gene fusions have
been considered. By exploiting ad-hoc methods for integrating this information, it
has been possible to identify the relevance of microRNAs (miRNAs) to prioritize
gene fusions.

A second part of the thesis is dedicated to integrating various types of data.
The first chapter concerns integrating gene expression data with spatial informa-
tion to predict connected and unconnected areas within the mouse brain. In this
context, the main methodological contribution consisted of identifying a strategy
to integrate axon connectivity data with the point values of gene expression within
the mouse brain. Therefore, the developed method identifies if two brain regions
are connected by axons analyzing the gene expression data alone.

Another computational problem regards integrating multi-omics data, involv-
ing gene expression (mRNA) data, microRNA expression (miRNA) data, protein
expression, and DNA methylation data.

In this context of integration, two main ways are possible: the first concerns
the analysis of a multi-omic dataset for the discovery of regulatory phenomena
involving genes, miRNAs, and proteins, while the second consists of integrating the
various features of mRNA, miRNA, and methylation to improve the classification
and clustering between the samples.

To discover regulatory phenomena, a specific method that exploits partial corre-
lation statistical test was implemented to bring out the post-transcriptional function
of miRNAs concerning their target genes. The method proved to be enriched in
three databases: miRDB, TargetScan, miRTarBase.

Another computational problem regards integrating multi-omics data, involv-
ing gene expression (mRNA) data, microRNA expression (miRNA) data, protein
expression, and DNA methylation data.

In this context of integration, two main ways are possible: the first concerns
the analysis of a multi-omic dataset for the discovery of regulatory phenomena
involving genes, miRNAs, and proteins, while the second consists of integrating the
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various features of mRNA, miRNA, and methylation to improve the classification
and clustering between the samples.

Instead, integrating different data to get single clustering information is still a
challenging problem regarding clustering in a multi-omic context. In this thesis, the
methodological approach is based on designing a specific loss function for a mul-
tilayer perceptron method to cluster samples summarizing the information coming
from all the omics.

In the end, Chapter 2 will present the background of the main computational
approaches mentioned in this thesis and, section by section, the specific data’s
computational problems and the various methodological contributions.

Next, Chapters 3 and 4 are dedicated to gene fusions, with the description
of the various implemented approaches and the achieved results. In Chapter 6, a
multi-omic integration method based on statistical techniques is presented to reveal
the mRNA expression adjustments determined by the post-transcriptional action
of miRNAs.

Chapters 7 and 8 deal respectively with the machine and deep learning tech-
niques for classifying and clustering patients based on multiple omics data (in this
case, genomics, transcriptomics, and proteomics).

Finally, Chapter 9 reports this thesis’s conclusions, underlining each section’s
main innovative contributions.
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Chapter 2

Background

In the last century, an exciting relationship binds biology and computational
algorithms. Many of the optimization and machine and deep learning algorithms
draw inspiration from biological processes. An example of this relationship consists
of the genetic algorithms inspired by a biological population’s evolution mecha-
nisms to optimize the search for a satisfactory solution among the many possible
ones. Another example is convolutional neural networks (CNNs) that draw in-
spiration from the visual cortex to learn specific patterns encoded in the images
[175]. Simultaneously, computational algorithms have become necessary to pro-
cess, analyze, and understand the main biological phenomena related to cell life
and oncogenic processes. In the last decades, multiple algorithms have been used
to unravel biological insights in complex systems, ranging from statistical to neural
network approaches. In the first part of this section, the main algorithmic methods
will be described, focusing on the still open challenges. This thesis’s relevant data
will be presented in the second part, providing a brief biological overview and their
computational issues.

2.1 Computational methods in biology
Recently, machine and deep learning techniques spread in almost all fields of

science and bioinformatics, exploiting the growth of data-driven methodological
approaches.

Although the back-propagation algorithm was first presented in 1962 by Drey-
fus, its first uses for artificial neural networks date back to 1981 by Werbos [58,
214]. The first implementation of a multilayer convolutional neural network takes
place in 1989 by LeCun, in which the network was applied to actual problems of
classifying handwritten images [130]. One of the most famous implementations is
by LeCun in 1998, who implemented the popular LeNet-5. It is a particular convo-
lutional network architecture dedicated to the MNIST dataset classification, which
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subsequently became the most famous dataset for testing algorithms’ performance
for pattern recognition.

One of the critical points of convolutional neural networks is creating an accurate
classification without building ad hoc features for each type of problem. These
networks are based on automated learning, allowing the user to overcome one of the
challenging aspects of training automatic classifiers, namely the feature extraction
problem [129]. In the biomedical context, the extraction of relevant features for
the classification of biological images is a particularly challenging problem. This
is particularly true, for instance, for histological images. Indeed, it is difficult for
the expert to identify exact measures of the tissue’s morphological and structural
characteristics under analysis. Besides, all known and valid rules in a healthy
context are no longer proper in the pathological context, making the design of a
reliable model more difficult. Another aspect to consider is the intra-class variability
within the same data set, and among different data sets too.

Although the aforementioned issues, convolutional neural networks have been
successfully applied to some biological context, such as the segmentation of glioma
tumors in the brain by Hussain et al. [100], the prediction of retinopathy in diabetic
patients [172], and the segmentation of brain tumors in MRI images [90]. Other ex-
amples include the diagnosis of breast cancer, the identification of interstitial lung
diseases, and the identification and classification of nuclei in routine histological
images of colon cancer [197, 14, 191].

2.1.1 Deep learning on genomic sequences
Convolutional neural networks have experienced significant growth in applica-

tions and continuous refinements. However, they are not the only models that have
received substantial attention in recent years. Recurrent neural networks have been
specifically designed to process sequential data and have found significant applica-
tions in natural language processing, language translation, and speech recognition
[82, 187, 218, 123].

Among the many applications found in the literature, the property of consider-
ing temporal and spatial sequences has made convolutional and recurrent networks
particularly suitable for analyzing biological sequences [139, 198, 91]. Several works
exploit LSTM networks to identify gene motifs within the genomic sequences and
analyze the structure of the regulatory sequences that characterize the DNA [118].
Other works, for example, concern the visualization of these genomic sequences to
make the human genome more interpretable [126].

A field in which convolutional and recurrent methods have reached a mature
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stage predicts the secondary structure of proteins starting from its genomic sequence
[228]. The prediction of the secondary structure of proteins is essential. It is possible
to verify protein complexes’ interactions and identify potential drugs binding to
specific proteins.

Also, various papers focus on predicting the specificities of DNA, and RNA
binding proteins [220, 6], enabling personalized medicine and the discovery of new
potential therapeutic drugs.

2.1.2 Deep learning for the prioritization of gene fusions
One area in which computer algorithms have contributed significantly to biol-

ogy is that of the study of cancer, which afflicts millions of people every year and
is the second leading cause of death immediately after cardiovascular diseases[105,
176]. Cancer can be characterized by a progressive accumulation of mutations at
the genomic level. This accumulation of mutations can take various forms, includ-
ing deletions or insertions or point mutations in the coding sequence, amplifying
portions of the genetic code, and chromosomal rearrangements. In particular, chro-
mosomal rearrangements can cause the juxtaposition of enhancer elements or the
creation of a fusion gene [151, 148].

Over time, fusion genes have been associated with oncogenic processes. Some
of these are exploited as biomarkers for particular types of tumors. Particularly fa-
mous gene fusions are those involving the BRCA1 gene for breast cancer prognosis,
the TMPRSS2-ERG genes that identify 50% of prostate cancers [54], EWS-FLI1
characteristic of Ewing’s sarcoma [205]. Gene fusions are made up of the juxtapo-
sition of two different genes. Depending on the genes involved, their functionality,
and the mutations of the genes mentioned above, the gene fusions can have an
oncogenic effect strongly characterizing a particular pathology. At the same time,
not all gene fusions are always associated with oncogenic phenomena. Hence the
fundamental need to identify correctly those fusion genes associated with a higher
probability of oncogenic processes. It is essential to recap briefly how such bio-
logical alterations are identified to understand building algorithms’ computational
challenges.

Commonly, in a fusion genes detection routine, the RNA is extracted from the
biological sample and inserted into a genomic sequencing machine. This machine’s
output consists of a .fasta or .fastq file containing all the biological sample reads.
Then, gene fusions detection tools are used to have a list of candidate gene fusions
for that sample. Among the most famous tools, ChimeraScan, Defuse, STARfu-
sion, FusionHunter, Tophat-fusion and SOAP-fusion deserve to be mentioned [102,
153, 56, 85, 137, 120, 217]. These tools aim to identify most of the gene fusions
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present in the sample supplied to the algorithm. Some of these tools have a high
sensibility with low specificity (i.e., ChimeraScan), others have a low sensibility
with high specificity (i.e., FusionHunter). Gene fusion detection tools can report
false positives, which are gene fusions that are not validated once analyzed by PCR
in a biological laboratory. Also, the fact of finding a gene fusion within a sample
and validating it with PCR does not necessarily imply that this fusion gene is the
driver of a particular oncogenic pathology.

Therefore, this assumption implies that not all the gene fusions detected by
a gene fusion detection tool are oncogenic and drivers in pathological processes
given a biological tumor sample. Although the number of gene fusions drivers of
oncogenic processes is continuously growing and are reported in many databases,
their number is still limited [70, 131]. Also, many PCR-validated gene fusions are
present in tumor samples, but in this case, the driver oncogenic function is sup-
posed. However, in all practical purposes, gene fusions found in healthy samples
are considered as non-oncogenic while the PCR-validated fusion genes in tumor
samples are labeled as oncogenic.

Various approaches have been proposed over time to recognize among the multi-
ple gene fusions those responsible for oncogenic processes, starting from the manual
analysis of the genes involved in the fusion to develop automatic methods based on
machine learning techniques [26, 155]. In both approaches, the simplification of la-
beling as healthy and oncogenic the gene fusions coming respectively from healthy
and tumor samples is used only in the computational models’ validation phase.
This assumption would be insufficient to train efficient machine learning models.
Therefore, only gene fusions with an irrefutable oncogenic driver capability are used
to train the automatic models.

The oncogenic driver capability’s certainty appears to be one of the most prob-
lematic aspects in the realization and training of the automatic models from the
computational point of view. Machine learning models allow training and testing
of the models provided that a fair number of high-quality samples are available.

In the literature, machine learning models to identify gene fusions are based on
the analysis of protein domains held within the fusion to train naïve Bayesian and
random forest classifiers to determine a fusion’s oncogenicity. In this thesis [3, 189],
deep learning methods applied directly to the genomic sequence of the fusion gene
will be addressed to prioritize potentially oncogenic gene fusions.

From a computational point of view, besides the challenge given by the certainty
in the oncogenic driver capability, a crucial aspect is the information in the fusion
gene sequence. Although various deep learning algorithms have proved helpful in
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predicting genomic patterns, so far, it has not been shown how much the genomic
sequence of a gene fusion alone could be sufficiently predictive of such a complex
phenomenon as the oncogenicity of a gene fusion.

Also, the specific case of gene fusion analysis is challenging as the genes in-
volved in the training database are entirely disjoint from the genes used in the test
database. This aspect is standard in the definition of automatic algorithms; how-
ever, it is required that the test set’s data belong to the same domain and have the
same characteristics as the data of the training set. It is usually required that the
test set data are independent of those of the training set but share the same prop-
erties. As described above, it is not known how much the oncogenicity property
is represented by the genomic sequence alone. Indeed, by completely changing the
genes used for the test set, there is no guarantee that the working domain between
train and test set is homogeneous.

In this thesis, the previously described challenges have been collected by showing
deep learning algorithms based on convolutional and recurrent networks to perform
the prioritization of gene fusion and thus identify the most likely oncogenic ones.

2.1.3 Learning connectivity in the mouse brain
A diversity of heterogeneous and different data has become available regarding

the same context or pathology in the biological field. Integrating the data men-
tioned above is always an exciting and challenging activity, as integration methods
depend on the data itself and the result obtained. It is common to have both ge-
nomic information and images available. In this context, machine and deep learning
models find application in the translation of information between different domains,
thus allowing for transferring knowledge from one domain to another [15, 88]. In
this thesis, one aspect addressed was integrating genomic and spatial data regarding
the mouse brain. In particular, the work aimed to identify a physical connection be-
tween two or more regions of the mouse brain, starting from the genomic data alone.

From a computational point of view, the main challenges of this section consist
of mapping genomic information in the three-dimensional space together with spa-
tial images representing the intensity of a viral tracer to infer which axons connect
specific regions of the brain to the central nervous system.

In this context, the significant difficulty is finding the information to create a
predictive model and establish the physical intensity of the neural connection start-
ing from the gene expression data only in the three-dimensional form.
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As discussed in the previous section regarding the genomic sequence, also, in
this case, the direct connection between gene expression and the physical connec-
tivity of two or more regions in the brain is not known. Indeed, this connection
still needs to be further investigated.

2.1.4 Algorithms for multi-omics data integration
In biology, it is expected within a specific pathology finding more molecular sub-

types. Patients with the same clinical manifestation can have a different genetic
heritage and response to drugs. Therefore, the treatment of the disease follows
specific protocols and may affect the duration of survival. Although the identifi-
cation of molecular profiles is possible sometimes by yielding a single omic data
(for example, transcription), the joint integration of several omic data allows most
times to carry out integrated and more detailed profiling.

Although integrating different data is a strength in the biological field, the
computational effort necessary to obtain helpful information starting from genomic
data in an integrated form is considerable [223, 196]. From a computational point
of view, each data has specific dynamics of the values (range values). It is funda-
mental to understand how to scale the input value to not condition the result based
on a single omic.

The most frequently used omics comprise the transcriptome, micro RNA (miRNA),
proteome, methylation data, single point mutation, and many others in the genomic
field. Their high dimensionality characterizes all these omics. Omics data have tens
to hundreds of thousands of features for each sample [9].

More detailed information on the type and dimensionality of the data processed
is shown in Section 2.2.

Moreover, the complexity of integrating multi-omics data derives not only from
the intrinsic dimensionality of each omic but from the modeling of a biological phe-
nomenon that is complex by its nature, whose potential is not yet fully known.
Therefore, it is necessary to clearly understand the aim of the multi-omics integra-
tion to filter out the noise and work with the signal of interest [30].

From a computational point of view, the information coded at the multi-omic
level is sometimes redundant. The selection from those redundant parts is not al-
ways automatic, on the contrary.

When working with multi-omics datasets, two main strands can be identified.
The first strand consists of the samples’ integrated analysis to infer the subtype
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or sample classification. The second strand instead identifies genes, miRNAs, pro-
teins, or methylation probes closely related to the pathology in question. Both
these strands are affected by dimensionality and the complexity of the system un-
der examination[168].

In this thesis, both aspects have been considered by presenting works of clas-
sification and multi-omic clustering of patients and the extraction of particular
features, particularly miRNA, to investigate specific biological problems.

2.2 Main data types
In this section, the primary data used in this thesis will be summarized. The

aim is not to provide a detailed description of each data but to summarize each
data’s origin and meaning. In particular, I will not focus on the biological and
biotechnological details but on the computational problems that may arise from
the data. A more precise overview will be reserved for the number of features and
samples available for each of this information. Section 2.2.1 will concern the data
used in this thesis regarding the problem of gene fusions. Subsequently, the main
multi-omics data will be detailed in Section 2.2.2.

2.2.1 Gene fusions data
Gene fusions can be studied considering various biological information, such as

analyzing the translocations in wet laboratories or using automated tools that allow
the identification of candidate gene fusions in fasta/fastq samples.
Because of the cost reduction of NGS sequencing experiments, the availability of
RNA sequencing data has become relevant. Subsequently, several tools were explic-
itly designed to infer the candidate fusions for each sample [102, 153, 85]. Although
the strategies used by the gene fusion tools are partially different, all these align
the reads of the fasta/fastq files on the reference genome and subsequently iden-
tify those reads that are a symptom of a fusion phenomenon. Typically, the result
of such software comprises a tabular file showing the genes involved in the fusion
(gene at 5p ’and gene at 3p’) together with the coordinate of the breakpoint on
both genes plus other biological information related to alignment. An example of
this type of data is shown in Table 2.1.

Within this thesis, all the information related to gene fusions is obtained from
the chromosomes and each fusion’s breakpoint coordinates. However, this approach
does not allow for the exploitation of additional information, such as knowing which
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5p’ gene 3p’ gene 5p’ chr 5p’
coordinate 3p’ chr 3p’

coordinate
Additional

output
TMPRSS2 ERG 21 41,480,305 21 38,567,261 ...
ACACA STAC2 17 37,184,992 17 39,215,536 ...

RPS6KB1 SNF8 17 59,933,046 17 48,929,555 ...

Table 2.1: Example of a typical gene fusion detection tool’s output.

specific transcript is involved in gene fusion. Therefore, in the absence of data on
the particular transcript, all known transcripts for that pair of genes are considered
by evaluating all possible transcript combinations.

From a computational perspective, the proteins resulting from the gene fusions
process vary from a few amino acids to a size comparable to healthy proteins (sev-
eral hundred to a few thousand amino acids). As anticipated in Section 2.1.2, the
total number of oncogenic validated gene fusions is limited to a few thousand se-
quences. In contrast, the total number of gene fusions identified as candidate gene
fusions is approximately 100 times greater.

All the details concerning the reconstruction of the fusion sequence are reported
in Chapter 3.

2.2.2 Omics data
In biology, a lot of omics data and information may be available for the same pa-

tient. However, this wealth of information can be difficult to manage as the number
of features available for each omic varies from hundreds to hundreds of thousands.
This section illustrates the characteristics of the major data structures to deal with
when analyzing omics data. The aim is to provide a general overview and illustrate
the specific computational problems related to RNA, miRNA, methylation (meth),
and proteomics (prot).

mRNA

The most abundant and most studied type of RNA is messenger RNA. Its mea-
sure is closely related to the number of proteins inside the cell [122]. It is possible
to use mainly two techniques to quantify genes’ expression level, quantification by
microarray and NGS sequencing techniques. Although the technological function-
ing of these two platforms is very different, starting from both, it is possible to
obtain a tabular file as in Figure 2.1 in which the value xij represents the amount
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of expression of the gene i in patient j.

Figure 2.1: Typical tabular file. Features (in this case, genes) are reported on the
rows, samples (in this case, patients) on the columns. xij represents the expression
value of feature i in patient j.

miRNAs

Micro RNAs (miRNAs) are short RNA molecules mainly involved in the post-
transcriptional processes of the cell [89]. They have a central region of about seven
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nucleotide long (seed region) responsible for the bond that miRNA can form with
some genes (typically in the region close to the promoter), thus inhibiting mRNA
translation into protein. Therefore, the study and quantification of these molecules
are fundamental in deciphering and revealing biological phenomena’ complexity.
The expression level of miRNAs is calculated through NGS techniques, and the
form of such data is a tabular file (Figure 2.1) where the value at position xij rep-
resents the amount of expression of miRNA i in patient j.

Methylation data

Another biological phenomenon that plays a fundamental role during post-
transcriptional processes is methylation [180]. This phenomenon allows altering
the functioning of the resulting protein by inserting a methyl group near some spe-
cific regions (typically regions of DNA enriched with cytosine and guanine) without
modifying the sequence of nucleotide bases. Some DNA areas have a high level of
methylation on a physiological level, while other regions are typically poorly methy-
lated. However, changes in the level of methylation can lead to altered proteins’
expression, thus making it necessary to study the changes in methylation regarding
basal conditions. The quantification of the methylation level occurs through tabu-
lar files (Figure 2.1) in which the xij value represents the methylation value of the
DNA region (called a probe) i in patient j.

Proteomics

It is possible to state that most of the cell’s life depends on its proteins, simplify-
ing the biological processes to the extreme. It has become increasingly necessary to
quantify proteins within tissue in recent years as they are directly connected to the
main cellular processes [127]. Unlike DNA or RNA molecules that the PCR process
can amplify, proteins cannot be amplified despite having very low concentrations
within the sample. Therefore, the techniques used so far for the quantification of
these molecules are based on the microarray (in the case in which the proteins to be
investigated are completely known in their sequence and structure) or on the mass
spectrometer, which can quantify the peptides within a sample. The reconstruction
of the quantification of proteins from the quantification of the mass spectrometer’s
peptides requires adequate processing. At the end of this process, a tabular file
(Figure 2.1) is obtained in which the value xij represents the quantity of protein i
in the sample j.
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General computational considerations

After presenting the omics’ critical characteristics in this thesis, it is appropri-
ate to provide some considerations regarding the main computational challenges
deriving from them. The major challenge comes from the abundance (and redun-
dancy) of the features available for each sample. Typically the number of features is
about 10 or 100 times the number of samples. Therefore, proper feature selection
or dimensionality reduction techniques must be considered for classification and
clustering samples. Deciphering the regulatory cascades between the various genes,
proteins, and miRNAs becomes complex because of the high dimensionality.
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Part I

Gene Fusions Prioritization
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Chapter 3

Gene fusion prioritization based
on the genomic sequence

3.1 Methodological contribution
This chapter is devoted to studying and analyzing gene fusions, a biological

phenomenon in which, following a genetic alteration, two genes join and can gen-
erate an oncogenic protein molecule. However, not all gene fusions are oncogenic.
Therefore it is a significant challenge to create automatic tools for the prioritiza-
tion of gene fusions, i.e., to show which of these have a higher probability of being
involved in oncogenic processes.

The oncogenic driver capability’s certainty appears to be one of the most prob-
lematic aspects in the realization and training of the automatic models from the
computational point of view. Machine learning models allow training and testing
of the models provided that a fair number of high-quality samples are available.

From a computational point of view, besides the challenge given by the certainty
in the oncogenic driver capability, a crucial aspect is the information in the fusion
gene sequence. Although various deep learning algorithms have proved helpful in
predicting genomic patterns, so far, it has not been shown how much the genomic
sequence of a gene fusion alone could be sufficiently predictive of such a complex
phenomenon as the oncogenicity of a gene fusion.

Also, the specific case of gene fusion analysis is challenging as the genes in-
volved in the training database are entirely disjoint from the genes used in the test
database. This aspect is standard in the definition of automatic algorithms; how-
ever, it is required that the test set’s data belong to the same domain and have the
same characteristics as the data of the training set. It is usually required that the

19



Gene fusion prioritization based on the genomic sequence

test set data are independent of those of the training set but share the same prop-
erties. As described above, it is not known how much the oncogenicity property
is represented by the genomic sequence alone. Indeed, by completely changing the
genes used for the test set, there is no guarantee that the working domain between
train and test set is homogeneous.

In this context, an automated model for the recognition of oncogenic gene fu-
sions using exclusively on the amino acid sequence of the resulting proteins has been
developed. The main contributions consist of: 1. creation of a proper database used
to train and test the model; 2. development of the methodology through the design
and the implementation of a prediction model based on a Convolutional Neural
Network (CNN) followed by a bidirectional Long Short Term Memory (LSTM)
network; 3. extensive comparative analysis with other reference tools in the lit-
erature; 4. engineering of the developed method through the implementation and
release of an automated tool for gene fusions prioritization downstream of gene
fusion detection tools.

3.2 Introduction
Nowadays, the increased availability of Next Generation Sequencing (NGS) data

enables new unforeseen insights into the relationship between some genetic rear-
rangements and cancer development. In this regard, a challenging area is repre-
sented by the study of gene fusions. In this genetic aberration, two separate DNA
regions (usually two distinct genes) join together into a hybrid gene. The genes
retained at 5p’ and 3p’ of the fused sequence are conventionally called 5p’ gene and
3p’ gene, respectively. If the promoter region of at least one of the two genes is
retained in the fusion, the erroneous sequence is transcribed at the RNA level, and
the aberrated transcript can result in an abnormal protein[156].
Since the discovery of the first genetic rearrangement by Nowell and Hungerford in
1960, a large number of gene fusions have been associated with cancer development
and used as cancer predictors[156]. However, gene fusions do not automatically
relate to oncogenic processes, as they can be found in large numbers even in non-
tumoral samples [19]. Therefore, predicting whether an altered transcript will result
in an oncogenic protein is a very critical and challenging task in the study of cancer
development.

Traditionally, many methodologies have been used for the identification of fusion
genes (e.g. fluorescence in situ hybridization (FISH) [10] or comparative genomic
hybridization (CGH) [112]). In recent years, the spreading of NGS technologies has
enabled gene fusion detection tools, whose aim is to identify chimeric transcripts
exploiting information coming from RNA paired-end sequencing data [185].
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Typically, the analysis of such data consists of three main phases:

1. primary identification of candidate gene fusions,

2. filtering of the fusion candidates, based on the number of reads mapping to
a specific region and the functional annotation of the involved genes. The
outcome of this phase is a sub-set of candidates with the best read quality
mappings and the highest probability of resulting in a functional oncogenic
product,

3. in-situ validation of the fusions resulting from phase 2.

The first phase of the analysis is performed using fusion detection tools (among
the others, Chimerascan [102], Defuse [153], Prada [206] and many more [163, 108,
2]). Nowadays, the major issue with these tools’ outcome is related to the interpre-
tation of the found chimeric transcripts. Given each gene fusion’s high validation
costs, extensive post-processing efforts are devoted to distinguishing driver fusions
from passenger mutations to reduce the number of false positives in the last part
of the pipeline. This approach makes the second phase of the analysis particularly
critical and challenging.

Indeed, the majority of the tools in the literature apply filtering criteria based
on the read mapping quality (among the others, Tophat-fusion [120] and Star-
fusion[85]). A complementary approach for the interpretation of gene fusion candi-
dates consists of a functional study of the chimeric transcript, looking at possible
similarities with cancer genes: the higher the similarity, the higher the probability
of developing into cancer. This similarity analysis involves specific functional an-
notations, protein interactions as well as protein domain analysis [128].

With the aim to achieve a fully functional study of a chimeric transcript, all the
available literature approaches reconstruct the candidate fusions and then apply dif-
ferent types of machine learning methods to perform protein domain analysis [189,
3]. Given the uncertainty on the training set, these tools mainly use predictive
models to derive conserved and lost protein domains in fusions and then exploit
the outcome of such predictions to train a machine learning method. The most
popular tool in this category is Oncofuse [189] that assigns a functional prediction
score (oncogenic potential, i.e., the probability of being driver events) to the fusion
sequences exploiting a naive bayesian classifier.

While the information on conserved or lost protein domains is generally suc-
cessful in prioritizing the candidate fusions, this approach’s well-known drawback
is its lack of flexibility. Indeed, any change in the classification problem (either a
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different type of cancer or newly acquired information) requires significant efforts
devoted to re-parametrizing the model and laborious re-derivation of the protein
domains. This process is a very inconvenient trait, especially if I consider that the
study of cancer development is built on top of continuously evolving information.

In this work, I focused on the functional annotation of the chimeric transcript
(phase 2 of the analysis pipeline) and a more flexible approach. I exploit human
reference sequences, relying only on the raw fusion sequence information, with no
additional input about conserved or lost protein domains. The aim is to avoid any
possible bias that the prediction models leveraged by protein domain analysis may
introduce into the classification task and improve the generalization capabilities
and ease-of-retraining of the classifier.

The proposed solution is based on a Convolutional Neural Network (CNN) and
a bidirectional Long Short Term Memory (LSTM) network to handle the prioritiza-
tion problem. CNN is a class of deep, feed-forward neural networks with the inbuilt
ability to automatically learning the most significant classification features directly
from the raw input data [221, 222]. Hence, they avoid the necessity of designing
handcrafted descriptors, which may be difficult to generalize to different classifica-
tion problems. Thanks to these peculiar characteristics, they can quickly adapt to
newly acquired information by merely re-running the automated back-propagation
algorithm on the new training data. Initially designed for image classification tasks,
CNNs and LSTM are now successfully applied to most pattern recognition and clas-
sification problems, from computer vision [55] and natural language processing [49]
to bioinformatics (for example, to the prediction of single-cell DNA methylation
states and microRNA targets, as well as to the recognition of splice junction sites
and promoter sequence regions [158]).

In this work, I feed the model directly with the real amino-acid composition of
the fused proteins, with no additional data interpretation to design a model that is
entirely independent of protein domain information. The network’s output consists
of a 0 − 1 score, which can be interpreted as the probability of the chimeric input
transcript to be oncogenic. This score can also be translated into a categorical class
label, partitioning the input gene fusions into two different groups (oncogenic or
not oncogenic, respectively), with a corresponding confidence level.

The algorithm is the core part of DEEPrior, a simple and easy-to-use tool for
prioritizing gene fusions. In addition to the tool, another relevant contribution
consists of releasing to the scientific community a database with 4779 amino-acid
protein sequences that I collected and reconstructed for this work by combining the
information reported by multiple sources [70, 19, 131].
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3.3 Data
Although many databases related to gene fusions have been released recently,

the availability of databases reporting the proteins resulting from annotated and
validated gene fusions is still a critical issue. Here:
https://github.com/bioinformatics-polito/DEEPrior/tree/master/DEEPrior/data,
I release the protein fusions datasets specifically reconstructed from multiple sources
and used to assess DEEPrior performances to the community. Overall, I used three
datasets (one for training and two different ones for performance assessment), de-
scribed with more details in the following. A label is associated to each gene fusion
of the data-sets, respectively Onco for the oncogenic and NotOnco for the not onco-
genic. In this thesis, a fusion pair is defined as the union of the 5p gene name with
the 3p one.

3.3.1 Training set
This set consists of 786 fusion pairs and 2118 sequences, respectively 1059 Onco

and 1059 NotOnco, obtained from two different sources.
The Onco sequences were obtained from COSMIC, Catalog of Somatic Mutations
in Cancer [70]. Among all the mutations involved in oncogenic processes, COSMIC
also provides a list of validated gene fusions in the Complete Fusion Export Table.
Among all the instances reported, I selected only the ones for which complete in-
formation was provided about the transcripts and the exact breakpoint positions
in order to be able to reconstruct the resulting amino-acid sequence.

The NotOnco sequences, on the other hand, were obtained from work by Babi-
cenau et al.[19], where more than 10000 gene fusions were obtained by applying
SOAPfuse gene fusions detection tool to 171 non-neoplastic tissues. Among all the
gene fusions reported in the paper, I first discarded the ones not belonging to the
human species or coming from cell lines (ESC, MSC, MFC10). As the NotOnco
gene fusions were over-represented concerning the Onco ones by one order of magni-
tude, I selected the NotOnco gene fusions that were present in at least four different
tissues or different patients.

To complete the dataset, I added gene fusions present in at least three different
tissues or different patients. The selection proceeded until I obtained a total number
of NotOnco sequences equal to the number of the Onco sequences.

3.3.2 Data-set 1
This set was used to test DEEPrior performances, and it is composed of 142

fusion pairs and 156 gene fusions,122 Onco and 34 NotOnco. As there are no fusion
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pairs in common with the training set, this set is completely statistically indepen-
dent.

Overall, the data were extracted from three different sources.

The sequences associated with Onco gene fusions were extracted from the ChimerDB2.0
database [121]. The genomic positions were obtained by taking the gene fusions
from ChimerDB3.0-ChimerSeq [131] that originate from ChimerDB2.0.

33 of the NotOnco gene fusions were the false positives reported by TopHat-
Fusion [120]. They were obtained from two healthy samples (testis and thyroid),
with corresponding data published by Illumina within the BodyMap 2.0 project
[63]. The other NotOnco gene fusions were obtained by applying STAR-Fusion on
the Illumina BodyMap 2.0 samples for which information about the originating
tissue was provided.

3.3.3 Data-set 2
This set was used to test DEEPrior performances, and it is composed of 2595

fusion pairs and 2623 gene fusions, all belonging to the Onco category. This dataset
was built starting from Gao et al.[79], who published a fusion call set of more than
25000 gene fusions, obtained by applying three fusion detection tools on the entire
TCGA database and appropriately filtering the fusions that are found in healthy
samples.

Also, for the samples for which WGS data were available, the presence of gene
fusions was validated at the DNA level. The validated gene fusions dataset was
kindly provided by the Authors on request. The 1,78% of fusion pairs are in common
with the training set.

3.4 Method
The model consists of a CNN followed by a bidirectional LSTM, trained on the

entire training set.
Data representation leverages on top of a token embedding learned during the train-
ing, where the tokens (i.e., the individual amino acids) are mapped onto a geometric
space so that similar tokens are geometrically close.

The model processes sequences between 6 and 4000 amino acids in length.
Shorter sequences are not considered as they can hardly be functional, while se-
quences longer than 4000 amino acids are truncated before being processed by the
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model since only the 0,22% of Uniprot sequences are longer than 4000 amino-acids.
Furthermore, as the model has been defined, all sequences undergo a padding pro-
cess.

Different configurations of the number of layers, nodes per layer, and dropout
were evaluated to optimize the model, running 10-fold cross-validation for each
configuration and repeating each fold ten times to establish the dependence on the
initialization. In the end, the optimal model was the following. Embedding layer
initialized randomly with size 16; One-dimensional convolution layer with 128 filters
with size five kernel and Relu activation function. Max pooling with three window
sizes and 0.3 dropouts. Bidirectional LSTM with 32 nodes with tanh activation
function and 0.3 dropouts. Final dense layer with a sigmoid activation function.

The number of epochs was set to 100, batch size to 64. In the training phase,
I used Keras callback EarlyStopping with patience (number of epochs with no im-
provement after which training will be stopped) equal to 30 and minimum change
in the monitored quantity to qualify as an improvement equal to 0.

The network was implemented in Python 3.7 with Keras library [44] and its
architecture is summarized in Figure 3.1.

Figure 3.1: Architecture of the deep learning model in DEEPrior.
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3.5 The tool
DEEPrior is a user-friendly tool for gene fusions prioritization downstream of

gene fusion detection tools. It is implemented in Python 3.7 with minimal addi-
tional libraries, and it is available both for CPU and GPU. DEEPrior workflow is
summarized in the Figure 3.2.
After executing a fusion detection tool, for each gene fusion, DEEPrior constructs
all possible proteins (all coding transcripts of each gene are considered). All result-
ing amino-acid sequences are then fed into the prediction model, which provides a
score for each sequence. The final oncogenic probability value of the gene fusion is
obtained as the maximum among these scores.

Figure 3.2: Workflow of DEEPrior tool. For each gene fusion (see different
colors in the figure), DEEPprior generates all possible proteins, considering all
transcripts of the fused genes. In the end, the amino-acid sequences are fed into
the deep learning model, obtaining a 0-1 value for each protein. The oncogenic
probability of each gene fusion is obtained as the maximum of all these values.

The tool supports two different modes: inference and retraining.

3.5.1 Inference mode (Default one)
This mode performs a prioritization of an input set of gene fusions, exploiting

a given prediction model.

26



3.5 – The tool

Input

The input consists of an N × 4 tabular file with rows corresponding to gene
fusions, each with four respective attributes: chromosome and coordinate of 5p’
end, chromosome and coordinate of 3p’ end. Alternatively, the user can provide
as input directly the outcome of many gene fusion detection tools. DEEPrior is
designed to support as input to the Inference mode the most prevalent gene fusion
detection tools.

Supported tools are:

• ChimPIPE [183]

• DeFuse [153]

• EricScript [27]

• FusionCatcher [163]

• InFusion [167]

• JAFFA [53]

• SOAPfuse [108]

• STAR-Fusion [85]

• TopHat [120]

Therefore, the user can choose among the most prevalent gene fusion detection
tools with no effort. However, I underline that any gene fusion of which the ge-
nomic breakpoints are known can be processed, providing a tab-separated file of
the breakpoints’ genomic coordinates. The first two columns refer to chromosome
number and breakpoint coordinate of 5p gene, while the third and fourth columns
refer to 3p gene. Coordinates can be entered in genome version grch37 or grch38.
An example of the general input file format is reported in Table 3.1.

chr5p coord5p chr3p coord3p
chr7 1000000 chr4 1000000
chr9 2555965 chr6 56444888

Table 3.1: Example of the general input file format, in case the user would like to
process gene fusions obtained with a gene fusion detection tool different than the
supported ones. The first two columns refer to chromosome number and breakpoint
coordinate of 5p gene, while third and fourth columns refer to 3p gene.
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Output

A tabular file with N rows corresponding to gene fusions, where for each gene
fusion, an oncogenic probability value (a value in [0-1] range) is provided, together
with additional information, such as name, description, and ENSEMBL identifier of
5p’ and 3p’ genes, and the following specific information about the fusion: length
of the fused protein, whether the protein is predicted to be truncated, whether
3p or 5p genes are complete, and the corresponding fusion protein sequence. The
relevant fields of DEEPrior output can be found in Table 3.2.

Fusion Pair Onc
Prob

5p
gene
info

3p
gene
info

Main
Pro-
tein
Length

Trunc
Pro-
tein

5p
gene
compl

3p
gene
compl

Main Pro-
tein

TMPRSS2_ERG 0.80 ... ... 123 Yes No Yes PYSHEK...
RPS6KB1_SNF8 0.24 ... ... 20 Yes No No PGARVRL...
ACACA_STAC2 0.88 ... ... 70 Yes No No WGIPLPW...

Table 3.2: Relevant fields in the DEEPrior output file for the Inference mode.
Fusion Pair indicates the common names of the genes involved in the fusion; Onc
Prob is the oncogenic probability value reported by the tool; Main Protein Length
is the length of the fused protein; Trunc Protein reports if the fused protein is
truncated (an early stop codon occurs in the protein) or not; 5p gene comp indicates
if 5p gene is complete in the fusion (stop codon of the upstream gene is present
in the protein); 3p gene compl indicates if 3p gene is complete in the fusion (start
codon of the downstream gene is present in the protein); Main Protein is the protein
reconstructed by DEEPrior. 5p and 3p gene info fields stand for a list of many other
useful information about the genes involved in the fusion.

The complete list of the output information is the following:

• fusion_pair: name of the gene fusion with common gene names

• oncogenic probability value: oncogenic probability value reported by the
tool. It is a number between 0 and 1. Closer is the number to 1, higher is the
probability to be oncogenic

• version: grch37 or grch38 depending on the genome version parameter de-
fined during the running of DEEPrior. Remember that hg19 is equivalent to
grch37 and hg38 is equivalent to grch38

• chr5p: chromosome number of 5p gene

• coord5p: breakpoint coordinate of 5p gene on chromosome 5p (1-based co-
ordinate system)
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• 5p strand: strand of 5p gene

• 5p common name: common name of 5p gene

• 5p ensg: ENSEMBL gene identifier of 5p gene

• 5p gene functionality: functionality of 5p gene (e.g. proteing coding or
not)

• 5p gene description: additional information about 5p gene provided by
ENSEMBL, usually a description of the biological process in which the gene
is involved

• chr3p: chromosome number of 3p gene

• coord3p: breakpoint coordinate of 3p gene on chromosome 3p (1-based coor-
dinate system)

• 3p strand: strand of 3p gene

• 3p common name: common name of 3p gene

• 3p ensg: ENSEMBL gene identifier of 3p gene

• 3p gene functionality: functionality of 3p gene (e.g. protein coding or not)

• 3p gene description: additional information about 3p gene provided by
ENSEMBL, usually a description of the biological process in which the gene
is involved

• MainProteinLength: length of the fused protein

• TruncatedProtein: Yes if the fused protein is truncated (an early stop
codon occurs in the protein). No otherwise.

• 5p_gene_complete: Yes if 5p gene is complete in the fusion (stop codon
in upstream gene is present in the protein). No otherwise.

• 3p_gene_complete: Yes if 3p gene is complete in the fusion (start codon
in downstream gene is present in the protein). No otherwise.

• main protein: the protein with no skipped exons

3.5.2 Retraining mode
In case new validated gene fusions are available (e.g., new cancer or new gene

fusion variants), this mode can be optionally employed to generate a custom pre-
diction model easily.
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Input

The input consists of an N × 5 tabular file, with rows corresponding to new
gene fusions to be added to the prediction model. The required attributes are chro-
mosome and coordinate of both 5p’ and 3p’ end, and a label of that gene fusion (0
for not oncogenic and 1 for oncogenic).

In this case, the input file is tab-separated and contains validated gene fusions
to be included in the retraining of the model for which the label (oncogenic or not
oncogenic) is known. The file is similar to the one reported in Table 3.1, and also
it contains the Label column, which indicates the class to which that gene fusion
belongs. 0 means not oncogenic, and one oncogenic. An example of this file is
provided in Table 3.3.

chr5p coord5p chr3p coord3p label
chr7 1000000 chr4 1000000 0
chr9 2555965 chr6 56444888 1

Table 3.3: Example of the input file in the retraining mode, in case the user would
like to include in the prediction model new validated gene fusions (e.g. a new cancer
or new gene fusion variants) The first two columns refer to chromosome number
and breakpoint coordinate of 5p gene, while third and fourth columns refer to 3p
gene. label column must be 0 if the gene fusion is related to the not oncogenic class,
1 otherwise.

Output

A .hdf5 file corresponding to the newly generated model. The new model can
further be selected as the model in the Inference mode.

3.6 Results
The following refers to the GPU version. However, similar results can be ob-

tained with the CPU version, as they share the same architecture. The experiments
were performed on two different data sets, namely Data set 1 and 2.

To assess the performance of DEEPrior, I first exploited Data set 1, which is
completely independent of the training set. It consists of 156 fusions, 122 oncogenic
and 34 not oncogenic (see Section 3.3.2 for details). To decide whether a gene fusion
is relevant, I set a threshold thr = 0.8 on the oncogenic probability value returned
by the tool.
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By doing so, I obtained that 39.74% of the predictions were selected as relevant.
Among them, 9.67% were false positives.

To assess this result’s goodness, I run on the same data set two state-of-the-art
algorithms (Oncofuse and Pegasus) which provide a score of relevance in the range
[0, 1]. To be consistent with the test, I set thr = 0.8. Oncofuse returned 10.71% of
the fusions with 6.67% of false positives. Pegasus returned 8.97% of gene fusions,
with 0 false positives.

Besides, I evaluated DEEPrior on Data set 2, consisting of 2623 oncogenic gene
fusions from the TCGA validated via WGS (see details in Section 3.3.3). DEEPrior
provided 32.48% of the fusions above the threshold, against the 23.55% of Oncofuse
and the 15.36% of Pegasus.

3.7 Additional experiments
In order to assess the relevance of my results, I first applied DEEPrior to 6

RNA-seq samples of breast cancer published by Edgren et al.[61].

I processed the samples using STAR-fusion [85] and then DEEPrior with thr =
0.8. DEEPrior identified 9 gene fusions as highly probable oncogenic. 6 of them
were reported in the original study [61] as validated.

Concerning the remaining 3 gene fusions, I remark that no experiment for their
validation was provided in the original study.

Besides, I evaluated DEEPrior performance onto 4 RNA-seq samples of prostate
cancer studied by Wu et al. [216]. In this case, DEEPrior identified TMPRSS2_ERG
gene fusion as highly probable oncogenic. This fusion was validated by Wu et al.
[216] Furthermore, its functional impact on prostate cancer is well known.

3.7.1 Case study
I selected two well-known studies to assess DEEPrior performances: 6 breast

cancer samples [61] and 4 prostate cancer samples [216]. The samples are all
RNA-seq data and are processed with STAR-fusion and then with DEEPrior. The
SRA accession number of each sample and highly probable oncogenic gene fusions
identified by DEEPrior (thr = 0.8) are reported in Table 3.4. Note that Unknown
label in the Validated column means that the gene fusion was not considered for
validation in studies [61] and [216].
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tissue SRA Gene Fusion Validated
breast SRR064286 BCAS4_BCAS3 Yes
breast SRR064287 BSG_NFIX Yes
breast SRR064287 PPP1R12A_SEPTIN10 Yes

breast SRR064438
SRR064439 ACACA_STAC2 Yes

breast SRR064438 LAMP1_MCF2L Yes

breast SRR064438
SRR064439 PIP4K2B_RAD51C Unknown

breast SRR064440
SRR064441 TATDN1_GSDMB Unknown

breast SRR064440
SRR064441 CYTH1_EIF3H Yes

breast SRR064440 ATAD5_TLK2 Unknown
prostate SRR496597
prostate SRR496595

prostate SRR496581
SRR496580 TMPRSS2_ERG Yes

Table 3.4: Sample tissue type (breast or prostate), sample SRA accession, highly
probable oncogenic gene fusion identified by DEEPrior in that sample and validated
label. More in detail, I checked if the reported gene fusion has been validated in
studies [61] and [216]. Unknown label in the Validated column means that the
gene fusion was not considered for validation in studies [61] and [216].

For breast cancer tissue, 9 gene fusions were identified as highly probable onco-
genic, and 6 of them are reported in the original study [61] as validated. I have to
remark that, concerning the remaining 3 gene fusions, the validation information
was not available in [61]. On the other hand, on prostate cancer samples, DEEPrior
identified TMPRSS2_ERG gene fusion as highly probable oncogenic. This fusion
was validated by [216] Moreover, its functional impact on prostate cancer is well
known.

3.7.2 NotOnco dataset
Since in the real world the number of not oncogenic gene fusions is at least one

order of magnitude greater than the number of oncogenic gene fusions, I addition-
ally tested the performance of DEEPrior on a set of not oncogenic gene fusions
published by Babicenau et al. [19].

I selected a total of 5436 not oncogenic gene fusions. These fusions were not
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included in the training set and occurred only once among all samples and all tis-
sues.
DEEPrior identified as not oncogenic the 75,02% of the gene fusions. Almost 80%
of these fusions were predicted to be strongly not oncogenic (oncogenic probabil-
ity value ≤ 0.2). These results suggested that DEEPrior can filter out the most
considerable portion of the not oncogenic fusions.

3.8 Conclusions
In this thesis, I suggested that the only amino-acid sequence is enough to predict

the oncogenic potential of a protein sequence resulting from a gene fusion. Based
on this hypothesis, I proposed a CNN plus LSTM model that takes the amino-acid
sequence as input, without any additional information about protein domains. This
approach is much more flexible than the available annotation tools, as the algorithm
can be easily re-adapted to different cancers or to newly acquired information by
simply re-running the automated backpropagation algorithm on a new training set.

Even though the scarcity of the training data intrinsically limits the model,
it achieved a good classification accuracy different the test sets and case studies,
overcoming the predictions obtained by Oncofuse both in terms of classification
accuracy and reliability of the prediction.
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Chapter 4

Identifying the oncogenic
potential of gene fusions
exploiting miRNAs

4.1 Background
Gene fusions are one of the most common somatic mutations and are considered

to be responsible for 20% of global human cancer morbidity [160, 68]. A gene fusion
is a biological event where two independent genes fuse together to form a hybrid
gene. In the most common case, one gene retains the promoter region and the
other one provides the end of the hybrid gene. The former is referred to as 5p’
gene, while the latter is called 3p’ gene. The position where the break occurs is
called breakpoint.

The advent of next-generation sequencing (NGS) and the development of fusion
detection algorithms [153, 102, 85, 64] led to the discovery of hundreds of novel
fusion sequences.

However, not all gene fusions are oncogenic. Indeed, some are genuinely ex-
pressed in normal human cells [73] or constitute passenger events [195]. At the
same time, other gene fusions are considered to be responsible for a significant
percentage of specific kind of tumors [141, 154, 204, 115].

A precise diagnosis of oncogenic gene fusions can inform therapeutics treat-
ments [59, 188] and be used to predict prognosis, patient survival, and treatment
response [68]. Additionally, focusing the research on a smaller number of puta-
tive oncogenic fusions a diagnosis could take less time; thus, the risks related to
misdiagnosis and waiting may be significantly reduced for the patients.

However, discriminating between cancer-driver fusions and non-driver events is
not a trivial task.

The first necessary step to solve this problem is performed by the fusion de-
tection tools [153, 102, 85], that identify the candidate gene fusions relying on the
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sample’s reads, trying to reduce as much as possible the number of false positives
(i.e., detected gene fusions that are not found in the sample in later lab validation).
Additional studies proposed more sophisticated approaches based on machine learn-
ing (ML) techniques applied on top of fusion detection tools’ output. Specifically,
Oncofuse [189] and Pegasus [3] are noteworthy and use protein domains of the fu-
sion proteins to train the models and predict the oncogenic potential of a fusion.
Undoubtedly protein domains are highly informative for the characterization of
gene fusions. However, the use of such information as a feature for the ML model
requires careful processing from scratch whenever the training database is updated
with novel validated fusions.

Recently, previous works explored deep-learning (DL) techniques [145] and pre-
sented DEEPPrior [146], a DL model to perform gene fusion prioritization using
amino acid sequences of the fusion proteins, based on a Convolutional Neural Net-
work (CNN) and a bidirectional Long Short Term Memory (LSTM) network. Com-
pared to the state-of-the-art tools, this approach is highly effective in accomplishing
the classification task with the advantage of avoiding labor-intensive processing of
the protein domains.

However, it is known that the oncogenic potential of a molecule depends not
only on the sequence itself but also on the effect of post-transcriptional regulatory
processes[69].

Transcription Factors (TFs) and micro-RNAs (miRNAs) play a decisive role
in the transcriptional and post-transcriptional regulatory processes [152] and can
contribute to determining the gene fusion outcome.

To date, most of the available tools exploit transcriptional information and
common gene properties to accomplish this task, without considering the post-
transcriptional regulators affecting the oncogenic processes.

Here, I present ChimerDriver, a new DL architecture based on a Multi-Layer
Perceptron (MLP) which integrates gene-related information with miRNAs and
TFs including then in the model transcriptional and post-transcriptional regulative
information. Indeed, ChimerDriver exploits the knowledge about TFs and miR-
NAs targetting each of the genes involved in the fusion to perform gene fusion
classification.

ChimerDriver was tested on multiple publicly available datasets and exhibited
better classification performance with respect to the state-of-the-art tools. In the
end, post-transcriptional regulators confirm the central role in the discovery of
oncogenic processes and miRNAs, in particular, are a precious source of information
to improve the prediction of the oncogenic gene fusions.

In the following, the proposed method is illustrated alongside with the results in
Results section. The discussion and conclusion are reported in Discussion and Con-
clusions sections, respectively, while a detailed description of model, its architecture
and the input datasets is provided into the Methods section.
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4.2 Methods
The oncogenic potential of gene fusions was assessed through an MLP to ap-

proach this challenging task. The MLP was believed to be a suitable method since
a simple yet effective configuration can characterize it. The process of adjusting
the hyper-parameters of the MLP allowed for fruitful research for the best model
to achieve the highest possible performances.

The chosen dataset used for training and testing the model is broad and exten-
sively described in Dataset subsection.

The features used by the MLP were carefully constructed to obtain the highest
possible degree of information concerning the gene fusion samples. Subsequently,
the high number of features was reduced through the Random Forest feature selec-
tion technique.

4.2.1 Feature selection
All the available features come from multiple sources, and they are related to

different characteristics of the gene fusions.
The first five features are obtained from gene fusion structure, and Cancermine

[104], a literature-mined database of drivers, oncogenes, and tumor suppressors in
cancer. Two features correspond to the retained percentage of 5p’ and 3p’ genes
in the gene fusion, given the breakpoint coordinates. One additional feature con-
trols for the strands of 5p’ and 3p’ genes, and it is equal to 1 if the two strands
are concordant (the two genes transcribe in the same direction), 0 otherwise. The
remaining two features correspond to the nature of each gene according to Can-
cermine [104]: ’Oncogenic’, ’Driver’, ’Tumor suppressor’ or ’Other’ when no other
option was available.

Other studies [189] have already covered the impact of TF [50] and GOs [219] in
the gene fusion classification, which proved to be extremely useful for this purpose.
Therefore, TF and GOs have been included in the ChimerDriver model. Specifically,
a set of 181 TFs was extracted from the ENCODE database [50] and only those
related to the gene in the 5p’ position were considered.

Additionally, since each gene can be involved in many different GOs, all of
them have been selected. This approach resulted in an extensive amount of GOs
to consider, that is, 5125 features.

Besides, my main contribution consists of including miRNAs post-transcriptional
regulation in the model. Specifically, all miRNAs predicted to target all 5p’ and
3p’ genes have been considered. This information was extracted from TargetScan,
a popular state-of-the-art database that predicts biological targets of miRNAs by
searching for the presence of sites that match the seed region of each miRNA[5],
reporting for each miRNA all possible target genes. A set of 333 miRNAs was ob-
tained by investigating the probability of both genes belonging to the gene fusion.
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In case of ambiguity, only the highest probability was retained.
The final feature set was considerably lengthy. Thus, I performed feature selec-

tion to reduce the 5644 total features to a more reasonable number. The chosen
feature selection method was the random forest in which the number of features was
lowered according to a threshold. The higher the threshold, the lower the number
of retained features. For this study, the already stated threshold was kept in the
range 0.0001-0.0005.

4.2.2 Dataset
I retrieved 1765 samples for the training set, 1059 labeled as oncogenic gene

fusions and the remaining 706 as not oncogenic. On the other hand, the testing set
consisted of 2622 positive samples and 2624 negative samples. A set of 156 gene
fusions (122 positives and 34 negative samples) was used in combination with 200
randomly selected samples of the training set as a validation set during the neural
network training phase. The processing performed by ChimerDriver to build the
features for these samples caused a modest amount of gene fusions to be discarded.
It was due to unrealistic values obtained from the calculation of the percentage
of the retained gene due to occasional errors in retrieving the correct breakpoint
value or strand of a limited amount of genes. However, the majority of the samples
adopted in this study are in common with DEEPrior work[146].

Training set

The oncogenic samples of the training set were extracted from COSMIC (Cata-
log of Somatic Mutations in Cancer). This popular database includes information
on gene fusions involved in solid tumors and leukaemias. [70] The chosen 1059
oncogenic gene fusions were already experimentally validated. Moreover, the exact
breakpoint positions were provided for each of them. On the other hand, the 706
not oncogenic gene fusions were reported by Babicenau et al. [19] and detected by
a gene fusion detection tool in non-neoplastic tissues.

Test set

To build the test set, I used the database provided by Gao et al. [79] which is the
result of three fusion detection tools applied on the TCGA database. Among these
samples, the authors kindly provided validated gene fusions upon request. These
samples were the ones for which WGS data were available. From this collection, I
extracted 2622 oncogenic gene fusions for which only the 1,78% of fusion pairs were
in common with the training set. Besides, I incorporated a comparable number
of negative samples to better attest my tool’s performances. The set of 2624 not
oncogenic gene fusions was reported by Babicenau et al. [19]. These gene fusions
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were found in healthy tissues and stored in a different portion of the database with
respect to the one used for the training set.

Model architecture
As previously stated, an MLP was explicitly designed to evaluate the oncogenic

potential of the gene fusions. Four layers characterized the final model. For each
layer, the number of nodes was respectively: 512, 256, 128, 64.

The activation functions were varied to check which configuration would return
the highest performances. Different combinations of the following functions were
used: Sigmoid, Tanh and Relu.

Other parameters that have been varied were the learning rate, the dropout,
and the number of epochs.

• Learning rate: 0.0001, 0.001, 0.01

• Dropout: 0, 0.1, 0.2, 0.3, 0.4

• Number of epochs: 500 - 1000

The final tool can either take advantage of an early stopping module that stops
the training when the accuracy does not improve for 50 consequent epochs or train
for a fixed number of epochs.

As already stated, the tool’s validation set is a combination of 156 gene fusions
and 200 randomly selected samples from to the training set. The goal was to
validate the model on a set that included information coming from a different
source concerning the training set. In this case, the 200 samples used for validation
were not considered in the training phase.

4.3 Results
This section presents an overview of ChimerDriver and of the datasets used in

the training, testing, and validation phases. Additionally, the results obtained with
ChimerDriver and the comparison with the state-of-the-art tools are discussed. In
the end, a case study in which ChimerDriver was applied on a pair of well-known
datasets is presented.

4.3.1 Architecture overview and results on the test set
ChimerDriver is based on a feed-forward multi-layer perceptron (MLP). The

input feature set combines structural properties of 5p’ and 3p’ genes with a com-
prehensive profiling of transcriptional and post-transcriptional regulators (TFs and
miRNAs).
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In details, I considered as input features the retained percentage of genes, the
strand and the relevance in cancer of both 5p’ and 3p’ genes. Additionally, the
oncogenic role of each gene was taken into account. This information was extracted
by Cancermine [104], a database which classifies genes as drivers, oncogenes or
tumor suppressors. This feature contributes to the assessment of the functional
profiling of the gene fusion. TFs and Gene Ontologies (GOs) were also included in
the feature set due to their importance in assessing the oncogenic potential of gene
fusions[189]. Finally, I added miRNAs to consider post-transcriptional regulation,
which influences the translation of gene fusions and therefore their actual oncogenic
activity. Specifically, I considered all miRNAs which target 5p’ and 3p’ genes
according to Targetscan database[5].

Due to the high complexity of the model and extensive amount of features, a
feature selection process has been performed on the input feature set. The model
was trained on 1765 gene fusions, obtained from COSMIC, Catalog of Somatic
Mutations in Cancer [70] and from Babicenau et al. work [19]. Given each gene
fusion’s breakpoint, the aforementioned features are extracted and then fed to the
MLP.

According to the cross-validation results, the best network configuration was
characterized by four layers with respectively 512, 256, 128, 64 nodes. For each
node, the associated activation function was the tanh. The best learning rate
was found to be 0.01, while the best dropout value applied to each layer was 0.2.
Therefore the model was tested on 5246 gene fusions. 2622 oncogenic gene fusions
were retrieved from the work of Gao et al.[79] and the remaining 2624 were gene
fusions found in healthy tissues and reported by Babicenau et al. [19]. I ensured
that these 2624 gene fusions are entirely independent of involved genes from the
training set’s ones. The model returned a 0.81 f1-score and 83% precision when
tested on this set of gene fusions.

4.3.2 miRNA impact on the classification performance
The miRNA features were extracted from TargetScan [5], a popular database

that maps gene-miRNA pairs providing various kinds of information. I mainly
focused on the probability that the miRNA would target the specific gene during
post-transcriptional regulation. This value was extracted for both 5p’ and 3p’
genes and it is intended to represent the involvement of the miRNAs in the gene
fusion processes. In figure 4.1 I highlight the impact of the miRNA features in the
classification by displaying the confusion matrices including and excluding miRNAs
from the evaluation. The impact of miRNAs is particularly evident when looking
at the number of false-positive gene fusions, which is about three times higher when
miRNAs are not taken into consideration. Including miRNAs in the classification
task, the AUC value increases from 0.75 to 0.81, and the precision as well from 68%
to 83%.
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Figure 4.1: Confusion matrices reporting the MLP results including miRNAs (on
the left) and excluding miRNA features (on the right).

4.3.3 Comparison with state of the art
ChimerDriver performances were compared to the ones reported by three related

works: Oncofuse[189], DEEPrior[146], and Pegasus[3]. To compare the results
in the most unbiased way, the experimental conditions of the three tools were
reproduced and ChimerDriver was applied.

Oncofuse

To test the robustness of the proposed method, I extrapolated the training set
and testing set used by Oncofuse [189]. Those samples were used to train and test
my model and then to compare Oncofuse and ChimerDriver performances.

Oncofuse training samples were extracted from TICDB [164], a curated database
that contains gene fusions found in tumor samples, and from a collection of fusion
genes [74], and read-through transcripts [159] found in normal cells named NORM-
RTH. Oncofuse’s authors then built the oncogenic testing set by merging oncogenic
gene fusions from CHIMERDB [121] and NGS, respectively oncogenic fusions pre-
dicted by gene fusion detection tools and fusions discovered and published in NGS
studies about cancer [62, 186, 17, 28]. On the other hand, not oncogenic testing
samples were taken from Refseq [119] and CGC [192], two databases that report
unbroken gene fusions. In particular, the samples that belong to CGC involve
unbroken oncogenic genes.

All the previously listed features were processed and gathered, except for the
two features related to the retained percentage of genes. These features could not
be considered in the evaluation since the provided dataset omitted the breakpoint
information.

ChimerDriver model was tailored to this comparison. I obtained 281 input
features: the strands and the involvement in oncogenic processes of both 5p’ and
3p’ genes, 93 TFs, 155 miRNAs, and 30 GOs. The maximum number of epochs was
set to 50, and the number of nodes per layer was 256, 128, 64, and 32 (the associated
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activation functions were the relu, sigmoid, relu, and sigmoid respectively). The
learning rate was fixed to 0.03, while the dropout value applied to each layer was
0.4.

Figure 4.2 shows the comparison of the classification results obtained by ChimerDriver
and Oncofuse. Precisely, the green bars correspond to the results reported by
Shugay M. et al. [189] for Oncofuse performances. In blue, the results obtained by
ChimerDriver are displayed.

Figure 4.2: The green bars correspond to the results reported by Shugay M. et al.
in their paper. In blue the results obtained by ChimerDriver are displayed.

The results of ChimerDriver, when trained and tested on the samples provided
by Oncofuse, were able to outperform the ones illustrated in the original paper.
Similarly to the research conducted by Shugay et al., the results for each database
are displayed separately. The bar diagram shows the percentage of driver gene
fusions detected by the model.

Indeed, ChimerDriver results reported in 4.2 show high performances for the
training set, outperforming the ones obtained by Oncofuse. 95% of TICDB samples
were correctly classified as driver gene fusions by ChimerDriver as opposed to the
assumed 90% reported by Oncofuse, furthermore 2% of the NORM-RTH samples
were incorrectly classified as driver gene fusions by ChimerDriver as opposed to the
assumed 10% reported by Oncofuse.

ChimerDriver successfully outperformed Oncofuse in the oncogenic gene fusion
databases used as a test set, namely ChimerDB2A, ChimerDB2B, ChimerDB2C,
NGS1 and NGS2. ChimerDriver identified more or a comparable amount of onco-
genic gene fusions in each database with respect to Oncofuse, correctly classifying
about 1/3 of the samples.

ChimerDriver minimized the number of detected driver fusions of unbroken
oncogenic genes, identifying a lower number of driver gene fusions in CGC database,
as additional test set.
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When tested on the not-oncogenic samples in RefSeq database, Chimerdriver
returned a slightly higher number of driver gene fusions.

In general, I may conclude that even without the information on the retained
percentage of genes, ChimerDriver outperformed Oncofuse in the great majority of
cases.

DEEPrior

DEEPrior is a DL-based classifier which performs gene prioritization using pro-
tein sequences obtained from the gene fusion samples. Its architecture is based
on a CNN and an LSTM network. It was trained on a dataset extracted from
COSMIC [70], and Babicenau et al.’s study [19] and tested on part of the onco-
genic gene fusion collection validated by Gao et al. [79]. DEEPrior reconstructs
the protein sequences from gene fusion breakpoint information and assigns to each
gene fusions an oncogenic score defining its oncogenic probability. Gene fusions
are ordered according to the oncogenic score and highly scored fusions are priori-
tized as drivers. In this sense, DEEPrior main aim consists in providing a reliable
classification prediction (oncogenic or not) according to the oncogenic score.

I trained and tested ChimerDriver on DEEPrior training set and test set (Dataset
2 in DEEPrior paper). As a result, ChimerDriver correctly classified 78% of onco-
genic gene fusions from the test set. On the contrary, DEEPrior prioritized as driver
the 32.48% of gene fusions found in the test set and among them, 9.67% were false
positives. Since DEEPrior aims at classifying only highly probable oncogenic fu-
sions, the percentage of prioritized gene fusions is not directly comparable with the
classification performances obtained with ChimerDriver. ChimerDriver provides
a classification result for each gene fusion, while DEEPrior classifies a very small
percentage of gene fusions in the dataset.

I can conclude that ChimerDriver approach exploits different sources of infor-
mation (TFs, GOs, miRNAs) while DEEPrior focuses on identifying the oncogenic
potential of a gene fusion through its protein sequence without considering the
effect of post-transcriptional regulators.

At the same time, ChimerDriver ensures a less computationally intensive ap-
proach in the training phase compared to DEEPrior.

Pegasus

To further assess ChimerDriver classification performances, I took into account
Pegasus [3], a state-of-the-art tool for gene fusion detection and classification pur-
poses. Pegasus exploits a traditional machine learning model for the prediction of
driver gene fusion, namely a gradient tree boosting algorithm.

Also in this case, ChimerDriver was trained and tested on the gene fusion sam-
ples used to develop and validate Pegasus.
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I observed that the training dataset was strongly unbalanced towards the neg-
ative samples, comprising of over 9923 negative samples out of 10162 gene fusions.
In order not to penalize the MLP architecture which is particularly sensible to class
unbalance, I lowered the number of negative gene pairs to 239, namely the number
of positive samples.

ChimerDriver was cross-validated on 10 folds using the aforementioned training
samples. It should be noted that, as a result of balancing the classes, the model
was given a fairly small number of training examples. The maximum f1-score mean
obtained with different values of learning rate and dropout was equal to 0.89 and
corresponded to learning rate and dropout, respectively equal to 0.001 and 0.

Pegasus’s test set accounted for 78 gene fusions, 39 oncogenic and 39 not onco-
genic respectively. According to Pegasus authors, the curated subset of 39 oncogenic
gene fusions were almost entirely correctly classified by Pegasus that reported 0.97
of AUC and 0.95 of AUC for the not oncogenic samples.

ChimerDriver correctly classified 27 out of 39 not oncogenic gene fusions enforc-
ing the notion that the model is able to generalize well even with not oncogenic gene
fusions. On the other hand, the oncogenic test samples represented a more difficult
classification task for ChimerDriver, which detected 17 oncogenic gene fusions. It
should be noted that ChimerDriver model was originally trained and tested on a
wide variety of gene fusions proving its ability to learn and generalize well when
given a fair amount of examples. On the contrary, Pegasus was developed and re-
fined to address gene fusions related to particular tissues like reactive lymph node
tissue (used in the training set), glioblastoma multiforme, and anaplastic large cell
lymphoma which globally involve a reduced number of samples. In my opinion, the
small number of samples in Pegasus training set negatively impacted ChimerDriver
performances, hindering the likelihood of reaching the outcome reported by the
Pegasus authors.

4.3.4 Case study
Finally, to assess ChimerDriver’s performances in a clinical context, I selected

two well-known studies: 6 breast cancer samples [61] and 4 prostate cancer sam-
ples [216] in which 24 gene fusions are reported to be experimentally validated. The
samples are all RNA-seq data. I processed them with STAR-fusion [85] to identify
which gene fusions were found in these samples by a standard and accurate fusion
detection tool. 21 out of the 24 validated gene fusions were actually detected with
STAR-fusion and subsequently processed with ChimerDriver to confirm the ability
in correctly detecting oncogenic gene fusions in a real-world case. Figure 4.3 shows
the results of this assessment. Specifically, the gene fusions marked in gray were
not detected by STAR-fusion hence were not available to ChimerDriver for further
processing.

On the 21 samples, ChimerDriver wrongly classified as not oncogenic the three
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Figure 4.3: The 24 oncogenic gene fusions validated in prostate and breast tumor
samples are reported. STAR-fusion did not detect the three gene fusions marked in
gray hence were not available to ChimerDriver for further processing. ChimerDriver
correctly classified as oncogenic 18 out of the 21 available gene fusions.

oncogenic gene fusions marked in orange. By inspecting the oncogenic role of
5p’ and 3p’ genes, but also the retained percentage in the gene fusion, a possible
explanation for the wrong classification could be hypothesized. Concerning the
ACACA-STAC2 gene fusion, no information on the involvement of any of the two
genes was provided to the algorithm. So, although most of the portion of both
genes was retained after the gene fusion event, ChimerDriver was probably unsure
about their role in oncogenic processes. As for the GLB1-CMTM7 fusion, the al-
gorithm was aware that the latter gene is involved in tumor suppression, on the
other hand the retained percentage of CMTM7 was less than 45%. This proba-
bly led to the conclusion that there was not enough gene left in the gene fusion
to cause issues. Similarly, in the CPNE1-PI3 fusion the percentage of retained
genes (respectively 25% and 40%) was probably too low to label the gene fusion as
oncogenic even if the genes were associated to the roles oncogenic and driver re-
spectively. Finally, ChimerDriver correctly classified the 18 remaining gene fusions
as oncogenic. Hence, ChimerDriver correctly classified 18 out of 21 oncogenic gene
fusions, demonstrating that the specifically designed neural network is proficient in
learning and generalizing from a consistent number of gene fusion samples. More-
over, the information gathered from the different sources and provided to the tool
as features proved to be particularly effective in discerning between oncogenic and
not-oncogenic fusions even in a realistic circumnstance.

4.4 Discussion
Identifying oncogenic gene fusions is of crucial importance in cancer detec-

tion and prognosis. To date, state-of-the-art tools exploit transcriptional and
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GOs information, without considering the post-transcriptional regulators in pre-
dicting the oncogenic potential of a gene fusion. Here, I presented ChimerDriver,
a novel tool to accomplish the aforementioned task exploiting transcriptional and
post-transcriptional regulators. In details, ChimerDriver focuses on miRNAs post-
transcriptional effect as a key feature to performe the prediction.

ChimerDriver is based on an ad-hoc designed neural network embedding miR-
NAs, transcription factors, gene ontologies, and gene-specific information to predict
gene fusions’ oncogenic potential. The model is stable and exhibits excellent clas-
sification performance (f1-score = 0.98).

I tested my classifier against three state-of-the-art tools: Oncofuse, DEEPrior,
and Pegasus.

With respect to Oncofuse, I introduced post-transcriprional regulation to per-
form the classification and, as a result, ChimerDriver outperformed Oncofuse in
the great majority of tested cases.

In particular, ChimerDriver performed better than Oncofuse on the test set, cor-
rectly classifying as oncogenic about 1/3 of the oncogenic gene fusions. ChimerDriver
identified a comparable or higher amount of oncogenic gene fusions outperforming
Oncofuse results in each of the positive test cases. ChimerDriver minimized the
number of detected driver fusions in ’unbroken oncogenic genes’ (negative test-
ing samples) extracted from CGC compared to Oncofuse. This result confirmed
the ability of ChimerDriver in generalizing and taking advantage of the given set
of features to make a correct prediction.ChimerDriver returned a slightly higher
number of oncogenic gene fusions than Oncofuse when tested on RefSeq database
of ’unbroken not-oncogenic genes’ . I recall that the breakpoint information was
not available in Oncofuse datasets. Therefore, to perform an unbiased comparison
with Oncofuse, the breakpoint information was neglected by ChimerDriver model.
Consequently, the percentage of driver gene fusions detected by ChimerDriver on
RefSeq was slightly higher than expected probably because the tool could no profit
from the breakpoint information.

ChimerDriver also outperformed DEEPrior in terms of the number of classi-
fied gene fusion. In particular, ChimerDriver correctly identified 78% of oncogenic
gene fusions in the dataset used to test DEEPrior, which prioritized as oncogenic
only 32.48% of the samples. It should be noted that the goals of DEEPrior and
ChimerDriver are slightly different. The first performs a prioritization of gene fu-
sions, returning those with an oncogenic probability greater than a threshold (typ-
ically 80%). ChimerDriver instead performs an immediate classification of each
gene fusion by integrating transcriptional and post-transcriptional features in the
assessement. The final outcome of ChimerDriver is remarkable in terms of number
of oncogenic samples that were correctly classified while also enlightening because
it stresses the extent in which miRNAs are involved in the oncogenic processes of

46



4.4 – Discussion

gene fusions.

Moreover, the performances of ChimerDriver were compared to the ones re-
ported by Pegasus authors. According to their research, the latter was able to cor-
rectly classify almost all of the test samples. After training and testing ChimerDriver
on the gene fusions provided by the authors, it was observed that the number of
detected oncogenic samples was lower than the results reported by Pegasus. As
already stated, the number of training samples was lowered in order to balance
the oncogenic and not oncogenic classes. However, the limited number of samples
processed by ChimerDriver in the training phase has probably inhibited the neural
network from learning efficiently. In addition, Pegasus’s authors specify that the
negative validation samples included at least one oncogene or tumor suppressor
domain. I remind that, in order to make a prediction, ChimerDriver relies also
the role of each gene in oncogenic processes (e.g. driver, oncogene or tumor sup-
pressor), making the classification task particularly arduous to tackle. Nevertheless,
ChimerDriver correctly classified a most of the not oncogenic gene fusions enforcing
the notion that the model is able to generalize well in this situation.

In this work, I focused on the integration of information coming from different
databases to improve the current state-of-the-art research on classifying oncogenic
gene fusions. Additionally, a neural network was specifically designed for this task.
However, the main contribution of the present work is the introduction of miR-
NAs in the classification model. In fact, despite miRNAs role in determining the
oncogenic potential of gene fusions has been demonstrated, they had never been
considerated in such a task. In the present work, I showed that they could signif-
icantly improve the model performance. In particular, they reduced by two-thirds
the number of false positives and improved the AUC and the precision of the model.
I can conclude that miRNAs, being involved in the regulation of gene fusion-related
protein, are a promising indicator of the oncogenic potential of gene fusions.

The main limitation of the proposed method is that some gene fusions are
misclassified. To better investigate ChimerDriver classification with respect to the
Cancermine [104] role, I reported in Figure 4.4 the distribution of the Cancermine
roles (e.g. tumor suppressor, driver, oncogene, other) for 5p’ gene (Figure 4.4a)
and 3p’ gene (Figure 4.4b). In addition, test set samples are divided in each role
according to the classification results (false positives (FP), false negatives (FN),
true positives (TP) and true negatives (TN)). TP samples are characterized both
for 5p’ ad 3p’ genes by a prevalence of suppressors and oncogenes. On the contrary,
TN mostly refer to the ’other’ CancerMine role. As a consequence, FP samples
could consist of oncogenes (in particular for 3p’ gene) and FN samples are hardly
ever related to tumor suppressors, drivers, or oncogenes. In this sense, FP and FN
samples reflects ChimerDriver behaviour on TP and TN respectively. In a clinical
context, FN misclassified samples are unlikely to be tested for in lab validation, since
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most of them involve genes with not a specific oncogene/tumor suppressor role. FP
samples instead would have been considered for an experimental validation, that
in the the end would exclude them from oncogenic fusions. However, laboratories
would still benefit from a selection of putative oncogenic gene fusions.

(a) (b)

Figure 4.4: Here I report the distribution of the false positives (FP), false negatives
(FN), true positives (TP) and true negatives (TN) regarding Cancermine informa-
tion for both 5p’ and 3p’ genes(respectively Figure 4.4a) and 4.4b)). Noticeably,
FPs are never tumor suppressors, drivers or oncogenes.

4.5 Conclusions
Gene fusions are a common mutation that is nowadays known to be responsible

for about 1/5 of human cancers. It is of the uttermost importance to correctly
identify gene fusions to improve cancer detection and prognosis. Considering that
the state-of-the-art tools exploit transcriptional and gene information neglecting
post-transcriptional regulations, I combined this knowledge and established the
value of miRNAs in achieving superior classification performances.

To conclude, I presented ChimerDriver, a novel and stable DL architecture
based on a Multi-Layer Perceptron (MLP) which, for the first time, combines gene-
level features with TFs and miRNAs targetting the gene fusion to perform its
classification and prioritization.

ChimerDriver was trained and tested on a consistent number of gene fusions.
The final results highlight the impact of miRNAs in the evaluation of the oncogenic
potential of gene fusions. I can infer that the inclusion of miRNAs represents a
valuable advantage in the identification of oncogenic gene fusions.

ChimerDriver can become a valuable tool for research laboratories to predict
the oncogenic potential of gene fusions. Indeed, the expensive validations could
be targeted cost-effectively with this easy-to-use tool; additionally, it may speed
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up identifying novel and potentially oncogenic gene fusions, allowing for better
diagnosis, classification, and treatment of cancer patients.
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Multi-Omics
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Chapter 5

Automated Prediction of
Connectivity between Mouse
Brain Regions

5.1 Methodological contribution
This chapter focuses on the integrative analysis of mouse brains’ gene expres-

sion and connectivity data exploiting machine learning techniques. Many studies
have been performed considering the functional connection of two or more brain
areas (which areas are activated in response to a specific stimulus) while analyzing
physical connections (i.e., axon bundles) starting from gene expression data is still
an open problem.

In this context, the main methodological contribution consisted of identifying
a strategy to integrate axon connectivity data with the point values of gene ex-
pression within the mouse brain. Therefore, the developed method identifies if two
brain regions are connected by axons analyzing the gene expression data alone.

From a computational point of view, this section’s main challenges consist of
mapping genomic information in the three-dimensional space together with spatial
images representing the intensity of a viral tracer to infer which axons connect spe-
cific regions of the brain to the central nervous system. As discussed in the previous
chapters regarding the genomic sequence, also, in this case, the direct connection
between gene expression and the physical connectivity of two or more regions in
the brain is not known. Indeed, this connection still needs to be further investigated.

In this work, the neuronal connection data (obtained by viral tracers) of mouse
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brains were processed to identify brain regions physically connected and then eval-
uated with these areas’ gene expression data. A multi-layer perceptron was ap-
plied to perform the classification task between connected and unconnected re-
gions providing gene expression data as input. Furthermore, a second model was
created to infer the degree of connection between distinct brain regions. The im-
plemented models successfully executed the binary classification task (connected
regions against unconnected regions) and distinguished the intensity of the connec-
tion in low, medium, and high.

5.2 Introduction
The brain is a complex organ comprised of more than 100 billion neurons

grouped into many functional regions that communicate through electrochemical
signals.
When referring to the brain, physical connectivity refers to the pattern of anatom-
ical links constituted by the neurons’ axons and connected to the dendrites of
postsynaptic neurons [114]. The physical connections that link numerous groups
of neurons constitute a network that, on a larger scale, constitutes the so-called
anatomical brain connectivity.

It is shown in the literature that functional properties of neurons and neuronal
systems depend on neural connectivity patterns [23, 25]. This idea has long at-
tracted the attention of neuro-anatomists, who dedicated their studies to the new
field of science dealing with the assembly, mapping, and analysis of the connectome
[193].

The anatomical connectivity in the brain is constituted by fibers that propagate
from the neuronal bodies. These, in turn, contain the nucleus and all the nuclear
components that contribute to cellular differentiation and morphogenesis. Accord-
ingly, the main factors influencing connectivity patterns have to be searched at the
cellular scale, meaning that cellular activity influences physical brain connectivity
patterns at the anatomical level. Hence, the analysis of the cellular activity in the
form of neuronal gene expression profiles may represent an effective way of under-
standing the physical connectome more in depth [116, 190].

Gene expression is how information from a gene is used to synthesize a func-
tional gene product such as a protein. Gene regulation gives the cell control over
structure and function and is the basis for cellular differentiation, morphogenesis,
and adaptability of any organism.

Gene expression profiling is the measurement of the activity (i.e., expression)
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of genes. Sequence-based techniques such as RNA-Seq provide information on the
sequences of genes, from which their expression level can be derived. Nonetheless,
they extract information through a disruptive process of the tissue under investiga-
tion, providing gene expression levels averaged over the whole cellular population
without any spatial information. On the other hand, Single-cell RNA-seq (scRNA-
seq) [135], relying on the separation of single cells from the tissue by enzymatic or
mechanical dissociation, provide cell-specific information but even in this case with
lack of information on spatial location and the micro-environment [117].
Instead, using in-situ techniques, it is possible to detect the spatial distribution of
gene expression levels in the tissue. Fluorescence in situ hybridization (FISH or
ISH) uses RNA or DNA complementary hybridization probes labeled to fluorescent
molecules. Once the probes have hybridized the fixed tissue target, the transcript
can be localized and quantified through fluorescence microscopy images. Thanks
to this process, FISH allows us to maintain both spatial and morphological infor-
mation. On top of that, it generally generates better-quality images than other in
situ techniques [135], which makes it the ideal source of information for connectome
studies.

Due to the crucial role of anatomical brain connectivity, scientists generated
and made available some brain atlases, modeling the axonal connections between
different brain regions [124, 34]. Upon these connectivity models, the scientific
community conducted several studies to detect the existence of anatomical neural
connections or spatial correlations between the brain tissue’s intrinsic properties.
Studies on the mouse brain based on visualization and clustering showed that gene
expression and connectivity information have significant spatial auto-correlation
levels, which needs to be accounted for through integrative analysis [67]. Based on
these studies’ results, brain regions with similar expression profiles tend to have sim-
ilar connectivity profiles. Likewise, brain regions that are anatomically connected
have gene expression patterns that are remarkably similar [67]. Some studies have
also identified genes responsible for the relationship between cellular activity and
connectivity, as they are directly involved in neuronal development and axon guid-
ance [72]. With more in-depth investigations of the specific relationship between
gene expression and connectivity in the mouse brain, gene expression is predictive
of the connectivity pattern when the connectivity signals are in a discrete form.
Also, most of the predictive power resides in the expression data from a relatively
small number of genes, suggesting that very few genes are responsible for generating
brain connectivity in each specific brain structure [107].

All these findings stem from the analysis of data from the mouse brain. Nonethe-
less, many mouse brain genes find a direct correspondence in the human brain, and
regionally enriched genes were demonstrated to be conserved when shifting from
one species to another [194]. Based on this evidence, the combination of human

55



Automated Prediction of Connectivity between Mouse Brain Regions

and mouse single-cell transcriptomic profiles, through the application of feature se-
lection and linear modeling, was used to provide better insights into human brain
connectivity. The combined data were then used to demonstrate that gene expres-
sion is a better indicator of cellular localization than the location of cell nuclei,
especially for cells with large and irregularly shaped cell bodies such as the neurons
[110].

Upon these considerations, gene expression data can be effectively used to pre-
dict brain connectivity automatically. While most of the works in the literature
focus on either analyzing the most relevant genetic signatures of neuronal connec-
tivity [77, 184], or on investigating the direct relationships between gene expres-
sion and brain functionality [178, 13, 78], lesser attention is devoted to predicting
anatomical connectivity at a cellular resolution, directly using the transcriptomic
profile as the input baseline. The most representative works in this regard use
model-based techniques (e.g., sparse linear models [107, 66]), obtaining a good pre-
diction accuracy level (between 80% and 90%) at the well-known cost of difficult
parametrization and non-obvious selection of the variables.

In this thesis, I push forward the path of predicting the degree of anatomical
connection of brain areas by performing integrative analysis of gene expression pro-
files and connectivity data. To do so, I interpret the prediction as a classification
problem, where the input feature vectors describing gene expression profiles of brain
region pairs are automatically grouped into multiple classes based on their level of
physical connectivity. To solve this classification problem, I exploit neural net-
works, which, compared to traditional model-based techniques, have the advantage
of being non-parametric and do not require a priori definition of the mathematical
relationships among variables. As such, our tool is developed on a case-study of
mouse brain data, but it can be ideally applied to any other application of interest.

The developed method implements all the stages essential to solving the con-
nectivity classification problem in a fully automated way, including data collection,
storage, pre-processing, and the in-depth analysis of the prediction outcome, aim-
ing at the investigation of anatomical connections between the brain macro-regions.

Based on the nature and complexity of the analysis to perform, I chose to im-
plement a Multilayer Perceptron (MLP), a class of feed-forward artificial neural
networks that is often used both for data classification and regression [109].
This network is fed with feature vectors representing the gene expression profiles
of two different brain regions. Each feature vector element corresponds to a gene,
specifically to that gene’s expression level in a low-dimensional spot (i.e., a voxel)
of a region. The available spatial connectivity data are aggregated to obtain clas-
sification labels for the feature vectors, obtaining a unique value representing the
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connection between two regions.

Then, I investigated the network’s outcome on two different tasks: a multi-
class classification task (with three classes corresponding to unconnected, weakly
connected, and strongly connected areas, respectively) and a more straightforward
binary classification task (unconnected and connected). The analysis was performed
on an extensive dataset from the cortex and the cerebellum (58 regions in total).
These specific regions were selected because the corresponding annotated datasets
ensure a comprehensive representation of connectivity degrees.

5.3 Overview on the proposed method
The proposed methodology consists of an MLP classifier, where the input is a

vector (so-called Source-Target vector), representing the gene expression levels of
two regions of the mouse brain, respectively called Source and Target. The clas-
sifier’s output is a unique categorical label, representing the overall connectivity
degree of all the voxels corresponding to the input Source-Target pair.

To generate the Source-Target vectors and corresponding connectivity labels,
in this study, I used gene expression and connectivity values available from the
Allen Mouse Brain Atlas (AMBA) [133] and the Mouse Brain Connectivity Atlas
(MBCA) [124] resources, combined with the connections’ intensities reported by
the Brain Architecture Management System (BAMS) database [34].

An extensive dataset was generated, choosing as representative brain areas the
cortex and the cerebellum. These areas include significant and independent func-
tional regions. Hence, from the analysis of such areas, I expect to find i) dense
connectivity between internal sub-regions of the same area and ii) low connectivity
degree between the two areas as a whole. The overall procedure is represented in
Figure 5.1. I considered 58 different regions (8 from the cerebellum and 50 from
the cortex) and randomly selected 21 voxels for each possible Source-Target combi-
nation. By doing so, I obtained a total number of 54,495 Source-Target vectors (M
value in Figure 5.1), with corresponding connectivity labels. Each of two parts of
a Source-Target vector is the expression level of a set of genes within a particular
voxel of the mouse brain, where the first and second half of the vector contain values
belonging to the Source or the Target regions, respectively. More details about the
databases, as well as on the specific methodology applied to generate Source-Target
vectors and labels, will be provided in Sections 5.4 and 5.5, respectively.
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Figure 5.1: Scheme of the analysis pipeline. For each Source-Target pair (N, in to-
tal), I randomly select M voxel combinations. Per each combination, I generate two
3,318 gene expression vectors (Source and Target, respectively) with information
taken from AMBA. The concatenation of the two vectors represents the Source-
Target vector given as input to our MLP model. A categorical label describing the
Source-Target connection degree is obtained by setting empirical thresholds on the
connectivity values provided by MBCA.

5.4 Material
In the following, I describe in more detail the datasets from which the Source-

Target vectors given as input to the MLP model and corresponding connectivity
labels shown in Figure 5.1 were obtained.

5.4.1 Allen Mouse Brain Atlas
The Allen Mouse Brain Atlas (AMBA) represents an integration between tran-

scriptomic and neuroanatomic mouse brain data. It is a complete high-resolution
atlas of gene expression throughout the adult mouse brain composed of different
sections and tools that enable easy data navigation and analysis. Gene expression
patterns are available as images obtained by in-situ hybridization (ISH) technique
[200] applied on full brains of 56-day old C57BL/6J male mice. For each gene,
expression levels are provided as grid data, in the form of a 3D matrix represent-
ing the mouse brain’s three-dimensional structure. Each element of the matrix is
a voxel at 200 µm resolution, storing a gene expression level. In the study, this
information is used as input to the classification model.

The Allen Mouse Brain Connectivity Atlas (MBCA) consists of connectivity
values in the form of axonal projections labeled by rAAV, a viral tracer injected in
a specific site and then detected through two-photon tomography. When the viral
tracer is injected in a brain region, referred to as Source region, it produces axonal
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projections in several Target regions (see Figure 5.2 for a schematic representation).
These projection data are provided for more than 200 mouse brain regions in the
coronal section. In the Allen MBCA database, more than one injection site can be
found for a single brain region. Section 5.5.1 will describe how multiple injection
sites were handled in the proposed methodology.

Figure 5.2: Schematic diagram of Source-Targets projections. A Source is a brain
region where the viral tracer is injected (inj, in the figure). As a result of the
injection, multiple axonal projections are produced in so-called Target regions.

Like gene expression, connectivity information is available for each injection site
in the form of grid data. Each element of the corresponding 3D matrix is a voxel (in
this case, provided at 100 µm resolution) whose value represents the connectivity
degree in that specific 3D position. In our study, the connectivity data is used to
obtain a classification label for each couple of gene expression profiles from two
different brain regions.

Corresponding gene expression and connectivity data (respectively from AMBA
and MBCA) of each brain region can be coupled at different spatial resolutions,
using structural annotation files. The cerebral regions, grouped into hierarchi-
cal layers, consist of several voxels of gene expression and connectivity values, both
referred to as a reference space created by the Allen team for mouse brain modeling.

5.4.2 BAMS
As an additional source of information for our study, I used neural circuitry

data provided by the Brain Architecture Management System database (BAMS) to
select the most significant brain areas for the investigation [34].
This database contains about 45,000 connection reports between different gray mat-
ter regions of the rat, in the form of interactive matrices showing each brain region
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pair’s strength of the connection.
Several studies demonstrate that mouse and rat brains share the same anatomical
features, only at a different scale [67, 166]. Hence, the connection reports can select
the most promising brain areas even in the mouse.

5.5 Method
Besides the MLP prediction model, I implemented a complete automated pipeline

to handle dataset collection and the organization and processing of the gene ex-
pression and connectivity data into Source-Target vectors with corresponding class
labels, to be given as input to the MLP. The main steps of this pipeline, imple-
mented exploiting the Knime framework [31] and the SeqAn library [177], are the
following:

1. download of grid data from the available data sources;

2. processing of the raw grid data to integrate the gene expression and the
connectivity information;

3. generation of a full and coherent dataset of Source-Target gene expression vec-
tors and corresponding connectivity labels, ready to be cropped into training,
validation, and test sets for the MLP.

5.5.1 Download of Grid Data
The Allen Brain Atlas provides grid-data at different resolutions, consisting of

3D summaries of both the gene expression and connectivity data, re-sampled to
a Common Coordinate Space of the 3D reference brain model [7]. The database
provides a structural grid data annotation system at each resolution scale to enable
spatially coherent processing of these two sets of data. This annotation allows link-
ing mouse brain voxels to anatomical structures in the Common Coordinate Space.

Grid data is downloadable through an API service by queries. The queries
were implemented through a web application (the RMA BUILDER) that is freely
accessible on the Allen Brain Atlas’s API section.

Gene expression

As mentioned in Section 5.4, the Allen Institute Mouse Gene expression data
consist of whole-brain in-situ hybridization data obtained from brains of 56-day
old C57BL/6J male mice [7]. The grid-data of the detected expression levels are
provided for coronal and sagittal sections. Even though the sagittal section counts
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more than 20,000 genes, connectivity data are available only for the coronal section.
Thus, in this study, I focused on the 3,318 gene expression grid-data corresponding
to this specific section.

The main phases of the elaboration of gene expression data are represented
in Figure 5.4. Each gene’s expression profile throughout the mouse’s brain is as-
sociated with a SectionDataSet, a specific data object of the Allen Brain Atlas
framework where all the experiment’s information is stored. I first build a query
to retrieve the SectionDataSet unique identifiers (IDs) for the gene expression ex-
periments in the form of an XML document. Then, to retrieve the corresponding
gene-expression grid-data, I build a query with the RMA BUILDER and obtain in
return an energy.raw file for each of the 3,318 gene expression experiments. This
file contains a vector of 159,326 elements corresponding to the 3D voxels of the
mouse brain model (67×41×58 voxels at 200 µm resolution) that can be recon-
structed leveraging the reference information provided by the database, as shown
in Figure 5.3 [4].

At the end of the download procedure from the Allen Brain website, [7], I ob-
tain a 3,318×159,326 matrix of gene expression levels, with rows corresponding to
genes and columns to 3D voxels. This matrix is stored into a single .csv file, as
represented in Figure 5.4.

Allen Connectivity

As outlined in Section 5.4, The Mouse Brain Connectivity Atlas provided con-
nectivity information in the form of axonal projections labeled by rAAV viral tracer
and detected through two-photon tomography for more than 200 mouse brain re-
gions in the coronal section. Injection sites refer to the spots where the viral tracer
is injected. The region where a specific injection site is placed and the region
where the injection produced axonal projections are referred to as Source and Tar-
get regions, respectively. Injections involving a single region are called primary.
Nonetheless, because of the small size of the mouse brain, a single injection can
involve more than one region. These are called secondary injections.

In this work, we focused only on the primary injection sites and considered
connectivity data at 100 µm resolution, which is the closest to the 200 µm gene
expression resolution among all the available ones (10, 25, 50, 100 µm, respectively).

The main phases of the elaboration of connectivity data are represented in
Figure 5.5. Again, each primary injection site corresponds to a SectionDataSet.
Hence, I designed a query to retrieve the SectionDataSet IDs of injection experi-
ments through the API service, which returns an XML document with 2333 primary

61



Automated Prediction of Connectivity between Mouse Brain Regions

(a) 3D Volume

(b) Packing criteria of the volumetric data into a 1-dimensional array.

Figure 5.3: The common reference space is in PIR orientation where x axis =
Anterior-to-Posterior, y axis = Superior-to-Inferior and z axis = Left-to-Right

injection IDS. Such IDs are exploited to build a query with the RMA BUILDER
and retrieve the connectivity grid data in return.

By doing so, I obtain 2,333.Nrrd files, each representing the axonal projections
of a specific primary injection site. This approach provides a correspondence be-
tween the 2,333 primary injections and their corresponding target regions.

For connectivity data, the 3-D volumetric grid-level information at 100 µm are
provided in the form of a 13×80×114 numerical array, as represented in Figure 5.3.a.

Maintaining the spatial reference provided by the Allen Brain Atlas, each 3D
matrix was unpacked into a vector of 1,203,840 elements. This way, I obtained
2,333 vectors in total that were stored into a single .csv file along with the source
region indication (see the last phase of Figure 5.5).
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request

. . 
. . 

. .

3318

Gene 
SectionDataSet

raw

Gene expression
Grid-data

read

Gene expression
array

Gene expression  
in the gene matrix

159.326x3318

csv

Vox
ID

Region
ID

78792
4

78792
4

78792
4

0 345 0,07 0.001 0
1 1290 14,8 0 0.689
2 1456 0.67 5.9 10,9
… …. ….. ….. …

10896 90 12.3 23.5 0
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Figure 5.4: Elaboration of gene expression data: main phases. (1) Retrieve a
SectionDataset for each of the 3318 genes; (2) download grid expression data in
the form of an energy.raw file; (3) reconstruct a 3,318×159,326 matrix of gene
expression levels, with rows corresponding to genes and columns to 3D voxels; (4)
store data into a .csv file.

Structural annotation file

An annotation volume is a 3D raster image that partitions the reference space
into structures, whose number of voxels depends on the size of the structure and
the model’s specific resolution. Each voxel is assigned to a specific brain structure
employing a region ID [7].

Brain structures in the Allen reference spaces are arranged in trees, with leaf
nodes representing very fine anatomical partitioning and nodes closer to the root
corresponding to gross partitioning. The annotation file reports region IDs together
with the details of the finest anatomical partitioning.
Hence, gene expression and connectivity data can be mapped to several common
reference spaces. To link each data voxel to the corresponding membership brain
region, the Allen Brain Atlas provides a structural annotation file at different res-
olutions, where the i − th annotation element allows to map the i − th voxel in the
data array to its brain structure.

Like the gene expression data, the annotation is provided at 200 µm resolution,
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Figure 5.5: Elaboration of connectivity data: main phases. (1) Retrieve a Sec-
tionDataset for each of the 2333 primary injections; (2) projection grid-data in the
form of an .Nrrd file; (3) reconstruct a projection volume, unpacked into a vector
of 1,203,840 elements; (4) store data into a .csv file.

in the form of a vector of 159,326 elements.
Likewise, the connectivity annotation (CA) is provided at 100 µm resolution, re-
shaped in the form of a vector of 1,203,840 elements. Different from the other
data, the primary injection structure annotation is not provided at the finest an-
notation level. I implemented a procedure to trace both the annotations back to
the same resolution level in the annotation tree. To do so, I exploited a list of
dictionaries provided by the Allen Brain Atlas, documenting brain structures and
their hierarchical relationships in the form of a structure graph.

Brain Architecture Management System (BAMS)

As mentioned in Section 5.4, additional neural circuitry data collected from
BAMS were used as a reference to decide which brain structures are most signif-
icant for our analysis. To date, BAMS includes about 45,000 connection reports
between different gray matter regions, leveraging information on connections that
were demonstrated by previous studies.

The reports can be freely downloaded from the site of BAMS [208] in the form
of an interactive matrix (see Figure 5.6), where each element (i, j) defines the exis-
tence and the intensity (encoded by a value in a < 1−9 > range) of the connection
between two specific brain regions i and j, identified by the same universal acronyms
used by the Allen Brain Atlas. Unknown connections are assigned a 0 value.
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Figure 5.6: Interactive matrix from BAMS. Each element of the matrix repre-
sents the connection between two regions, reported in rows and columns. Different
colours encode different connection intensities, with white corresponding to un-
known connections.

5.5.2 Generation Source-Target vectors and corresponding
connectivity labels

The last step of the dataset generation consists of assigning a unique connec-
tivity label to the Source-Target gene expression vectors.

All the connectivity values reported for a specific injection ID (i.e., experiment)
and a specific Source-Target combination are first aggregated based on their median
value. This solution is preferred to others (e.g., mean value) because the median
value is inherently robust to the presence of outliers and noise. Nonetheless, as like
this technology, a specific region may be a site of injection of multiple experiments.
Hence, for each experiment, the connectivity of the axonal projections produced in
the corresponding target regions will be stored in a specific SectionDataSet. Then,
if a specific source has targeted the same region in different experiments, that
specific combination of Source-Target regions will correspond to more than one
median value. To tackle this issue, I implemented the second level of aggregation
and obtained the final connectivity value as the maximum of all the multiple me-
dian values. This choice stems from the empirical observation that the connectivity
network detected in each experiment (and hence, the corresponding connectivity
value) is highly dependent on the specific position of the injection. Hence, using the
maximum as the most representative value has a two-fold advantage: i) it filters out
small connectivity values possibly due to peripheral injection sites, and ii) allows to
select the experiments with the best spatial conditions as the most representative
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of a specific source-target combination.

Based on the empirical connectivity thresholds defined in Section 2, this con-
nectivity value is transformed into a categorical label representing the strength of
the connection: either (0,1,2) for multi-class classification, or (0,1) for binary clas-
sification.

To allow further processing and easy access of the data, in this solution, the full
and coherent dataset of Source-Target gene expression vectors and the correspond-
ing connectivity labels were stored into four tables of an SQLite database shown in
Figure 5.7:

1. Table voxID2Annotation carries the spatial information and contains the voxel
ID and corresponding brain structure annotation.

2. Table voxID2GenExpr was obtained by filtering out the voxels with gene ex-
pression level value equal to 0. It is made of columns reporting gene expression
value, voxel ID, and gene ID, respectively.

3. Table injection2regionID was obtained by grouping all the voxels by Source
and injection ID. Hence, it reports the Source region ID for each injection.

4. Table injection2target was obtained by grouping each voxels’ connection val-
ues by the Target ID. More specifically, voxels belonging to the same Target
region were aggregated by the median of the values associated with each of
these voxels. The final table is then composed of three columns: injection ID,
the median of the values obtained for a specific Target ID, and its annotation
ID, respectively.

This database solution allows the quick generation of custom datasets to be
given as input to prediction models, avoiding re-processing the raw-data.

A custom dataset leveraging such a database can be built as follows. First,
N Source-Target regions are selected, based on the specific analysis to perform.
Gene expression and connectivity data of the selected pairs undergo the following
pipeline, as represented in Figure 5.1:

1. for each Source-Target pair, M voxels belonging to the source region and M
voxels to the target regions are selected on the expression gene annotation.

2. for each selected voxel, a vector composed of 3,318 elements is generated,
where each element corresponds to the expression level of a specific gene.
Hence, M vectors representing the gene expression profile of the Source and
M vectors representing the gene expression profile of the Target are obtained.
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Figure 5.7: SQLite database tables generated to store all the gene expression and
connectivity data.

3. A dataset is created by selecting P combinations among all possible Source-
Target voxel combinations. More specifically, the gene expression vector cor-
responding to the Source voxel is concatenated with the gene expression vector
corresponding to the Target voxel. Hence, the obtained dataset will be made
of P vectors.

4. In the end, a unique categorical label representing the Source-Target connec-
tivity is assigned to each combination.

These steps are repeated for all N number of Source-Target regions.
The obtained dataset undergoes a normalization process by scaling input vec-

tors in a (0,1) range. They can then be divided into training, validation, and test
sets fed into the predictive model.

5.5.3 MLP Predictive Model
As a predictive model, I designed a Multilayer Perceptron. In the following, I

describe in detail the MLP architectures and corresponding design parameters that
provided the best performance values for the multi-class and binary classification
tasks discussed in Section 5.6.

This MLP architecture, represented in Figure 5.8, is composed of a hidden layer
with 64 nodes and two hidden layers with 32 nodes each. The first hidden layer
applies a ’sigmoid’ activation function on the entries. In the following hidden layers,
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nodes apply the ’ReLu’ (rectified linear unit) activation function on their inputs.
Three Dropout layers are placed after the hidden layers to avoid the overfitting phe-
nomenon, occurring when the MLP specializes too much on the training set, losing
its ability to generalize on the validation set. When the error on the validation
set starts to increase, indicating possible overfitting, the dropout layers "drop out"
random neurons, temporally removing their contribution to downstream the acti-
vation of neurons. It has been widely demonstrated to improve the generalization
capabilities of the network [92]. Notably, two options are given for the activation
function of the output layer: softmax and sigmoid, respectively for multi-class and
binary classifications.

Figure 5.8: MLP architecture for classification tasks. For each layer, I report
number of nodes, activation function and dropout value. When values are different
for binary and multi-class tasks, we report them both, separated by a slash symbol.

5.6 Results
In this section I will focus on the results of the methodology. More specifically,

I will assess the proposed solution in verifying whether gene expression profiles
contain enough information to predict the intensity of anatomical connections be-
tween brain regions. On top of that, I will provide a quantitative evaluation of a
classification system’s performance leveraging gene expression profiles as input and
connectivity as the classification label.

5.6.1 Classification performance
The classification consists of a multi-class and a binary classification task, re-

spectively, where the Source-Target vectors are grouped into a corresponding num-
ber of categories representing their connectivity degree, leveraging the MLP archi-
tectures described in Section 5.5.3.
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In this section, I will focus on the results of the methodology. More specifically,
I will assess the proposed solution in verifying whether gene expression profiles
contain enough information to predict the intensity of anatomical connections be-
tween brain regions. On top of that, I will provide a quantitative evaluation of a
classification system’s performance leveraging gene expression profiles as input and
connectivity as the classification label.

Multi-class classification task

To generate a dataset for the multi-class task, all the available Source-Target
vectors were divided into three categories based on empirical thresholds on the
connectivity values provided by the MBCA database:

1. Class label "0" (unconnected): 5,000 Source-Target vectors with connec-
tivity equal to 0

2. Class label "1" (weekly connected): 5,000 Source-Target vectors with
connectivity values in the range [0.006, 0.1)

3. Class label "2" (strongly connected): 4,583 Source-Target vectors with
connectivity > 0.1

Therefore, the whole dataset was composed of 14,583×6,636 vectors with their
corresponding class labels.
This dataset was randomly split into three disjoint subsets used for training, valida-
tion, and testing purposes. The three sets contained 10,499 vectors, 1,167 vectors,
and 2,917 vectors, respectively.

The MLP architecture implemented to solve the multi-class classification prob-
lem will be described in detail in Section 5.5.3. The training phase consisted of
200 epochs in total, during which the dataset was propagated in batches of size
6. At the end of each propagation, the error between predicted values and de-
sired outputs was quantified in terms of the categorical cross-entropy loss function.
Working towards the minimization of the error, Nesterov-accelerated Adaptive Mo-
ment Estimation (Nadam [57]) optimizer updated parameters with a learning rate
of 0.002 for each training example. The training procedure’s full parameter set is
summarized in Table 5.1 to ensure the experiment’s full reproducibility.

MLP performance was computed in terms of classification errors (i.e., the frac-
tion of input instances that were correctly assigned to their specific class category).
After 200 learning epochs, MLP training accuracy reached an accuracy value on
the training set of 0.914, ensuring the model’s convergence. Nonetheless, the clas-
sification accuracy of the trained MLP decreased to 0.764 when computed on the
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Table 5.1: Training parameters for multi-class classification with the Nadam opti-
mizer.

epochs learning rate
(Lr) decay beta1 beta9 Loss

function batch size

200 0.002 0.004 0.9 0.999 categorical cross entropy 6

test dataset containing completely unseen data, suggesting an over-fitting problem.

To have a more in-depth view of the classification outcome, in Table 5.2 I show
a confusion matrix, with rows and columns representing respectively items in the
real and the predicted class. Hence, the main diagonal of the matrix reports the
percentage of instances correctly classified, separately for the three different class
categories, while the other elements of the matrix show the misclassified items and
their respective distributions.

Table 5.2: Confusion matrix for multi-class classification

Predicted class
unconnected weakly connected strongly connected

unconnected 75% 23% 2%
weakly connected 13% 81% 6%Real class

strongly connected 2% 31% 67%

As it can be gathered from the confusion matrix, the classifier had heteroge-
neous classification outcomes, with the best classification accuracy (81%) for the
instances with weak connection levels and the lowest accuracy (67%) for the ones
with a strong connection. Unconnected instances were detected with an adequate
level of accuracy (75%).

In general, very few misclassifications happened involving two class categories
at the extremes: only 2% of the unconnected instances and the strong samples were
wrongly assigned to the strongly connected class and the unconnected class, respec-
tively. The most frequent misclassifications (31%) consisted of strongly connected
samples classified in the weakly connected class. This phenomenon is probably due
to the slight overfitting of the MLP towards this class, suggesting that the training
data were not representative enough for a three-class categorization.

In Table 5.3, I report the whole set of quality metrics (i.e., recall, precision,
F1 score, and accuracy [171]) obtained for each class, which confirm the analysis
provided above.

The following consideration can be drawn observing the overall outcome of the
classification. While the MLP classifier provides only partial discrimination of
the connectivity degree, it has an acceptable accuracy in differentiating between
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Table 5.3: Quality metrics for multi-class classification

Quality metrics
Recall Precision F1_score Accuracy

unconnected 75% 86% 81%
weakly connected 81% 66% 73%Class
strongly connected 67% 83% 74%

76%

zones with connection (i.e., weakly or strongly connected class) and zones without
connection (i.e., unconnected class).

Binary classification task

In light of the results obtained in the multi-class predictions, to boost the clas-
sifier capabilities in discriminating between connected and unconnected areas, I
designed a binary MLP. To perform the binary classification task, this time, I di-
vided the available dataset into two sub-sets, as follows:

1. Class label "0" (unconnected): 20,000 Source-Target vectors with connec-
tivity values equal to 0. This sub-set is composed of gene expression vectors
obtained, selecting only unconnected Source-Target region pairs.

2. Class label "1" (connected): 17,136 Source-Target vectors with connec-
tivity values > 0.006.

Therefore, the overall dataset contained 37,136×6,636 vectors, with their cor-
responding binary labels. The whole dataset was divided into training, validation,
and test set, containing 26,737 vectors, 2,516 vectors, and 7,428 vectors.

The training phase consisted of 100 epochs, during which the dataset was prop-
agated in batches of size 32. Again, at the end of each propagation, the error
between predicted values and desired outputs was calculated by the binary cross
entropy loss function. The learning procedure leveraged the Nadam optimizer, up-
dating parameters with a learning rate of 0.002 for each training example. The
comprehensive set of the training parameters are shown in Table 5.4.

Table 5.4: Training parameters for binary classification with the Nadam optimizer

epochs learning rate
(Lr) decay beta1 beta9 Loss

function batch size

100 0.002 0.004 0.9 0.999 binary cross entropy 32

As shown in the training curves of Figure 5.9, after the 100 epochs of training,
the MLP reached 0.89 training accuracy with 0.247 loss. On the other hand, the
validation accuracy turned out to be not much lower than the training accuracy
(around 0.85), suggesting a correct convergence without overfitting.

71



Automated Prediction of Connectivity between Mouse Brain Regions

Figure 5.9: Training performance curves (loss on the left, accuracy on the right) of
the binary classifier.

To assess the performance of the trained MLP on both the classes, besides
accuracy, I quantified precision, recall, and F1 score on the test set (see values
reported in Table 5.5).

Table 5.5: Quality metrics for binary classification

Quality metrics
Precision Recall F1_score Accuracy

unconnected 94% 75% 84%
connected 77% 95% 85% 85%

As can be gathered from the table, the overall classification outcome was posi-
tive (85% accuracy), with a reasonable balance between precision and recall in both
the class categories. The unconnected class has a better precision value (94%), and
vice-versa the connected class has higher recall (95%), but both classes have simi-
larly high values of F1 scores (84% and 85%, respectively).

The classification system’s good performance is also confirmed by the ROC
curve’s shape (in Figure 5.10), with the area under the curve equal to 0.943.

This last experiment demonstrates that it is possible to distinguish between con-
nected and unconnected regions reliably. The fine discrimination between different
intensities of physical connections is also possible, but with more uncertainty, most
probably due to the training data’s technological noise.

5.7 Conclusions
As demonstrated by our results, our gene expression data-driven approach al-

lows distinguishing between connected and unconnected brain areas at a cellular
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Figure 5.10: Receiver operating characteristic (ROC) curve on the test set for
binary classification.

resolution scale, with no need for extensive parametrization or a priori knowledge
of the process.

This approach opens the way to more in-depth investigations on brain connec-
tome and brain functionality’s genetic footprint. The possible directions for this
study are mainly two. The first is aimed at extending the available knowledge on
brain connectivity. Indeed, structural information on neural circuitry (e.g., BAMS)
is to this date characterized by a large number of unknown connections and missing
data. In the long term, this work’s second direction will investigate the connectiv-
ity prediction model’s transferability from mice to other mammalians (especially
humans).

In this regard, the main research question is how and to which extent the pre-
diction model trained on the Allen Mouse Brain Atlas can be applied to infer the
anatomical connectivity of more complex brains, possibly exploiting not only gene
expression levels from in-situ hybridization but also RNA-Seq data. The model
could be used either as-is or after partial fine-tuning of the network on new train-
ing data.
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Chapter 6

miRNA-target predictions in a
multi-omics dataset

6.1 Methodological contribution
This chapter describes a statistical method to reveal determining microRNA

targets in multi-omic datasets.

The main computational problem regards the selection of relevant patterns in
a multi-omics dataset. Indeed, many feature selection algorithms have been pro-
posed. However, given the high dimensionality of the data, it is not an easy task.

Here, two multi-omics datasets are used: breast cancer and medulloblastoma
datasets. Both the datasets are composed of miRNA, mRNA, and proteomics data
related to the same patients. The main computational contribution to the field
consists of designing and implementing an algorithm based on the statistical condi-
tional probability to infer the impact of miRNA post-transcriptional regulation on
target genes exploiting the protein expression values. The developed methodology
allowed a more in-depth understanding and identification of target genes. Also, it
proved to be significantly enriched in three well-known databases (miRDB, Tar-
getScan, and miRTarBase), leading to relevant biological insights.

6.2 Introduction
The cost reduction of next-generation sequencing techniques has recently facil-

itated generating a significant amount of genomic data. Mass spectrometry has
also advanced considerably, allowing in recent years an increase in the proteomics
data[162].
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Therefore, it is a well-established practice to analyze each omic individually.
Besides, several multi-omics data integration techniques have been proposed. In
this context, the most common objectives consist of identifying patient clusters or
clusters of relevant characteristics such as genes, miRNA, CpG probes, and many
others [211, 16, 181, 199, 38, 20].

However, technologies for quantifying proteins in a given sample mainly consist
of mass spectrometry or microarrays. Although proteomics provides complemen-
tary information to the transcriptome, the quantification of proteins is affected
by a method’s inexistence to amplify the biological material (such as PCR for
the transcriptome). These technological limitations have meant that proteomics
has developed more recently than transcriptomics. Consequently, the availability
of multi-omics data in which proteomics is present in a massive way is still lim-
ited[210, 87, 207].

In the basic formulation of molecular biology’s central dogma, DNA is first tran-
scribed into mRNA and then subsequently translated into proteins[51]. As stated
by Vogel et al., transcriptional regulation is only half the story[209, 170]. In fact,
given a late amount of mRNA, the corresponding protein amount is not necessarily
proportional. Indeed, various post-transcriptional processes intervene in the regu-
latory chain, modifying the expression of a protein[18].

Among the many post-transcriptional processes, miRNAs are distinguished,
proven to be involved in various regulated processes, and directly responsible for
some pathologies[202, 165]. The mechanism of regulation of miRNAs occurs through
the silencing of genes. This process occurs either through the degradation of the
mRNA or by preventing the mRNA from being translated. In the first case, the
miRNA is complementary to a part of the target gene and directly degrades the
mRNA molecule. In the second case, however, the mRNA is not degraded, but the
translation is inhibited, limiting the amount of protein produced.

In the literature, there are several tools to identify miRNA targets. Such tools
are often based on quantifying the correlation between mRNA and miRNA expres-
sion[39, 150]. Moreover, they often focus attention on the effect of a single miRNA
rather than on their combinatorial function in which a single miRNA can have
multiple targets. Indeed, many miRNAs are organized in genomic clusters, and
co-regulated miRNAs can jointly target different molecular pathways.

Among the many post-transcriptional processes, here is a new method for iden-
tifying miRNA targets by exploiting the proteome’s information. This method is
based on the computation of partial correlation as a measure of relevance of the
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miRNA targets considering the transcriptome and proteomics’ expression values
simultaneously. In this way, it is possible to overcome the previous models’ limita-
tions, which traditionally did not consider the proteome.

Below, the Methods section illustrates the proposed approach’s details, while
the Results and Discussion sections summarize the main findings obtained.

6.3 Methods
In this section, the central part of the method will be discussed. In particular,

the method devised for identifying target genes will be presented, as well as the
three databases used to verify their enrichment and biological relevance.

This method exploits the statistical measure of partial correlation, which mea-
sures the correlation between two variables (x and y) by checking the effects of a
third variable, z.

The partial correlation between x and y by controlling for z is computed ac-
cording to the following formula:

ryx.z = ryx − (ryz)(rxz)√︂
1 − r2

yz

√︂
1 − r2

xz

where rab represents the bi-variate correlation between a and b variables.
In this way, it is possible to measure the correlation between mRNA and the

related protein by attributing the discrepancy between mRNA and protein to the
miRNA’s inhibitory action on that particular gene. In detail, for each coding gene
whose protein expression value was known, the partial correlation between the gene
(variable x) and the relative protein (variable y) was calculated for each miRNA
(variable z).

Concerning the partial correlation calculation, both the intensity of the correla-
tion (estimate) and the associated p-value is obtained for each possible gene-miRNA
pair (defined as target-miRNA). These measures can be inserted for convenience in
a table like in Figures 6.1, 6.2.

It is necessary to identify among the many possible pairs those significantly
relevant in our dataset. For this purpose, three conditions are imposed:

1. significant p-value of partial correlation (e.g., 10-7)
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Figure 6.1: Partial correlation
estimate value eij computed for
gene i and miRNA j. These val-
ues are easily stored in a table.

Figure 6.2: Partial correlation p-
value pij computed for each gene
i and miRNA j. These values are
easily stored in a table.

2. high estimate (e.g., 0.6). This condition is not independent of the previous
one. Indeed, selecting pairs with a significant p-value leads to the identifica-
tion of high estimate values. The "high estimate" condition serves to restrict
the potential targets further.

3. Estimate of partial correlation greater than or equal to the bivariate correla-
tion between mRNA and protein:

ryx.z > ryx

This constraint ensures that, by unbundling miRNA’s inhibitory effect, the
correlation between mRNA and protein is improved.

Therefore, the proposed model considers potential targets the genes and miR-
NAs that satisfy all three conditions described above.

Once the potential targets have been obtained, it is essential to verify that they
are enriched in one or more of the following databases:

• miRDB: an online database for predicting functional microRNA targets based
on recently updated transcriptome-wide target prediction data[43, 213, 215].
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• TargetScan: it predicts biological targets of miRNAs by searching for the
presence of conserved 8mer, 7mer, and 6mer sites that match the seed region
of each miRNA[75, 136, 83].

• miRTarBase: it is a curated database of MicroRNA-Target Interactions[93,
45, 46, 94].

In addition, to evaluate the significance of such enrichment, the Fisher test, and
the hypergeometric test are performed.

Finally, to make this information accessible to the user, a heatmap is created,
showing the miRNAs on the abscissa and the potential target genes on the ordinate.
Both the miRNAs and the genes on both axes are sorted according to their genomic
position. In this way, the user can visually check for the presence of multiple
miRNAs targeting multiple genes by considering potential horizontal or vertical
bands in the heatmap.

6.4 Results
In this section, the results obtained on a dataset of 77 breast cancer patients

are presented. Subsequently, by way of validation, the results are reported on a
cohort of 26 medulloblastoma samples.

6.4.1 Results on breast cancer dataset
The proposed method was first applied to a dataset of 77 breast cancer patients.

For each of these patients, the expression value of mRNA, miRNA, and proteomics
are available [157]. The partial correlation value and the relative p-value were then
calculated for each gene corresponding to its protein, considering all possible miR-
NAs as z control variables.

Figure 6.3 and 6.4 show the histograms containing the distribution of the esti-
mates and p-values for all the possible miRNA target pairs.

Subsequently, those satisfying the three criteria previously described in the
method were selected among all the miRNA target pairs. The thresholds’ cho-
sen value corresponds to 10-7, 0.6, and 0 respectively for the first, second, and
third conditions. In this way, 155738 miRNA target pairs were selected by the
method over more than 3 millions pairs.

Furthermore, to verify which miRNA target pairs were already known or pre-
dicted in the literature, the enrichment of these pairs was verified in miRDB, Tar-
getScan, and miRTarBase. Besides, to evaluate the significance of enrichment, the
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Figure 6.3: Breast cancer. Histogram
of partial correlation estimates.
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Figure 6.4: Breast cancer. Histogram
of partial correlation p-values in log-
arithmic scale (-log10).

Selected area
(three condistions)

Negative control
(estimate around 0)

miRDB 6342/155738 1067/31728
hypergeometric

p-value 2.6245e-05 0.9999996

TargetScan 1708/155738 270/31728
hypergeometric

p-value 0.529972 0.9999948

miRTarBase 2835/155738 435/31728
hypergeometric

p-value 0.1342582 1

Table 6.1: Breast cancer. Overlap and statistic measures to test the enrichment
in the three databases: miRDB, TargetScan, mirTarBase.

Fisher test, and the hypergeometric test were conducted. Table 6.1 shows the val-
ues of each intersection and the respective p-values.

Besides, to assess the method’s relevance, a control zone was selected, cor-
responding to the region in which the correlation estimate value of the partial
correlation is not significant and is around zero ([-0.2, 0.2]). Also, in this area,
enrichment in miRDB, TargetScan, and miRTarBase was evaluated. The hyperge-
ometric test was calculated. The results are reported in the last column in Table 6.1.

Finally, the Figure 6.8 represents the enrichment heatmap. For each target-
miRNA pair, the color is gray if that pair is considered significant by the proposed
method, while it is in red if it is enriched in at least one of the three databases.
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6.4.2 Validation on medulloblastoma dataset
Another dataset containing 26 medulloblastoma samples was used to validate

the proposed methodology [71]. On it, the method described above was applied.
Figures 6.5 and 6.6 shows the distribution of estimates and p-values. Based on the
histogram distribution, selecting the relevant miRNA target pairs is made using
10-7, 0.8, and 0.01 for the first, second, and third conditions, respectively. As re-
gards the control zone, the region [-0.2, 0.2] was chosen.
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Figure 6.5: Medulloblastoma cancer.
Histogram of partial correlation esti-
mates.
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Figure 6.6: Medulloblastoma cancer.
Histogram of partial correlation p-
values in logarithmic scale (-log10).

All possible miRNA target pairs were verified for enrichment in miRDB, Tar-
getScan, and miRTarBase, and the hypergeometric test was calculated for both the
region of interest and the control region. All values are shown in Table 6.2.

Selected area
(three condistions)

Negative control
(estimate around 0)

miRDB 1553/36952 11530/405757
hypergeometric

p-value 2.333484e-12 1

TargetScan 242/36952 1412/405757
hypergeometric

p-value 1.037228e-09 1

miRTarBase 539/36952 5095/405757
hypergeometric

p-value 0.002015418 0.9776983

Table 6.2: Medulloblastoma cancer. Overlap and statistic measures to test the
enrichment in the three databases: miRDB, TargetScan, mirTarBase.

Finally, the heatmap representing the selected and validated miRNA target
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pairs is shown in Figure 6.9.

6.5 Discussion
In this section, the main results obtained will be discussed.

The first consideration concerns the distribution of partial correlation estimates
for both the breast cancer dataset and medulloblastoma. In both cases, this mea-
sure is predominantly positive. This fact reflects the existing evidence indicating a
positive correlation between target and miRNA.

The two histograms have a different kurtosis, hence the need to insert specific
significance thresholds for the method depending on the dataset. However, the min-
imal variation of the thresholds does not produce different effects in terms of results.

As anticipated in the results section, it is advisable to verify the significance of
enriching the targets found in the various databases (miRDB, TargetScan, miRTar-
Base). Given a situation like the one in Figure 6.7, for each database, it has been
obtained:

• the number of target-miRNA pairs selected in the dataset,

• the number of target-miRNA pairs present in that database out of the total
number of target-miRNA pairs selected by the method and

• the total number of target-miRNA pairs present in that database.

This information allows calculating the significance of the overlap through the
Fisher and the hypergeometric test. As can be seen from Tables 6.1 and 6.2 in
the results, most of the overlaps are significant. In all circumstances, the num-
ber of target-miRNA pairs found in miRDB is always higher than those found in
TargetScan or miRTarBase. This circumstance can be attributed to the fact that
miRDB contains a certain number of targets predicted through an algorithm based
on artificial intelligence, and it contains a large number of predictions.

The hypergeometric test was calculated to investigate this enrichment better,
i.e., the probability that an overlap equal to or greater than that tested is significant.

It is possible to note how the hypergeometric test’s significance is better in the
selected intersection than in control one. Indeed, although the intersection with
the database (e.g., miRDB) in the control region at the turn of 0 is significant, the
event of finding a larger overlap between the control region and the database is not
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Figure 6.7: Visual representation of the sets. The blue set contains all possible
gene-miRNA couples available in the dataset, and the red area contains the gene-
miRNA couples selected by the method as significant. The green set represents
all the gene-miRNA couples available in a database (e.g., miRDB). Consequently,
gene-miRNA couples selected as relevant by the method can be present or not in
the database. The hypergeometric test computes the significance of this overlap.

statistically significant.

Finally, this method is beneficial for identifying potential new targets in a
pathology. Being a purely statistical method and not based on previous infor-
mation allows for exploratory analyses to identify new targets. Besides, the user
can quickly inspect the result of the investigation through the final plot. Target
genes and miRNAs are sorted based on their genomic coordinates, highlighting
miRNA families that co-regulate the same targets.
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6.6 Conclusions
Identifying miRNA targets is a challenging problem as it is useful to identify

new targets and evaluate them experimentally for research and disease treatment
purposes. In the literature, various approaches have been proposed by exploiting
the information contained in the transcriptome.

In this work, a new approach is proposed and is based on the statistical metric
of partial correlation. This model, therefore, described the phenomenon of transla-
tion prevention by miRNAs towards target genes.

The model was presented on a breast cancer dataset and further validated on
an additional cohort of 26 medulloblastoma patients. The proposed model effec-
tively identifies miRNA targets, which are significantly enriched in three literature
databases: miRDB, TargetScan, miRTarBase. Besides, the final heatmap allows
you to graphically view the new targets and simultaneously view which of these are
validated.

Therefore, this approach uses the proteome data to successfully identify new
potential targets, bringing new and significant knowledge in this area, which can
also be used for clinical purposes.
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Chapter 7

The challenge of multiomics data
for classification task

7.1 Methodological contribution
Although integrating different data is a strength in the biological field, the com-

putational effort necessary to obtain helpful information starting from genomic data
in an integrated form is considerable. From a computational point of view, each
data has specific dynamics of the values (range values). It is fundamental to under-
stand how to scale the input value to not condition the result based on a single omic.

Moreover, the complexity of integrating multi-omics data derives not only from
the intrinsic dimensionality of each omic but from the modeling of a biological phe-
nomenon that is complex by its nature, whose potential is not yet fully known.
Therefore, it is necessary to clearly understand the aim of the multi-omics integra-
tion to filter out the noise and work with the signal of interest.

From a computational point of view, the information coded at the multi-omic
level is sometimes redundant. The selection from those redundant parts is not al-
ways automatic, on the contrary.

This chapter deals with the classification of multi-omics samples. The litera-
ture’s main approaches integrate all the features available for each sample upstream
of the classifier (early integration approach) or create separate classifiers for each
omic and subsequently define a consensus set rules (late integration approach). In
this context, the main contribution consists of introducing the probability concept
by creating a model based on Bayesian and MLP networks to achieve a consen-
sus guided by the class label and its probability. This approach has shown how a
probabilistic late integration classification is more specific than an early integra-
tion approach. Also, the proposed model can better identify anomalous samples
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concerning the training domain. This tool is potent, as, in addition to recognizing
outliers belonging to the same tissue used in training, it excludes from the classifica-
tion samples that belong to a different tissue or tumor subtype than that with which
the model was trained. This aspect represents a significant advantage in the clinics.

7.2 Background
In recent years, the reduction of costs for the sequencing of biological molecules,

including DNA, RNA, and proteins, has allowed the widespread of vast amounts of
data both in the form of large structured databases and in the form of repositories
specially created for the study of particular pathologies [22, 147, 36, 84, 134].

In this context, various omic data can be taken into account for the study and
analysis of samples, either tumor or healthy data: gene expression (mRNA), mi-
croRNA expression (miRNA), methylation (meth), copy number alterations (CNA),
single nucleotide polymorphism (SNV), proteomics and phosphoproteomics [111,
96].

Two strands are typically available in the multi-omics analysis: first, the sub-
division of samples into classes [211, 16, 181, 199] and second, the identification
of specific pathways and gene patterns in the dataset [38, 20]. This work focuses
exclusively on the first strand; in particular, a method for the classification of can-
cer samples by simultaneously exploiting the information from different omics is
presented. Although the work relies on mRNA, miRNA, and meth, it must be
noticed that the same algorithm can be extended to other omics.

In the multi-omics classification approach, a crucial step is represented by the
algorithm used to integrate the different omics.

To this aim, the intuitive approach consists of training the model on a dataset
obtained by concatenating all the features available for a unique sample. This
procedure is also called early integration, as all the information is merged before
training the model [173].

By contrast, another approach is to create an individual classifier for each omic
and subsequently integrate the classification result. This approach is defined as late
integration. One of the late integration techniques consists in making a consensus
among the various omics, in such a way that the multi-omic class is the most voted
class among the outputs on the individual omics [76, 149]. The main drawback of
the majority voting techniques is the difficulty of assigning the multi-omic class in
case the output on each omic is different, or if more than one class is equally voted
among all the omics.

To date, most of the integration techniques in biology are based either on the
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early or late integration approach, without considering the certainty in the classifi-
cation process. This aspect is particularly relevant since different biological features
may characterize each omic. Then, depending on the specific context, the informa-
tion carried by some omics could be more relevant than others for classification.
Therefore, considering the classification’s certainty allows one to discern each omic’s
actual contribution and provide a more conservative classification.

This work proposes the use of a late integration learning method that for each
omic returns not only the class of a sample but also the class membership proba-
bility, allowing a deeper understanding of the classification certainty.

The proposed probability aware late integration method has been compared to
an early integration method built with the same late integration method architec-
ture. The results suggested that the late integration approach can provide a more
conservative classification discarding uncertain predictions and identifying outlier
samples.

In particular, the use of the class-membership probability allows to filter samples
according to the class probability and consequently postpone for further analyses
those samples on which there is not enough certainty in the classification across
all the omics. This approach is advantageous in creating automatic tools that,
integrating different omic information, may favor the clinical practice by proposing
a classification label when all the omics are confident enough in their classification
and an Unknown label when discrepancies are found across the omics. In this way,
physicians can quickly look at well-defined samples and focus more on the most
exciting and challenging cases where human control is crucial.

7.3 Methods

7.3.1 Biological data
Although the proposed method can be applied to any tissue and pathology, this

work deals with the study of kidney tumor samples freely available in the Genomic
Data Commons (GDC) database [84]. The samples used to train and test the
method belong to three main kidney tumor subtypes: kidney renal papillary cell
carcinoma (KIRP), kidney renal clear cell carcinoma (KIRCH), and kidney chromo-
phobe (KICH). Besides, a reduced number of healthy samples is available for both
KIRP and KICH subtypes (usually, these tissues are healthy areas surrounding a
KIRP or KICH tumor). For KIRP, KIRCH, and KICH subtypes, only samples
available for mRNA, miRNA, and meth data are selected, obtaining a final dataset
of 909 kidney samples.

The mRNA, miRNA, and meth data are tabular data commonly represented
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as matrices, where the value in position (i,j) represents the amount of a specific
biological product or the intensity of a phenomenon (mRNA, miRNA, and meth,
respectively) in a specific sample. The mRNA, miRNA, and meth matrices carry
different biological information. The mRNA expression value is strictly related to
the amount of its protein (higher is the number, higher the protein) which regulates
a specific pathway in the cell life cycle.

The miRNA expression value indicates the amount of a specific miRNA, a small
non-coding RNA molecule that intervenes in the post-transcriptional process, reg-
ulating the amount of final protein produced.

Methylation value refers to the methylation beta value, an estimate of the
methylation level computed as the ratio of intensities between methylated and
unmethylated alleles. The biological effect of methylation consists of the change of
a DNA segment’s activity without changing its sequence (when methylation occurs,
it reduces the DNA transcription, thus reducing the amount of protein).

It must be noticed that many biological molecules act together in order to
regulate the cell activity and that changes in the values of one or more omics can
be correlated to a specific pathology or a tumor subtype.

Data preprocessing
After downloading and selecting samples for which both mRNA, miRNA, and

meth data are available, the following preprocessing is performed:

• mRNA: Raw count data have originally about 60000 mRNA genes and have
been normalized using the Variance Stabilizing Transformation (VST) [98].
Not protein-coding genes have been discarded, reaching about 20000 mRNA
genes, and z-score transformation has been performed.

• miRNA: The miRNA data have about 2000 miRNAs and have been nor-
malized using deseq [144]. Then pseudo-counts have been computed as
log2(count_value+1). In the end, z-score transformation has been performed.

• meth: Among the 27000 features in methylation array data obtained with
Illumina Human Methylation 27 platform (450000 features for the Illumina
Human Methylation 450), the batch effect due to the use of different platforms
has been corrected using the limma package [179]. Since original data are
intrinsically normalized, no further normalization is required.

The 909 kidney samples belong to 5 classes: tumor KIRCH: 509, tumor
KIRP: 288, tumor KICH: 65, healthy KIRCH: 24, healthy KIRP: 23. They
have been further divided into a training set (75% of the samples) and test set
(25% of the samples) such that the latter includes the same proportion of samples
belonging to the different classes. Furthermore, to overcome the problem of a
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too unbalanced dataset, the SMOTE over-sampling technique was used [42]. In
this way, it was possible to perform an augmentation operation on the training set.
In order to test the model on samples that do not belong to the kidney classes,
37 stomach samples and 817 lung samples have been obtained from GDC [84], by
applying the same preprocessing steps described at the beginning of this paragraph.
These datasets are used only as test sets without re-training the kidney model. The
aim is to evaluate the ability of the probabilistic approaches in recognizing unseen
classes.

MLP Model
Since an MLP equipped with a cross-entropy loss function, with associated ei-

ther logistic sigmoid (two-class problem) or softmax (multiclass problem), outputs
the class-membership posterior probabilities of the inputs [33], the MLP classifier
is, therefore, able to return the class label and the associated probability of the
sample belonging to a class.

As shown in Table 7.1, minimal architectures in the implemented neural net-
works were used (e.g., MLP with a single hidden layer with 20 neurons and a single
activation layer). Many hyper-parameters configurations have been considered.
In the end, gradient descent, with backpropagation and the cross-entropy as loss
function, was used. The optimizer was Adam.

Layer Activation function Input Size Output Size
fully connected Relu X 20
fully connected SoftMax 20 y

Table 7.1: Structure of each MLP node used to build the tree-MLP architecture.
X size is the total numer of features for mRNA, meth, and miRNA data. The y
size depends on how many classes must be predicted (2 for root MLP and healthy
leaf MLP, and 3 for tumor leaf MLP).

Late Integration
In this paragraph, the late integration approach is described. Before performing

the integration, the dimensionality of each omic was reduced through the PCA.
Subsequently, a tree-MLP model was applied to each omic.

Once the classification on each omic is performed, the final consensus is built
considering the final probabilities on each omic. Given:

• n: the number of the omics,
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• m: the number of the classes,

• th: threshold on the omics, in order to filter predictions with low probabilities
across all the omics,

• tr: threshold on the classes, in order to select only samples with a not uniform
distribution of the class-membership probabilities across the m classes,

• Pij: the class membership probability for class i and omic j,

• Si = ∑︁n
j=1 Pij: the sum of the probabilities on all the omics for a single class,

• Sa = ∑︁m
i=1 Si: the sum of the probabilities on all the omics and all the samples,

• Sm = Si/n: the mean of the probabilities on all the omics for a single class.

The consensus for a sample is built according to the following formula:

yconsensus =

⎧⎪⎨⎪⎩
Unknown, if max

i
(Sm) < th or max

i
(Si)/Sa < tr

arg max
i

(Si), otherwise

In that way, a sample with a low mean probability across all the omics is labeled
as Unknown. Besides, when a sample receives similar Si values for more than one
class, the model is uncertain in its prediction. Therefore, a tr threshold is set
to select only samples with a non-uniform distribution of the class-membership
probabilities across the m classes.

This final consensus can be applied using any number of omics as long as each
omic represents different views of the same sample. Obviously, the larger the num-
ber of the omics, the more reliable the consensus prediction can be.

7.3.2 Classification assessment: late integration using dif-
ferent classification models

All models have been tested on both the test set, consisting of kidney samples
belonging to the five classes of the training set, and on indipendent datasets like
stomach and lung cancer samples. All models were implemented in Pytorch frame-
work [169]. The Pyro library [32] was used for the BNN to transform the parameters
into random variables and run stochastic variational inference. The methods com-
pared for late integration classification assessment were the deterministic SVM and
RF approach and the probabilistic MLP, tree-MLP, BNN, and Rotational Forest
approach (see later for details). The final consensus for the probabilistic methods
was evaluated according to the metric described in the previous paragraph. Then,
it was the same as for the MLP model.
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Support Vector Machine, Random Forest

In order to have a baseline for the results, a support vector machine (SVM)
and a random forest (RF) classifier have been applied to the training set (with
hyper-parameters optimization) [35, 52]. Unless these models do not output a
class-membership probability, they can provide valuable insights into the data.
Since they cannot estimate the certainty of their prediction, the implementation
of the consensus has been slightly modified. The final consensus for SVM and RF
classifiers is given by the majority voting between the different omics.

tree-MLP model

On the other hand, to compare the MLP architecture with other methods that
return a class-membership probability, a tree-MLP classifier has been built. An
extension of the multi-layer perceptron (MLP) combining several MLPs in a tree
architecture (tree-MLP) is proposed here as a baseline. The aim is to evaluate a
more flexible architecture’s performances than the MLP model, which can be more
easily updated in new subtyping.

As it can be seen in Fig. 7.1, a tree-like architecture was created with MLP mod-
els as nodes and trained separately on subsets of the training set. Each node is made
up of an MLP whose architecture is the same as the one presented above. There is
a root node (trained to recognize healthy from tumor samples) and two leaf nodes
for this specific problem. The former is trained on healthy samples and classifies
them into KIRP and KIRCH healthy tissues. The latter is trained on tumor sam-
ples and classifies them into KIRP, KIRCH, and KICH tumors. Therefore, given
a new sample S, it will be classified by the root MLP as healthy or tumor (yroot)
with a class-membership probability Pr. After selecting the leaf node correspond-
ing to yroot, it returns the subclass label yleaf (tumor_KIRP, tumor_KIRCH, and
tumor_KICH for tumor leaf MLP; healthy_KIRP and healthy_KIRCH for normal
leaf MLP) with its class-membership probability Pleaf . The final class ypred is equal
to yleaf . The algorithm is formalized in Algorithm 1.

Bayesian Neural Network

Also, a Bayesian neural network (BNN) has been tested [24]. The BNN model
has the same structure as the MLP; however, it works differently. Indeed, as the loss
is modified with a Bayesian regularization term, its weights are no longer determin-
istic like an MLP but probabilistic, and each neuron learns to follow probabilistic
distributions. Therefore, it is possible to infer the level of uncertainty of the class-
membership probability estimation of the input, representing how much a sample
belongs to a given class. The model is applied to the sample n times. The median
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Algorithm 1: Algorithm of tree-MLP.
input: X, y ; // whole dataset, where X is {x1..xn} and y is
{tumor or healthy}

input: X’, y’ ; // healthy samples subset, where X’ is {x′
1..x′

n}
and y’ is {healthy_KIRP, healthy_KIRCH}

input: X”, y”; // tumor samples subset, where X” is {x′′
1..x′′

n} and
y’ is {tumor_KIRP, tumor_KIRCH, tumor_KICH}

input: S ; // sample to classify
require: Θroot ; // MLP root model trained on X, y
require: Θleaf1 ; // MLP leaf model trained on X’, y’
require: Θleaf2 ; // MLP leaf model trained on X”, y”
Pr = Θroot(S);
yroot = argmax(Pr);
if yroot==0 then

Θchosen_leaf = Θleaf1;
else

Θchosen_leaf = Θleaf2;
end
Pleaf = Θchosen_leaf (S);
ypred = argmax(Pleaf );

94



7.3 – Methods

Figure 7.1: Proposed tree MLP model: i) each node is trained on three different
subsets of the original dataset. (X, y) aims to distinguish between healthy and
tumor samples, (X’, y’) between subtypes of healthy samples and (X”, y”) between
subtypes of tumor samples; ii) the output of each node consists of the predicted
label ypred and the class-membership probability P.

value among all the output probabilities is selected as the final probability. For in-
stance, if the median value is 0.95, the output is highly stable, and its classification
uncertainty is very low.

Rotation Forest

The Rotation Forests method uses several estimators (in this application n= 10)
to calculate a probability that a sample belongs to a class. Each estimator (Decision
Tree) is trained over a rotation matrix obtained applying a feature extractor (PCA)
over a subset of the original features. In the end, all the estimators participate in
the final probability value computing the average result[182].

7.3.3 Early Integration
In this paragraph, the early integration approach is presented. The first step

consists of normalizing the data separately on each omic through the z-score so
that omics on different scales receive the same importance. Then all the omics are
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grouped into a single dataset by concatenating all the features for a single sample.
A data reduction process on the entire dataset takes place considering the first 21
main components obtained through the PCA method. In the end, for each type
of architecture (MLP, tree-MLP, BNN, Rotation Forest), one model corresponding
to the entire dataset has been trained. For each sample, the output consists of
the class membership probability and the class label considering the entire dataset.
To perform a fair comparison with the late integration approach, all the results
reported in the Discussion Section refer to the MLP architecture.

7.4 Results
This section presents the results related to the proposed late integration method

on kidney, stomach, and lung datasets. Kidney cancer is divided into 5 classes: tu-
mor kidney chromophobe (KICH), tumor kidney renal clear cell carcinoma (KIRC),
tumor kidney renal papillary cell carcinoma (KIRP), healthy KIRC, and healthy
KIRP. For detailed information about the datasets refer to Section 7.3.

7.4.1 Late integration
The proposed approach consists of a probability-aware late integration method,

based on a multi-layer perceptron (MLP) model with Principal Component Anal-
ysis (PCA) dimensionality reduction technique. The integration method exploits
the class membership probability of each sample to provide an integrative class
label. In particular, once the classification on each omic is performed, the final
consensus is built combining the final probabilities on each omic, as detailed later.
Two thresholds (th and tr) defining the sample classification uncertainty were set,
and an uncertain sample was then classified as Unknown. A detailed description of
the late integration approach and the formulation of the final consensus probability
is reported in the Section Methods.
The model has been trained on a kidney dataset made up of 909 samples for which
the information about mRNA, miRNA, and meth was available in the GDC repos-
itory[84]. Among them, 681 samples were used for training the late integration
model and 228 for testing it.

The results related to the late integration MLP model have been obtained set-
ting th = 0.9, and tr = 0.25. Principal Component Analysis (PCA) and Indepen-
dent Component Analysis (ICA) have been tested on the kidney dataset to evaluate
the effect of the dimensionality reduction techniques on the classifier [227, 226, 225,
95, 224]

The confusion matrices in Tables 7.2 and 7.3 report the details of the classifica-
tion results respectively for PCA and ICA dimensionality reduction methods. As it
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Predicted
Healthy Tumor

KIRC KIRP KICH KIRC KIRP Unknown

A
ct

ua
l

healthy KIRC 3 0 0 0 0 2
healthy KIRP 0 5 0 0 0 1
tumor KICH 0 0 15 0 0 2
tumor KIRC 0 0 2 114 1 11
tumor KIRP 0 0 0 0 69 3

Table 7.2: Late Integration using MLP model with PCA dimensionality reduction
technique.

Predicted
Healthy Tumor

KIRC KIRP KICH KIRC KIRP Unknown

A
ct

ua
l

healthy KIRC 4 0 0 0 0 1
healthy KIRP 0 4 0 0 0 2
tumor KICH 0 0 15 0 0 2
tumor KIRC 0 0 2 110 1 15
tumor KIRP 0 0 0 0 65 7

Table 7.3: Late Integration using MLP model with ICA dimensionality reduction
technique.

Precision Recall F1-score Accuracy Support Unknown
PCA 99% 99% 99% 99% 209 8.33%
ICA 99% 99% 99% 99% 201 11.84%

Table 7.4: Comparison between PCA and ICA preprocessed methods on the kidney
test set using MLP model. All the reported metrics are computed on not Unknown
samples. The support metric (i.e. the number of not Unknown samples) is the
value on which the other metrics are computed.

can be seen in Table 7.4, independently from the type of dimensionality reduction
technique, the MLP method reached 99% of accuracy and 99% of weighted aver-
age f1-score (see also results in Table 7.5, 4th row). The metrics were computed
disregarding Unknown samples as they had not been assigned to any class. The
MLP classifier with PCA selected as Unknown the 8.33% of kidney test set sam-
ples compared to the 11.84% of the MLP model equipped with ICA dimensionality
reduction algorithm.

In the end, although the performance metrics precision, recall, F1-score, accu-
racy are comparable both for PCA and ICA MLP models, the final MLP selected

97



The challenge of multiomics data for classification task

model is based on the PCA dimensionality reduction technique since the support
metric is the highest. Consequently, the percentage of Unknown samples is lower.

7.4.2 Classification assessment: late integration using dif-
ferent classification models

Probability-aware and unaware methods have been used to evaluate the pro-
posed model’s performances versus other classification models. We considered Sup-
port Vector Machines (SVM) and Random Forest (RF) classifiers [35, 52] that do
not consider the class-membership probability in the former class. For the latter,
architectures based on the class-membership probability like Bayesian Neural Net-
works (BNN) [24], Rotation Forest [182], and a particular multi-layer perceptron
(named tree-MLP) ad-hoc designed have been explored [212, 140]. Details about
all the methods are reported in Section Methods. The performances on the kidney
test set are reported in Table 7.5.

Precision Recall F1-score Accuracy Support Unknown
RF 97% 98% 97% 96% 228 -

SVM 97% 98% 98% 97% 228 -
tree-MLP 98% 98% 98% 98% 197 13.59%

MLP 99% 99% 99% 99% 209 8.33%
BNN 99% 99% 99% 99% 207 9.21%

Rotation Forest 99% 99% 99% 99% 179 21.49%

Table 7.5: Comparison between all the methods on the kidney test set. All the
reported metrics are computed on not Unknown samples. The support metric
(the number of not Unknown samples) is the value on which the other metrics are
computed.

Regarding SVM and RF, the accuracy and weighted average f1-score have been
obtained with (97%, 97%) and (96%, 96%) respectively. It should be noticed that
the consensus creation for SVM and RF is different from that used in the MLP
model since SVM and RF do not output the class-membership probabilities. There-
fore, for SVM and RF classifiers, the consensus is based on the majority voting on
the three omics without considering class probabilities.

Concerning the results of the four methods based on class-membership proba-
bility, all the metrics in Table 7.5 were computed disregarding Unknown samples.
Indeed, the MLP model reached 99% of accuracy, precision, recall, and weighted
average f1-score. It then classified as Unknown the 8,33% of kidney samples. The
metric for evaluating the final consensus for tree-MLP, BNN, and Rotation Forest
was the same as the MLP model. So, no biases were introduced. The tree-MLP
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model reached 98% of accuracy and weighted average f1-score. The tree-MLP model
classified as Unknown the 13.59% of kidney samples.
The BNN model classified as Unknown the 9.21% of kidney samples, and it achieved
the 99% of accuracy and the 99% of weighted average f1-score. The Rotation Forest
model classified as Unknown the 21.49% of kidney samples. Accuracy and weighted
average f1-score were 99% and 99%, respectively. In conclusion, even if the four
probabilistic models’ performances were comparable, the MLP model labeled as
Unknown the lowest percentage of samples.

7.4.3 Early Integration
In this section, the effect of combining the features from different omics before

training the model is explored. More details about the early integration technique
are reported in Section Methods. The confusion matrix on the kidney test set
is presented in Table 7.6. The early integration method based on the MLP model
predicts a class label for almost all the samples, reaching 95% of accuracy and 96%
of f1-score.

Predicted
Healthy Tumor
KIRC KIRP KICH KIRC KIRP Unknown

A
ct

ua
l

healthy KIRC 5 0 0 0 0 0
healthy KIRP 0 6 0 0 0 0
tumor KICH 0 0 17 0 0 0
tumor KIRC 1 0 5 119 2 1
tumor KIRP 0 0 1 3 68 0

Table 7.6: Early Integration using MLP model

7.4.4 Performances of late and early integration method on
independent datasets

Besides, to test the late and early MLP models on samples from a different
domain, the MLP model has been evaluated on 37 stomach samples and 817 lung
cancer samples. This section explores the model performances on completely inde-
pendent datasets compared to the one on which the models were trained. As it can
be seen in Table 7.7, the late integration approach recognizes a higher percentage
of samples as Unknown (43% and 29.7% for the stomach and lung datasets, respec-
tively). On the contrary, the early integration method labels as Unknown the 2.7%
and 5.3% of stomach and lung samples, respectively.
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Integration
Early Late Total samples

D
at

as
et

stomach 2.7% 43% 37
lung 5.3% 29.7% 817

Table 7.7: Percentage of samples predicted as Unknown in the stomach and lung
datasets.

7.5 Discussion
As reported above, all the classifiers perform generally well, independently from

the kind of integration technique (early or late). In fact, the accuracy and weighted
average f1-score is quite always higher or equal to 96% (see Tables 7.2,7.5,7.6,7.7).

As shown in Table 7.5, the performance on the kidney test set of MLP and BNN
methods is very similar. Therefore, MLP was selected as the proposed model for
late integration since its training time is lower than BNN one, and the percentage
of samples classified as Unknown is slightly lower. SVM and RF classifiers re-
port marginally lower performances than MLP and BNN algorithms. They do not
benefit from class-membership probability evaluation, and so they can not avoid
misclassifying uncertain samples. The tree-MLP algorithm obtains a comparable
accuracy, but it is less precise. The rationale behind the implementation of the
tree-MLP model for comparison is the possibility to retrain one of its nodes sep-
arately. This aspect can be crucial in the biological domain since new molecular
subtypes of the same tumor are continually redefined. In this case, the tree-MLP
model can be updated on the new classes retraining only the involved nodes and
not the entire classifier, avoiding spare time.

After selecting MLP architecture, the multi-omics late integration approach ver-
sus the early integration one has been explored. Regarding the kidney test set, the
early integration approach reached 94% of accuracy and 78% of f1-score compared
to 99% and 98%, respectively, for the late integration.

Although the late integration method is more accurate than the early integration
one, it discards a higher percentage of samples from the classification by labeling
them as Unknown (8.3% of all the samples versus less than 1%). About one-
third of the kidney test set healthy samples are selected as Unknown from the
late integration method, whereas they are all correctly classified with the early
integration approach.

The late integration approach considers the classification of a few KICH samples
not sufficiently confident, thus labeling them as Unknown, while the early integra-
tion labels as Unknown only one sample. As for the KIRC and KIRP tumor classes,
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the main difference between early and late integration is the percentage of Unknown
samples, which is higher for the late integration approach. However, the Unknown
samples for KIRC and KIRP tumor classes identified by the late integration model
are mainly misclassified in the early integration approach. Indeed, for these two
classes, the late integration model’s overall precision is higher compared to the early
integration one.

Also, the late integration method exploits the class membership probabilities
to classify the 43% of stomach and 29.7% of lung samples as Unknown. In con-
trast, early integration fails since it classifies as Unknown only the 2.7% of stomach
and 5.3% of lung samples. This aspect is particularly crucial in avoiding the clas-
sification of samples that belong to different domains than the one used to train
the model. It should be noticed that in the late integration model, a few samples
from different tissues (i.e., stomach or lung) are still classified in one of the kidney
classes. This event could be attributed to the fact that some basal biological pro-
cesses (e.g., the ones related to the cell life cycle) are common between different
tissues and cancers. In the end, since most of the stomach and lung samples are
classified as uncertain samples, this method is suited especially for screening pur-
poses.

However, it must be noticed that the type of integration (early or late) depends
on the purpose of the classification. When the samples’ provenance is known and
belongs to the same domain of the training dataset, an early integration approach
is to be preferred as the number of Unknown samples is generally low. On the
contrary, the late integration approach is more suitable for performing a conserva-
tive classification since it can consider the uncertainty coming from even a single
omic. However, as it classifies a percentage of samples as Unknown, the proposed
late integration method can be used, for instance, for screening purposes and for
detecting the most relevant correlated features.

7.6 Conclusions
In the multi-omics classification context, various implementations of early or

late integration of the features are proposed. To date, it is not known how the
class membership probabilities affect the classification determining a conservative
approach or not. In this work, a late integration method based on an MLP ar-
chitecture is presented. This approach allows for a more precise and conservative
classification compared to the early integration technique. Also, it can consider
the uncertainty signal coming from even a single omic and thus performing a more
certain classification.
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Besides, the late integration approach significantly outperforms the early inte-
gration approach in classifying samples coming from a tissue on which the model
has not been trained. This aspect is particularly relevant in clinical practice since
usually, it is preferable to receive an Unknown label instead of a wrong predic-
tion. Moreover, the MLP architecture is particularly effective in applications with
ever-evolving knowledge, such as genetic complex disease studies, preventing the
classifier from being trained from scratch.
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Chapter 8

The challenge of multi-omics data
for clustering

8.1 Methodological contribution
In biology, it is expected within a specific pathology finding more molecular sub-

types. Patients with the same clinical manifestation can have a different genetic
heritage and response to drugs. Therefore, the treatment of the disease follows
specific protocols and may affect the duration of survival. Although the identifi-
cation of molecular profiles is possible sometimes by yielding a single omic data
(for example, transcription), the joint integration of several omic data allows most
times to carry out integrated and more detailed profiling.

From a computational point of view, integrating different data to get single
clustering information is still a challenging problem regarding clustering in a multi-
omic context.

To provide new molecular profiles and patients’ categorization, class labels could
be helpful. In this chapter, the main contribution consists of creating a model based
on deep learning techniques by implementing an MLP with a specifically designed
function. The loss represents the input samples in a reduced dimensional space by
calculating the intra-cluster and inter-cluster distance at each epoch. This approach
reported performances comparable to those of most referred methods in the liter-
ature, avoiding pre-processing steps for either feature selection or dimensionality
reduction. Moreover, it has no limits on the number of omics to integrate.
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8.2 Introduction
In recent years high throughput techniques have both driven down the costs and

increased the speed in biological data acquisition[162]. Several types of "omic" data
(such as genomics, epigenomic, and proteomic data) can be acquired for a single
sample. Currently, standardized databases are being built as a cooperative effort
to make data from different omics available for research, considerably speeding up
progress in biology and medicine.
The availability and standardization of data are opening avenues to data-driven
research, from statistical analysis to supervised and unsupervised machine learning.

Supervised learning is limited to the fields where it is possible to obtain accu-
rate labels, like in survival studies or the prediction of other hard outcomes[40].
Conversely, unsupervised learning, especially clustering analysis, can lead to dis-
covering new classes that may have biological relevance. For instance, clustering of
RNA expression data can lead to the discovery of cancer subtypes. [80].
While studying single omics can provide valuable insight, for example, for the dis-
covery or classification on cancer [81], single omics each carry partial information,
and thus using multi-omic data integration is of fundamental importance in order
to get more accurate analyses and predictions. However, the integration is not
trivial and represents an open computational problem.

Attempts to solve it are merging all the features from different omics in a sin-
gle feature space or performing a consensus clustering among the different input
datasets through network-based techniques, joint dimensionality reduction tech-
niques, or other types like Bayesian Consensus clustering. However, the current
state of the art does not consistently perform better than single omic analysis on
the best performing omic [174]. The development of new data fusion techniques is
an open research problem. Here the proposed method to address it is an in-depth
learning approach called Neural Graph Learning Fusion (NGL-F) that attempts to
perform the fusion to reflect the topology of the input spaces.

One of this work’s main contributions is to propose an original neural approach
for modeling multi-omic datasets. Compared to the state-of-the-art algorithms,
this approach exploits the manifold topology of the input space. This approach’s
main advantage is extending the algorithm to the case of omics having a different
number of samples; this is not possible using the existing techniques, which are not
tailored to the problem at the end.
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8.3 Background
Given the greater availability of omic data, thanks to high throughput tech-

niques, data-driven biology has dramatically expanded with the help of creating
open databases and the development and improvement of algorithms.

A cooperative effort has led to large scale projects aiming to provide a unified
basis for omic data collection and study. Examples are the Ensembl Genome project
and the Human Proteome Project, providing a growing data set for the main eu-
caryotic genes and an attempt to create a map of the cell’s protein-based molecular
architecture. [97, 132]. Similarly, several public databases combine multiple infor-
mation like omic data, clinical data, and histological images in the medical field,
providing the foundation for data-driven medical research. Among such projects,
the National Cancer Institute Genomic Data Commons (GDC) is a unified data-
sharing platform for multiple cancer genomic projects. It provides standards for
data collection to minimize inconsistencies due to the procedures used. More than
80’000 samples constitute a valuable resource for data-driven medical research [106].
Projects like those mentioned above have opened several avenues for computational
studies, from statistical analysis to machine learning. The typical problems to be
solved are classification and clustering. Clustering problems are of great interest
because they allow new classes from data beyond human capability. For example,
discovering new cancer subtypes plays an essential role in designing effective ther-
apies that account for resistances. Clustering is an unsupervised learning approach
to partitioning sample sets to maximize some similarity score among samples in
the same subset and minimize it between different subset [103]. While different
computational approaches have produced significant results even with single omics,
[81], any omic taken by itself provides an incomplete picture. For example, greater
gene expression values for protein-coding genes correlate with higher protein counts
for the protein they code. However, there are regulatory mechanisms that inhibit
the translation of mRNA into proteins. One such regulatory element is a small
non-coding RNA molecule (miRNA). Thus combining mRNA and miRNA data
should provide a better insight into the cell activity. Combining the information
from multiple omics is crucial to discover patterns and generate insights at a system
level. However, there are significant difficulties to be overcome.
Different approaches are available, focusing on multi-omic clustering. One distinc-
tion is between early integration and late integration algorithms: the former unites
the features from different omics in a single matrix then performs the clustering;
the latter performs clustering separately on the omics then merges the information.
Early integration might reveal problems when the number of samples is much less
than the number of features because it increases the dimensionality of the feature
space significantly. Late integration is a complex theoretical and computational
problem requiring discovering new and better algorithms to perform the fusion of
the clusterings obtained from every omic individually. The difficulties in the use
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of multi-omic data emerge when widely used techniques are benchmarked on real
clinical cases and are shown not to perform consistently better than single omic
data, especially if the comparison is with the best performing omic [174].
One relevant class of techniques is that of network-based techniques. An essential
technique in this class is Similarity Network Fusion (SNF) [211], which starts from
the similarity matrices of the original data and creates a consensus through an it-
erative algorithm. The matrices from individual omics are updated at each step,
accounting for relevant contributions from the others. This approach has outper-
formed single-omic studies in some problems, such as identifying cancer subtypes
and predicting survival rates when combining mRNA expression, DNA methylation,
and miRNA expression. The method is fast and straightforward; however, it has
limitations like requiring to have the same samples across all omics. Although the
proposed NGL-F method has been trained on datasets containing the same samples,
in principle, this is not a strict requirement. Another approach consists of applying
dimensionality reduction techniques on the input space, accounting for the features
of the different omics. This step is achieved through several algorithms to extend to
multiple-input, datasets the techniques applied to a single matrix. This approach is
called "Joint Dimensionality Reduction" (jDR). Finally, another attempt at multi-
omic clustering comes from Bayesian methods, like Bayesian Consensus Clustering
(BCC), which utilize a priori assumptions on the underlying distribution of the
data to create a statistical model [37]. However, the latter has shown a lower ac-
curacy when compared to dimensionality reduction techniques [41] and so is not
considered in our analysis. Both the SNF method and a selection of dimension-
ality reduction techniques, combined with well-estabilished clustering algorithms,
are used as a benchmark to test the algorithm’s effectiveness described in this paper.

Neural networks offer an ample development space for the near future: the abil-
ity to fit complex data distributions make gradient-based methods very suitable
for capturing the underlying topology of input data. If combined with competitive
learning, by properly defining the output layer and the loss function, one obtains
networks, which determine the position of cluster centroids through backpropaga-
tion and create a weighted graph establishing the connection strength among cen-
troids. The strength of this type of method applied to multi-omic data is twofold:
the presence of the weights allows to use of different cutoffs for building adjacency
matrices for the data fusion and the design of a proper global loss function for net-
works processing the data from different omics can allow, through backpropagation,
to take into account data from multiple omics in determining the weights for each
clustering.
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8.3.1 Joint Dimensionality Reduction for Data Fusion
In this section a description of some of the state-of-the-art dimensionality reduc-

tion tools, is provided. The goal of those approaches is to reduce high dimensonal
omics into a low dimensional space. This is done by decomposing the matrices
representing each of the L different omic matrices Mi with i = 1, ..., L, each of
dimensions ni × m (where m is the number of samples and ni the number of fea-
tures) into the product of a ki × m factor matrix (F )and ni × ki omics-specific
weight/projection matrices (Ai).
There are many methods based on different mathematical formulations. Here are
the ones implemented for the comparison:

• Joint and Individual Variation Explained (JIVE) is an extension of PCA to
multi-omic data. PCA seeks to describe the data with a reduced number of
meta-features obtained by linear combination under the condition that the
new meta-features are orthogonal and variance is maximized. JIVE decom-
poses each omic matrix into a joint factor matrix U, an omics-specific factor
matrix A and residual noise E: Xi = UiS + Ai + Ei for i = 1...L. S is a score
matrix explaining variability across multiple types of data. The objective
function ||E||2 is minimized with E = [E1...EL]T [142].

• Regularized Generalized Canonical Correlation Analysis (GCCA) is a gener-
alization of CCA, a method looking for linear combination of two matrices
with the greatest correlation. GCCA determines a factorization of the same
form as JIVE but maximizes the correlation between omic specific factors by
finding projection vectors ui such that the correlation between projected data
is maximized: argmax

i,j
(Corr(Xiui, Xj, uj)) for all i, j = 1...L [201].

8.4 The NGL-F neural network
The Neural Graph Learning for data Fusion (NGL-F) is a gradient-based com-

petitive neural network [21], which uncovers topological sample-to-sample relation-
ships using multiple data sources. Given two or more data types for the same set
of samples (e.g., patients), NGL-F learns the mutual relationships among samples
taking into account such heterogeneous information simultaneously. The output
of NGL-F is a set of graphs. For each data set, NGL-F aims to find a graph
where nodes represent cluster centroids while edges represent cluster topological
properties. The learned topology described by such graphs is used to create the
sample adjacency matrix (S). The information contained in the matrix represents
all datasets, and it can be used to uncover latent patterns among samples. In this
sense, the sample adjacency matrix is used to build a unique graph (sample graph)
in which nodes represents samples, and the edges are derived from S.
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NGL-F is composed of a set of dual multi-layer perceptrons (MLPs) [21], one
for each dataset, equipped with a final competitive layer. Weights are estimated
by backpropagation. The activation functions are ReLU for the hidden layers and
linear for the competitive output units. The input of each network is a data set rep-
resented as a matrix Xz ∈ Rd,n, where n is the number of samples and d the number
of features. Each MLP provides as output a set of vectors wi ∈ Rd representing
cluster centroids for the input data. For each data source taken into consideration,
a multi-layer neural network is instantiated. The architecture of each network can
be customized according to the complexity of its data set (see Fig. 8.1).

Data set 1 NN ...

NN ...

...

Data set N

SAMPLE GRAPH

MULTI-SOURCEDATA CLUSTERING

Figure 8.1: NGL-F architecture: N datasets are fed in input to NGL-F. For each
dataset, a multi-layer perceptron employed and customized according to dataset
complexity. Clustering outputs are at the end combined in order to create a sample
graph built from the adjacency matrix S.

The loss function of NGL-F takes into account, at the same time, the quality
of clusters found by each MLP and their underlying topology. The relationships
among clusters are modeled using an adjacency matrix E, where E(i, j) represents
the number of samples for which wi and wj are the two closest centroids. The
higher E(i, j), the more their respective clusters are related. Metric E represents a
graph on the neural network, where the nodes are the neurons, and the edges are
inter-neuron connections. These links represent the topology of the input data.

The loss function of each MLP is composed of four terms taking into account
inter- and intra-cluster distances, quantization error, and parsimony in representing
the underlying topology:

Lz = maxk dintra(Ck)
maxi,j dinter(Ci, Cj)

+ Q + ||E|| (8.1)
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where dintra(Ck) is the intra-cluster distance, dinter(Ci, Cj) the inter-cluster dis-
tance, and Q the quantization error.

The complete diameter distance is used as an intra-cluster quality index, rep-
resenting the distance between two most remote samples belonging to the same
cluster:

dintra(Ci) = max
x,y∈Ci

d(x, y) (8.2)

The single linkage distance, representing the closest distance between two sam-
ples belonging to two different clusters, is used to model inter-cluster distance:

dinter(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y) (8.3)

The quantization error is computed as the norm of the distances between cluster
centroids (wi) and cluster points (Ci):

Q = ||d(wi, x)||2 ∀x ∈ Ci (8.4)

The NGL-F loss function is the linear combination of MLPs’ losses:

L =
∑︂

z

Lz (8.5)

Once all networks terminate the training procedure, the resulting clusters are
analyzed. For each data set, two samples are considered near each other if they
belong to the same cluster, far from each other, in case they belong to different
clusters. A sample adjacency matrix S is then computed as follow:

S(i, j) =
n∑︂

d=1
neard(i, j), (8.6)

where neard(i, j) is a boolean function calculating the samples’ proximity as pre-
viously explained, and n is the number of data set taken into consideration. This
matrix is the result of the fusion process. Its quality can be analyzed and compared
to other methods in different ways, as shown in the next section.

8.5 Experiments
Data have been downloaded from the NIH Genomic Data Commons [161] and

have been collected in tabular form, resulting in an mRNA and a miRNA tran-
scriptome profiling matrix.
The mRNA matrix consists of raw counts gene expression values [12]. For protein-
coding genes, a higher value represents a more significant amount of protein pro-
duced. This statement is true unless regulatory mechanisms inhibit the translation
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Figure 8.2: NGL-F network architecture as used in the experiments. Between brack-
ets, the dimensionality of input/output data of each layer is reported. Regarding
the matrices, the dimensions are defined as features x samples since the matrix is
transposed. Instead, each dense and output layers is reported the dimensionality of
the associated weight matrix. It should also be noticed the different dimensionality
of the two input sources, miRNA (top) and mRNA (bottom) maintained through
the layers.

of the mRNA.
The miRNA matrix consists of raw counts miRNA values [47]. In this case, a
higher expression value corresponds to a lower presence of the proteins related to
that sequence because miRNA inhibits mRNA translation.

The data were preprocessed as follows:

• For the mRNA matrix, the genes with a zero expression value across all
the samples were deleted; then, the normalization was performed through a
variance stabilizing transformation [99], and only protein-coding genes were
selected. This approach resulted in 17682 genes for which the expression value
is reported.

• For the miRNA matrix, the sequences with zero expression value across the
samples were deleted, and the matrix was normalized through DESeq2 [143].
The final values were obtained as log2(exprV alue + 1) [11].

The patients for which either the mRNA or the miRNA data were missing were
deleted from the matrices. This approach resulted in 1248 miRNA and mRNA
sequences for which the expression value is reported. This deletion is not a strict
requirement for NGL-F, but it is necessary to compare it with SNF on the same
dataset.
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Data samples come from either healthy or cancerous lung tissue belonging to
two types: Lung Adenocarcinoma (LUAD) or Lung Squamous cells Carcinoma
(LUSC). The healthy tissue has been taken from non-tumoral tissue samples, usu-
ally close to the tumor’s position.
Data were acquired from three projects: TCGA-LUAD [203] and CPTAC-3, with
samples from adenocarcinoma patients, and TCGA-LUSC, with samples from squa-
mous cells carcinoma patients. Overall this resulted in six different annotations,
all reported as the project’s name followed by either the "tumoral" or "healthy"
annotation.

All the code for the experiments has been implemented in Python 3, relying
upon open-source libraries [1, 86]. All the experiments have been run on the same
machine: Intel® Core™ i7-8750H 6-Core Processor at 2.20 GHz equipped with 8
GB RAM.

The two datasets previously described have been fed as input to the NGL-F
algorithm. The structure of the networks employed in this paper is reported in
Fig. 8.2. NGL-F is a single neural network that employs a set of dual multi-layer
perceptrons, one for each analyzed omic. The use of dual networks is justified,
given the high-dimensionality of the data sources [8, 21]. The number of features
may vary between different omic, and it is maintained through the layers, as dual
networks are trained on the transposed matrix [21]. In this way, output nodes
preserve input dimensionality and can be used as cluster centroids for each input
matrix. In this implementation, the only requirement is on the number of samples
(1248) that need to be identical among the omics. As mentioned in Sec. 8.4, the
fusion process consists of creating a unique sample adjacency matrix that considers
the information extracted from every omic data. To compare the results of the
proposed method, the experiment was repeated using the SNF algorithm. As ex-
plained in Sec. 8.3.1, NGL-F is also compared with JIVE, tICA, and GCCA joint
dimensionality reduction techniques; however, since they do not yield an adjacency
matrix, only the clustering quality is considered as relevant for measuring their
performance.

8.5.1 Adjacency Matrix Based Comparison
The adjacency matrices built by NLG-F and SNF methods are depicted in Fig.

8.3. Observing the two plots shows that the results are similar to both methods
capable of identifying similarities among data. This approach is a significant result
as it shows the quality of the fusion process carried out by the proposed method
compared to a state-of-the-art algorithm.

It was decided to plot the sample adjacency matrix through the Kamada-Kawai
path-length algorithm [113] to analyze this result better. This algorithm is a force-
directed graph drawing method that can visualize undirected graphs in a two-
dimensional space. The main characteristics of this class of algorithms are that
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Figure 8.3: Adjacency matrix of the sample using (left) SNF and (right) NGL-F
algorithms

edges are displayed so that the number of crossings is the lowest possible. In the
two plots of Fig. 8.4, it is clear that the number of connections found by SNF is
redundant: even isolated samples as the LUAD tumoral ones on the top and left
edges are connected with many other samples. Conversely, NGL-F better identifies
outliers as seen with the tumoral CPTAC3 on the top right corner. However,
the sample adjacency matrix plot produced by SNF, better separates LUAD from
LUSC tumoral data, while in the plot concerning NGL-F the samples belonging to
the two classes are quite confused.

LUAD-tumor
LUSC-tumor
CPTAC3-tumor
MESO-tumor
LUAD-healthy
LUSC-healthy
CPTAC3-healthy

LUAD-tumor
LUSC-tumor
CPTAC3-tumor
MESO-tumor
LUAD-healthy
LUSC-healthy
CPTAC3-healthy

Figure 8.4: Kamada-Kawai path-length graph of the sample adjacency matrix com-
puted by NGL-F (left) and SNF (right) algorithms.
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Finally, the proposed algorithm’s quality is validated through a comparison of
the spectral clustering executed on the two adjacency matrices. Figs. 8.5a and 8.5b
show the clustering quality for NGL-F and SNF, respectively; the harmonic mean
of purity and efficiency of the clusters is computed according to the class of the
samples belonging to each cluster. Both clustering techniques can precisely identify
CPTAC3 healthy samples grouped in the C5 cluster. Also, CPTAC3 tumor samples
are mostly collected in a single cluster, C4; however, SNF’s adjacency matrix seems
to separate these samples better as the corresponding cluster quality is higher than
the previous. Instead, samples belonging to LUAD and LUSC (both tumor and
healthy) seem to be more challenging to identify. For both tissues, tumor samples
are collected together in the C0 and C2 clusters for SNF and C0 and C1 clusters
for NGL-F. At last, the few LUAD and LUSC healthy samples are mostly placed
in the C3 cluster for NGL-F, while they are split among all the clusters in the case
of SNF.

(a) NGL-F (b) SNF

(c) JIVE (d) GCCA

Figure 8.5: Harmonic mean of cluster efficiency and purity computed on the spectral
clusters, computed on the adjacency matrix produced by the different algorithms.

8.5.2 jDR Based Method Comparison
The jDR algorithms accomplish the data fusion through projecting datasets

into a unique lower-dimensional space (see Sec. 8.3.1); in this sense, they yield a
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single reduced-matrix that takes into consideration the information coming from all
omics. It can be argued that the strategy employed by such methods for discovering
the information underlying data is quite different w.r.t. both SNF and NGL-F; in-
deed, they do not output an adjacency matrix natively and, to assess their spectral
cluster performances, it should be derived indirectly from the network graph.
JIVE (Fig. 8.5c) and GCCA (Fig. 8.5d) behave in a very similar way w.r.t. all
the input categories. Their performances are better on LUAD and LUSC tumors
but not sufficient to correctly discriminate the input data; they are both unable to
discover any underlying pattern on the remaining labels. Fig. 8.5a shows NGL-F
outperforms the jDR methods for all the input clusters. The CPTAC3 category,
both in the healthy (0.92) and tumor (0.77) cases, is very well recognized; further-
more, for LUAD and LUSC tumors, NGL-F reaches a good values algorithm of
understanding some pattern about these pathologies. Instead, the LUSC-healthy
condition is much better recognized than in any of the other methods but not
sufficiently enough to assess the network has learned it. Finally, it is interesting
to notice that none of the proposed techniques can deal with the LUAD-healthy
category, and it will be investigated in future work.

8.5.3 Final Considerations
Summing up, the results produced by SNF and NGL-F algorithms are very

similar. It is noticeable to point out the importance of this result, as NGL-F is an
entirely new algorithm based on a recent neural theory [21]. Compared to state-of-
the-art methods such as SNF, the neural network structure of NGL-F shows higher
flexibility and can be easily extended to omics with a different number of samples.
Furthermore, both techniques outperformed all jDR algorithms in the clustering
performance comparison. As shown in Fig. 8.5, no factorization matrices produced
by these algorithms allow the spectral clustering to extract meaningful biological
patterns.

8.6 Conclusions
Since data interpretation from multiple data sources is still an open and chal-

lenging problem, some multi-omic approaches have been recently proposed. How-
ever, these methods do not take into account the intrinsic topology of each omic.
Therefore, NGL-F has been designed to tackle this issue. It is an unsupervised deep
learning neural network endowed with an original final layer that is competitive be-
cause of the loss function’s choice. Indeed, it considers both the quantization and
the clustering, and the onset of the edges. The training procedure is repeated for
all input datasets generating for each one a network of centroids to which the sam-
ples are assigned competitively, with criteria for creating and decaying connections
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between the centroids (prototypes) themselves. The outcome is a connected graph
for each input, which is merged to obtain the final graph from which the clusters
are derived. Experimental results show its competitiveness with state-of-the-art al-
gorithms. However, NGL-F is more flexible as it allows working with omics having
a different number of samples.
Since the proposed method works in the original feature space, omics’ relevance
can be retrieved from the model and directly investigated for further biological
considerations. Hence, the proposed algorithm is suitable for a broader range of
applications.

Further developments of the proposed approach will deal with implementing
convolutional layers into the neural architecture and with a more in-depth analysis
of the loss function, taking into account cluster densities [65]. Besides, the develop-
ment of an incremental, hierarchical [48], and biclustering versions of NGL-F will
also be studied.
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Chapter 9

Conclusions

Due to the continuous increase in the number and complexity of the genetic and
biological data, new computer science techniques are needed to analyze these data
and provide valuable insights into the main features. The thesis research topic con-
sists of studying complex systems in life sciences to offer informative models about
biological processes. The thesis focuses on two main sub-topics.

The first sub-topic concerns machine and deep learning techniques applied to the
analysis of aberrant genetic sequences like, for instance, gene fusions. The second
one is the development of statistic and deep learning techniques for heterogeneous
biological and clinical data integration.

In aberrant genetic sequence analysis and gene fusions prioritization, machine
and deep learning models have been explored, leading to two main contributions.
The first contribution consists of designing a deep learning model to recognize onco-
genic gene fusions using the resulting proteins’ amino acid sequence exclusively.
This model is based on a CNN followed by a bidirectional LSTM that outper-
formed the art tools’ state.

The second contribution does not exploit the gene fusion sequence, but it in-
cluded post-transcriptional regulators like transcription factors and mainly miRNA.
This approach is based on an MLP architecture and led to an improved model that
outperforms the previous ones, and it competes with state-of-the-art tools.

The rationale behind the thesis’s second sub-topic is the following: due to the
widespread of Next Generation Sequencing (NGS) technologies, a large amount of
heterogeneous complex data related to several diseases and healthy individuals is
now available. In this context, the aim is to integrate multi-omics data involving
thousands of features (e.g. genes, micro-RNA) and identifying which of them are
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relevant for a specific biological process. From a computational point of view, find-
ing the best strategies for multi-omics analysis and relevant features identification
is a very open challenge. Four main aspects have been considered: analysis of the
connectivity in the mouse brain, miRNA target identification, multi-omics sample
classification, and multi-omics sample clustering.

The first aspect is the integrative analysis of gene expression and connectivity
data of mouse brains exploiting machine learning techniques. The neuronal con-
nection data (obtained by viral tracers) of mouse brains were processed to identify
brain regions physically connected and then evaluated with these areas’ gene ex-
pression data. A multi-layer perceptron was applied to perform the classification
task between connected and unconnected regions providing gene expression data as
input. Furthermore, a second model was created to infer the degree of connection
between distinct brain regions. The implemented models successfully executed the
binary classification task (connected regions against unconnected areas) and dis-
tinguished the relationship’s intensity in low, medium, and high.

The second aspect focuses on a statistical method to reveal pathology-determining
microRNA targets in multi-omic dataset. In this work, two multi-omics datasets
are used: breast cancer and medulloblastoma datasets. Both the datasets are
composed of miRNA, mRNA, and proteomics data related to the same patients.
The main computational contribution to the field consists of designing and imple-
menting an algorithm based on the statistical conditional probability to infer the
impact of miRNA post-transcriptional regulation on target genes exploiting the
protein expression values. The developed methodology allowed a more in-depth
understanding and identification of target genes. Also, it proved to be significantly
enriched in three well-known databases (miRDB, TargetScan, and miRTarBase),
leading to relevant biological insights.

The third aspect deals with the classification of multi-omics samples. The litera-
ture’s main approaches integrate all the features available for each sample upstream
of the classifier (early integration approach) or create separate classifiers for each
omic and subsequently define a consensus set rules (late integration approach). In
this context, the main contribution consists of introducing the probability concept
by creating a model based on Bayesian and MLP networks to achieve a consen-
sus guided by the class label and its probability. This approach has shown how a
probabilistic late integration classification is more specific than an early integra-
tion approach. Also, the proposed model can better identify anomalous samples
concerning the training domain. This tool is potent, as, in addition to recognizing
outliers belonging to the same tissue used in training, it excludes from the classifica-
tion samples that belong to a different tissue or tumor subtype than that with which
the model was trained. This aspect represents a significant advantage in the clinics.
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9.1 – Global considerations

To provide new molecular profiles and patients’ categorization, class labels could
be helpful. However, they are not always available. Therefore, the need to cluster
samples based on their intrinsic characteristics is revealed and dealt with in a spe-
cific chapter. Multi-omic clustering in literature is mainly addressed by creating
graphs or methods based on multidimensional data reduction. This field’s main
contribution is creating a model based on deep learning techniques by implement-
ing an MLP with a specifically designed loss function. The loss represents the input
samples in a reduced dimensional space by calculating the intra-cluster and inter-
cluster distance at each epoch. This approach reported performances comparable
to those of most referred methods in the literature, avoiding pre-processing steps
for either feature selection or dimensionality reduction. Moreover, it has no limits
on the number of omics to integrate.

9.1 Global considerations
This thesis presents statistical and deep learning models to address various

biological problems, from aberrant sequence analysis to sample classification and
clustering.

All the sections present a significant contribution to the bioinformatics com-
munity. Indeed, the proposed methods aim to allow physicians, biologists, and
researchers to identify new unforeseen aspects. These methods allow the selection
of the driver elements of a disease in a more specific way. Therefore, they can be
extended in the clinical context in the future.

This thesis’s main novelties consist of models closer to the complexity of the
investigated data. Indeed, although the biological questions addressed in this thesis
are not entirely new, the use of new tools and more complex models (able to handle
heterogeneous and multi-omic data) has allowed us to identify the relevant signal
with greater precision.

In the end, the study of the biological phenomena addressed in this thesis is not
yet exhausting. They can still be investigated, taking advantage of new computa-
tional models representing their complexity more realistically and precisely.
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Appendix A

List of the published works

This Ph.D. thesis aims to present the main research activities and personal con-
tributions to the scientific community in recent years.

These works have been disseminated through the following publications:
• Lovino, M., Ciaburri, M. S., Urgese, G., Di Cataldo, S., & Ficarra, E. (2020).

DEEPrior: a deep learning tool for the prioritization of gene fusions. Bioin-
formatics, 36(10), 3248-3250.

• Lovino, M., Urgese, G., Macii, E., Di Cataldo, S., & Ficarra, E. (2019). A
deep learning approach to the screening of oncogenic gene fusions in humans.
International journal of molecular sciences, 20(7), 1645.

• Roberti, I., Lovino, M., Di Cataldo, S., Ficarra, E., & Urgese, G. (2019).
Exploiting Gene Expression Profiles for the Automated Prediction of Con-
nectivity between Brain Regions. International journal of molecular sciences,
20(8), 2035.

• Lovino, M., Bontempo, G., Cirrincione, G., & Ficarra, E. (2020, October).
Multi-omics Classification on Kidney Samples Exploiting Uncertainty-Aware
Models. In International Conference on Intelligent Computing (pp. 32-42).
Springer, Cham.

• Barbiero, P., Lovino, M., Siviero, M., Ciravegna, G., Randazzo, V., Ficarra,
E., & Cirrincione, G. (2020, October). Unsupervised Multi-omic Data Fu-
sion: The Neural Graph Learning Network. In International Conference on
Intelligent Computing (pp. 172-182). Springer, Cham.

• Lovino, M., Urgese, G., Macii, E., Di Cataldo, S., & Ficarra, E. (2018,
September). Predicting the Oncogenic Potential of Gene Fusions Using Con-
volutional Neural Networks. In International Meeting on Computational In-
telligence Methods for Bioinformatics and Biostatistics (pp. 277-284). Springer,
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List of the published works

Cham.

These works have recently been submitted and are still under review:

• Lovino, M., Randazzo, V., Ciravegna, G., Barbiero, P., Ficarra, E., & Cirrin-
cione, G. (2021) A survey on data integration for multi-omicssample cluster-
ing. Submitted at Neurocomputing.

• Lovino, M., Bontempo, G., Cirrincione, G., & Ficarra, E. (2021). An uncertainty-
aware late integration method formulti-omics sample classification. Submit-
ted at BMC Bioinformatics.

• Barrese V. S., Montemurro M., Lovino, M. & Ficarra, E. (2021). Identify-
ing the oncogenic potential of genefusions exploiting miRNAs. Submitted at
BMC Bioinformatics.
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