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Abstract. Selective laser melting (SLM) is a well-established Additive Manufacturing 
technique for the fabrication of end-use metal components. Process reliability and maximum 
product quality are ensured by 20 years of technology development. Nevertheless, depending 
on the complexity of the part geometry and on the operator experience, different trials are often 
needed before getting a part first time right. To reduce the number of failed jobs, simulation 
software packages predict residual stresses and related distortions in SLM parts and propose a 
compensated geometry for the “right first time” production of the product. In this works, the 
simulation routines of Amphyon software by Additive Works are experimentally calibrated and 
validated for the fabrication of a reference geometry by means of an EOSINT M270 machine 
and Ti6Al4V powder. The calibration of Amphyon is performed using three cantilever 
specimens and the calibrated SLM simulation is then used to compute the compensated shape 
of the reference part. The validation of the compensated shape by comparison to the real part 
geometry shows that Amphyon routines have good prediction capability and dimensional 
accuracy. 
Keywords: Additive Manufacturing, Laser powder bed fusion, process simulation and 
Ti6Al4V 

1. Introduction 
Selective laser melting (SLM) is one of the most widespread Additive Manufacturing (AM) techniques 
for the fabrication of end-use components directly from the CAD model with no need for specific 
moulds or tools [1]. SLM, also named laser powder bed fusion (L-PBF), exploits the thermal energy of 
a laser beam to selectively melt the metal particles of a powder bed layer by layer until the height of 
the part in the building direction is reached [2]. 

Unlike conventional manufacturing technologies, the absence of specific tools or dies together with 
higher freedom of design for SLM products enables mass customization at a reduced cost. For this 
reason, the “right first time” principle is extremely important in additive manufacturing [3, 4], 
especially in the case of unique parts as those of the racing or biomedical sectors[5]. Thus, the 
optimization of the laser powder bed fusion process is a fundamental step to maximize the part quality 
and economic profit.  

Numerical methods for SLM process simulation can be used to reduce the defect rate and improve 
material sustainability if compared to a more resource-demanding trial and error approach. In the 
literature, different approaches have been proposed for SLM simulation [6-14]. For the melting 
process layer after layer, these simulation approaches consider the interaction of the laser source with 
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production of the pre-distorted shape using the same process parameters of the SLM simulation should 
result in a real deformed geometry of the component that is ideally identical to the nominal CAD 
model. 

Different software solutions for the simulation of laser powder bed fusion are offered in the market 
[19]. In this work, Amphyon software by Additive Works is experimentally calibrated and tested for 
the simulation of SLM of Ti6Al4V powder in an EOSINT M270 Dual Mode machine by the German 
company Electro Optical Systems (EOS GmbH). The next section of this paper describes the 
methodology and equipment, while the experimental results of the calibration and validation phases 
are presented in the third section. The last section is about conclusions and proposals for future works. 

2. Materials and methods 
Amphyon software is a product of the German company Additive Works GmbH, a partner of the 
Altair Partner Alliance (APA) program. The first beta release of Amphyon dates back to 2016, while 
the fifth version of 2020 is tested in this work. Amphyon proposed five modules within its user-
friendly framework. The modules cover different steps of the SLM manufacturing route starting from 
the CAD model to the compensation of geometric distortions, including the preparation of the build 
job with part orientation, support structures, and post-processing by the stress-relieving treatment. 

The parameters for processing 30 μm layers of EOS Ti6Al4V powder in the EOSINT M270 system 
are assumed from a previous work of the authors [20]. The machine comes with a Ytterbium (Yb) 
fiber laser source that has a maximum power of 200 Wand a size of 100 μm for the laser spot. 

 
 Table 1. SLM parameters for Ti6Al4V powders in an EOSINI 270 systems 
 

 
 
 
 
 
However, Amphyon considers only one parameter set for the simulation of SLM without 

distinguishing between the different portions of the part cross-sectional area in the layer of the powder 
bed. However, most of the cross section usually corresponds to the core region, so the laser parameters 
in the right column of table 1 mainly influence the thermal history of the metal powder. Hence, the 
parameters of the core region were considered as input for Amphyon simulations, while the 
temperature of the build platform was set at 100 °C. The material characteristics for Ti6Al4V powder 
were assumed from the datasheet of EOS company that declares values of 110 GPa for the Young 
Modulus, 1060 MPa for the Yield stress, and 0.3 for the Poisson coefficient. 

Additive Works has developed an experimental approach for the calibration of Amphyon 
computational routines to account for the specific material and SLM machine. This approach requires 
the production of a cantilever geometry. The cantilever has overall dimensions of 180 mm x 7.2 mm x 
8 mm and a T-shape with two pillars at the opposite ends and support structures below the overhangs 
of the long arms of the “T”. Three replicas of the cantilever should be produced with a different 
strategy of laser hatching for precise calibration considering the material anisotropy (figure 2). 

 

Parameter Skin Contour Core 
Laser power (W) 150 120 170 
Scan speed (mm/s) 1000 1250 1250 
Hatching distance (mm) 0.10 0.10 0.10 
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Figure 5.Inspection of a cantilever 
using the Atos Compact Scan 2M. 

Figure 6.Pre-distorted geometry of the AW Box computed 
by Amphyon for compensation of the SLM distortions. 

 
After SLM fabrication of the three cantilever specimens of Ti6Al4V using the EOSINT M270 

system, their real geometry was measured by 3D scanning. For this activity, a structured light Atos 
Compact Scan 2M by GOM GbmH was used. The Atos Compact Scan exploits stereoscopic vision 
and blue LED light for fringe projection (figure 5) over the surface of the measured object. Moreover, 
it is very accurate because its length measurement error is smaller than 0.02 mm as defined by the 
acceptance test of VDI/VDE 2634 guideline part 3. To capture the real deformed geometries of the 
three cantilevers, the scanning phase was also repeated after the separation of the parts from the build 
platform by W-EDM. 

The maximum deflection (table 2) of the three cantilevers was measured from the scan data using 
GOM Inspect software and the value was used for the calibration of Amphyon software.  

 
Table 2. Maximum deflection of the three cantilevers for Amphyon calibration. 

 
After calibration of the Amphyon software for Ti6Al4V powder and the EOSINT M270 machine, 

the laser powder bed fusion of the AW Box was simulated. The simulation predicted the deformed 
shape (figure 4) caused by the SLM residual stress. Based on this result, Amphyon calculated the 
compensated geometry (figure 6) of the AW Box with pre-distortion. Since the deformation mainly 
affects the longitudinal edge of the square tube that bows down (figure 4), the opposite change in 
shape was applied to the pre-distorted geometry whose edge bows up (figure 6). This pre-distorted 
shape was then exported into the STL format and a replica of Ti6Al4V (figure 7) was manufactured 
using the EOSINT M270 machine.  

The real geometry of the fabricated replica was digitized using the Atos Compact Scan. The 
nominal CAD model (figure 3) of the AW Box was then aligned and compared to the scan data (about 
121,000 points) of the real part (figure 7) using GOM Inspect software for the validation of the 
capability of Amphyon to predict and compensate the distortions induced by the SLM process. 

 

Type of laser hatching Average Parallel Orthogonal 
Maximum deflection of the cantilever 2.28 mm 2.74 mm 2.09 mm 
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Figure 7.Pre-distorted replica of the AW 

Box of Ti6Al4V. 
Figure 8.Deviations between the real geometry of the 

pre-distorted replica and the CAD model. 

 
The results of the validation are shown in figure 8by means of a coloured map representing the 

deviations between the compared geometries. The labels in figure 8 show the local deviations between 
the desired ideal shape of the AW Box and the real shape of the as-built pre-distorted model proposed 
by Amphyon. The distribution of the signed deviations has an average value of 0.00 mm and a 
standard deviation of 0.22 mm. However, the majority of the deviations are included in the symmetric 
range -/+ 0.40 mm. The maximum absolute difference between the compared geometries is smaller 
than 0.80 mm and is limited to the extremes of the down-facing surfaces of the square cube.The results 
of the experimental validation show that using the cantilever calibration procedure, Amphyon 
simulation can predict the SLM distortion of the as-built part and compensate it by pre-distortion of 
the AW Box geometry with good dimensional accuracy. 

4. Conclusions 
This paper aimed to test and validate the simulation modules of Amphyon software by Additive Works 
for the Additive Manufacturing process of laser powder bed fusion. Amphyon performance was 
evaluated for EOS Ti6Al4V powder in an EOSINT M270 Dual Mode machine. 

The experiment-based calibration developed by Additive Works was effective in accounting for the 
anisotropy of the specific combination of material, process parameters, and machine. After calibration, 
the simulation of Amphyon software was validated for the production of the AW Box as reference 
geometry for thin hollow shapes with sharp edges. 

The pre-deformation module of Additive Works was specifically tested in this study. The pre-
distorted shape of the AW Box was computed by Amphyon software for the compensation of the 
deformations of the as-built part. After the production of a replica of the pre-distorted geometry, the 
real shape of the SLM part was digitized using 3D scanning and then compared to the nominal CAD 
model. The results of the comparison assess Amphyon capability of correctly predicting and 
compensating the geometrical distortions generated by the thermal gradient during SLM of Ti6Al4V 
material. For the AW Box, the statistical distribution of the signed difference between the compared 
geometries had an average of 0.00 mm and a standard deviation of 0.22 mm, while the maximum 
difference was smaller than one millimeter. Over these first results for the AW Box, further 
investigation is needed to assess Amphyon performance for more complex geometries. 
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