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Abstract 9 

The possible amplification of seismic waves in soil deposits is crucial for the seismic design of 10 

buildings and geotechnical systems. The most common approaches for the numerical simulation 11 

of seismic site response are the EQuivalent Linear (EQL) and the NonLinear (NL). Even though 12 

their advantages and limitations have been investigated in several studies, the relative field of 13 

applicability is still under debate. 14 

This study tested both methods over a wide population of soil models, which were subjected to a 15 

set of acceleration time histories recorded from strong earthquakes. A thorough comparison of the 16 

results of the EQL and the NL approaches was carried out, to identify the conditions where the 17 

relative differences are significant. This assessment allowed for the definition of simplified criteria 18 

to predict when the two schemes are compatible or not for large expected shaking levels. The 19 

proposed criteria are based on simple and intuitive parameters describing the soil deposit and the 20 

ground motion parameters, which can be predicted straightforwardly. Therefore, this study 21 

provides a scheme for the choice between the EQL and the NL approach, that can be used even at 22 

the preliminary design stages. It appears that the EQL approach provides reliable amplification 23 

estimates in soil deposits with thickness up to 30 m, except for very deformable soils, but this 24 

depth range may be extended at long vibration periods. This result reveals a good level of reliability 25 

of the EQL approach for various soil conditions encountered in common applications, even for 26 

high-intensity shaking.  27 
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Introduction 28 

Seismic waves undergo strong alterations in intensity and frequency content when propagating 29 

through soil deposits. These modifications depend on the soil mechanical properties and the 30 

geometry of the system, in terms of geological layers and surface morphology. Ordinary design 31 

applications typically focus on the effect of soil characteristics and rely on Ground Response 32 

Analyses (GRAs). GRAs assume a one-dimensional (1D) model for the site deposit, thus 33 

simplifying the actual geometry (i.e., lateral variations, local heterogeneities, etc.) to focus on 34 

stratigraphic amplification. 35 

Notwithstanding their simplicity, GRAs are affected by uncertainties due to several factors. 36 

Following the scheme devised by Idriss (2004) and Rathje et al. (2010) and extended by Passeri 37 

(2019), the main sources of uncertainties are the shear-wave velocity (VS) profile, the Modulus 38 

Reduction and Damping (MRD) curves, the shear strength, the small-strain damping, the input 39 

motions selection and the type of nonlinear approach. The latter is related to the nonlinear, 40 

hysteretic behavior of the soil under dynamic loading. Several methods have been proposed for 41 

modeling, but the most popular ones are the EQuivalent Linear (EQL) scheme and the NonLinear 42 

(NL) technique. The EQL approach models the soil response in the frequency domain as a viscous-43 

elastic medium, whose mechanical properties are time-invariant and compatible with the estimated 44 

strain level (Idriss and Seed, 1968). The NL scheme, instead, solves the dynamic equilibrium 45 

equation for the soil column – typically modeled as a multiple-degree-of-freedom lumped-mass 46 

system – through a numerical time-stepping scheme. 47 
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The EQL approach is relatively simple and intuitive, but several studies questioned the reliability 48 

at high strain levels (e.g., Baturay and Stewart, 2003; Kaklamanos and Bradley, 2018). Conversely, 49 

NL analyses seem to be more suitable with strong motions and in the presence of soft soil deposits 50 

(e.g., Hartzell et al., 2004). On the other side, their implementation involves advanced constitutive 51 

models whose construction requires a large number of parameters, some of which not associated 52 

with measurable soil properties (Stewart et al., 2008). Besides, the time-stepping algorithms for 53 

NL computations suffer from limited numerical stability, whereas the EQL method works with a 54 

closed-form solution of the wave equation. The consequence of these issues is a strong code-to-55 

code variability of NL simulations (Régnier et al., 2016; Régnier et al., 2018). Furthermore, some 56 

studies even questioned the reliability of NL analyses, since the matching between simulated and 57 

observed amplification data was sometimes poor (Zalachoris and Rathje, 2015; Kaklamanos and 58 

Bradley, 2018). For these reasons, the EQL approach is still widely used, also to identify pitfalls 59 

in NL results (Stewart et al., 2014). 60 

The acknowledgment of the limitations in the NL scheme and the efficiency of the EQL approach 61 

urges for the investigation of the conditions where they start to diverge in a significant way. In this 62 

way, the engineer would have a tool to understand whether EQL simulations are adequate or more 63 

advanced NL analyses are required. Therefore, several criteria to predict the magnitude of the 64 

relative differences were developed. For instance, Assimaki and Li (2012) performed a rigorous 65 

assessment of the inter-method divergence, identifying some controlling parameters linked to the 66 

site conditions and the ground motion. On the other side, many studies proposed an applicability 67 

boundary of the EQL scheme based on the maximum shear strain level (e.g., Kaklamanos et al., 68 

2013; Kaklamanos et al., 2015). This quantity, in fact, has an excellent degree of correlation with 69 
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the trend of the differences. Kim et al. (2016), Carlton and Tokimatsu (2016) and Eskandarinejad 70 

et al. (2017) referred to an indicator of the maximum strain level, defined as the ratio between the 71 

peak ground velocity and VS,30, i.e. the average VS over the top 30 m of the soil deposit (Idriss, 72 

2011). This solution offers an a priori criterion for the selection of the most appropriate technique 73 

to model the soil nonlinear response. These studies, however, were mainly based on empirical 74 

observations over downhole arrays, thus investigating a limited number of soil conditions which 75 

actually may not represent the whole range of engineering interest. Alternatively, some studies 76 

also integrated hypothetical ground models representative of typical soil conditions, but this just 77 

filled the gap in a partial way as they dealt with idealized soil profiles, rather than real ones (e.g., 78 

Carlton and Tokimatsu, 2016). In addition, they often proposed a single value as boundary for the 79 

applicability for the EQL and the NL method, whereas the reliability of each approach may depend 80 

on the model characteristics (Aristizábal et al., 2018). 81 

The present study assesses the differences between the results of EQL and NL simulations 82 

considering a large database of ground response analyses. The database collects the results of 83 

GRAs on a set of 91,500 ground models, that are representative of various geological conditions 84 

of engineering interest and span a wide range of deformability and depth. The analyses are 85 

performed with reference to a suite of 42 ground motions, characterized by various amplitude 86 

levels and spectral shapes. A total of 1,483,850 GRAs are performed in this study, for each method. 87 

The differences between EQL and NL results are analyzed with respect to amplification parameters 88 

based either on the peak ground acceleration or on integrals of the spectral ordinates across some 89 

period ranges of engineering interest. The assessment considers the effect of the soil deposit 90 

conditions and the ground motion characteristics in an explicit way, to identify the conditions for 91 
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which the two approaches start to diverge significantly. For this purpose, a novel criterion is 92 

proposed, based on the comparison between the distribution of the inter-method differences and 93 

the one of the corresponding amplification parameter, derived from Ground Motion Prediction 94 

Equations (GMPEs). Specifically, this study assumes a condition where the differences between 95 

the two approaches are large compared to the intrinsic variability of the parameter, thus resulting 96 

in a physically consistent assessment. The result is a simplified criterion to predict where the two 97 

schemes diverge, which can be used in a predictive way during the preliminary stages of the design. 98 

Furthermore, the study provides an insight into the performances of EQL and NL analyses in 99 

different soil conditions. 100 

The present paper starts with a section presenting the procedure of construction of the database of 101 

GRAs, with a particular focus on the generation of the 1D ground models. After a quick overview 102 

of the results of the database, the paper reports the assessment of the differences between EQL and 103 

NL methods. First, the criteria to estimate and assess the inter-method differences are defined. 104 

Then, the effect of the soil model and the ground motion characteristics are presented, with a focus 105 

on the simplified predictive scheme. 106 

Database of ground response analyses 107 

The database was initially generated from 91,500 1D ground models subjected to 13 acceleration 108 

time histories, characterized by high shaking intensity. Then, it was extended considering a 109 

representative subset of 10,150 models under 29 additional ground motions, that span a broad 110 

range of amplitudes and spectral shapes. The simulations were performed according to the EQL 111 

approach, by using the SHAKE91 code (Schnabel, 1972; Sun and Idriss, 1992), and to the NL 112 
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scheme, with the DEEPSOIL v7.0 software (Hashash et al., 2017; see Data and Resources). For 113 

each approach, 1,483,850 analyses were carried out. 114 

Generation of VS profiles 115 

The 1D ground models were generated with a Monte-Carlo randomization based on a collection 116 

of 252 real-world stratigraphic profiles. Data were obtained from Italian and international 117 

databases (i.e., the Italian Accelerometric Archive v2.3, the Site Characterization Database for 118 

Seismic Stations in Switzerland and the dataset of the Seismic Hazard and Alpine Valley Response 119 

Analysis project) and regional databases of Italy (see Data and Resources). Furthermore, the set 120 

includes some sites investigated in specific studies, i.e. Comina et al. (2011), Minarelli et al. (2016) 121 

and Capilleri et al. (2009). The randomization procedure followed the geostatistical model 122 

proposed in Passeri (2019) and Passeri et al. (2020), where each real ground model was taken as 123 

the base-case soil profile, from which layers’ thicknesses and S-wave velocities were generated 124 

with a suitable number of realizations. 125 

In order to optimize the generation of the ground models, this study refers to the site classification 126 

scheme proposed in the Final Draft of revision of Part 1 of Eurocode 8 (EC8-1; European 127 

Committee for Standardization, 2020; Figure 1a). This scheme, in fact, proposes effective proxies 128 

for a synthetic description of 1D ground models, i.e. the bedrock depth and the equivalent shear-129 

wave velocity. The bedrock depth H corresponds to the depth of the interface between the soil 130 

deposit and the engineering bedrock, where VS becomes larger than 800 m/s. The equivalent shear-131 

wave velocity VS,H is equal to the time-weighted average of the VS profile down to the engineering 132 

bedrock, when H is smaller than 30 m. Otherwise, it equals VS,30. Each site category proposed in 133 
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the scheme clusters various soil conditions sharing a similar response to ground motions. 134 

Therefore, the generated ground models were resampled to get uniform and consistent coverage 135 

in each site category. Specifically, every site category was discretized into 100 homogeneous 136 

blocks and 200 profiles were considered for each one (Figure 1b). This number was lowered to 20 137 

for deep deposits with very stiff layers (e.g., deep stratifications of altered rock), due to their 138 

limited presence in nature. For simplicity, the investigated VS,H-H domain was limited at H < 200 139 

m. Besides, the portion corresponding to very shallow and stiff soil models (i.e., VS,H > 250 m/s 140 

and H < 5 m) was disregarded since the stratigraphic amplification was not considered relevant in 141 

this case. Figure 1c-e shows some generated profiles taken from different regions of the reference 142 

VS,H-H domain. 143 

The resulting population of 1D ground models exhibits realistic features and represents various 144 

soil deposits of engineering interest in a uniform way. Thus, it is capable to map effectively the 145 

stratigraphic amplification in different conditions. 146 

Soil nonlinearity 147 

The cyclic behavior of soils is introduced through the Modulus Reduction and Damping (MRD) 148 

curves, that describe the variation of the secant shear modulus – normalized by its maximum value 149 

– and the shear damping with the shear strain. The MRD curves were estimated from the empirical 150 

relationship by Darendeli (2001) for sandy and clayey materials, by Rollins et al. (1998) for 151 

gravels, and by Sun and Idriss (1992) for rock-like materials (i.e., cemented soils or weathered 152 

rocks). Details about the estimation of the required parameters (e.g., the plasticity index) and the 153 

derivation of the material type are available in Aimar et al. (2020). 154 
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Some studies questioned the capability of empirical formulations of MRD curves in predicting the 155 

behavior at large strains, as they do not take into account the shear strength of the material (Yee et 156 

al., 2013; Afacan et al., 2014; Stewart et al., 2014; Groholski et al., 2016). However, the 157 

incorporation of the shear strength would introduce additional uncertainties about the empirical 158 

correlations used for its estimate and the modeling of rate effects (Stewart et al., 2014). 159 

Furthermore, Kaklamanos and Bradley (2018) observed that the quality of strength-corrected 160 

estimates does not significantly improve with respect to the ones based on empirical MRD curves. 161 

Finally, from the interpretation of the results provided by Zalachoris and Rathje (2015), even if the 162 

strength correction modifies the EQL and NL-based estimates, the relative differences do not vary 163 

with the same order of magnitude, even at moderate-to-high strain levels. Therefore, this study did 164 

not account for the effect of shear strength in an explicit way, to limit uncertainties focusing on 165 

the analysis of the inter-method differences. 166 

The cyclic shear stress-strain relationship was introduced in NL GRAs through the Modified 167 

Kondner-Zelasko model (Kondner and Zelasko, 1963; Matasović and Vucetic, 1993), whose 168 

parameters were calibrated according to the pressure-dependent hyperbolic model with damping 169 

reduction factor (MRDF procedure; Phillips and Hashash, 2009). The fitting procedure adopted 170 

the root mean square error between the estimated and the above-mentioned MRD curves as the 171 

objective function, which was minimized through the sequential quadratic programming algorithm 172 

(Nocedal and Wright, 2006). 173 

NL analyses also require the definition of a viscous damping ratio component, to simulate the 174 

presence of energy dissipation at small strain levels (Vucetic et al., 1998). This component was 175 

assumed equal to the small-strain hysteretic damping estimated from the damping curves (Kwok 176 
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et al., 2007) and it was incorporated in the NL GRAs with the frequency-independent damping 177 

formulation (Phillips and Hashash, 2009). 178 

Seismic inputs 179 

The seismic inputs are 42 acceleration time histories, selected from international strong-motion 180 

databases, as the Italian Accelerometric Archive v2.3, the Engineering Strong Motion Database 181 

v1.0, the Internet-Site for European Strong-Motion Data and the PEER NGA-West2 Database (see 182 

Data and Resources). The motions are recorded on rock-like outcropping flat formations (i.e., VS,30 183 

larger than 800 m/s) and derive from shallow crustal events in active tectonic regions with moment 184 

magnitude ranging between 4 and 7.5, whereas epicentral distances mostly vary between 10 km 185 

and 50 km. Figure 2a represents the acceleration response spectra Se of the selected ground 186 

motions. Additional information is available in Table S1 in the Electronic Supplement. 187 

The selected time histories were clustered into two groups. The first suite (labeled as “S-1”) 188 

consists of 13 high-intensity ground motions, with peak ground acceleration (PGA) ranging 189 

between 0.17g and 0.35g. This collection was used for a preliminary assessment of the relative 190 

differences between EQL and NL simulations and to investigate the effect of soil model 191 

characteristics on them. The 29 additional time histories (“S-2”) span a broad range of shaking 192 

amplitudes (i.e., PGA = 0.05-0.3g) and they were applied to a subset of 10,150 soil models, after 193 

a check on their representativeness based on results of the previous stage. 194 
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Reference parameters 195 

This study describes seismic amplification through amplification factors (AFs) related to the 5%-196 

damped elastic response spectrum, as it merges various features of the ground shaking (i.e., 197 

intensity and frequency content) and it is relevant in structural and geotechnical engineering. 198 

The first parameter is the PGA amplification factor PGAA, defined as the ratio between the PGA 199 

value computed on the surface (PGAs) and the one on the rock outcropping formation (PGAr – in 200 

this case, the value of the corresponding input motion): 201 

 s

r

PGA
PGAA

PGA
=  (1) 202 

This parameter is relevant for applications requiring an estimate of the peak acceleration, e.g. 203 

liquefaction assessment (Youd and Idriss, 2001) or pseudo-static approaches for estimating earth 204 

pressure (Okabe, 1924; Mononobe, 1929). 205 

On the other side, due to the frequency-dependence of the stratigraphic amplification, the 206 

modifications in the response spectrum should be tracked period by period, across a range of 207 

engineering interest. Alternatively, a synthetic representation of the frequency content of the 208 

ground motion is the spectral intensity SIAB, that is the integral of the response spectrum Se over a 209 

range of periods [A; B]. This parameter was introduced by Rey et al. (2002) and it is defined as 210 

follows: 211 

 ( )

B

AB e

A

SI S T dT=  . (2) 212 
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The spectral intensity summarizes information of spectral ordinates on different periods, thus 213 

representing an indicative value for a family of structures with compatible dynamic characteristics. 214 

The corresponding amplification factor (i.e., the spectral amplification factor, SAF) SAAB can be 215 

defined as the ratio between the SIAB value computed on the surface (SIAB.s) and the one on the rock 216 

outcropping formation (SIAB,r): 217 

 
,

,

AB s

AB

AB r

SI
SA

SI
= . (3) 218 

Figure 2b provides a graphical representation of the quantities SIAB.s and SIAB,r. 219 

The SAF captures the variations in intensity and frequency content of the ground motion induced 220 

by the soil deposit. Given the averaging nature, its use entails the partial loss of detailed 221 

information at single vibration periods, hence it is not suitable for the design of specific structures. 222 

However, it is useful for preliminary assessments and planning purposes, especially for seismic 223 

microzonation studies. In addition, the handling of data is easier, as the spectral behavior over a 224 

range of vibration periods can be investigated with a single parameter. 225 

The present study considered three SAFs, i.e. a short-period spectral amplification factor (SPSA), 226 

an intermediate-period spectral amplification factor (IPSA) and a long-period spectral 227 

amplification factor (LPSA). The corresponding period ranges are listed in Table 1. These 228 

parameters were used as proxies for site amplification in the seismic microzonation studies held 229 

in Italy after the Central Italy earthquake in 2016 (Presidenza del Consiglio dei Ministri, 2017). 230 

They are deemed to be relevant for homogeneous groups of buildings – small, intermediate and 231 

tall buildings, respectively. Furthermore, the adopted parameters are capable to provide relevant 232 
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information about the EQL-NL deviations in the corresponding period ranges, since these intervals 233 

are narrow enough to minimize internal variations of the inter-method spectral differences. 234 

Overview of Results 235 

This section reports some key results of the database of GRAs, with a focus on the reliability of 236 

simulations. Data are extracted from GRAs performed on the collection of 91,500 soil models for 237 

the suite “S-1” of input motions. Additional information about the distribution of the AFs is 238 

available in the Electronic Supplement. 239 

First, the quality of EQL simulations was assessed, in terms of convergence of the iterative 240 

procedure. Only 31 simulations encountered this issue, hence they were removed. This feature is 241 

indeed critical for analyses involving medium-to-large strain levels (Papaspiliou et al., 2012). 242 

Then, the quality of the database was assessed by verifying the stability of the sample moments 243 

inferred from the Monte Carlo simulation. Specifically, the number of models necessary to achieve 244 

a stable value of the statistical moments of the AFs distribution was estimated and this was 245 

compared to the actual number of profiles, to ensure the reliability of results. For this purpose, the 246 

criterion proposed by Bellin et al. (1994) was adopted. The method tracks the variation of a sample 247 

moment M (mean or standard deviation) of each AF in the Monte Carlo simulation, in terms of 248 

relative difference δMn between the current value Mn obtained after n samples (i.e., soil models) 249 

and the final estimate MN. Due to the lognormal distribution of the AFs (e.g., Li and Assimaki, 250 

2010; Aimar et al., 2020), the difference was computed with moments in log-scale: 251 

 
N n

n

N

M M
M

M


−
=  (4) 252 
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According to the criterion, stable estimates of statistical moments are achieved when δMn is smaller 253 

than a threshold equal to 5% and the corresponding n value represents the number of required 254 

models for this condition. The stability of simulation results was assessed for each reference block 255 

of the discretization of the VS,H-H domain (Figure 1b), to investigate the effect of soil model 256 

characteristics on the reliability of the estimate. For simplicity, the role of ground motion 257 

characteristics was disregarded, hence moments were estimated from the logarithmic mean of 258 

results with respect to the input motions, computed for each soil model. 259 

For instance, Figure 3 shows results of the stability assessment for the EQL-based mean value of 260 

each AF. The rate at which stability is achieved is strongly influenced by soil deformability. In 261 

stiff ground models (i.e., VS,H greater than 400 m/s), only 10-20 models are usually required to 262 

obtain stable values of statistical moments, whereas more profiles are required in soft soil deposits. 263 

This may be a consequence of strong nonlinear behavior, where the MRD curves dramatically 264 

affect the response. In this case, the weak correlation between the modulus reduction curve and 265 

the damping curve induces a slower convergence towards a stable value of statistical moments (Li 266 

and Assimaki, 2010). Furthermore, more soil models are required for achieving a stable estimate 267 

at short vibration periods (Figure 3a-c), with respect to longer periods. A possible reason is that 268 

high-frequency components are sensitive to local variations in the soil deposit, i.e. thin layers, 269 

rather than the global features of the ground model. Therefore, they strongly depend on the details 270 

of the single VS realizations, entailing stronger variations in the sample moments. Similar findings 271 

are observed for the variance (Figure S7 in the Electronic Supplement) and in NL GRAs (Figure 272 

S8). However, the number of considered models (shown in Figure 1b) exceeds the amount of 273 

required data (Figure 3) in the whole investigated VS,H-H domain. Therefore, the number of 274 
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simulations allows to achieve a stable estimate of the statistical moments, independently of soil 275 

model characteristics or the considered period range. In this way, the validity of results is ensured, 276 

from the stochastic point of view. 277 

The maximum shear strain from EQL simulations was finally analyzed. Figure 4a represents the 278 

distribution of soil models whose maximum shear strain exceeds 0.1%, where the linear elastic 279 

model is no more reliable due to the rise of nonlinear phenomena (Kaklamanos et al., 2013; 280 

Zalachoris and Rathje, 2015; Kaklamanos and Bradley, 2018). This result is useful for an 281 

appropriate interpretation of the variations of the EQL-NL differences across different soil models. 282 

A large number of soil models characterized by VS,H less than 400 m/s exhibit large strains, without 283 

any effect of H, except for the shallow ones. Instead, Figure 4b reports the number of simulations 284 

exceeding a strain level equal to 1%. The corresponding results are less reliable since that strain 285 

level is the upper bound of the range of validity of the MRD curves – used for the EQL GRAs or 286 

to infer the nonlinear parameters used in NL simulations. This critical condition is mainly observed 287 

in deformable soil models (i.e., VS,H < 400 m/s), but the amount consisted on average in 30% of 288 

the cases, with a local peak of 60%. Therefore, the bias partially affects the quality of the results 289 

in very soft ground models but some indications about the ground motion amplification may still 290 

be obtained. 291 

EQL vs NL analyses 292 

This section reports a detailed assessment of the differences between the AFs estimated according 293 

to the EQL scheme and the NL approach. 294 
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Several authors focused on the comparison of site response estimates, by assessing the similarity 295 

between different simulation approaches and, in some cases, comparing them with observed data. 296 

Generally, discrepancies in the estimates were investigated according to different metrics. For 297 

instance, Rathje and Kottke (2011) estimated the relative difference between the median 298 

amplification functions (i.e., the ratios of spectral ordinates between the output and the input 299 

motions) resulting from NL and EQL analyses. On the other side, many studies referred to the ratio 300 

between the EQL-based spectral ordinates and the ones obtained from the NL scheme, or to its 301 

logarithm (e.g., Kwok et al., 2008; Kaklamanos et al., 2013; Kim and Hashash, 2013; Zalachoris 302 

and Rathje, 2015; Carlton and Tokimatsu, 2016; Kaklamanos and Bradley, 2018). 303 

In this study, the adopted estimator of the inter-method difference is the logarithm of the ratio 304 

between the corresponding estimates of the AF X, where X is PGAA, SPSA, IPSA, or LPSA. The 305 

quantity is denoted as δX: 306 

 ln
EQL

X

NL

X

X
 = . (5) 307 

A positive value indicates overestimation of the AF from the EQL scheme with respect to the NL 308 

approach, whereas a negative δX denotes underestimation. Furthermore, being δX derived from the 309 

ratio of two lognormal quantities (e.g., Li and Assimaki, 2010; Aimar et al. 2020), it is normally 310 

distributed. 311 

The assessment of the divergence between two approaches also requires the definition of a 312 

threshold for the δX estimator, to identify conditions up to which the magnitude of the relative 313 

differences is not significant. For clarity, this condition is hereafter labeled as “ max  ”. The 314 
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threshold value should correspond to a condition where the inter-method difference is large 315 

“enough” with respect to the application of interest, depending on the amount of statistical 316 

fluctuation that may affect the estimate. Some studies compared the average difference with an 317 

envelope corresponding to the critical threshold. For instance, Kim et al. (2016) assumed the 318 

relative difference between EQL and NL estimates to be relevant when, on average, it is larger 319 

than 10-30%. Alternatively, Carlton and Tokimatsu (2016) compared the mean difference with a 320 

fraction of the standard deviation of the parameter under examination, which was calculated from 321 

GMPEs. According to this criterion, the inter-method difference is negligible when it is small with 322 

respect to the variability affecting the ground motion amplification. In this way, they accounted 323 

for the background of application and, specifically, the uncertainties involved in site response 324 

estimates. 325 

In this study, we propose a criterion that inherits the main features from the one proposed by 326 

Carlton and Tokimatsu (2016) to investigate the relative differences. Actually, some modifications 327 

were applied to improve the quality of the comparison. Many studies, in fact, assessed the inter-328 

method divergence by comparing the threshold with the mean of the differences. On the other side, 329 

a more accurate description of the data distribution should include both the mean and information 330 

about statistical dispersion, otherwise the assessment would be misleading. For instance, Figure 331 

5a superimposes the distribution of δLPSA with the envelope corresponding to a threshold 
,10%max

LPSA  332 

approximately equal to 10% (Kim et al., 2016). Results are referred to shallow deformable soil 333 

models for a given input motion, as highlighted in Figure 5b. The mean of the distribution lies 334 

within the envelope; hence the two approaches appear to be compatible with each other. On the 335 

other side, the interval defined by one standard deviation partly lies beyond the acceptable value. 336 
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Specifically, 40% of the selected soil models exhibit non-negligible discrepancies in the response, 337 

meaning that a significant number of samples is characterized by a strong divergence between 338 

EQL and NL estimates. This issue is a side effect of using only the mean, which is not an 339 

exhaustive descriptor of the statistical distribution when the data variability is high, as in the case 340 

of the ground motion amplification. For this reason, the present study investigated the relative 341 

differences by comparing the interval defined by the mean μδ,X and one standard deviation σδ,X of 342 

δX with a threshold 
max

X . Specifically, the comparison involved the maximum between the 343 

extremes of such interval (in absolute value), labeled as X

  
 and defined as follows: 344 

 ( ), ,maxX X X

 

    =   (6) 345 

The threshold 
max

X  was assumed equal to the empirical-based standard deviation ln

E

X  of the 346 

parameter in exam (in agreement with Carlton and Tokimatsu, 2016). Therefore, the condition “347 

max  ” (i.e., negligible relative differences) is achieved when the following inequality holds: 348 

 
max

ln

E

X X X

     =  (7) 349 

This criterion assumes deviations to be negligible when they are within the natural dispersion of 350 

the considered parameter. In this way, this approach can identify either situations when the 351 

differences are large on average, i.e. μδ,X significantly deviates from zero, or those when the 352 

average does not shift but the variability σδ,X increases so much that a large number of models 353 

exceeds the reference envelope. 354 
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The threshold value 
max

X , i.e. the standard deviation ln

E

X  of each AF, was derived from GMPEs, 355 

according to the procedure illustrated in Derivation of the Threshold Values in the Electronic 356 

Supplement. Table 2 lists the inferred threshold values, that depend on VS,30, given the sensitivity 357 

of ln

E

X  to site conditions. 358 

In summary, the EQL and NL methods are compared in a statistically consistent way, according 359 

to an objective criterion that specifies when the magnitude of the differences between the predicted 360 

results is large with respect to the variability of the phenomenon. 361 

Role of soil model characteristics 362 

The assessment of the effect of soil conditions on the divergence between the EQL and the NL 363 

approaches starts with a general overview of the distribution of μδ,X  and σδ,X. Figure 6 represents 364 

δX for SPSA and LPSA, where data are extracted from GRAs performed on the collection of 91,500 365 

soil models for the suite “S-1” of input motions. Results about PGAA and IPSA are plotted in 366 

Figure S9 in the Electronic Supplement. The distribution of δX across various soil profiles depends 367 

on the range of periods of interest and soil model characteristics, especially in terms of VS,H and 368 

natural frequency f0 – computed according to the formula 
,

0
4

S avV
f

H
=  (VS,av is the time-weighted 369 

average of the VS profile down to the engineering bedrock), whose reciprocal is the fundamental 370 

period T0. 371 

In shallow soil deposits with high f0, the observed δX values are small. In this case, in fact, the 372 

experienced strain level is small (Figure 4a) and EQL and NL predictions are usually similar to 373 

each other (e.g., Kwok et al., 2008; Stewart et al., 2008; Assimaki and Li, 2012). Furthermore, the 374 
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difference is slightly negative over a region whose size is broader for long periods. This region fits 375 

a range of f0 approximately equal to 10-15 Hz (i.e., T0 equal to 0.07-0.1 s) for SPSA, 5-14 Hz 376 

(0.075-0.2 s) for IPSA and 3-13 Hz (0.08-0.3 s) for LPSA. An example of this is reported in Figure 377 

7 for SPSA and LPSA. Therefore, the NL scheme slightly overestimates the amplification at 378 

periods slightly larger than T0. Conversely, this region was not identified for PGAA. 379 

For small f0, δX is always positive (i.e., the NL approach predicts smaller amplification than the 380 

EQL scheme) and the difference increases when the deformability is high, with a dramatic 381 

variation over a relatively small region in the VS,H-H domain. For instance, , SPSA   grows from 0.2 382 

up to 0.4 for H increasing from 10 m to 15 m at VS,H = 160 m/s, more than doubling itself (Figure 383 

7a). Similarly, the variability in the difference undergoes an increase in this area (Figure 6b-d). 384 

This is an effect of the large strain level (Figure 4a), for which nonlinear phenomena become 385 

relevant. The trend in the increase can still be linked to f0, as the peak of the mean δX is located on 386 

a range of f0 equal to 1.5-8 Hz (i.e., T0 equal to 0.12-0.7 s) for PGAA, 2-4 Hz (0.25-0.5 s) for SPSA 387 

(Figure 7a) and 2-3.5 Hz (0.3-0.5 s) for IPSA. At long periods, instead, δX monotonically increases 388 

and is large at f0 less than 2 Hz (i.e., T0 longer than 0.5 s; Figure 7b). The reason of this behavior 389 

is the mutual effect of larger strain levels and the resonance of soil models, where the differences 390 

between the EQL and the NL approach are expected to be large (Rathje and Kottke, 2011). As an 391 

effect of the resonance, the location of the boundary depends on the considered AF and it shifts 392 

towards deeper and more deformable soil models, as they are associated with lower f0 values, 393 

compatible with the period range investigated in each AF. 394 
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As for deep ground models (i.e., H > 30 m), the role of the bedrock depth is not as relevant as in 395 

shallow soil deposits and only VS,H appears to be significant for describing the behavior of δX. 396 

Specifically, the trend of δX is consistent with the one for the shear strain (Figure 4a). For less 397 

deformable soil models (i.e., VS,H > 400 m/s), δX values and their variability are generally small, 398 

except for a slight increase in deeper models. Stiff soil models, in fact, undergo small nonlinearity 399 

and the EQL and NL approaches tend to provide similar output. On the other side, deep and 400 

deformable models exhibit large and positive δX values. The increase is significant for VS,H < 200 401 

m/s and the mean δX reaches the maxima values for intermediate bedrock depths, close to 40 m, 402 

where the observed strain level is large (Figure 4a). Furthermore, the magnitude of the maximum 403 

difference increases at longer vibration periods (Figure 6c). 404 

From such considerations, a scheme for the subdivision of soil models is proposed for setting up a 405 

simplified assessment of the differences between the EQL and the NL approaches (Figure 8m and 406 

Figure 9). The scheme is conceived to cluster together different soil conditions sharing compatible 407 

behavior in terms of δX. Furthermore, the definition of the clusters accounts for the dependence of 408 

max

X  (i.e., ln

E

X ) with respect to VS,30 (Table 2). For simplicity, the partition is based on specific 409 

boundaries in terms of VS,H (located at 250 m/s, 400 m/s and 600 m/s) and H (located at 5 m, 30 m 410 

and 100 m). The limits approximately correspond to locations where δX and 
max

X  (i.e., ln

E

X ) 411 

undergo the strongest variations. At small depths, the clustering follows a more complex geometry, 412 

since boundaries try to mimic the strong effect of f0 on δX. This boundary should depend on the 413 

investigated period range, as soil models with moderately high f0 exhibit strong differences at short 414 

periods, whereas only thick and deformable models (i.e., low f0) assume large discrepancies at long 415 

periods. In this study, the lowest value of f0 is considered for simplicity, to be on the safe side. 416 
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Conversely, deep soil deposits (i.e., H > 30 m) are clustered according to a more regular geometry 417 

of boundaries, as variations mainly depend on VS,H, whereas f0 does not play a significant role on 418 

δX. In each cluster, the threshold 
max

X  was assigned based on the VS,30 distribution inside each 419 

cluster, thus accounting for the relative differences between VS,H and VS,30 in shallow ground 420 

models, i.e. with H < 30 m. 421 

Role of input motion characteristics 422 

Proper modeling of the EQL-NL differences needs to account for the mutual relationship between 423 

discrepancies and specific ground motion parameters. The intensity, the duration and the frequency 424 

content, in fact, may affect the entity of the divergence. In order to cover an adequate range of 425 

motion features and effectively investigate this effect, additional GRAs were run on a subset of 426 

10,150 soil models considering the collection “S-2” of input motions. The ground models are still 427 

representative of different soil conditions in the reference VS,H-H domain and they are compatible 428 

with the restraints from the stability assessment of statistical moments (Figure 3). 429 

The effect of input motion characteristics was first investigated by relating some commonly used 430 

ground motion parameters to δX (specifically, X

  
), which was computed separately for each 431 

cluster of soil models (Figure 8m). In this way, the effect of variations in soil model characteristics 432 

on the trend of δX was kept under control. The degree of relationship was quantified through 433 

Kendall’s τb correlation coefficient (Kendall, 1955), which was estimated together with the p-434 

value, expressing the statistical significance – for p < 0.05, τb is statistically significant. The 435 

assessment included common ground motion parameters, i.e. the peak values of time histories, the 436 
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Arias intensity, the predominant and mean period (Rathje et al., 1998) and the uniform and 437 

significant duration, as well as spectral intensities. 438 

A moderate-to-strong relationship between X

  
 and PGA is observed for PGAA and the SAFs, 439 

although the correlation for IPSA and LPSA is slightly weaker. PGA, in fact, is directly related to 440 

the rise of nonlinear phenomena and to the amount of divergence between GRA approaches 441 

(Assimaki and Li, 2012). For instance, Figure 8 shows the scatter plot of SPSA

  
 and PGA together 442 

with the estimated τb values, highlighting a strong relationship in several clusters of soil models. 443 

Actually, the trend exhibits strong scattering in deformable soil deposits. Furthermore, in stiff and 444 

shallow models, the effect of the input motion is weak as X

  
 is small regardless its entity. 445 

However, in several cases, τb is larger than 0.5. Note that τb was computed from the data of the 446 

collection of 10,150 models subjected to the suite of 42 motions (i.e., “S-1” and “S-2”). However, 447 

Figure 8 also reports results from “S-1” applied to the whole set of 91,500 models, for comparison 448 

purposes. There is no significant difference between these data and the corresponding ones 449 

obtained from the subset. Therefore, the suite of 10,150 models provides results consistent with 450 

the whole database. Similar considerations are valid for the other AFs; the corresponding data are 451 

shown in Figure S10-S12 in the Electronic Supplement. 452 

Furthermore, the X

  
 values for the SAFs exhibit a good level of correlation with the 453 

corresponding SIAB (e.g., SPSA

  
vs. SPSI), indicating that inter-method differences for these 454 

parameters depend on the frequency content, both in terms of intensity and spectral shape. As for 455 

the other ground motion parameters, rather weak or no significant relationships are noticed. 456 

Detailed results are available in Table S2-S5 and Figure S13-S15 in the Electronic Supplement. 457 
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The identified relationships help in estimating the shaking level where δX becomes relevant, by 458 

comparing the trend of X

  
 – estimated through linear fitting – and 

max

X , in agreement with (7). 459 

The trend was estimated from the results of the suite “S-1”+”S-2” applied to the subset of 10,150 460 

models, for those cases where a significant correlation was detected (i.e., τb > 0.3 and p < 0.05, as 461 

shown in Figure 8). Figure 9 maps the PGA levels up to which the condition “ max  ” is met 462 

(i.e., negligible δX) for each reference group, as a function of the investigated AF. The color scale 463 

defines the upper bound of PGA for which EQL and NL analyses provide similar results. 464 

Therefore, this result can be used to guide for the selection of the numerical method, considering 465 

the parameters of the soil deposit (VS,H and H), the expected level of ground shaking and the 466 

specific application for which the GRA is required (i.e., the period range of interest). In deep and 467 

soft soil models, motions with PGA larger than 0.1g give rise to strong differences. However, for 468 

slightly smaller deformability (i.e., VS,H more than 250 m/s), the two schemes provide compatible 469 

results at larger PGA values, that rise from 0.15g up to 0.3g. Furthermore, the upper bound of PGA 470 

dramatically increases at longer periods. For instance, LPSA differences are small up to PGA 471 

values equal to 0.3 for almost all the soil conditions investigated, except the very deformable ones. 472 

In stiff and shallow soil models, instead, no threshold is identified since no trend in δX is detected, 473 

as the inter-method differences are small regardless the entity of the specific input motion. 474 

Therefore, in this case the inter-method differences are always small, at least in the range of ground 475 

motions of common application. Similar results are obtained for the SAFs with respect to the 476 

corresponding spectral intensities (see Figure S16 in the Electronic Supplement). 477 

In summary, inter-method differences exhibit a complex behavior, strongly dependent on soil 478 

model characteristics and the input motions intensity. However, they are negligible in moderately 479 
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deep soil deposits, i.e. for H less than 30 m, except when very soft layers are involved. This area 480 

includes a broad variety of soil conditions usually found in common applications. Furthermore, at 481 

long periods, this region can be extended to deeper deposits and stronger shaking levels. 482 

Conclusions 483 

The study interpreted a large database of GRAs to investigate differences between the equivalent 484 

linear and the nonlinear approach. The assessment adopted a novel criterion to evaluate the 485 

magnitude of the differences. The approach compares the interval defined by the corresponding 486 

mean and one standard deviation – which is representative of the statistical distribution of results 487 

– with an envelope defined by the standard deviation of the corresponding amplification parameter. 488 

This solution allows a rigorous assessment of the significance of the inter-method divergence, as 489 

it explicitly accounts for the dispersion of results and also the intrinsic variability of the 490 

amplification itself. The proposed criterion has general validity and can be used in any study of 491 

seismic site response to assess the congruence of EQL and NL approaches. 492 

The assessment highlights that the EQL and the NL approach provide similar estimates for stiff 493 

soil models and for the ones with large natural frequency. Conversely, NL simulations widely 494 

underestimate the amplification with respect to the EQL approach in deep and deformable soil 495 

deposits. In intermediate conditions, the entity of the difference strongly depends on the range of 496 

vibration periods and also on the natural frequency of the soil deposit. 497 

The role of input motion characteristics was also investigated. A good level of correlation was 498 

observed between the differences and the peak ground acceleration of the corresponding input 499 
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motions. This result allowed to identify threshold shaking values at which the two schemes 500 

significantly diverge, as a function of soil model characteristics. 501 

Figure 9 can be considered a valuable tool for guiding geotechnical engineers during the 502 

preliminary steps of the design. Indeed, it provides a criterion to predict the critical conditions 503 

where the divergence between the EQL and the NL approach becomes significant, thus helping in 504 

the selection of the method considering the specific application. The results of this study prove 505 

that the EQL scheme is compatible with the NL approach in soil deposits with thickness up to 30 506 

m, except in very soft soils. In more deformable soils, instead, the two approaches are consistent 507 

with each other up to PGA values close to 0.1-0.2g. Furthermore, the field of applicability can be 508 

extended to deeper models and higher seismicity levels when the period of interest is longer, up to 509 

0.3g. This range encompasses various site conditions typically found in common applications. 510 

Therefore, this result positively contributes to the reliability of the EQL scheme for a broad field 511 

of soil conditions of engineering interest, even under intense motions.  512 
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Data and Resources 513 

Geological and geotechnical information about real soil deposits were retrieved from the following 514 

databases: the Italian Accelerometric Archive v2.3 (ITACA, http://itaca.mi.ingv.it, last accessed 515 

November 2017), the Site Characterization Database for Seismic Stations in Switzerland (SED, 516 

http://stations.seismo.ethz.ch, last accessed November 2017) and the dataset of the Seismic Hazard 517 

and Alpine Valley Response Analysis project (SISMOVALP, 518 

www.risknat.org/projets/sismovalp/CD2/CDROM.html, last accessed November 2017). Details 519 

about some sites were extracted from the geological databases of Tuscany 520 

(www.regione.toscana.it/-/programma-vel, last accessed November 2017), Emilia-Romagna 521 

(https://applicazioni.regione.emilia-romagna.it/cartografia_sgss, last accessed November 2017) 522 

and Umbria Region 523 

(http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Index_kmz.htm, 524 

last accessed November 2017). Seismograms used in this study were collected from ITACA, the 525 

Engineering Strong Motion Database v1.0 (ESM, http://esm.mi.ingv.it, last accessed November 526 

2017), Internet-Site for European Strong-Motion Data (ESD, http://www.isesd.hi.is, last accessed 527 

January 2018) and PEER NGA-West2 Database (https://ngawest2.berkeley.edu, last accessed 528 

January 2018). EQL analyses were carried out with the SHAKE91 software (Schnabel, 1972; Sun 529 

and Idriss, 1992), whereas NL simulations were performed with the DEEPSOIL v7.0 code 530 

(Hashash et al., 2017, http://deepsoil.cee.illinois.edu/, last accessed December 2017). The ground 531 

motion parameters relative to the acceleration time histories were computed with the SeismoSignal 532 

software (https://seismosoft.com/products/seismosignal/, last accessed January 2018). Data 533 

http://itaca.mi.ingv.it/
http://stations.seismo.ethz.ch/
http://www.risknat.org/projets/sismovalp/CD2/CDROM.html
http://www.regione.toscana.it/-/programma-vel
https://applicazioni.regione.emilia-romagna.it/cartografia_sgss
http://storicizzati.territorio.regione.umbria.it/Static/IndaginiGeologicheKmz/Index_kmz.htm
http://esm.mi.ingv.it/
http://www.isesd.hi.is/
https://ngawest2.berkeley.edu/
http://deepsoil.cee.illinois.edu/
https://seismosoft.com/products/seismosignal/
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processing and figures were done using MATLAB 534 

(http://www.mathworks.com/products/matlab/). 535 

The Electronic Supplement reports an overview of the results of GRAs and a description of the 536 

procedure adopted to estimate the thresholds for the inter-method differences from GMPEs.  537 

http://www.mathworks.com/products/matlab/
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Figure 3. Number of models required to achieve a stable estimate of the EQL-based mean PGAA 748 

(a), SPSA (b), IPSA (c) and LPSA (d), as a function of soil model characteristics. Results refer to 749 
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Figure 4. Percentage of simulations where the EQL-based maximum shear strain exceeds 0.1% (a) 752 

and 1% (b), as a function of soil model characteristics. Results refer to the suite “S-1” of input 753 

motions. The dashed area denotes the region not considered in GRAs.  754 
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Figure 5. a) Comparison between the distribution of the inter-method differences for LPSA with 756 
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LPSA . The dark grey area – labeled as “δ > δmax” in the legend – denotes the region 757 

where the inter-method differences for LPSA exceed the threshold 
,10%max

LPSA . Data are extracted 758 

from models lying in the dashed area of the VS,H-H domain represented in b) for the Central Italy 759 

(10-26-2016) MMO input motion (more details about this motion are available in Table S1 in the 760 

Electronic Supplement).  761 
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Figure 7. Contour plot of μδ,SPSA (a) and μδ,LPSA (b) in shallow and deformable soil models. The 767 

dashed area denotes the region not considered in GRAs.  768 

                  

 
   

      

 

  

  

  

 
  
 

 

   

         

         

          

          

                  

 
   

      

 

  

  

  

 
  
 

 

   

         

           

          



47 

 

 769 

Figure 8. Relationship between SPSA

  
 and PGA for all the clusters of soil models. Panels (a)-(l) 770 

display the plot of SPSA

  
 versus PGA derived from GRAs on the set of 10,150 soil models with the 771 

suites “S-1” and “S-2” of input motions. Each panel contains data from each cluster of soil models 772 

and the corresponding location in the VSH-H domain is represented in (m). Panels (a)-(l) also report 773 

the Kendall’s τb coefficient – the p-value is close to 0 in all the considered cases – and the linear 774 

trend of SPSA

  
, which is compared with 

max

SPSA  to identify the shaking level at which δSPSA becomes 775 

relevant. Data from the suite “S-1” of motions for the whole collection of 91,500 soil models are 776 

also displayed in (a)-(l), for comparison purposes.  777 
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Figure 9. Maximum PGA at which the inter-method differences are negligible for specific 779 

applications of GRAs: a) PGAA (i.e., geotechnical applications); b) SPSA (i.e., small buildings); 780 

c) IPSA (i.e., intermediate buildings) and d) LPSA (i.e., tall buildings). The dashed area denotes 781 

the region not considered in GRAs. 782 

  783 



49 

 

Electronic Supplement to 784 

Simplified criteria to select ground response analysis methods for seismic 785 

building design: equivalent linear vs nonlinear approaches 786 

By Mauro Aimar, and Sebastiano Foti 787 

 788 

This electronic supplement starts with an overview of results of GRAs, focusing on the distribution 789 

of the amplification factors (AFs) with respect to soil model characteristics. The second section 790 

describes the procedure adopted to estimate the standard deviation of the AFs (i.e., the thresholds 791 

used to quantify the relevance of the inter-method differences) from GMPEs.  792 



50 

 

Supplemental Text 793 

Overview of Results 794 

This section reports the results obtained from a basic assessment of the database of GRAs, with a 795 

focus on statistical properties of the AFs. Data are extracted from GRAs performed on the 796 

collection of 91,500 soil models for the suite “S-1” of input motions. 797 

For the sake of simplicity, the analysis only accounted for the role of soil model characteristics, 798 

whereas the effect of ground motion characteristics of the seismic input was disregarded. 799 

Therefore, results were averaged – in logarithmic scale – with respect to the input motions, 800 

obtaining a representative response for each ground model, which is compatible with the high 801 

seismicity level. To investigate the effect of soil model characteristics, results were clustered 802 

according to the original discretization of the VS,H-H domain, i.e. with reference to the blocks 803 

adopted for their generation (Figure 1b in the Manuscript). Since the AFs tend to assume a 804 

lognormal distribution (Li and Assimaki, 2010; Aimar et al., 2020), valid statistics for their 805 

description are the mean value and the standard deviation – in logarithmic scale. In this way, this 806 

strategy defined a characteristic value of AFs for a neighborhood of VS,H and H and it was possible 807 

to describe the variation of those quantities across different soil conditions in an effective way. 808 

Figure S1 and Figure S2 report the distribution of the mean and the standard deviation of the AFs 809 

across different soil models, computed according to the EQL and the NL approach, respectively. 810 

The EQL or the NL scheme provide similar results, in terms of the dependence of the mean and 811 

the variability with respect to the soil model, even though the NL scheme tends to underpredict the 812 

amplification with respect to the EQL approach (see EQL vs NL in the manuscript). In general, 813 
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AFs are larger for increasing deformability and thickness of the ground models. Furthermore, 814 

significant differences are observed between shallow models (i.e., H less than 30 m) and deeper 815 

ones. This behavior is observed for all the AFs under examination, although some differences for 816 

varying vibration periods are remarkable. 817 

At small depths, soil models characterized by high f0 exhibit limited amplification, ranging 818 

between 1 and 1.2. The minimum f0 above which the ground motion amplification is negligible 819 

(i.e., smaller than 1.2) depends on the range of spectral periods captured by each amplification 820 

parameter. Specifically, it approximately equals 25 Hz (i.e., T0 equal to 0.04 s) for PGAA, 15 Hz 821 

(0.07 s) for SPSA, 8.5 Hz (0.12 s) for IPSA, 6 Hz (0.17 s) for LPSA. An example of this is reported 822 

in Figure S3 for the EQL-based SPSA and LPSA. In this region, the AFs involve vibration periods 823 

that are longer than the T0 values of the soil models. Therefore, the corresponding wave 824 

components sample a wide portion of the profile, thus inducing little amplification (Stewart et al., 825 

2014). As a consequence, the induced strain levels are small (Figure 4a in the manuscript) and 826 

there is almost no amplification with little variability. This region, instead, was not identified for 827 

PGAA. On the other side, the amplification exhibits a peak over a region located at VS,H smaller 828 

than 400 m/s, whose size is broader at long vibration periods. This region (defined by amplification 829 

greater than 1.8) fits a range of f0 approximately equal to 4-8 Hz (i.e., T0 equal to 0.12-0.25 s) for 830 

PGAA, 3-6 Hz (0.15-0.3 s) for SPSA (Figure S3a) and 2-4 Hz (0.25-0.5 s) for IPSA. At long 831 

periods, instead, the region encompasses a broad variety of deformable models, with f0 smaller 832 

than 3 Hz (i.e., T0 larger than 0.3 s), as shown in Figure S3b. The presence of the peak can be 833 

associated with the transition from linear behavior to moderately relevant nonlinearity, due to the 834 

large strain level observed at moderately deep models (Figure 4a in the Manuscript). At small 835 
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depths, in fact, the behavior is quasi linear and the response is mainly controlled by resonance 836 

phenomena, therefore the amplification grows for soil models whose T0 is closer to the investigated 837 

period range. Conversely, in deeper profiles, the relatively large strain level induces the 838 

lengthening of T0. Therefore, SPSA and IPSA tend to decrease as the inelastic T0 goes beyond the 839 

reference period range, differently from LPSA. 840 

When the soil thickness is large, the effect of f0 is less relevant as H increases and the amplification 841 

mostly depends on VS,H, i.e. on the deformability of shallow layers. In moderately stiff models, the 842 

amplification is always larger than the unity and it increases at lower VS,H values. The response, in 843 

fact, is still controlled by linear phenomena and the impedance contrast mostly affects the 844 

stratigraphic amplification, due to the small strain level (Figure 4a in the Manuscript). Then, the 845 

value saturates to a maximum value and it decreases in deformable soil models. The location and 846 

the magnitude of the peak amplification depend on the specific amplification parameter. On the 847 

one side, the maximum moves towards lower VS,H values and the peak amplitude is larger at 848 

intermediate-to-long vibration periods (Figure S1e-g). On the other side, the decrease is stronger 849 

and localized on a broader region for PGAA and SPSA, even including de-amplification for VS,H 850 

less than 200 m/s (Figure S1c). Deformable soil models, in fact, undergo high strain levels and 851 

nonlinear phenomena arise, as shown in Figure 4a in the Manuscript. Therefore, the high damping 852 

induces strong attenuation, which damps especially low-period waves as they involve more cycles 853 

per unit length. On the other side, the stiffness reduction induces strong amplification of the long-854 

period components, with respect to the other ones, due to the lengthening of the fundamental period 855 

of the ground model. As an additional effect of the high strain level, deep and deformable soil 856 

models are also characterized by strong variability, which is around two times the one observed in 857 
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the surrounding regions. In this case, in fact, GRAs involve the large-strain branch of the Modulus 858 

Reduction and Damping (MRD) curves, which is typically characterized by large variability, hence 859 

its more relevant contribution results in higher data dispersion. However, the standard deviation 860 

tends to decrease at longer vibration periods (e.g., Figure S1h), as the corresponding wave 861 

components sample a large portion of the soil profile and they are less sensitive to local variations. 862 

Derivation of the Threshold Values 863 

The threshold value 
max

X , i.e. the standard deviation ln

E

X  of the ground motion amplification 864 

parameters (i.e., PGAA, SPSA, IPSA, LPSA), was derived from predictive models for the ground 865 

motion. 866 

As for the spectral amplification factors (SAFs – i.e., SPSA, IPSA and LPSA), the estimate 867 

required to merge two different aspects intervening in the empirical estimate of spectral ordinates, 868 

i.e. GMPEs and conditional spectra. Recalling the definition, SAFs describe the amplification of 869 

spectral intensities, where the spectral intensity SIAB is defined as the integral of the elastic response 870 

spectrum Se(T) over a range [A; B] of vibration periods of interest: 871 

 ( )

B

AB e

A

SI S T dT=   (S8) 872 

Since numerical codes used for GRAs estimate the spectral ordinates at discrete vibration periods, 873 

the integral is reduced into a sum. For simplicity, the sampling period is assumed to be constant 874 

and equal to ΔT. Furthermore, for better readability, the subscript AB is removed from the notation. 875 

 ( )
 

( )
 ; ;

AB e i i e i

i A B i A B

SI SI S T T T S T
 

=   =    (S9) 876 
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The spectral ordinates Se(Ti) are modeled as random variables, hence the sum is a random quantity, 877 

which can be synthetically described in terms of its mean μSI and variance 
2

SI . These quantities 878 

can be related to the statistical features of the single spectral ordinates, as follows (Ang and Tang, 879 

2007): 880 
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 (S11) 882 

where ( )iSe T
  and 

( )
2

iSe T
  are the mean and variance of the spectral ordinates at the period Ti, and 883 

( ) ( ),i jSe T Se T
  is the coefficient of correlation between spectral ordinates at periods Ti and Tj. The 884 

variance, in fact, is the combination of the sum of the variances of the single spectral ordinates and 885 

an additional term, which accounts for the covariance 
( ) ( ),i jSe T Se T

  – hence, the linear correlation – 886 

among the spectral ordinates at different vibration periods. 887 

Statistical information about single spectral ordinates, i.e. ( )iSe T
  and 

( )
2

iSe T
 , was extracted from 888 

the GMPE proposed by Boore et al. (2014), henceforth denoted as BSSA (2014). This GMPE, in 889 

fact, provides a reliable estimate of ground motion parameters for a wide variety of source, path 890 

and site conditions. Besides, the model is characterized by relatively simple functional forms, that 891 

require a limited number of parameters of immediate estimate. The procedure of computation of 892 

spectral ordinates assumed a broad set of magnitude and distance bins, where magnitudes ranged 893 



55 

 

between 5.5 and 8 and distances varied between 10 km and 100 km. As for the source mechanism, 894 

an unspecified fault style was considered. Furthermore, the estimate considered a set of discrete 895 

VS,30 values uniformly distributed in logarithmic scale between 150 m/s and 950 m/s, to 896 

approximately cover the range of VS,H of the synthetic ground models. In this way, a reference 897 

distribution of the spectral ordinates was obtained, which is able to represent various seismic and 898 

stratigraphic conditions. 899 

For each bin, the GMPE estimates the mean and the variance of each spectral ordinate in 900 

logarithmic scale, i.e. ( )ln iSe T
  and 

( )
2

ln iSe T
 , respectively. These quantities were converted into the 901 

natural scale, as necessary for the summation (Ang and Tang, 2007). 902 

 ( ) ( )( ) ( )
2

ln ln

1
exp

2i i
Se i Se T Se T

T  = +  (S12) 903 

 
( ) ( ) ( )( ) ( )( )( )2 2 2

ln ln ln
exp 2 exp 1

i i i iSe T Se T Se T Se T
   = + −  (S13) 904 

The BSSA (2014) model provides an estimate of the spectral ordinates at separate vibration 905 

periods, without accounting for mutual relationships of the spectral content across the periods, that 906 

influence the spectral shape. Information about the correlation structure can be retrieved from 907 

studies about the conditional mean spectrum (Baker and Cornell, 2006). An estimate of the 908 

logarithmic correlation coefficients 
( ) ( )ln ,lni jSe T Se T

  is provided by the GMPE proposed by Baker and 909 

Bradley (2017). The model is consistent with the BSSA (2014) GMPE, as they share the same 910 

dataset (i.e., NGA-West2 – see Data and Resources). In this case, the estimate of the correlation 911 

coefficients among the spectral ordinates does not require specific information about magnitude, 912 
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distance, VS,30 and fault style. By combining this quantity with the standard deviation of the single 913 

spectral ordinates, the covariance matrix 
( ) ( )ln ,lni jSe T Se T

  can be obtained. Note that, differently from 914 

the correlation coefficients, 
( ) ( )ln ,lni jSe T Se T

  depends on magnitude, distance, VS,30 and fault style as 915 

it involves the standard deviation of the single spectral ordinates, i.e. ( )ln iSe T
 , according to the 916 

following formula: 917 
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Finally, the covariance matrix was converted into the corresponding one in natural scale, i.e. 919 

( ) ( ),i jSe T Se T
 : 920 
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 (S15) 922 

By merging this information in equations (S3)-(S4), it was possible to infer the statistical 923 

parameters of spectral integrals, i.e. μSI and 
2

SI , from GMPEs. 924 

Empirical data about spectral integrals follow a lognormal distribution, as shown in Figure S4 for 925 

SPSI and LPSI by example. This result was not guaranteed a priori, since spectral integrals derive 926 

from the sum of lognormal variables, for which a closed-form expression for the distribution does 927 

not exist. However, several studies showed that the lognormal distribution fairly approximates the 928 

solution (Fenton, 1960). Thanks to this empirical evidence, spectral integrals can be reasonably 929 
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described by the mean and the standard deviation in logarithmic scale, i.e. μlnSI and 
2

ln SI , which 930 

were derived from the ones computed in normal scale (Ang and Tang, 2007), according to: 931 
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 (S17) 933 

The 
2

ln SI  value strongly depends on site conditions in the range of magnitudes and distances of 934 

interest, as highlighted in Figure S5a. In stiff sites, the value is stable and undergoes small 935 

variations, whereas it suddenly drops at VS,30 smaller than 300 m/s. Furthermore, the variability is 936 

stronger at long periods with respect to high frequencies. These observations are consistent with 937 

the trend of 
( )

2

ln iSe T
  predicted according to the BSSA (2014) model. 938 

As for PGAA, the derivation of 
2

ln PGA  was immediate, since the BSSA (2014) model provides an 939 

estimate of this quantity. Figure S5a shows the resulting trend, obtained with the same set of 940 

magnitudes, distances and VS,30 bins as the spectral intensities. 941 

On the other side, the AFs under examination are defined as the ratio between the simulated motion 942 

(i.e., spectral intensity or peak ground acceleration) computed at the surface (i.e., SIs or PGAs) and 943 

the corresponding one estimated for the input motion (i.e., SIr or PGAr). The expression becomes 944 

the following one in logarithmic scale: 945 

 ln ln lns rSA SI SI= −  (S18) 946 
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 ln ln lns rPGAA PGA PGA= −  (S19) 947 

In equation (S11), the generic SAF is labeled as SA. 948 

Thanks to the assumption of lognormal distribution of SI (PGA), the quantity ln(SA) (ln(PGAA)) 949 

is normally distributed, since it is equal to the difference of two normal random variables. 950 

Therefore, the corresponding variability can be described in terms of the logarithmic standard 951 

deviation ln

E

SA  ( ln

E

PGAA ), which is derived through the theorem of propagation of the variance 952 

(Ang and Tang, 2007): 953 

 
,2 2 2

ln ln ln ln ,ln ln ln2
s r s r s r

E

SA SI SI SI SI SI SI     = + −  (S20) 954 
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s r s r s r

E

PGAA PGA PGA PGA PGA PGA PGA     = + −  (S21) 955 

The variance 
2

ln rSI  (
2

ln rPGA ) refers to a ground motion recorded on a rock-like formation and it 956 

can be estimated according to the procedure above, by selecting a VS,30 bin close to 800 m/s. The 957 

variance 
2

ln sSI  (
2

ln sPGA ), instead, describes the SI (PGA) variability on the top of a soil deposit and 958 

it was estimated for varying VS,30 (Figure S5a). The correlation coefficient ln ,lns rSI SI  ( ln ,lns rPGA PGA959 

) represents the degree of linear relationship between SI (PGA) values observed on soil deposits 960 

and on rock formations. An indicative value was inferred from the NGA-West2 database (see Data 961 

and Resources), by comparing the empirical distributions of SIr and SIs (PGAr and PGAs). As 962 

shown in Figure S5b, the resulting ln ,lns rSI SI  ( ln ,lns rPGA PGA ) ranges between 0.8 and 1 and it 963 

increases when VS,30 is larger, up to a relatively constant value for VS,30 greater than 400 m/s. The 964 

strong correlation between spectral intensities in stiff soils could be an effect of the linear response, 965 
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where the response spectrum undergoes little variations in the shape. Conversely, at small VS,30 966 

values, the poor correlation is mainly an effect of the strong nonlinearity, which dramatically 967 

weakens the degree of relationship at high frequencies. Furthermore, the limited number of data at 968 

VS,30 less than 200 m/s in the NGA-West2 dataset contributes to reducing the degree of correlation. 969 

Therefore, the estimate of ln

E

SA  ( ln

E

PGAA ) accounted for the VS,30-dependence of ln ,lns rSI SI  and 970 

2

ln sSI  ( ln ,lns rPGA PGA and 
2

ln sPGA ) The trend is represented in Figure S6. At small VS,30 values, the 971 

standard deviation dramatically increases, due to the weak correlation between the spectral 972 

intensities recorded on rock and on soil. However, the variability is small compared to the one 973 

predicted by the simulations, especially at short periods. This could be an effect of over-974 

randomization of the VS profiles and of the MRD curves (Stewart et al., 2014). On the contrary, 975 

the empirical variability is small and quite stable in stiff soils. In this case, the estimated ln

E

SA  is 976 

consistent with the simulation-based results, except for SPSA, where it is slightly underestimated 977 

by simulations. A similar discrepancy is also observed for PGAA. Note that the correlation is also 978 

the reason for the opposite trend of SA (and PGAA) with respect to the corresponding SI (PGA). 979 

This standard deviation, in fact, is referred to an amplification parameter, rather than a ground 980 

motion quantity itself.  981 
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List of Supplemental Table Captions 982 

Table S1. Selected input motions with details about event characteristics and intensity, as well as 983 

the suite identification (“S-1” or “S-2”). Event characteristics include the epicentral distance and 984 

the earthquake magnitude, measured in terms of moment magnitude – unless otherwise stated – 985 

whereas intensity is represented in terms of PGA. For some input motions, intensity parameters 986 

are scaled according to a scaling factor. Information about the criteria adopted for its estimate is 987 

available in Aimar et al. (2020). 988 

Table S2. Correlation between PGAA

  
 and commonly used ground motion parameters, quantified 989 

through Kendall’s τb coefficient and the p-value (in brackets). The considered parameters are the 990 

peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), 991 

Arias intensity (AI), predominant period (Tp), mean period (Tm), significant duration from 5% to 992 

95% of the Husid plot (D5-95), significant duration from 5% to 75% of the Husid plot (D5-75) and 993 

uniform duration (UD – based on a threshold acceleration equal to 0.025g). The column labels 994 

identify the reference clusters of soil models (see Figure 8f in the Manuscript). 995 

Table S3. Correlation between SPSA

  
 and commonly used ground motion parameters, quantified 996 

through Kendall’s τb coefficient and the p-value (in brackets). The considered parameters are the 997 

peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), 998 

Arias intensity (AI), predominant period (Tp), mean period (Tm), significant duration from 5% to 999 

95% of the Husid plot (D5-95), significant duration from 5% to 75% of the Husid plot (D5-75) and 1000 

uniform duration (UD – based on a threshold acceleration equal to 0.025g) and SPSI. The column 1001 

labels identify the reference clusters of soil models (see Figure 8m in the Manuscript). 1002 
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Table S4. Correlation between IPSA

  
 and commonly used ground motion parameters, quantified 1003 

through Kendall’s τb coefficient and the p-value (in brackets). The considered parameters are the 1004 

peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), 1005 

Arias intensity (AI), predominant period (Tp), mean period (Tm), significant duration from 5% to 1006 

95% of the Husid plot (D5-95), significant duration from 5% to 75% of the Husid plot (D5-75) and 1007 

uniform duration (UD – based on a threshold acceleration equal to 0.025g) and IPSI. The column 1008 

labels identify the reference clusters of soil models (see Figure 8m in the Manuscript). 1009 

Table S5. Correlation between LPSA

  
 and commonly used ground motion parameters, quantified 1010 

through Kendall’s τb coefficient and the p-value (in brackets). The considered parameters are the 1011 

peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), 1012 

Arias intensity (AI), predominant period (Tp), mean period (Tm), significant duration from 5% to 1013 

95% of the Husid plot (D5-95), significant duration from 5% to 75% of the Husid plot (D5-75) and 1014 

uniform duration (UD – based on a threshold acceleration equal to 0.025g) and LPSI. The column 1015 

labels identify the reference clusters of soil models (see Figure 8m in the Manuscript).  1016 
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List of Supplemental Figure Captions 1017 

Figure S1. Mean and standard deviation of EQL-based PGAA (a-b), SPSA (c-d), IPSA (e-f) and 1018 

LPSA (g-h), as a function of soil model characteristics. The plots report results for the mean value 1019 

(left column) and the standard deviation (right column). Results refer to the suite “S-1” of input 1020 

motions. The dashed area denotes the region not considered in GRAs. 1021 

Figure S2. Mean and standard deviation of NL-based PGAA (a-b), SPSA (c-d), IPSA (e-f) and 1022 

LPSA (g-h), as a function of soil model characteristics. The plots report results for the mean value 1023 

(left column) and the standard deviation (right column). Results refer to the suite “S-1” of input 1024 

motions. The dashed area denotes the region not considered in GRAs. 1025 

Figure S3. Trend of EQL-based SPSA (a) and LPSA (b) for shallow and deformable soil models. 1026 

The contour lines denote the mean values of each parameter, whereas the dashed area identifies 1027 

the region not considered in GRAs. Results refer to the suite “S-1” of input motions. 1028 

Figure S4. Probability plots for SPSI (a-b) and LPSI (c-d) for VS,30 between 225 m/s and 275 m/s 1029 

(a-c) and VS,30 between 780 m/s and 950 m/s (b-d). 1030 

Figure S5. Standard deviation (a) and rock-to-soil correlation (b) of the spectral parameters, as a 1031 

function of soil deposit characteristics (i.e., VS,30). 1032 

Figure S6. Empirical and simulation-based standard deviation for PGAA (a), SPSA (b), IPSA (c), 1033 

LPSA (d), as a function of soil deposit characteristics (i.e., VS,30). 1034 

Figure S7. Number of models required to achieve a stable estimate of the standard deviation of the 1035 

EQL-based PGAA (a), SPSA (b), IPSA (c) and LPSA (d), as a function of soil model 1036 
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characteristics. Results refer to the suite “S-1” of input motions. The dashed area denotes the region 1037 

not considered in GRAs. 1038 

Figure S8. Number of models required to achieve a stable estimate of statistical moments of the 1039 

NL-based PGAA (a-b), SPSA (c-d), IPSA (e-f) and LPSA (g-h), as a function of soil model 1040 

characteristics. The plots report the results for the mean value (left column) and the standard 1041 

deviation (right column). Results refer to the suite “S-1” of input motions. The dashed area denotes 1042 

the region not considered in GRAs. 1043 

Figure S9. Distribution of μδ,PGAA (a) and σδ,PGAA (b), as a function of soil model characteristics; 1044 

Distribution of μδ,IPSA (c) and σδ,IPSA (d), as a function of soil model characteristics. The dashed 1045 

area denotes the region not considered in GRAs. 1046 

Figure S10. Relationship between PGAA

  
 and PGA for all the clusters of soil models. Panels (a)-(l) 1047 

display the plot of PGAA

  
 versus PGA derived from GRAs on the set of 10,150 soil models with 1048 

the suites “S-1” and “S-2” of input motions. Each panel contains data from each cluster of soil 1049 

models and the corresponding location in the VSH-H domain is represented in (m). Panels (a)-(l) 1050 

also report the Kendall’s τb coefficient – the p-value is close to 0 in all the considered cases, except 1051 

in (a), where it equals 0.01 – and the linear trend of PGAA

  
, which is compared with 

max

PGAA  to 1052 

identify the shaking level at which δPGAA becomes relevant. For panel (a), we omit the linear fit 1053 

because τb is smaller than 0.3. Data from the suite “S-1” of motions for the whole collection of 1054 

91,500 soil models are also displayed in (a)-(l), for comparison purposes. 1055 
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Figure S11. Relationship between IPSA

  
 and PGA for all the clusters of soil models. Panels (a)-(l) 1056 

display the plot of IPSA

  
 versus PGA derived from GRAs on the set of 10,150 soil models with the 1057 

suites “S-1” and “S-2” of input motions. Each panel contains data from each cluster of soil models 1058 

and the corresponding location in the VSH-H domain is represented in (m). Panels (a)-(l) also report 1059 

the Kendall’s τb coefficient – the p-value is close to 0 in all the considered cases, except in (a), 1060 

where it equals 0.01 – and the linear trend of IPSA

  
, which is compared with 

max

IPSA  to identify the 1061 

shaking level at which δIPSA becomes relevant. For panel (a), we omit the linear fit because τb is 1062 

smaller than 0.3. Data from the suite “S-1” of motions for the whole collection of 91,500 soil 1063 

models are also displayed in (a)-(l), for comparison purposes. 1064 

Figure S12. Relationship between LPSA

  
 and PGA for all the clusters of soil models. Panels (a)-(l) 1065 

display the plot of LPSA

  
 versus PGA derived from GRAs on the set of 10,150 soil models with the 1066 

suites “S-1” and “S-2” of input motions. Each panel contains data from each cluster of soil models 1067 

and the corresponding location in the VSH-H domain is represented in (m). Panels (a)-(l) also report 1068 

the Kendall’s τb coefficient – the p-value is close to 0 in all the considered cases, except in (a), (b) 1069 

and (c), where it equals 0.48, 0.01 and 0.01, respectively – and the linear trend of LPSA

  
, which is 1070 

compared with 
max

LPSA  to identify the shaking level at which δLPSA becomes relevant. For panels (a), 1071 

(b) and (c), we omit the linear fit because τb is smaller than 0.3. Data from the suite “S-1” of 1072 

motions for the whole collection of 91,500 soil models are also displayed in (a)-(l), for comparison 1073 

purposes. 1074 



65 

 

Figure S13. Relationship between SPSA

  
 and SPSI for all the clusters of soil models. Panels (a)-(l) 1075 

display the plot of SPSA

  
 versus SPSI derived from GRAs on the set of 10,150 soil models with the 1076 

suites “S-1” and “S-2” of input motions. Each panel contains data from each cluster of soil models 1077 

and the corresponding location in the VSH-H domain is represented in (m). Panels (a)-(l) also report 1078 

the Kendall’s τb coefficient – the p-value is close to 0 in all the considered cases, except in (a), 1079 

where it equals 0.01 – and the linear trend of SPSA

  
, which is compared with 

max

SPSA  to identify the 1080 

shaking level at which δSPSA becomes relevant. For panel (a), we omit the linear fit because τb is 1081 

smaller than 0.3. Data from the suite “S-1” of motions for the whole collection of 91,500 soil 1082 

models are also displayed in (a)-(l), for comparison purposes. 1083 

Figure S14. Relationship between IPSA

  
 and IPSI for all the clusters of soil models. Panels (a)-(l) 1084 

display the plot of IPSA

  
 versus IPSI derived from GRAs on the set of 10,150 soil models with the 1085 

suites “S-1” and “S-2” of input motions. Each panel contains data from each cluster of soil models 1086 

and the corresponding location in the VSH-H domain is represented in (m). Panels (a)-(l) also report 1087 

the Kendall’s τb coefficient – the p-value is close to 0 in all the considered cases, except in (a), 1088 

where it equals 0.45 – and the linear trend of IPSA

  
, which is compared with 

max

IPSA  to identify the 1089 

shaking level at which δIPSA becomes relevant. For panel (a), we omit the linear fit because τb is 1090 

smaller than 0.3. Data from the suite “S-1” of motions for the whole collection of 91,500 soil 1091 

models are also displayed in (a)-(l), for comparison purposes. 1092 

Figure S15. Relationship between LPSA

  
 and LPSI for all the clusters of soil models. Panels (a)-(l) 1093 

display the plot of LPSA

  
 versus LPSI derived from GRAs on the set of 10,150 soil models with the 1094 
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suites “S-1” and “S-2” of input motions. Each panel contains data from each cluster of soil models 1095 

and the corresponding location in the VSH-H domain is represented in (m). Panels (a)-(l) also report 1096 

the Kendall’s τb coefficient – the p-value is close to 0 in all the considered cases, except in (a), (b) 1097 

and (c), where it equals 0.04, 0.91 and 0.74, respectively – and the linear trend of LPSA

  
, which is 1098 

compared with 
max

LPSA  to identify the shaking level at which δLPSA becomes relevant. For panels (a), 1099 

(b) and (c), we omit the linear fit because τb is smaller than 0.3. Data from the suite “S-1” of 1100 

motions for the whole collection of 91,500 soil models are also displayed in (a)-(l), for comparison 1101 

purposes. 1102 

Figure S16. Maximum SI at which the inter-method differences are negligible for specific 1103 

applications of GRAs: a) SPSA (i.e., small buildings); b) IPSA (i.e., intermediate buildings) and 1104 

c) LPSA (i.e., tall buildings). The dashed area denotes the region not considered in GRAs.  1105 
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Table S1. Selected input motions with details about event characteristics and intensity, as well as the suite identification (“S-1” or “S-1108 

2”). Event characteristics include the epicentral distance and the earthquake magnitude, measured in terms of moment magnitude – 1109 

unless otherwise stated – whereas intensity is represented in terms of PGA. For some input motions, intensity parameters are scaled 1110 

according to a scaling factor. Information about the criteria adopted for its estimate is available in Aimar et al. (2020). 1111 

Event name Date Network-Station Component Database Moment 

magnitude (-) 

Epicentral 

distance (km) 

Scaling 

factor (-) 

𝑷𝑮𝑨 

(g) 

Suite 

Central Italy 26-Oct-2016 IT-MMO NS ITACA 5.9 16.2 1.2 0.20 S-1 

Central Italy 30-Oct -2016 IV-T1212 NS ITACA 6.5 10.5 0.8 0.20 S-1 

Iwate, Japan 13-Jun-2008 KNET-IWT010 NS PEER NGA- West2 6.9 23.17 0.9 0.20 S-1 

Loma Prieta 18-Oct -1989 CGS-Gilroy Array 

#1 

90° PEER NGA- West2 6.93 28.64 0.7 0.29 S-1 

Northridge-01 17-Jan-1994 CGS-LA-

Wonderland 

Avenue 

185° PEER NGA- West2 6.69 18.99 1.4 0.22 S-1 

North Western Balkan 

Peninsula 

15-Apr-1979 EU-ULA NS ESM 6.9 19.7 1.0 0.18 S-1 

Tottori, Japan 06-Oct -2000 KIKNET-SMNH10 EW PEER NGA- West2 6.61 31.41 1.0 0.25 S-1 

Izmit 17-Aug-1999 TK-4101 EW ESM 7.6 3.4 1.0 0.23 S-1 

Martinique Region 

Windward Island 

29-Nov-2007 RA-MAMA NS ESM 7.4 67.9 1.35 0.24 S-1 
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Table S1. Selected input motions with details about event characteristics and intensity, as well as the suite identification (“S-1” or “S-1112 

2”). (continues) 1113 

Event name Date Network-Station Component Database Moment 

magnitude (-) 

Epicentral 

distance (km) 

Scaling 

factor (-) 

𝑷𝑮𝑨 

(g) 

Suite 

North Western Balkan 

Peninsula 

15-Apr-1979 EU-HRZ EW ESM 6.9 62.9 1.15 0.29 S-1 

Northridge-01 17-Jan-1994 CGS-Pacoima Dam 

(Downstream) 

265° PEER NGA- West2 6.69 20.36 0.75 0.33 S-1 

San Fernando 09-Feb-1971 C&GS-Pasadena-

Old Seismo Lab 

270° PEER NGA- West2 6.61 39.17 1.35 0.28 S-1 

Kobe, Japan 16-Jan-1995 KIKNET-KBU090 90° PEER NGA- West2 6.90 25.4 1.0 0.31 S-1 

Chi Chi Taiwan 05 22-Sep-1999 CWB-TTN042 NS PEER NGA- West2 6.20 92.27 0.92 0.08 S-2 

Irpinia 23-Nov-1980 IT-ALT EW ITACA 6.9 23.4 0.92 0.05 S-2 

Loma Prieta 18-Oct -1989 CGS-PJH 45° PEER NGA- West2 6.93 92.21 0.9 0.08 S-2 

North Western Balkan 

Peninsula 

15-Apr-1979 CR-DUB NS ESM 6.9 104.4 1.35 0.09 S-2 

Whittier Narrows 01-Oct -1987 CGS-Pasadena-CIT 

Kresge Lab 

360° PEER NGA- West2 5.99 13.85 1.1 0.10 S-2 

Northern Algeria 29-Oct -1989 FC-ALG NS ESM 5.9 50 1.4 0.05 S-2 

Sicilia 13-Dec-1990 IT-NOT NS ITACA 5.6 48.3 0.92 0.06 S-2 

  1114 
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Table S1. Selected input motions with details about event characteristics and intensity, as well as the suite identification (“S-1” or “S-1115 

2”). (continues) 1116 

Event name Date Network-Station Component Database Moment 

magnitude (-) 

Epicentral 

distance (km) 

Scaling 

factor (-) 

𝑷𝑮𝑨 

(g) 

Suite 

Martinique Region 

Windward Island 

29-Nov-2007 RA-SFGA NS ESM 7.4 144.8 1.15 0.07 S-2 

South Iceland 17-Jun-2000 SM-Minni-Nupur X ESD 6.5 13 0.85 0.12 S-2 

South Iceland-

aftershock 

21-Jun-2000 SM-Selfoss-City 

Hall 

Y ESD 6.4 15 1.15 0.13 S-2 

Central Italy 26-Oct -2016 IT-CLO NS ITACA 5.9 10.8 0.7 0.13 S-2 

Greece 07-Sep-1999 HI-ATH4 3 ESM 5.9 19.7 1.27 0.14 S-2 

Cosenza 25-Oct -2012 IT-MRM EW ITACA 5.2 2.4 1.2 0.21 S-2 

Whittier Narrows 01-Oct -1987 CGS-Pasadena-CIT 

Kresge Lab 

90° PEER NGA- West2 5.99 13.85 1.0 0.11 S-2 

Albania 08-Apr-2017 AC-PHP E ESM 5.0* 41.1 1.0 0.15 S-2 

Greece 11-Jul-2016 HL-NVR NS ESM 3.8 17.5 1.0 0.18 S-2 

Central Italy 26-Oct -2016 IT-CLO EW ITACA 5.9 10.8 1.23 0.22 S-2 

Southern Italy 30-Sep-1995 IT-SNN EW ITACA 5.2 27.8 1.0 0.12 S-2 

Parkfield-02, CA 28-Sep-2004 CGS-Parkfield-

Turkey Flat #1 (0M) 

270° PEER NGA- West2 6.00 6.82 1.1 0.27 S-2 

 
* Local magnitude. 
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Table S1. Selected input motions with details about event characteristics and intensity, as well as the suite identification (“S-1” or “S-1117 

2”). (continues) 1118 

Event name Date Network-Station Component Database Moment 

magnitude (-) 

Epicentral 

distance (km) 

Scaling 

factor (-) 

𝑷𝑮𝑨 

(g) 

Suite 

Northridge-01 17-Jan-1994 CGS-Vasquez 

Rocks Park 

0° PEER NGA- West2 6.69 38.07 1.05 0.16 S-2 

Turkey-Georgia-

Armenia Border Region 

30-Mar-1989 A-STRS NS ESM 4.0† 15.4 1.05 0.22 S-2 

Central Italy 06-Oct -1997 IT-ASS NS IT 5.4 20.8 0.75 0.14 S-2 

Western Turkey 22-Sep-2015 KO-SHAP NS ESM 4.3 14.6 1.0 0.18 S-2 

Southern Italy 09-Sep-1998 IT-LRS NS ITACA 5.6 18 1.0 0.17 S-2 

Greece 15-Oct -2016 AC-SRN EW ESM 5.5 55.9 1.0 0.29 S-2 

Umbria Marche 2nd 

shock 

26-Sep-1997 IT-ASS NS ITACA 6.0 21.6 1.0 0.16 S-2 

Sicily Italy 26-Dec-2018 IV-EVRN EW ESM 4.9 5.3 1.0 0.3 S-2 

Duzce 12-Nov-1999 A-C1062 EW ESM 7.3 32.3 1.0 0.26 S-2 

 1119 

 
† Surface wave magnitude. 
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Table S2. Correlation between PGAA

  
 and commonly used ground motion parameters, quantified 1120 

through Kendall’s τb coefficient and the p-value (in brackets). The considered parameters are the 1121 

peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), 1122 

Arias intensity (AI), predominant period (Tp), mean period (Tm), significant duration from 5% to 1123 

95% of the Husid plot (D5-95), significant duration from 5% to 75% of the Husid plot (D5-75) and 1124 

uniform duration (UD – based on a threshold acceleration equal to 0.025g). The column labels 1125 

identify the reference clusters of soil models (see Figure 8m in the Manuscript). 1126 

 Cluster of soil models 

 a b c d e f g h i j k l 

PGA 
0.28 

(0.01) 

0.66 

(0.00) 

0.61 

(0.00) 

0.70 

(0.00) 

0.73 

(0.00) 

0.64 

(0.00) 

0.73 

(0.00) 

0.73 

(0.00) 

0.70 

(0.00) 

0.76 

(0.00) 

0.72 

(0.00) 

0.69 

(0.00) 

PGV 
0.17 

(0.11) 

0.43 

(0.00) 

0.40 

(0.00) 

0.53 

(0.00) 

0.57 

(0.00) 

0.41 

(0.00) 

0.49 

(0.00) 

0.53 

(0.00) 

0.58 

(0.00) 

0.46 

(0.00) 

0.54 

(0.00) 

0.58 

(0.00) 

PGD 
0.02 

(0.87) 

0.23 

(0.03) 

0.16 

(0.14) 

0.30 

(0.00) 

0.32 

(0.00) 

0.22 

(0.04) 

0.26 

(0.02) 

0.26 

(0.02) 

0.29 

(0.01) 

0.22 

(0.04) 

0.28 

(0.01) 

0.30 

(0.01) 

AI 
0.25 

(0.02) 

0.48 

(0.00) 

0.40 

(0.00) 

0.48 

(0.00) 

0.52 

(0.00) 

0.42 

(0.00) 

0.45 

(0.00) 

0.46 

(0.00) 

0.46 

(0.00) 

0.43 

(0.00) 

0.46 

(0.00) 

0.46 

(0.00) 

Tp 
0.05 

(0.63) 

0.01 

(0.93) 

0.01 

(0.95) 

0.11 

(0.31) 

0.14 

(0.21) 

0.08 

(0.46) 

0.04 

(0.74) 

0.13 

(0.24) 

0.20 

(0.07) 

0.02 

(0.90) 

0.13 

(0.24) 

0.18 

(0.10) 

Tm 
-0.09 

(0.41) 

-0.12 

(0.25) 

-0.13 

(0.22) 

-0.01 

(0.97) 

0.03 

(0.76) 

-0.06 

(0.56) 

-0.07 

(0.54) 

-0.01 

(0.91) 

0.05 

(0.62) 

-0.17 

(0.12) 

-0.03 

(0.76) 

0.05 

(0.63) 

D5-95 
0.22 

(0.04) 

0.44 

(0.00) 

0.41 

(0.00) 

0.42 

(0.00) 

0.47 

(0.00) 

0.32 

(0.00) 

0.38 

(0.00) 

0.39 

(0.00) 

0.43 

(0.00) 

0.34 

(0.00) 

0.39 

(0.00) 

0.40 

(0.00) 

D5-75 
0.02 

(0.84) 

-0.09 

(0.43) 

0.02 

(0.90) 

-0.08 

(0.50) 

-0.07 

(0.51) 

-0.03 

(0.79) 

-0.04 

(0.69) 

-0.11 

(0.32) 

-0.06 

(0.62) 

-0.10 

(0.40) 

-0.10 

(0.40) 

-0.04 

(0.69) 

UD 
-0.03 

(0.82) 

-0.05 

(0.64) 

-0.06 

(0.58) 

-0.08 

(0.45) 

-0.08 

(0.47) 

-0.14 

(0.18) 

-0.13 

(0.24) 

-0.12 

(0.26) 

-0.09 

(0.43) 

-0.15 

(0.16) 

-0.12 

(0.26) 

-0.09 

(0.39) 
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Table S3. Correlation between SPSA

  
 and commonly used ground motion parameters, quantified 1128 

through Kendall’s τb coefficient and the p-value (in brackets). The considered parameters are the 1129 

peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), 1130 

Arias intensity (AI), predominant period (Tp), mean period (Tm), significant duration from 5% to 1131 

95% of the Husid plot (D5-95), significant duration from 5% to 75% of the Husid plot (D5-75) and 1132 

uniform duration (UD – based on a threshold acceleration equal to 0.025g) and SPSI. The column 1133 

labels identify the reference clusters of soil models (see Figure 8m in the Manuscript). 1134 

 Cluster of soil models 

 a b c d e f g h i j k l 

PGA 
0.46 

(0.00) 

0.74 

(0.00) 

0.69 

(0.00) 

0.66 

(0.00) 

0.67 

(0.00) 

0.62 

(0.00) 

0.75 

(0.00) 

0.66 

(0.00) 

0.61 

(0.00) 

0.77 

(0.00) 

0.63 

(0.00) 

0.61 

(0.00) 

PGV 
0.24 

(0.03) 

0.56 

(0.00) 

0.43 

(0.00) 

0.58 

(0.00) 

0.58 

(0.00) 

0.50 

(0.00) 

0.59 

(0.00) 

0.56 

(0.00) 

0.50 

(0.00) 

0.53 

(0.00) 

0.46 

(0.00) 

0.45 

(0.00) 

PGD 
0.11 

(0.29) 

0.37 

(0.00) 

0.26 

(0.02) 

0.35 

(0.00) 

0.33 

(0.00) 

0.27 

(0.01) 

0.34 

(0.00) 

0.31 

(0.00) 

0.26 

(0.01) 

0.30 

(0.01) 

0.23 

(0.03) 

0.23 

(0.04) 

AI 
0.11 

(0.31) 

0.51 

(0.00) 

0.36 

(0.00) 

0.57 

(0.00) 

0.58 

(0.00) 

0.36 

(0.00) 

0.52 

(0.00) 

0.53 

(0.00) 

0.44 

(0.00) 

0.49 

(0.00) 

0.42 

(0.00) 

0.39 

(0.00) 

Tp 
-0.01 

(0.93) 

0.05 

(0.65) 

-0.03 

(0.83) 

0.26 

(0.02) 

0.28 

(0.01) 

0.25 

(0.02) 

0.19 

(0.09) 

0.27 

(0.01) 

0.27 

(0.01) 

0.12 

(0.30) 

0.23 

(0.04) 

0.24 

(0.03) 

Tm 
-0.01 

(0.91) 

-0.07 

(0.54) 

-0.14 

(0.20) 

0.05 

(0.66) 

0.06 

(0.56) 

0.07 

(0.52) 

0.05 

(0.63) 

0.06 

(0.56) 

0.04 

(0.70) 

-0.05 

(0.66) 

-0.02 

(0.86) 

0.00 

(1.00) 

D5-95 
0.10 

(0.35) 

0.49 

(0.00) 

0.35 

(0.00) 

0.50 

(0.00) 

0.50 

(0.00) 

0.33 

(0.00) 

0.48 

(0.00) 

0.45 

(0.00) 

0.40 

(0.00) 

0.44 

(0.00) 

0.37 

(0.00) 

0.35 

(0.00) 

D5-75 
-0.08 

(0.49) 

-0.03 

(0.76) 

-0.06 

(0.62) 

-0.06 

(0.62) 

-0.06 

(0.57) 

-0.11 

(0.32) 

-0.03 

(0.78) 

-0.07 

(0.53) 

-0.10 

(0.37) 

-0.05 

(0.66) 

-0.09 

(0.42) 

-0.09 

(0.41) 

UD 
-0.18 

(0.09) 

-0.06 

(0.57) 

-0.16 

(0.14) 

-0.05 

(0.64) 

-0.05 

(0.66) 

-0.20 

(0.06) 

-0.10 

(0.37) 

-0.08 

(0.45) 

-0.12 

(0.28) 

-0.14 

(0.20) 

-0.17 

(0.11) 

-0.17 

(0.11) 

SPSI 0.29 

(0.01) 

0.74 

(0.00) 

0.57 

(0.00) 

0.76 

(0.00) 

0.75 

(0.00) 

0.56 

(0.00) 

0.71 

(0.00) 

0.70 

(0.00) 

0.62 

(0.00) 

0.69 

(0.00) 

0.59 

(0.00) 

0.56 

(0.00) 
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Table S4. Correlation between IPSA

  
 and commonly used ground motion parameters, quantified 1136 

through Kendall’s τb coefficient and the p-value (in brackets). The considered parameters are the 1137 

peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), 1138 

Arias intensity (AI), predominant period (Tp), mean period (Tm), significant duration from 5% to 1139 

95% of the Husid plot (D5-95), significant duration from 5% to 75% of the Husid plot (D5-75) and 1140 

uniform duration (UD – based on a threshold acceleration equal to 0.025g) and IPSI. The column 1141 

labels identify the reference clusters of soil models (see Figure 8m in the Manuscript). 1142 

 Cluster of soil models 

 a b c d e f g h i j k l 

PGA 
0.27 

(0.01) 

0.53 

(0.00) 

0.53 

(0.00) 

0.63 

(0.00) 

0.64 

(0.00) 

0.55 

(0.00) 

0.65 

(0.00) 

0.60 

(0.00) 

0.49 

(0.00) 

0.63 

(0.00) 

0.55 

(0.00) 

0.45 

(0.00) 

PGV 
0.16 

(0.14) 

0.38 

(0.00) 

0.44 

(0.00) 

0.64 

(0.00) 

0.57 

(0.00) 

0.51 

(0.00) 

0.56 

(0.00) 

0.55 

(0.00) 

0.43 

(0.00) 

0.59 

(0.00) 

0.52 

(0.00) 

0.42 

(0.00) 

PGD 
0.09 

(0.39) 

0.19 

(0.07) 

0.30 

(0.00) 

0.41 

(0.00) 

0.34 

(0.00) 

0.28 

(0.01) 

0.32 

(0.00) 

0.31 

(0.00) 

0.24 

(0.02) 

0.36 

(0.00) 

0.30 

(0.01) 

0.25 

(0.02) 

AI 
0.16 

(0.14) 

0.30 

(0.01) 

0.34 

(0.00) 

0.54 

(0.00) 

0.48 

(0.00) 

0.45 

(0.00) 

0.45 

(0.00) 

0.44 

(0.00) 

0.32 

(0.00) 

0.50 

(0.00) 

0.42 

(0.00) 

0.30 

(0.00) 

Tp 
0.03 

(0.78) 

0.12 

(0.29) 

0.09 

(0.42) 

0.27 

(0.01) 

0.25 

(0.02) 

0.18 

(0.10) 

0.18 

(0.10) 

0.23 

(0.03) 

0.21 

(0.05) 

0.21 

(0.06) 

0.25 

(0.02) 

0.21 

(0.06) 

Tm 
-0.08 

(0.46) 

-0.06 

(0.56) 

0.08 

(0.45) 

0.15 

(0.15) 

0.10 

(0.35) 

0.12 

(0.25) 

0.09 

(0.39) 

0.12 

(0.29) 

0.14 

(0.19) 

0.09 

(0.39) 

0.13 

(0.24) 

0.14 

(0.21) 

D5-95 
0.08 

(0.48) 

0.23 

(0.03) 

0.27 

(0.01) 

0.50 

(0.00) 

0.50 

(0.00) 

0.44 

(0.00) 

0.47 

(0.00) 

0.45 

(0.00) 

0.39 

(0.00) 

0.47 

(0.00) 

0.43 

(0.00) 

0.37 

(0.00) 

D5-75 
-0.13 

(0.24) 

-0.14 

(0.22) 

-0.03 

(0.76) 

0.06 

(0.62) 

0.11 

(0.34) 

0.15 

(0.18) 

0.12 

(0.28) 

0.12 

(0.27) 

0.18 

(0.11) 

0.14 

(0.22) 

0.18 

(0.10) 

0.16 

(0.14) 

UD 
-0.13 

(0.22) 

-0.17 

(0.11) 

-0.11 

(0.31) 

-0.02 

(0.87) 

-0.07 

(0.54) 

-0.06 

(0.60) 

-0.07 

(0.49) 

-0.07 

(0.54) 

-0.11 

(0.32) 

-0.03 

(0.80) 

-0.07 

(0.55) 

-0.12 

(0.28) 

IPSI 0.08 

(0.45) 

0.36 

(0.00) 

0.36 

(0.00) 

0.74 

(0.00) 

0.69 

(0.00) 

0.58 

(0.00) 

0.65 

(0.00) 

0.68 

(0.00) 

0.59 

(0.00) 

0.58 

(0.00) 

0.65 

(0.00) 

0.56 

(0.00) 
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Table S5. Correlation between LPSA

  
 and commonly used ground motion parameters, quantified 1144 

through Kendall’s τb coefficient and the p-value (in brackets). The considered parameters are the 1145 

peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), 1146 

Arias intensity (AI), predominant period (Tp), mean period (Tm), significant duration from 5% to 1147 

95% of the Husid plot (D5-95), significant duration from 5% to 75% of the Husid plot (D5-75) and 1148 

uniform duration (UD – based on a threshold acceleration equal to 0.025g) and LPSI. The column 1149 

labels identify the reference clusters of soil models (see Figure 8m in the Manuscript). 1150 

 Cluster of soil models 

 a b c d e f g h i j k l 

PGA 
0.08 

(0.48) 

0.29 

(0.01) 

0.28 

(0.01) 

0.35 

(0.00) 

0.53 

(0.00) 

0.35 

(0.00) 

0.50 

(0.00) 

0.53 

(0.00) 

0.51 

(0.00) 

0.50 

(0.00) 

0.55 

(0.00) 

0.49 

(0.00) 

PGV 
-0.02 

(0.89) 

0.20 

(0.07) 

0.15 

(0.17) 

0.42 

(0.00) 

0.60 

(0.00) 

0.35 

(0.00) 

0.50 

(0.00) 

0.62 

(0.00) 

0.58 

(0.00) 

0.57 

(0.00) 

0.62 

(0.00) 

0.60 

(0.00) 

PGD 
-0.16 

(0.15) 

0.04 

(0.70) 

0.04 

(0.70) 

0.25 

(0.02) 

0.35 

(0.00) 

0.16 

(0.14) 

0.28 

(0.01) 

0.39 

(0.00) 

0.35 

(0.00) 

0.36 

(0.00) 

0.39 

(0.00) 

0.40 

(0.00) 

AI 
-0.02 

(0.85) 

0.14 

(0.20) 

0.12 

(0.28) 

0.31 

(0.00) 

0.44 

(0.00) 

0.27 

(0.01) 

0.36 

(0.00) 

0.44 

(0.00) 

0.37 

(0.00) 

0.39 

(0.00) 

0.43 

(0.00) 

0.37 

(0.00) 

Tp 
0.02 

(0.88) 

0.07 

(0.54) 

0.09 

(0.42) 

0.19 

(0.09) 

0.22 

(0.05) 

0.14 

(0.21) 

0.15 

(0.18) 

0.20 

(0.07) 

0.21 

(0.06) 

0.12 

(0.30) 

0.19 

(0.09) 

0.21 

(0.06) 

Tm 
-0.18 

(0.10) 

-0.14 

(0.21) 

-0.16 

(0.13) 

0.08 

(0.44) 

0.16 

(0.13) 

0.12 

(0.27) 

0.10 

(0.34) 

0.18 

(0.10) 

0.21 

(0.05) 

0.18 

(0.10) 

0.21 

(0.05) 

0.24 

(0.03) 

D5-95 
-0.05 

(0.66) 

0.16 

(0.15) 

0.06 

(0.60) 

0.33 

(0.00) 

0.50 

(0.00) 

0.30 

(0.01) 

0.42 

(0.00) 

0.53 

(0.00) 

0.46 

(0.00) 

0.45 

(0.00) 

0.49 

(0.00) 

0.43 

(0.00) 

D5-75 
-0.21 

(0.06) 

-0.21 

(0.06) 

-0.23 

(0.04) 

-0.09 

(0.45) 

0.04 

(0.74) 

-0.02 

(0.86) 

0.03 

(0.78) 

0.12 

(0.27) 

0.12 

(0.27) 

0.12 

(0.27) 

0.12 

(0.27) 

0.10 

(0.40) 

UD 
-0.27 

(0.01) 

-0.28 

(0.01) 

-0.29 

(0.01) 

0.00 

(1.00) 

-0.07 

(0.54) 

-0.14 

(0.19) 

-0.11 

(0.30) 

-0.01 

(0.92) 

-0.05 

(0.67) 

0.02 

(0.89) 

-0.00 

(0.99) 

-0.01 

(0.92) 

LPSI -0.22 

(0.04) 

0.01 

(0.91) 

-0.04 

(0.74) 

0.35 

(0.00) 

0.58 

(0.00) 

0.33 

(0.00) 

0.53 

(0.00) 

0.69 

(0.00) 

0.69 

(0.00) 

0.61 

(0.00) 

0.70 

(0.00) 

0.67 

(0.00) 
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Supplemental Figures 1152 
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Figure S1. Mean and standard deviation of EQL-based PGAA (a-b), SPSA (c-d), IPSA (e-f) and 1155 

LPSA (g-h), as a function of soil model characteristics. The plots report results for the mean value 1156 

(left column) and the standard deviation (right column). Results refer to the suite “S-1” of input 1157 

motions. The dashed area denotes the region not considered in GRAs.  1158 
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Figure S2. Mean and standard deviation of NL-based PGAA (a-b), SPSA (c-d), IPSA (e-f) and 1160 

LPSA (g-h), as a function of soil model characteristics. The plots report results for the mean value 1161 

(left column) and the standard deviation (right column). Results refer to the suite “S-1” of input 1162 

motions. The dashed area denotes the region not considered in GRAs. 1163 

  1164 
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 1165 

Figure S3. Trend of EQL-based SPSA (a) and LPSA (b) for shallow and deformable soil models. 1166 

The contour lines denote the mean values of each parameter, whereas the dashed area identifies 1167 

the region not considered in GRAs. Results refer to the suite “S-1” of input motions.  1168 
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 1169 

Figure S4. Probability plots for SPSI (a-b) and LPSI (c-d) for VS,30 between 225 m/s and 275 m/s 1170 

(a-c) and VS,30 between 780 m/s and 950 m/s (b-d).  1171 
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 1172 

Figure S5. Standard deviation (a) and rock-to-soil correlation (b) of the spectral parameters, as a 1173 

function of soil deposit characteristics (i.e., VS,30).  1174 
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 1175 

Figure S6. Empirical and simulation-based standard deviation for PGAA (a), SPSA (b), IPSA (c), 1176 

LPSA (d), as a function of soil deposit characteristics (i.e., VS,30).  1177 
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 1178 

Figure S7. Number of models required to achieve a stable estimate of the standard deviation of the 1179 

EQL-based PGAA (a), SPSA (b), IPSA (c) and LPSA (d), as a function of soil model 1180 

characteristics. Results refer to the suite “S-1” of input motions. The dashed area denotes the region 1181 

not considered in GRAs.  1182 
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 1183 

Figure S8. Number of models required to achieve a stable estimate of statistical moments of the 1184 

NL-based PGAA (a-b), SPSA (c-d), IPSA (e-f) and LPSA (g-h), as a function of soil model 1185 
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characteristics. The plots report the results for the mean value (left column) and the standard 1186 

deviation (right column). Results refer to the suite “S-1” of input motions. The dashed area denotes 1187 

the region not considered in GRAs.  1188 
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 1189 

Figure S9. Distribution of μδ,PGAA (a) and σδ,PGAA (b), as a function of soil model characteristics; 1190 

Distribution of μδ,IPSA (c) and σδ,IPSA (d), as a function of soil model characteristics. The dashed 1191 

area denotes the region not considered in GRAs.  1192 
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 1193 

Figure S10. Relationship between PGAA

  
 and PGA for all the clusters of soil models. Panels (a)-(l) 1194 

display the plot of PGAA

  
 versus PGA derived from GRAs on the set of 10,150 soil models with 1195 

the suites “S-1” and “S-2” of input motions. Each panel contains data from each cluster of soil 1196 

models and the corresponding location in the VSH-H domain is represented in (m). Panels (a)-(l) 1197 

also report the Kendall’s τb coefficient – the p-value is close to 0 in all the considered cases, except 1198 

in (a), where it equals 0.01 – and the linear trend of PGAA

  
, which is compared with 

max

PGAA  to 1199 

identify the shaking level at which δPGAA becomes relevant. For panel (a), we omit the linear fit 1200 
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because τb is smaller than 0.3. Data from the suite “S-1” of motions for the whole collection of 1201 

91,500 soil models are also displayed in (a)-(l), for comparison purposes.  1202 
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 1203 

Figure S11. Relationship between IPSA

  
 and PGA for all the clusters of soil models. Panels (a)-(l) 1204 

display the plot of IPSA

  
 versus PGA derived from GRAs on the set of 10,150 soil models with the 1205 

suites “S-1” and “S-2” of input motions. Each panel contains data from each cluster of soil models 1206 

and the corresponding location in the VSH-H domain is represented in (m). Panels (a)-(l) also report 1207 

the Kendall’s τb coefficient – the p-value is close to 0 in all the considered cases, except in (a), 1208 

where it equals 0.01 – and the linear trend of IPSA

  
, which is compared with 

max

IPSA  to identify the 1209 

shaking level at which δIPSA becomes relevant. For panel (a), we omit the linear fit because τb is 1210 
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smaller than 0.3. Data from the suite “S-1” of motions for the whole collection of 91,500 soil 1211 

models are also displayed in (a)-(l), for comparison purposes.  1212 
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 1213 

Figure S12. Relationship between LPSA

  
 and PGA for all the clusters of soil models. Panels (a)-(l) 1214 

display the plot of LPSA

  
 versus PGA derived from GRAs on the set of 10,150 soil models with the 1215 

suites “S-1” and “S-2” of input motions. Each panel contains data from each cluster of soil models 1216 

and the corresponding location in the VSH-H domain is represented in (m). Panels (a)-(l) also report 1217 

the Kendall’s τb coefficient – the p-value is close to 0 in all the considered cases, except in (a), (b) 1218 

and (c), where it equals 0.48, 0.01 and 0.01, respectively – and the linear trend of LPSA

  
, which is 1219 

compared with 
max

LPSA  to identify the shaking level at which δLPSA becomes relevant. For panels (a), 1220 
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(b) and (c), we omit the linear fit because τb is smaller than 0.3. Data from the suite “S-1” of 1221 

motions for the whole collection of 91,500 soil models are also displayed in (a)-(l), for comparison 1222 

purposes.  1223 
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 1224 

Figure S13. Relationship between SPSA

  
 and SPSI for all the clusters of soil models. Panels (a)-(l) 1225 

display the plot of SPSA

  
 versus SPSI derived from GRAs on the set of 10,150 soil models with the 1226 

suites “S-1” and “S-2” of input motions. Each panel contains data from each cluster of soil models 1227 

and the corresponding location in the VSH-H domain is represented in (m). Panels (a)-(l) also report 1228 

the Kendall’s τb coefficient – the p-value is close to 0 in all the considered cases, except in (a), 1229 

where it equals 0.01 – and the linear trend of SPSA

  
, which is compared with 

max

SPSA  to identify the 1230 

shaking level at which δSPSA becomes relevant. For panel (a), we omit the linear fit because τb is 1231 
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smaller than 0.3. Data from the suite “S-1” of motions for the whole collection of 91,500 soil 1232 

models are also displayed in (a)-(l), for comparison purposes.1233 
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 1234 

Figure S14. Relationship between IPSA

  
 and IPSI for all the clusters of soil models. Panels (a)-(l) 1235 

display the plot of IPSA

  
 versus IPSI derived from GRAs on the set of 10,150 soil models with the 1236 

suites “S-1” and “S-2” of input motions. Each panel contains data from each cluster of soil models 1237 

and the corresponding location in the VSH-H domain is represented in (m). Panels (a)-(l) also report 1238 

the Kendall’s τb coefficient – the p-value is close to 0 in all the considered cases, except in (a), 1239 

where it equals 0.45 – and the linear trend of IPSA

  
, which is compared with 

max

IPSA  to identify the 1240 

shaking level at which δIPSA becomes relevant. For panel (a), we omit the linear fit because τb is 1241 
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smaller than 0.3. Data from the suite “S-1” of motions for the whole collection of 91,500 soil 1242 

models are also displayed in (a)-(l), for comparison purposes.  1243 
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 1244 

Figure S15. Relationship between LPSA

  
 and LPSI for all the clusters of soil models. Panels (a)-(l) 1245 

display the plot of LPSA

  
 versus LPSI derived from GRAs on the set of 10,150 soil models with the 1246 

suites “S-1” and “S-2” of input motions. Each panel contains data from each cluster of soil models 1247 

and the corresponding location in the VSH-H domain is represented in (m). Panels (a)-(l) also report 1248 

the Kendall’s τb coefficient – the p-value is close to 0 in all the considered cases, except in (a), (b) 1249 

and (c), where it equals 0.04, 0.91 and 0.74, respectively – and the linear trend of LPSA

  
, which is 1250 

compared with 
max

LPSA  to identify the shaking level at which δLPSA becomes relevant. For panels (a), 1251 
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(b) and (c), we omit the linear fit because τb is smaller than 0.3. Data from the suite “S-1” of 1252 

motions for the whole collection of 91,500 soil models are also displayed in (a)-(l), for comparison 1253 

purposes.  1254 
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 1255 

Figure S16. Maximum SI at which the inter-method differences are negligible for specific 1256 

applications of GRAs: a) SPSA (i.e., small buildings); b) IPSA (i.e., intermediate buildings) and 1257 

c) LPSA (i.e., tall buildings). The dashed area denotes the region not considered in GRAs.  1258 
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Data and Resources 1259 

Data used for the derivation of the thresholds of the inter-method differences were extracted from 1260 

the PEER NGA-West2 Database (https://ngawest2.berkeley.edu, last accessed January 2018). Ground 1261 

motion parameters relative to the acceleration time histories were computed with the SeismoSignal 1262 

software (https://seismosoft.com/products/seismosignal/, last accessed January 2018). Data processing 1263 

and figures were done using MATLAB (http://www.mathworks.com/products/matlab/).  1264 

https://ngawest2.berkeley.edu/
https://seismosoft.com/products/seismosignal/
http://www.mathworks.com/products/matlab/
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