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Highlights:

e Semantic segmentation of built heritage point clouds through deep neural networks can provide performances
comparable to those of more consolidated state-of-the-art ML classifiers.

e Transfer learning approaches, as fine-tuning, can considerably reduce computational time also for CH domain-
specific datasets, as well as improve metrics for some challenging categories (i.e. windows or mouldings).

e Data augmentation techniques do not significantly improve overall performances.

Abstract:

The growing availability of three-dimensional (3D) data, such as point clouds, coming from Light Detection and Ranging
(LiDAR), Mobile Mapping Systems (MMSs) or Unmanned Aerial Vehicles (UAVS), provides the opportunity to rapidly
generate 3D models to support the restoration, conservation, and safeguarding activities of cultural heritage (CH).
The so-called scan-to-BIM process can, in fact, benefit from such data, and they can themselves be a source for further
analyses or activities on the archaeological and built heritage. There are several ways to exploit this type of data, such as
Historic Building Information Modelling (HBIM), mesh creation, rasterisation, classification, and semantic segmentation.
The latter, referring to point clouds, is a trending topic not only in the CH domain but also in other fields like autonomous
navigation, medicine or retail. Precisely in these sectors, the task of semantic segmentation has been mainly exploited
and developed with artificial intelligence techniques. In particular, machine learning (ML) algorithms, and their deep
learning (DL) subset, are increasingly applied and have established a solid state-of-the-art in the last half-decade.
However, applications of DL techniques on heritage point clouds are still scarce; therefore, we propose to tackle this
framework within the built heritage field. Starting from some previous tests with the Dynamic Graph Convolutional Neural
Network (DGCNN), in this research close attention is paid to: i) the investigation of fine-tuned models, used as a transfer
learning technique, ii) the combination of external classifiers, such as Random Forest (RF), with the artificial neural
network, and iii) data augmentation results evaluation for the domain-specific ArCH dataset. Finally, after analysing the
main advantages and critical aspects, a proposal is made evaluating the extent to which this methodology can also be
useful for non-programming or domain experts.

Keywords: cultural heritage; semantic segmentation; deep learning; deep neural networks; point clouds

Resumen:

La creciente disponibilidad de datos tridimensionales (3D), como nubes de puntos, provenientes de la deteccién de la
luz y distancia (LIDAR), sistemas de mapeado movil (MMS) o vehiculos aéreos no tripulados (UAV), brinda la
oportunidad de generar rapidamente modelos 3D para apoyar las actividades de restauracion, conservacion y
salvaguardia del patrimonio cultural (CH). El llamado proceso de escaneado-a-BIM puede, de hecho, beneficiarse de
dichos datos, y ellos mismos pueden ser una fuente para futuros andlisis o actividades sobre el patrimonio arqueolégico
y el construido. Hay varias formas de explotar este tipo de datos, como el modelado de informacion de edificios
historicos (HBIM), la creacién de mallas, la rasterizacion, la clasificacion y la segmentacion semantica. Este dltimo,
referido a las nubes de puntos, es un tema de maxima actualidad no solo en el dominio del PC sino también en otros
campos como la navegacion autonoma, la medicina o el comercio minorista. Precisamente en estos sectores, la tarea
de la segmentacién semantica se ha explotado y desarrollado principalmente con técnicas de inteligencia artificial. En
particular, los algoritmos de aprendizaje automatico (AA) y su subconjunto de aprendizaje profundo (AP) se aplican cada
vez mas y han establecido un sdlido estado de la técnica en la Gltima media década. Sin embargo, las aplicaciones de
las técnicas de AP en las nubes de puntos tradicionales son todavia escasas; por tanto, nos proponemos abordar este
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marco dentro del ambito del patrimonio construido. Partiendo de algunas pruebas anteriores con la Red Neural
Convolucional de Grafico Dinamico (DGCNN), en esta contribucién se presta atencién a: i) la investigacion de modelos
afinados, utilizados como técnica de aprendizaje por transferencia, ii) la combinacién de clasificadores externos, como
Random Forest (RF), con la red neuronal artificial, y iii) la evaluacion de los resultados de aumentacion de datos para el
conjunto de datos especifico del dominio ArCH. Finalmente, después de analizar las principales ventajas y los aspectos
criticables, se hace una propuesta valorando hasta qué punto esta metodologia puede ser Util también en expertos no

programadores o del campo.

Palabras clave: patrimonio cultural; segmentacién semantica; aprendizaje profundo; redes neuronales profundas;

nubes de puntos

1. Introduction

In the Cultural Heritage (CH) field, point clouds are an
increasingly used tool for asset management. The
development in recent years of faster and more efficient
acquisition tools such as Mobile Mapping Systems
(MMSs) has contributed to the widespread use of these
3D data in several sectors such as autonomous
navigation, robotics and augmented and virtual reality. In
the Digital Cultural Heritage (DCH) domain, combining
these systems with more consolidated techniques such as
terrestrial laser scanners, terrestrial and aerial
photogrammetry using UAVs (Unmanned Aerial Vehicle),
allows the acquisition of massive amounts of data,
sometimes even excessive. In fact, for their effective use,
point clouds are usually subsampled, filtered and post-
processed, in order to simplify their management.

In addition to these operations, a new trend has recently
emerged: the semantic segmentation of point clouds
through artificial intelligence techniques such as
Machine and Deep learning (ML/DL). This tendency
allows point clouds to be used as a basis for 3D
modelling or as a support for semantic data processing.
The subdivision of the point clouds into certain classes
(for an architectural, archaeological, urban or regional
scale) entails various tasks: speeding up the
reconstruction of 3D models, such as BIM (Building
Information Modelling) models (Bassier et al., 2020);
automating analysis in Geographic Information Systems
(GIS) environments, supporting 3D city modelling (Park
and Gulmann, 2019); facilitating and integrating the
representation of forms of decay (Grilli & Remondino,
2019) and so on. To foster research in this direction, it is
necessary to implement an automatic semantic
segmentation, even if the unstructuredness of point
clouds makes use of DL not straightforward. In the
computer vision, this task is nhow consolidated and well
established in the literature for both 2D and 3D data.
However, for the 3D data of architectural heritage, there
is not yet a strong background.

With this research, we, therefore, aim to propose a new
methodology for the semantic segmentation of heritage
point clouds through DL techniques. In this way, it is
possible to automate the recognition of the various
architectural classes and overcome some limitations
given by the use of 2D images such as incomplete data
(given by the lack of three-dimensionality), lighting
problems or possible occlusions. Besides, an attempt is
made to increase the level of detail (LoD) achieved to
date in the state-of-the-art for the semantic segmentation
of point clouds (Weinmann et al., 2015; Boulch et al.,
2018; Landrieu & Simonovsky, 2018). Among the usual
and general classes as Building, Vegetation, Street or
Vehicle, we would detail the Building class with Roof,
Column, Moulding, Stair, Wall, Arch, Floor, Vault and
Door/Window, for a total of nine subclasses. Finally,

Virtual Archaeology Review, 12(25): 73-84, 2021

given some breakthroughs in the field of DCH with
classifiers such as Random Forest (RF) (Teruggi et al.,
2020), we propose a further comparison w.r.t. (Matrone
et al., 2020a) between the DL and ML methodologies in
order to complete the analysis framework, as well as
study a method for their integration.

Within this contribution, which is part of the broader
debate on Digital Humanities, three research questions
are addressed:

e Is it possible to use DL techniques for the CH
domain where the standardisation of the elements,
which should help automatic recognition, is almost
absent, thus making the task even more
challenging?

e What are the pros and cons of the deep neural
networks (DNNs) compared to the most
consolidated ML classifiers?

e Is it possible to make the proposed methodology
“user-friendly” for those who are not programming or
domain experts?

2. State of the art

Since DL is a subset of ML, it is useful to examine how
the overall framework is dealing with both 2D and 3D
data of DCH, to subsequently detail only the DL.

2.1. The datasets

As stated by (Fiorucci et al., 2020) the application of ML
to the field of CH is not yet fully widespread, and it is
severely bounded by the lack of adequate datasets.
Besides limiting the development of specific algorithms
for DCH, this lack also prevents a full comparison of the
different solutions proposed by the researchers. This
absence of datasets drives the studies to mostly train
DNNs on external datasets. Then, through a transfer
learning approach, they use the last layers of the pre-
trained network to save the features and implement a
final fine-tuning based on a new smaller dataset,
targeted on the case study under examination.

The issue of the dataset has a key role in determining
the success of the DL framework for the CH domain. At
the very beginning of this research, it was not possible to
identify one suitable dataset for our purposes, hence it
was necessary to create an ad hoc one. In fact, if in the
case of 2D data there were (Korc and Forstner, 2009;
Teboul et al., 2012; Tyle¢ek and Sara, 2013), specific for
some CH areas, but still inherent to the topic, for the 3D
data the availability was limited to an urban scale or
highly-serialised indoor environments such as offices.
Examples of this datasets are Semantic3D (Hackel et
al., 2017), S3DIS (Armeni et al., 2016) or KITTI (Geiger
et al., 2013).
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Figure 1: Different architectural styles and epochs of the CH point clouds within the ArCH dataset.

A new dataset has been therefore proposed, named
ArCH (Architectural Cultural Heritage) (Matrone et al.,
2020b) and now part of the state-of-the-art since it has
been published and made available for the scientific
community (www.archdataset.polito.it). It consists of 15
point clouds for the DNNSs training phases and 2 for the
tests, for a total of 136 million labelled points. These
scenes represent architectural assets and, in some
cases, are also part of UNESCO sites. In particular, they
represent different epochs and architectural styles.
Figure 1 shows how it encompasses architectures from
the early Middle Ages to the Romanesque, up to the
Mannerism period and the Renaissance and Baroque
ones. It also ranges from the European continent
(Italy and France) to the Asian one (Indonesia). These
scenarios certainly do not define an all-inclusive dataset,
however, they constitute a good starting point for a
solid state-of-art and ensure a good level of
generalisability of the obtained results. The point clouds
have been labelled manually, in order to provide a
secure reference, not being deceptive and misleading for
the DNNs.

2.2. ML and DL approaches in the CH domain

Within the CH domain, ML and DL techniques have
been applied not only to the architectural field but also to
art and archaeology.

In the field of archaeology and remote sensing,
Recurrent-CNNs have been used for the identification of
sites under the ground surface relying on LiDAR or
shapefile data (Verschoof-van der Vaart and Lambers,
2019; Sharafi et al., 2016). A Google application named
Fabricius, has been launched for the automatic
translation of hieroglyphs (Chadwick, 2020) and so on.
Other works attempting at classifying DCH images with
different techniques are (Mathias et al., 2011; Oses et
al., 2014; Llamas et al, 2017; Stathopoulou and
Remondino, 2019), but they have still not exploited for
3D data as point clouds.

Starting from  these studies, semi-supervised
approaches have also been developed. Exploiting the
deep NNs, they are particularly efficient for the CH
domain, as they need a small portion of annotated data,
overcoming the problem of lack of datasets. An example
of this approach is the work of (Baraldi et al., 2018) in
which learning of visual semantic embeddings have
been investigated to provide an automatic annotation of
historical document illustrations and captions. Both
supervised and semi-supervised approaches have been
tested. The comparison of visual and textual data is
conducted through the creation of a shared embedding
space, where the features can be compared based on
distance. This semi-automatic approach is based on
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Maximum Mean Discrepancy (MMD) (Yan et al., 2017)
in which the reproducing kernel Hilbert space is
exploited to compare the distance between the expected
results of the two distributions. In particular, this specific
type of Hilbert space allows determining whether two
functions are pointwise close (if they are close in the
norm, they are also pointwise close) and its combination
with the proposed weighted MMD is extremely useful for
domain adaptation. VGG-19, a renowned CNN
developed by the Visual Geometry Group of the
University of Oxford with 19 layers (Simonyan and
Zisserman, 2014), and ResNet-152, a residual deep
network with 152 layers (He et al., 2016), have been
chosen to encode input images. In this case, it is
demonstrated how cross-domain reference is possible
and that it is unnecessary to have a large amount of data
as input. However, the use of 2D images partially
simplifies the use of a DL framework, since
Convolutional NNs (CNN) can be applied. This is more
challenging with point clouds, because they are
unordered and unstructured geometric data, so CNNs
cannot be easily applied to them. In this case, three
approaches have been developed for the semantic
segmentation (Xie et al., 2019): i) multiview-based in
which a set of images is created from the point cloud, ii)
voxel-based where the cloud is rasterised in order to
make it possible the application of CNNs, and finally, iii)
the point-based methods in which the raw point cloud is
directly consumed and semantic segmentation tasks are
carried out by applying features-based approaches.

To the best of our knowledge, there are still few studies
related to the topic addressed in this contribution. Some
researchers exploit point clouds for semi-automatic or
automatic  elements  recognition  (Murtiyoso &
Grussenmeyer, 2019a, 2019b) and the consequent
reconstruction of BIM models (Bassier et al., 2020).
Nevertheless, although with excellent results, they do
not yet involve the use of DNNs. A closer work is the one
of (Terruggi et al., 2020), which performs a semantic
segmentation of heritage point clouds, with a good level
of detail (architectural and decorative elements).
Although, the use of DNNs, in this case, is not
contemplated. The research is based on the use of 3D
features (Weinmann et al., 2015), namely shape
descriptors derived from a compound of eigenvalues
(AM>A2>A3) obtained from the covariance matrix, able to
describe and emphasise in a particularly explicit way the
different architectural elements (Grilli & Remondino,
2020). These 3D features are used as a starting point for
the RF classifier and the results are very promising. In
(Grilli et al., 2019a) this approach is compared with the
performances of some state-of-the-art DNNs, however,
the chosen networks (1D/2D CNNs and a Bi-Long short-
term memory Recurrent NN) are not suitable for the
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exploitation of point clouds, thus leading to poor results.
Starting from the just mentioned research, a comparison
between the ML and DL approaches was developed in
(Matrone et al., 2020a), highlighting the potentialities and
criticalities of both methods, and demonstrating how they
can be a viable path for the DCH. In particular, the
network used in this last work is the DGCNN (Wang et
al., 2019), based on a specific module called EdgeConv.
This module captures local geometric structure while
maintaining permutation invariance. It generates edge
features that describe the relationship between a point
and its neighbours instead of generating points’ feature
directly from embedding. DGCNN elaborates, in fact, a
dynamic graph, i.e. it recomputes the graph in the
feature space produced by each layer using nearest
neighbours. So at each layer, the graph is updated with
the nearest neighbours using the current feature space.
In this paper, this network’s adaptation, specially
designed for the CH domain and called DGCNN-
Modified (DGCNN-Mod) (Pierdicca et al., 2020), will be
tested, evaluated, and improved. It allows exploiting, in
addition to spatial coordinates, different 3D features
coming from point clouds, in order to guide the k-NN
approach in the selection of points neighbourhoods. This
approach permits us to learn more discriminating
features for the various classes of scenes.

3. Methodology

Starting from the results obtained in (Pierdicca et al.,
2020), the methodology proposed (Figure 2) examines
whether data augmentation techniques applied to a
particular dataset, as the ArCH one, can be useful and
effective as in the case of 2D datasets. Besides, an
investigation on how to make the whole workflow more
functional and “friendly” for external users has been
carried out too. Firstly, a form of data augmentation is
hence presented. Subsequently, a fine-tuning approach
is proposed to understand if, also in the CH domain, it
can lead to performances improvement, introducing a
new scene in a pre-trained network. In fact, the
peculiarities of each scene do not guarantee certain and
definite results, as for other domains. This section is
divided into two subsections: classic fine-tuning and fine-
tuning with the addition of the RF classifier in the final
part of the prediction have been both tested. In the latter

[ ML classifiers ][ DL Artificial Neural Networks ]

'

Random Forest (RF)

Hyperparameters setting
Input features

— Data augmentation

— Fine tuning
Standard I .
With final RF Input:

RF on multiple scenes
with the ArCH dataset scenes

Modified DGCNN (DGCNN-Mod+3Dfeat)

—> Previous tests (Pierdiccaet al., 2020; Matrone et al., 2020)

* Slice
Pieces

case, the choice of adding the RF is due to the results
obtained in (Grilli et al., 2019b), which have shown that
in a short time and even in the presence of relatively
limited data, it is able to provide excellent results.

3.1. Deep learning with the modified DGCNN
(DGCNN-Mod+3Dfeat)

As said before, the DL approach adopted in this paper is
based on the DGCNN-Mod network. This approach has
been designed to consider in the first k-NN phase, not
only the coordinates of normalised points but also other
features like colour features transformations (Hue
Saturation Value or Red Green Blue channels) and
normal vectors. In this way, the k-NN method is aided in
better learning neighbourhood points that allow
generating more discriminating features. This approach
has been further improved in (Matrone et al., 2020a),
where additional input features have been added,
leading to better results for semantic segmentation of
point clouds in the CH domain. The new input features
are 3D features based on ML approaches, so they are
handcrafted. The modified network has been renamed
DGCNN-Mod+3Dfeat, but it will be referred to “modified
DGCNN” for the sake of simplicity in this article.

3.1.1. Data augmentation

Generally, a DL approach can be improved by using
particular data augmentation techniques on the training
data. In our case, we needed methods that can be
applied to point clouds.

So, we have implemented five different techniques
(Figure 3):

¢ rotation, with random steps of 90 degrees;

¢ clipping, on random portions of the data;

e spatial shifting, on X and Y directions;

¢ jittering, by adding Gaussian noise on the data;

e scaling, by using a random scale factor, between a

minimum and a maximum value.

These techniques are applied on the blocks (1x1 m with
endless height) of the scenes that are fed into the
network. At each epoch, for each block, one of these

Figure 2: Research workflow and tests performed
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76



TRANSFER LEARNING AND PERFORMANCE ENHANCEMENT TECHNIQUES FOR DEEP SEMANTIC
SEGMENTATION OF BUILT HERITAGE POINT CLOUDS

methods is applied randomly. The approach is very
similar to the one used in PointNet training (Qi et al.,
2017), where the point cloud is augmented on-the-fly.

Original Subsampled
. 4096 pts

Scaling Jittering Rotation

Top view
(b)

Figure 3: Example of data augmentation techniques. For
representation purposes, a block of 10 x 10 m has been set:
a) front view; b) top view.

3.2. Fine-tuning

In addition to data augmentation techniques, there is
another method to improve the neural network’s
performance. This technique is called fine-tuning and
allows the use of the weights from a pre-trained network,
and re-train it on a new dataset. In this way, we can
obtain good performance in a short time, compared to
training from scratch. It is, therefore, a transfer learning
approach. In our case, we want to use a network trained
on the ArCH dataset scenes, then re-train it on a portion
of a scene never seen by the network, and finally test it
on the remaining portion. The basic idea is that, by
quickly re-training the network on a few data of a new
scene, the modified DGCNN could be oriented to better
discriminate this new scene’s classes.

3.2.1. Fine-tuning with NN features into RF

A hybrid approach has also been tested: a fine-tuning
with the addition of the RF classifier in the final part of
the prediction phase. The choice of adding the RF is due
to the results obtained in (Grilli et al., 2019b), which have
shown that in a short time and even in the presence of
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relatively limited data, it is able to provide excellent
results.

As in the classic fine-tuning technique, the network
weights, pre-trained on the ArCH dataset scenes, have
been employed. Then, the final part of the modified
DGCNN performing the segmentation of the points is
excluded. In this way, the network will be used as a
feature extractor method.

In the second phase, a scene of the dataset never seen
by the network is chosen: this scene is divided into one
part for training and one for the test. Afterwards, the
features of both parts are extracted using the feature
extractor, and exploited as input for training the RF
classifier.

3.3. RF trained on multiple scenes

A training of only the RF classifier was also carried out
using the original features and scenes of the ArCH
dataset to obtain a complete and adequate comparison
of the various methods. Besides, in Section 4, a fine-
tuning of the classifier hyperparameters is performed,
such as number and depth of trees or the choice of gini
and entropy measures for node impurities. These are
essential elements to achieving better performances for
the RF.

The classifier was trained on the same scenes involved
in the other methods in order to obtain congruent results.
An identical approach was maintained for the testing
phase too, where the same portion of the scene is used
in all the compared approaches.

4. Results and discussions

This section reports the results of the tests conducted
according to the methodology described above. The
tests proposed in Section 4.1 concern data
augmentation. Only the best results are summarised.
Section 4.2, on the other hand, focuses on fine-tuning,
divided into standard configuration and with the addition
of RF. Finally, the results of tests conducted with only
the RF trained on multiple scenes of the ArCH dataset
are reported in Section 4.3.

The performances are shown in terms of 3 different
metrics: the Overall Accuracy (OA) of the predicted
points, the F1-Score for the individual classes and its
Weighted Average (WAvg) value. All experiments have
been implemented using the Tensorflow framework and
the Python 3 language. The network fine-tuning
technique was performed by lowering the learning rate of
the original training by 1/10, and the SGD (Stochastic
Gradient Descent) technique has been set as an
optimiser. As stated in (Matrone et al., 2020a), the
scaler2 pre-processing technique, implemented through
the Scikit-Learn library, is used for data normalisation
since it proved to be the best method. Compared to
scalerl, which standardises features by removing the
mean and scaling to unit variance, scaler2 removes the
median and scales the data according to the quartile
range, becoming more robust to outliers. In addition,
other specific techniques have been tested, such as the
focal loss function and skip connections. The focal loss
is a particular function designed to solve issues due to
unbalanced datasets. We introduced it because in the
ArCH dataset some classes have fewer points than
others (e.g. Wall and Roof compared to Columns or
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Door/Window). Instead, the skip connection is a
particular technique that allows concatenating the input
features of a network with those learned in the last
layers, to improve the model convergence.

4.1. Data augmentation

For this group of experiments, standard data
augmentation parameters have been set up, but other
tests are ongoing with different possible configurations.
In particular, the following parameters have been
chosen: rotation of 90 degrees, 0.06 for jittering standard
deviation, 0.18 for the clipping factor, 0.1 spatial shifting
factor, scale factor between 0.8 and 1.25 values.

The results (Table 1) show that no marked improvement
is achieved if comparing the only overall accuracy (OA),
but specific considerations can be made on the single
classes.

Table 1. Comparison of results: F1-score for each class,
WAvg and OA of the data augmentation tests

Re{:;’gce Data augmentation
Focal loss Yes Yes No Yes Yes
Skip connect No Yes No No Yes
Arch 0.08 | 0.05 | 0.02 0.00 0.05
Column 053 | 0.40 | 031 0.16 0.26
Moulding 0.37 0.43 0.37 0.41 0.46
Floor 083 | 0.81 | 081 0.79 0.81
Door/Window | 0.39 0.41 0.56 0.47 0.50
Wall 0.84 | 0.84 | 0.85 0.84 0.84
Stair 0.83 | 0.80 | 0.79 0.77 0.81
Vault 085 | 0.85 | 0.88 0.85 0.87
Roof 0.95 | 095 | 0.96 0.96 0.96
WAVg 083 | 0.84 | 0.84 0.83 0.84
OA 0.84 | 0.85 | 0.85 0.85 0.85

The classes with more points in the training set, such as
Floor, Wall or Roof, remain almost unchanged. A slight
improvement is noted for the Vaults and Mouldings in a
single configuration. On the other hand, the
Door/Window class improvement is significant, where an
average of 0.51 is registered in the data augmentation,
compared to the 0.4 average of the reference tests. The
opposite behaviour is registered for the Arch and
Column classes where, especially in the latter, the
results are better without the data augmentation. In
particular, for the Columns, the decline in performance is
significant and confirms the results of a further test
carried out in which scenes were added with only
columns apart (Figure 4).

The last test results may be due to the introduction of
this kind of scenes, which led the network to learn
that columns must be far away from any other object,
except for the floor. So, if the network is then tested with
scenes having columns near any other objects (arches,
vaults, mouldings and so on), it will probably not
recognise them.

Virtual Archaeology Review, 12(25): 73-84, 2021
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Figure 4: Example of a scene introduced in the training set for
data augmentation of the column class.

4.2. Fine-tuning

The tests with the standard fine-tuning have been further
divided into two sub-groups. In the first, starting from the
pre-trained network, some “pieces” of the test scene are
given as input, including all the possible classes, while in
the second, a “slice” of the scene is cut (Figure 5). In
both configurations, the test is performed on the
complementary scene (RGB data in Figure 5).

The first option was defined on the basis of tests
conducted in (Matrone et al., 2020a) in which parts of
each class are annotated and given as input to the RF.
The second, on the other hand, was dictated by the
results obtained in the data augmentation tests. In that
case, the addition of scenes with only columns as input
for training, led to a net worsening of performances,
probably due to the inability of the network (based on
graphs) to determine relationships with neighbouring
points.

In all the tests (Table 2) the network has been pre-
trained with the hyperparameters that guaranteed the
best result (scaler 2 with only focal loss) in the previous
tests, while the fine-tuning was conducted by varying the
scalers (1, 2 or none) and adding or removing both focal
loss and skip connections.

The results show how, within the fine-tuning, the OA is
better if a “slice” of the scene is provided as input. This
outcome confirms what already emerged from the data
augmentation: connections matter. The network learns
better the connections between the various classes of
objects only if congruent and complete scenes are given
for its training phase. It demonstrates that the modified
DGCNN is learning the spatial relations among the
various architectural elements.

Scenes containing holes between object connections
tend to mislead the network into learning the wrong
discriminating features.

If compared with the reference tests, the results validate
the effectiveness of fine-tuning, especially for those
classes in which there are fewer points in the training set
and the elements to be recognised are more
heterogeneous. Indeed, the columns, arches, doors/
windows, and mouldings are very different from each
other within the same class. This is a peculiarity of built
heritage, which is in contrast with the basic functioning of
the neural network: the more it sees an element of the
same type, the more it will be able to recognise it during
the final prediction.
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Figure 5. Subdivision of the test scene for the fine-tuning experiments. In the first case, only the coloured pieces have been used to
fine-tune the network, while the RGB complementary part constitutes the test set. In the second case, an entire slice of the scene is
used as input for the fine-tuning. The different colours correspond to the various classes.

Table 2. Comparison of results: F1-score for each class,
WAvg and OA of fine-tuning tests.

Fine-tuning
Reference

tests Slice Pieces

Focal loss Yes Yes Yes Yes Yes

Skip connect. No Yes No Yes No
Arch 0.08 | 0.05 | 0.24 0.35 0.15
Column 0.53 | 0.40 | 0.81 0.65 0.63
Moulding 0.37 | 043 | 054 0.55 0.31
Floor 0.83 | 0.81 | 0.63 0.49 0.81
Door/Window 0.39 0.41 0.66 0.60 0.01
Wall 0.84 | 0.84 | 0.83 0.80 0.54
Stair 0.83 | 0.80 | 0.06 0.06 0.77
Vault 0.85 | 0.85 | 0.87 0.90 0.78
Roof 0.95 | 0.95 | 0.97 0.97 0.91
WAvg 083 | 0.84 | 081 0.80 0.70
OA 0.84 | 0.85 | 0.84 0.81 0.71

By fine-tuning part of the scene that will be used as a
test, the network trains itself specifically on the same
type of architectural elements that it will then find in the
complementary test set, overcoming the aforementioned
issue. For the classes that, instead, have a greater
number of points and have more standard elements,
such as walls or roofs, the value remains almost
unchanged. A separate discussion should be made for
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the Stair class where the total absence of the element in
the input scene could have negatively affected the
results.

4.2.1. Fine-tuning with NN features into RF

Since RF proved to be an excellent classifier for the
semantic segmentation task of built heritage (Grilli et al.,
2019b), an attempt to extract the features learned
from the network and give them as input to the RF
has been carried out. This procedure would allow,
starting from a pre-trained DNN, to save the features
in a separate set and use them whenever necessary,
to directly train the RF. In this way, the user would not
even have to annotate a small part of the test scene
(Grilli et al., 2019b; Matrone et al., 2020a).

Likewise Section 4.2, the experiments were divided
according to the input used for the RF: “slice” or
“pieces”.

Several configurations were tested:
e Scaler 1, 2 or none for the DGCNN training;

e Both gini and entropy as measures of the impurity of
a node;

e 100, 150 or 200 for the number of trees. It was
noticed that over 150, the performances began
to decay, therefore no tests were carried out beyond
200;

e 10, 20 or 50 and none for the depth. After noting that
the choice of none guaranteed better results,
causing just a slightly higher computational time,
none was chosen for all subsequent tests.
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Since these tests were performed by using the output of
the NN as input for the RF, in Table 3 the references are
the best result obtained with the DGCNN-Mod, and
those obtained with only the RF trained on pieces of the
test scene.

Table 3. Comparison of results: F1-score for each class,
WAvg and OA of fine-tuning + RF tests.

Reference Fine-tuning .

tests Slice Piece

S
DNN RF Features from NN into RF

Scaler 2 - - - 2
N. of trees 100 200 150 150
Meas. - - L
impurity Gini Gini Entropy Gini
Arch 0.05 0.46 0.28 0.27 0.10
Column 0.40 0.91 0.24 0.31 0.68
Moulding 0.43 | 055 | 0.61 0.63 0.17
Floor 0.81 0.94 | 0.56 0.56 0.75

Door/Window 0.41 0.32 0.32 0.34 0.01

Wall 0.84 | 0.87 | 0.81 0.81 0.52
Stair 0.80 | 0.82 | 0.07 0.08 0.77
Vault 0.85 | 0.90 | 0.90 0.90 0.73
Roof 0.95 | 0.87 | 0.95 0.96 0.89
WAvg 0.84 | 0.85 | 0.79 0.79 0.68
OA 0.85 | 0.84 | 0.81 0.82 0.70

The only results that show an improvement w.r.t. both
the DNN and the RF have been highlighted.

In general, this approach does not seem to bring actual
benefits, but in terms of OA, it nevertheless confirms the
achievement of similar performances, in the case of
“slice”, to those of the reference tests. This outcome
demonstrates how, on the one hand, the features
learned from the network are really able to describe the
classes on which it has been trained and, on the other
hand, how the addition of the RF classifier does not
necessarily guarantee better results. It is the modality
with which it is trained that mainly affects, not the mere
prediction task.

4.3. RF trained on multiple scenes

On the basis of the previous outcomes, an attempt was
also made by training the RF with the same scenes from
the ArCH dataset used for training the DGCNN-Mod
network. The parameters chosen for the training phase
are the same of those selected for the tests in Section
4.2.1. However, the results obtained with different types
of configurations have not achieved a sufficient level of
performance to constitute a valid reference for the state-
of-the-art (Table 4). Their OA ranges from 0.15 to 0.68,
showing a strong dependence on the type of scaler used
for the training set: scaler 2 ranges from 0.15 to 0.18,
scaler 1 is in the range of 0.32 to 0.40 and the use of no
scaler led to 0.65-0.68.
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Table 4: Best results of the RF trained on multiple scenes.

Mﬁﬁ‘;ﬁ:ﬁym Scaler Best OA
RF 1 Gini - 0.663
RF 2 Entropy - 0.678
RF 3 Gini 1 0.367
RF 4 Entropy 1 0.397
RF 5 Gini 2 0.176
RF 6 Entropy 2 0.184

From the visual comparison (Figure 6) and the analysis
of the metrics of the individual classes, it is clear that the
predominant class that has been misclassified is
Moulding. However, even if the result does not achieve
the performances of the other tested methods, some
positive elements can still be noted, including (in the
white rectangles) the recognition of some parts of the
arches, not recognised in the DGCNN-based methods,
as well as an entire column correctly labelled, with the
exclusion of the base. Nonetheless, the result was not
considered sufficient to deepen this approach.

o o o=

LK Wi“l.l

(b)

Figure 6: Visual inspection of the results with the RF trained on
multiple scenes: a) ground truth; b) predicted scene.

These results show that RF is not suitable to segment
objects from totally different scenes (diverse styles and
geometries) using directly the original features. It needs
to have: i) more discriminating features, coming for
example from other methods such as pretrained DNNs
(e.g. the modified DGCNN herein presented, utilised as
a feature extractor), or ii) geometric features similar to
those found in the test scene. This last assumption is
confirmed by the works of (Grilli et al., 2019b; Teruggi et
al., 2020) where the classifier has achieved excellent
and very promising results being both trained and tested
with parts of the same scene. In this way, the input
features are very similar to those the algorithm will
encounter when classifying and predicting the remaining
part of the scene, improving the final results.
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Figure 7: Ground truth and predictions of the test scene (best result for each method): a) south facade; b) north facade.

5. Conclusions

In this paper, a new approach for the semantic
segmentation of heritage point clouds is presented.
Starting from previous tests, close attention is paid to
alternative methods to improve performances and try to
take advantage of pre-trained networks to speed up and
simplify their use for external users.

Tests conducted on data augmentation have shown that
they do not affect overall performances, but still provide
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proper support for those classes with fewer points,
especially if associated with focal loss.

The tests on the NN fine-tuning have instead given rise
to multiple considerations. Firstly, the standard fine-
tuning is able to achieve performances almost equal to
those where only the modified DGCNN is used.
Therefore, they confirm that, once the DNN is pre-
trained, data processing and prediction times can be
significantly reduced (from about 48 h to just over 0.5 h),
in the case of heritage point clouds too. As regards the
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use of the modified DGCNN as a feature extractor and
the RF as a classifier, the achievement of performances
similar to the reference tests is obtained, with some
classes even better detected (Mouldings). However,
there is a strong dependence of the classifier on the type
of scaler used to normalise the data. The absence of the
scaler guarantees better results. On the other hand, the
measures of impurity of nodes do not significantly affect
the results. The training of the RF on several scenes
does not lead to good performances, thus not proving to
be a real alternative to the methodology here proposed.
Except for some cases, it has not been possible to
identify a common and unique pattern able to define
precise guidelines for the hyperparameters to be set in
the fine-tuning or data augmentation tests (Figure 7).

In conclusion, to answer the initial research questions, it
is possible to use DL techniques also in the CH domain
and, specifically, of built heritage point clouds. The
modified DGCNN has proven to achieve performances
similar to those of the more consolidated ML classifiers.
Besides, it guarantees the possibility to avoid manual
annotation by the end-user, if fine-tuning is not carried
out, but the weights saved by the pre-trained network
are directly used to make the prediction. With regards to
the use and exploitation of this methodology by external
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