
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Ultra-compact binary neural networks for human activity recognition on RISC-V processors / Daghero, F.; Xie, C.; Jahier
Pagliari, D.; Burrello, A.; Castellano, M.; Gandolfi, L.; Calimera, A.; Macii, E.; Poncino, M.. - ELETTRONICO. - (2021),
pp. 3-11. (Intervento presentato al convegno 18th ACM International Conference on Computing Frontiers 2021, CF
2021 tenutosi a Virtual conference nel 2021) [10.1145/3457388.3458656].

Original

Ultra-compact binary neural networks for human activity recognition on RISC-V processors

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3457388.3458656

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2909396 since: 2021-06-25T11:31:10Z

Association for Computing Machinery, Inc

Ultra-compact Binary Neural Networks for Human Activity
Recognition on RISC-V Processors

Francesco Daghero
francesco.daghero@polito.it

Department of Control and Computer
Engineering, Politecnico di Torino,

Turin, Italy

Chen Xie
chen.xie@polito.it

Department of Control and Computer
Engineering, Politecnico di Torino,

Turin, Italy

Daniele Jahier Pagliari
daniele.jahier@polito.it

Department of Control and Computer
Engineering, Politecnico di Torino,

Turin, Italy

Alessio Burrello
alessio.burrello@unibo.it

Department of Electrical, Electronic
and Information Engineering,

University of Bologna, Bologna, Italy

Marco Castellano
marco.castellano@st.com

STMicroelectronics, Cornaredo, Italy

Luca Gandolfi
luca.gandolfi1@st.com

STMicroelectronics, Cornaredo, Italy

Andrea Calimera
andrea.calimera@polito.it

Department of Control and Computer
Engineering, Politecnico di Torino,

Turin, Italy

Enrico Macii
enrico.macii@polito.it

Department of Control and Computer
Engineering, Politecnico di Torino,

Turin, Italy

Massimo Poncino
massimo.poncino@polito.it

Department of Control and Computer
Engineering, Politecnico di Torino,

Turin, Italy

ABSTRACT
Human Activity Recognition (HAR) is a relevant inference task
in many mobile applications. State-of-the-art HAR at the edge is
typically achieved with lightweight machine learning models such
as decision trees and Random Forests (RFs), whereas deep learning
is less common due to its high computational complexity. In this
work, we propose a novel implementation of HAR based on deep
neural networks, and precisely on Binary Neural Networks (BNNs),
targeting low-power general purpose processors with a RISC-V
instruction set. BNNs yield very small memory footprints and low
inference complexity, thanks to the replacement of arithmetic op-
erations with bit-wise ones. However, existing BNN implementa-
tions on general purpose processors impose constraints tailored to
complex computer vision tasks, which result in over-parametrized
models for simpler problems like HAR. Therefore, we also introduce
a new BNN inference library, which targets ultra-compact models
explicitly. With experiments on a single-core RISC-V processor, we
show that BNNs trained on two HAR datasets obtain higher clas-
sification accuracy compared to a state-of-the-art baseline based
on RFs. Furthermore, our BNN reaches the same accuracy of a RF
with either less memory (up to 91%) or more energy-efficiency (up
to 70%), depending on the complexity of the features extracted by
the RF.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Hard-
ware→ Power estimation and optimization; •Computer sys-
tems organization → Embedded software.

CF ’21, May 11–13, 2021, Virtual Conference, Italy
2021. ACM ISBN 978-1-4503-8404-9/21/05. . . $15.00
https://doi.org/10.1145/3457388.3458656

KEYWORDS
Binary Neural Networks, Human Activity Recognition, Energy
Efficiency, Edge Computing

ACM Reference Format:
Francesco Daghero, Chen Xie, Daniele Jahier Pagliari, Alessio Burrello,
Marco Castellano, Luca Gandolfi, Andrea Calimera, Enrico Macii, and Mas-
simo Poncino. 2021. Ultra-compact Binary Neural Networks for Human
Activity Recognition on RISC-V Processors. In Computing Frontiers Confer-
ence (CF ’21), May 11–13, 2021, Virtual Conference, Italy. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3457388.3458656

1 INTRODUCTION
Machine Learning (ML) plays an increasingly important role in
many Internet of Things (IoT) applications, ranging from computer
vision to time-series processing [7, 9, 28, 31]. Edge computing,
as a paradigm to host data-analytics as close as possible to end
devices, may offer several advantages compared to the standard
cloud-centric approach. In fact, by not relying completely on the
network, it reduces the issues of long or unpredictable latency
in presence of slow or unstable connectivity. Moreover, it is also
potentially beneficial for energy and privacy, as it avoids the power-
hungry transmission of large chunks of (possibly sensitive) user
data through wireless channels [7, 28, 31]. The main obstacle to
the widespread adoption of edge computing in ML is that moving
inference tasks on tiny, low-cost, and memory-/energy-constrained
processors requires ultra-compact implementations of complex ML
algorithms.

Human Activity Recognition (HAR) based on Inertial Measure-
ment Units (IMUs) is a popular ML-based application that bene-
fits from edge computing, being commonly found in devices such
as smartwatches. Most current HAR solutions at the edge are
based on classic ML, and in particular on simple and HW-friendly
tree-based algorithms, such as decision trees and Random Forests

https://doi.org/10.1145/3457388.3458656
https://doi.org/10.1145/3457388.3458656

CF ’21, May 11–13, 2021, Virtual Conference, Italy F. Daghero et al.

(RFs) [3, 10, 30]. Deep learning (DL) methods are less common,
mostly because their high memory and computation requirements
do contrast with the limited resources available on low-power edge
devices [19, 31].

Binary Neural Networks (BNN) could overcome this limitation,
thanks to their very limited memory requirements and to the usage
of low-cost binary operations. However, in literature, BNNs have
never been applied to HAR, and in general, they have been mostly
implemented with custom HW accelerators [8, 21]. Implementa-
tions on general purpose processors are rare, and the few existing
impose important restrictions on the minimum supported size of
the network [13, 33, 34]. Specifically, the number of channels in
each layer is constrained to be a multiple of 32, in order to sim-
plify memory transfers and binary operations on 32-bit registers
commonly found in edge processors. While these restrictions are
suitable for complex computer vision applications, we show that
on simpler tasks like HAR they make the resulting BNNs more
complex than what is actually needed to reach high accuracy.

In this work, we describe a new library for BNN inference that
targets RISC-V processors, and is specifically targeted at what we
call ultra-compact networks, i.e., with fewer than 32 channels per
layer. To the best of our knowledge, our work introduces both the
first application of BNNs to HAR and the first library for general
purpose HW focusing on small BNNs. With results on two different
HAR datasets (one public and one proprietary) and using the 32-
bit single-core RISC-V Quentin [26], we show that our library is
able to reduce the number of parameters by 7% and the number
of cycles by 21% for the same accuracy, compared to a standard
BNN library limited to multiples of 32 channels. Moreover, our BNN
implementation is Pareto-optimal compared to a solution based on
RFs, outperforming the latter either in terms of inference latency
(and hence energy consumption) or in terms of memory occupation,
depending on the dataset and on the feature set used by the RF.
Specifically, we are able to reduce the latency/energy by up to 70%
on one dataset, and the memory occupation by up to 91% on the
other compared to the RF approach, with no accuracy loss.

2 BACKGROUND AND RELATEDWORKS
2.1 Human Activity Recognition
HAR is typically formulated as a classification task, aimed at iden-
tifying human activities (e.g., standing, laying, walking, running,
etc.) based on inertial sensor measurements [1]. In recent years,
research on ML techniques for HAR has become very active and
relevant on a variety of fields, such as health monitoring and fall
detection.

One of the first HAR approaches targeting edge devices explicitly
is proposed in [1], where the authors implement a Support Vector
Machine (SVM) classifier with fixed-point arithmetic, in order to
reduce the computational cost with minimal accuracy loss, with
respect to a floating point version. More recently, [22] presented a
novel HAR dataset composed of acceleration signals gathered from
smartphones, and then benchmarked this dataset with four classi-
fiers: k-Nearest Neighbour (KNN), SVM, fully-connected Artificial
Neural Networks (ANN) and Random Forests (RF). Experiments
were performed on four different classification tasks (in terms of

number of classes to recognize), and each algorithm was evalu-
ated either on raw data and on magnitude-based features. Results
showed that, in tasks distinguishing among different types of Ac-
tivities of Daily Living (ADLs), RFs obtain the best accuracy. On a
different dataset, [2] compared four supervised classifiers, i.e., KNN,
SVM, Gaussian Mixture Models (GMM) and RF, as well as several
unsupervised models, showing that KNN achieve the best results
among supervised solutions. The authors of [4] used a low-pass
filter pre-processing followed by 5 classifiers, also investigating the
combination of multiple classifiers. Finally, [5] proposed an inno-
vative HAR system based on deep learning, using a Convolutional
Neural Network (CNN) to recognize 9 different activities.

All aforementioned examples target high-end edge devices such
as smartphones, proposing models with relatively large memory
footprints and computational complexities. As a relevant example
of a commercial HAR system for a more “extreme” edge, STMi-
croelectronics manufactured a system-in-package featuring a 3D
digital accelerometer and gyroscope named LSM6DSOX [30]. This
system integrates a digital Machine Learning Core (MLC) which
enables the on-chip identification of human activities such as run-
ning, walking and driving, based on the data patterns coming from
the sensors. Specifically, HAR is realized with a feature extraction
stage followed by a RF-based classifier, selected because of its HW-
friendly operations. More recently, DL approaches have been also
proposed, obtaining state-of-the-art accuracies on several HAR
datasets [15, 23]. In order to obtain such results however, deep net-
works with parameters in the order of millions or billions have to
be used. These models require far more computational power and
memory than those available on low-power devices.

2.2 IoT end-nodes and RISC-V
IoT end-nodes are commonly based on general purpose CPUs or
microcontrollers (MCUs) typically with a RISC instruction set, due
to their high programmability, low power consumption and low
cost [13]. Customized hardware accelerators are rarely employed,
since despite their exceptional performance and energy-efficiency,
high manufacturing costs and limited flexibility make them conve-
nient only for high-volume/high-price devices (e.g. smartphones),
and not for lower-end systems (e.g. smartwatches, wearables, etc).
Among general purpose solutions, the open-source RISC-V Instruc-
tion Set Architecture (ISA) is becoming widely popular in the IoT
world. Several universities and companies have developed RISC-V-
based cores with specific extensions targeting ML and DL at the
edge [26, 29]. A relevant example is the PULP family of proces-
sors [11, 25], on which our proposed BNN library is benchmarked
in Section 4. Besides including features such as hardware loops,
load/store with pointer increments and SIMD operations, PULP
processors are cacheless, leaving the full control of the memory
hierarchy to the programmer. Despite increasing the software com-
plexity, this feature, as well as the previous ones, yield signifi-
cant speed-up and energy-efficiency benefits for the memory- and
compute-intensive kernels involved in ML and DL inference. Other
RISC-V designers have also proposed similar features to enable
deep learning at the edge [27, 29].

Ultra-compact Binary Neural Networks for Human Activity Recognition on RISC-V Processors CF ’21, May 11–13, 2021, Virtual Conference, Italy

2.3 Binary Neural Networks
Quantization is known to be one of the most effective ways to
reduce the inference complexity of DL models, which consists in
reducing the precision of the data format used to represent model
weights and layers inputs/outputs (so-called activations) [14, 17,
18, 20]. The most common form of quantization uses 8-bit integer
formats for both weights and activations, yielding relevant complex-
ity reduction with limited accuracy drops with respect to floating
point models [17, 20]. Nonetheless, the memory footprint and total
number of inference operations of 8-bit quantized models are often
still excessive for extreme edge devices [16, 24].

Binary Neural Networks (BNNs) try to achieve further complex-
ity reductions by taking the quantization concept to the extreme,
reducing both weights and activations to 1-bit precision [16]. The
most hardware-friendly form of binarization allows weights and
activations to assume numerical values in {−1, 1}, which are then
encoded in binary as logic 0 and 1, respectively. Thus, binariza-
tion is obtained simply with the 𝑠𝑖𝑔𝑛() function. Binarizing both
weights and activations with this format impacts the memory foot-
print of the model significantly, lowering it by 32x with respect to
a sigle-precision floating point implementation. Similarly, the size
of intermediate activation buffers is also reduced.

Furthermore, binarization also completely eliminates Multiply
and Accumulate (MAC) operations from the main computational
kernels of BNNs (e.g., fully connected and convolutional layers)
in favour of bit-wise operations. In fact, BNN multiplications can
be implemented as bitwise XNORs, while accumulations reduce
to counting the number of 1s (Popcount). Precisely, a dot product
between two binary vectors of weights (w) and activations (x) is
obtained with the following equation:

𝑦 = 2 ·𝑃𝑁𝑖=0𝑤𝑖 ⊙ 𝑥𝑖 − 𝑁 (1)

where ⊙ and 𝑃 are the XNOR and popcount operators respectively,
and 𝑁 is the vectors’ length. Note that both the subtraction and
the scalar multiplication are constant operations that in practice
can be eliminated with no impact on the model’s capacity. The
possibility of performing inference with these HW-friendly binary
operations and of executing 32 “multiplications” in parallel even
on a general purpose processor, by XNOR-ing together two 32-
bit registers, enables significant speedups, even compared to 8-bit
quantization [16, 24].

BNNs are not a panacea, as they often incur in sharp accuracy
drops compared to float or 8-bit integer networks on difficult tasks,
e.g., in computer vision [16]. Nonetheless, on simpler problems, they
have been shown to yield excellent complexity vs. accuracy trade-
offs [16, 24]. For this reason, BNNs are promising candidates for
an efficient yet accurate implementation of HAR on edge devices.
However, to the best of our knowledge, no previous work has
explored them for this task.

3 ULTRA-COMPACT BNNS FOR HAR
3.1 Motivation
In this paper, we pursue two related goals. First, we want to assess
the effectiveness of BNNs for implementing HAR on edge devices,
in comparison with state-of-the-art hardware-friendly ML mod-
els such as RFs. In particular, we target general purpose RISC-V

processors, due to their increasing popularity in IoT. Since these de-
vices often have limited memory and tight energy constraints [26],
in order to be competitive, our BNN implementation should be
optimized to minimize the number of operations performed and
the models’ memory footprints. Therefore, our second goal is to
introduce a novel BNN inference library that specifically targets
ultra-compact networks.

In fact, a common design decision of previous BNN libraries for
general purpose hardware is constraining the number of channels
(i.e., feature maps) in each layer to multiples of 32 [13, 33, 34]. This
permits the storage of all channels relative to the same feature map
element exactly in one or more 32-bit words, thus significantly
simplifying the implementations of convolutions on 32-bit archi-
tectures. While this constraint is reasonable for 2D BNNs used in
computer vision, which have many channels [16, 24], our results of
Section 4 show that, for HAR, a good accuracy can be obtained with
1D BNNs including as little as 2 or 4 channels. Therefore, sticking to
existing implementations would force us to use over-parametrized
models, resulting in a needless waste of operations and memory.
For example, a binary 1D convolutional layer with 𝐶𝑖𝑛 = 8 input
channels and𝐶𝑜𝑢𝑡 = 4 output channels, with a filter size of𝐾 = 7 re-
quires 7 ·8 ·4 = 224 bits of storage. Being limited to𝐶𝑖𝑛 = 𝐶𝑜𝑢𝑡 = 32
causes the data size to increase to 7168 bits, i.e., a 31x overhead.
To cope with this limitation, our library efficiently supports any
power-of-2 as number of channels, with minor overheads when
dealing with larger networks. The C implementation of our library
is released open source at [12].

In the rest of this section, we describe in detail our implementa-
tion of ultra-compact binarized layers.

3.2 Binarized Convolution
An overview of the flow of operations in our implementation of
binarized convolutional (Conv) layers is shown in Figure 1. The
library focuses on 1D convolutions for time-series processing, as
needed for HAR. Thus, the basic convolutional layer equation, as-
suming a stride 𝑆 = 1 for simplicity, is the following:

𝑦𝑡,𝑚 = 𝑓

(
𝐾∑
𝑘=0

𝐶𝑖𝑛∑
𝑐=0

𝑤𝑚,𝑘,𝑐 · 𝑥𝑡+𝑘,𝑐

)
(2)

where 𝑥 , 𝑦 and 𝑤 are input activations, output activations and
filter weights respectively, 𝐾 the convolution filter size, 𝐶𝑖𝑛 the
number of input channels and 𝑓 () a non-linear activation function,
typically a ReLU. The computation is repeated for all output time-
steps 𝑡 ∈ [0 : 𝑇 − 1] and for all output channels𝑚 ∈ [0 : 𝐶𝑜𝑢𝑡 − 1].
If 𝑥 and𝑤 are both binary, given (1), the equation becomes:

𝑦𝑡,𝑚 = 𝑠𝑖𝑔𝑛

(
𝑃𝐾𝑘=0𝑃

𝐶𝑖𝑛

𝑐=0𝑤𝑚,𝑘,𝑐 ⊙ 𝑥𝑡+𝑘,𝑐
)

(3)

Notice that the (non-linear) 𝑠𝑖𝑔𝑛() function used to re-binarize the
output also takes on the role of activation function [16].

Equation (3) applies to all Conv layers, except the first layer of
the network, i.e., the one that directly processes inertial sensor
samples in case of HAR. Indeed, in accordance with several previ-
ous works [16, 24, 34], we found that binarizing the input directly
yielded too low accuracy and divergent training. Therefore, our
library also includes an implementation of mixed-binary-integer
convolution, processing 8-bit quantized elements for 𝑥 (not detailed

CF ’21, May 11–13, 2021, Virtual Conference, Italy F. Daghero et al.

Main Memory

x[t, 0:7]
x[t,8:16]
x[t+1,0:7]
x[t+1,8:16]
x[t+2,0:7]
x[t+2,8:16]
x[t+3,0:7]
x[t+3,8:16]

w[m,0,0:7]
w[m,0,8:16]
w[m,1,0:7]
w[m,1,8:16]
w[m,2,0:7]
w[m,2,8:16]
w[m+1,0,0:7]
w[m+1,0,8:16]
w[m+1,1,0:7]
w[m+1,1,8:16]

…

…
𝑡ℎ[m]
𝑡ℎ[m+1]…

Input
Buffer

Weights
Buffer

Batch
Norm
Buffer

Output
Buffer

y[t,8:16]
y[t+1,0:7]

y[t,0:7]

y[t+1,8:16]

x[t,0:7] x[t,8:16] x[t+1,0:7] x[t+1,8:16] x[t+2,0:7] x[t+2,8:16]

w[m,0,0:7] w[m,0,8:16] w[m,1,0:7] w[m,1,8:16] w[m,2,0:7] w[m,2,8:16]

Align data xnor xnor

popcount popcount

STEP0 STEP1

C
on

vo
lu

tio
n

8bit

32bit registers 32bit registers

32bit

accumulator

accumulator >=
threshold

…
y[t,0:7] y[t,8:16] y[t+1,0:7] y[t+1,8:16]
or (with y[t,m])

Fu
se

d
Ba

tc
h

N
or

m
Fu

se
d

Po
ol

Figure 1: High-level view of the operations in the proposed binarized convolutional layers for 𝐶𝑖𝑛 = 𝐶𝑜𝑢𝑡 = 16 and 𝐾 = 3.

here for sake of space). Moreover, notice that (3) does not include
an additional bias term as the latter can be merged with batch
normalization. (see Section 3.3).

3.2.1 Data Layout. To the best of our knowledge, all existing
libraries implementing BNN inference on general purpose proces-
sors and MCUs focus on 2D convolutions [13, 33, 34], whereas HAR
requires 1D networks. Thus, a first important design choice of our
implementation concerns the data layout in memory for 1D data,
and in particular for the 𝑇 ×𝐶𝑖𝑛 activation tensors 𝑋 = [𝑥𝑡,𝑐].

In order to maximize performance, we store these data in time-
major order, i.e. all channels relative to the same time-step are stored
contiguously, as shown in the Input Buffer of Figure 1. Choosing
this layout permits accessing all inputs required to produce a given
convolution output, i.e., the 𝐾 ×𝐶𝑖𝑛 bits relative to 𝐾 consecutive
time-steps, by loading few consecutive words from memory. In
turn, this allows us to exploit hardware features available in many
RISC-V cores, such as loads with automatic post-increment. For
example, with 𝐶𝑖𝑛 = 16, 𝐾 = 3, all inputs required for a single
convolution are stored as 48 consecutive bits, and can be loaded in
two 32-bit registers (as shown in the top-right of Figure 5).

3.2.2 Loop Ordering. The computation expressed by (3) has to
be repeated for all output channels and time-steps, i.e., it has to be
inserted within two nested loops. The ordering of these two loops is
another important design choice, which determines the data reuse
pattern, i.e., whether input activations or weights are kept fixed,
while iterating over the other vector. After testing both approaches,
we found that keeping activations fixed yields the best performance
on our target HW. Thus, we process all output channels relative
to the same step sequentially before moving to the next time-step.
The main advantage of this approach is that, since (binary) output
activations relative to multiple channels of the same time-step are
likely to be loaded in the same 32-bit register (see the bottom-right
of Figure 1), output registers reuse is maximized. A pseudo-code

of the overall layer processing is shown in Algorithm 1, where the
inner loop operation corresponds to (3).

Algorithm 1: Loop ordering in binarized Conv layers.
for 𝑡 ∈ [0 : 𝑇 − 1] do

for𝑚 ∈ [0 : 𝐶𝑜𝑢𝑡 − 1] do
𝑦𝑡,𝑚 = Conv(𝑤𝑚, 𝑥𝑡 :𝑡+𝐾−1) // Eq. (3)

end
end

3.2.3 Data Alignment and Leftovers. The main difference be-
tween our library and previous approaches for 2D networks, which
deal only with multiples of 32-channels, lies in the fact that convo-
lution inputs may occupy a non-integer number of words. This is
shown in Figure 1, where the inputs of a convolution occupy 48bit,
i.e., 1 and 1/2 words for a typical 32-bit IoT processor. With the goal
of minimizing operations and memory, padding inputs and weights
buffer with zeros is not an option.

It becomes then necessary to carefully handle data alignment
and partial “leftovers”, while maintaining as much as possible the
parallelization benefits of binarization. An example of how we
handle the alignment of inputs is shown in Figure 2 for 𝐾 = 11
and 𝐶𝑖𝑛 = 4 . The figure refers to the moment when, after having
produced the outputs relative to all channels of timestep 𝑡 , the layer
has to start processing timestep 𝑡 + 1, i.e., the end of an iteration
of the outer loop in Algorithm 1. Thus, since 𝐾 = 11, the input
samples to be considered change from 𝑥 [𝑡 : 𝑡 +10] to 𝑥 [𝑡 +1 : 𝑡 +11].
Given the chosen data layout, to correctly align the inputs against
the filter weights, all input samples have to be shifted left by 𝐶𝑖𝑛
positions. Further, for each whole word involved in the convolution,
the most significant 𝐶𝑖𝑛 bits of the next word have to be shifted in,
as shown in the left of Figure 2. Finally, the leftover partial word
has to be filtered with a mask containing (𝐾 ·𝐶𝑖𝑛)%32 leading 1s,

Ultra-compact Binary Neural Networks for Human Activity Recognition on RISC-V Processors CF ’21, May 11–13, 2021, Virtual Conference, Italy

to avoid that XNOR and popcount operations are applied also to
inputs not involved in this convolution (right side of the figure). A
similar alignment step, not reported for sake of space, is necessary
also for filter weights, when switching from one output channel to
the next.

0

x[t] x[t+8]

R1 = xbuff[i]<<Cin

R2 = xbuff[i+1]>>(32-Cin)

R1 = R1 or R2

x[t+1]

x[t+1] x[t+8]

4bit

0
R4 = mask

F F F 0 0 0 0 0

00 0 0 0
R3 = R3 and R4

R3 = xbuff[i+1]<<Cin

x[t+11]

x[t+11]

Figure 2: An example of input alignment for 𝐶𝑖𝑛 = 4, 𝐾 = 11.

To avoid destructing input data, aligned inputs and weights are
stored in intermediate buffers (composed of 2 words in the example
of Figure 2), when they cannot be entirely kept in the register file.

3.2.4 Partial Loop Unrolling. Our Conv implementation also
uses partial loop unrolling, i.e., the processing of multiple time-steps
and/or output channels in each inner loop iteration of Algorithm 1.
As explained in previous work [13], this improves the arithmetic
intensity, that is, for a BNN, the number of XNOR/Popcount oper-
ations per memory load. However, an excessive unrolling would
cause register spilling, yielding the opposite effect. After exper-
imenting with different unroll patterns, we found that the best
performance on our target hardware are achieved with a 2x2 ker-
nel, i.e., processing 2 output channels relative to 2 consecutive
time-steps in each inner loop iteration.

xnorInput Regs.

Weights Regs.

𝑥!:!#$

𝑥!#$:!#%

𝑤& ,&:$

𝑤$,&:$

𝑤& ,&:$ # 𝑥!:!#$

𝑤& ,&:$ # 𝑥!#$:!#%

𝑤$,&:$ # 𝑥!:!#$

𝑤$,&:$ # 𝑥!#$:!#%

Accumulator Regs.

“Product” Regs.

𝑦&,!

𝑦&,!#$

𝑦$,!#$

𝑦$,!

po
pc
ou
nt

Figure 3: Partial loop unrolling with a 2x2 kernel.

A schematic view of the 2x2 inner loop processing is shown in
Figure 3, for the first step of a convolution with 𝐶𝑖𝑛 = 16 (further
steps would be necessary if𝐾 > 2). As shown, 12 32-bit registers are
involved in the computation: 2 each for inputs and weights, 4 for the
XNOR outputs (products) and finally, 4 accumulators storing the
(pre-binarization) outputs relative to the two processed channels (0
and 1) and timesteps (𝑡 and 𝑡 + 1).

3.3 Fused batch normalization and pooling
Batch Normalization (BatchNorm) is a common operation in mod-
ern neural networks. For a BNN, BachNorm is typically performed
before re-binarizing outputs. In this case, as explained in [16], the
combined BatchNorm and binarization can be reduced to a simple
comparison between the pre-binarization output relative to each
channel and a threshold computed offline as follows:

𝑡ℎ𝑚 =
(`𝑚 − 𝛽𝑚 · 𝜎𝑚𝛾𝑚) + 𝐾 ·𝐶𝑖𝑛

2
(4)

where `𝑚 and 𝜎𝑚 are the mean and standard deviation values rela-
tive to the𝑚-th channel, and 𝛽𝑚 and 𝛾𝑚 are the trained BatchNorm
parameters.

In our library, BatchNorm is therefore implemented as a fused op-
eration within convolutional and fully connected layers, as shown
in the bottom-right of Figure 1. Thisminimizes thememory accesses
by avoiding the storage of temporary (not-binarized) accumulator
outputs in a large intermediate buffer.

Similarly , in order to reduce the latency and code size of our
implementation, we also fuse max pooling (MaxPool) operations
with convolutional and fully-connected layers. In BNNs, MaxPool
reduces to a bitwise OR among the outputs relative to multiple
consecutive timesteps, which can be easily implemented “on the fly”
by means of a correct alignment on the output register (as shown in
Figure 1). Doing so reduces the read/write operations on the output
buffer, as well as its size. Most importantly, it eliminates the need
of a dedicated max pooling function, with a positive effect on code
size.

3.4 Binarized Fully-Connected Layer
Our implementation of fully connected (FC) layers follows very
similar principles to those described for convolutions, not repeated
here for sake of space. In fact, a FC layer can be considered as a
corner case of convolution with a single output timestep. The main
difference is that, for FC layers, the partial loop unrolling described
in Section 3.2.4 and shown in Figure 3 is performed with a 2x1
kernel, since we don’t have multiple “timesteps” to process.

Importantly, most of our BNNs for HAR include a single FC layer
at the output of the network, used to produce the final classification
scores. For this layer, we skip the re-binarization of the outputs,
saving the 32bit accumulator output directly to memory, since the
argmax of the scores is used to determine the predicted class. This,
in turn, affects the implementation of BatchNorm which, for the
output layer, is not realized by a simple thresholding as in (4) but
rather with a standard product + sum.

4 EXPERIMENTAL RESULTS
4.1 Setup
We perform experiments on two different HAR datasets, one pub-
lic and one proprietary. The former, UniMiB-SHAR [22] contains
11,711 records acquired with an Android smartphone, divided in 17
activity classes. Each record is a vector of 151x3 tri-axial accelerom-
eter values. In the original paper, the authors benchmarked this
dataset with multiple classifiers using either raw data or accelera-
tion magnitude features, and obtained the best performance with a

CF ’21, May 11–13, 2021, Virtual Conference, Italy F. Daghero et al.

random forest (RF). We then also experiment on an internal pro-
prietary dataset, containing 667 records, each formed by multiple
non-overlapping windows of 32 tri-axial accelerometer samples.
In this case, the HAR target is simpler, and just consists in a bi-
nary distinction between “walking” and all other activities. On this
dataset, which we refer to asWalk in the following, the previous
best results were also obtained applying a RF model, and using the
following 7 features, computed on each of the 3 accelerometer axes
over each 32 samples window: average, variance, energy, max, min,
peak-to-peak and number of zero-crossings.

We deployed all models on the 32bit single-core RISC-V platform
PULPissimo, based on the RI5CY core [25]. Inference clock cycles
are estimated with the virtual platform GVSOC [32], whereas en-
ergy results refer to the 22nm implementation of PULPissimo found
in [26], called Quentin. BNNs are trained in PyTorch, whereas for RF
baselines we use the scikit-learn Python package. All PULPissimo
implementations are in C language.

4.2 Comparison baseline
To prove the effectiveness of BNNs for HAR, we compare them
against RFs, which are widely considered state-of-the-art HW-
friendly models for such task [22, 30]. For a fair comparison, our
RF implementation should also be optimized. Since we couldn’t
find an open source library for the same HW target, in this section
we briefly describe our in-house RF implementation. The latter is
roughly inspired by the one of OpenCV [6], albeit stripped-down
and optimized for low-memory devices. A RF is represented by
multiple C arrays, used instead of lists (as in OpenCV) for bet-
ter memory locality and simpler control flow. The RF processes
an INPUT matrix containing either raw data or extracted features
(depending on the experiment).

The main data structure representing the model is the FOREST
array, which contains the description of all nodes in the RF. Its
elements are C “structs” with three fields:

• feature_index: a column index in INPUT corresponding to
the feature that should be compared against the threshold
in the node. Leaf nodes are identified by a -1 in this field.

• threshold: the comparison threshold used in the node.
• right_child: the index of the right child of the node in
FOREST. To save memory, only the right child is stored,
whereas the left child is implicitly equal to the following
node in the array. For leaf nodes, right_child is an index
in the LEAVES array.

The LEAVES array stores the output prediction for all leaf nodes.
Specifically, our implementation stores class probabilities for all
classes in the leaves, rather than a single class label, as this yields
higher accuracy and also matches the scikit-learn implementation,
making the conversion of models easier. Finally, the ROOT array
stores the indexes of the roots of all trees in FOREST. An example of
our implementation is shown in Figure 4, highlighting the content
of some FOREST elements relative to the first tree of the RF.

Inferences are initiated looping over all elements in ROOT and
visiting each tree. The predicted probabilities of the different trees
are accumulated and a final argmax determines the class label.
Thresholds and probabilities are quantized to 8bit integer, since
RI5CY does not have a FPU. Moreover, indexes in the different

arrays also use 8 or 16bit, depending on the maximum RF size, to
minimize the memory footprint.

0 3 6

N_TREES

ROOT_IDX

FOREST

N_NODES

feature_index: 3
threshold: 25
right_child: 2

feature_index: -1
threshold: -2
right_child: 1

Non-leaf node,
Feature 3

Leaf node

Index to
next node

… … …

0.1 0.7 0.2

N_CLASSES

LEAVES_VALUES

N_
LE
AV

ES

0

0 1 2 3 ….

0

1

2

…

1 …

(a) Array representation

0

1 2

Tree No.1

Input[3]≥25?

0,1

0,7

0,2

C1 C2 C3

(b) Corresponding (partial) RF

Figure 4: RF implementation used as comparison baseline.

4.3 Comparison with existing BNN libraries
In order to compare our library against a state-of-the-art BNN im-
plementation for RISC-V, we adapted the open source binarized
2D convolutions of [13] to process 1D data, removing the so-called
“im2col” phase, and modifying it to work on the single-core PULPis-
simo. Both libraries have been then compiled with identical flags.
Since [13] is limited to multiples of 32 channels, its weights and
activations buffers have been zero-padded when processing layers
with fewer channels.

Figure 5 shows the results of this comparison in terms of infer-
ence clock cycles and total memory occupation (code+data). The
four graphs report the cycles and memory for different values of
𝐶𝑖𝑛 . The two on top refer to 𝐶𝑜𝑢𝑡 = 8, whereas the two on the
bottom to 𝐶𝑜𝑢𝑡 = 32. Cycles and memory are then averaged over
different values of 𝐾 and 𝑇 .

As expected, due to the useless operations performedwith padded
activations and weights, our library outperforms [13], reducing the
cycles by up to 41/44% for 𝐶𝑖𝑛 = 2 and 𝐶𝑜𝑢𝑡 = 8/32. In contrast,
for 𝐶𝑖𝑛 ≥ 32, padding isn’t required. However, our library is still
slightly faster than [13] in most cases, mostly due to a better selec-
tion of the partial unrolling size in our implementation.

Similarly, we also reduce the memory occupation with respect
to [13] for all convolutions with𝐶𝑖𝑛 < 32. The total memory saving
reaches 10/12% for𝐶𝑖𝑛 = 2 and𝐶𝑜𝑢𝑡 = 8/32. This smaller reduction
is due to the code memory being the dominant contributor with
respect to weights and activations buffers; considering only data
memory the saving is > 70% in both cases. For 𝐶𝑖𝑛 ≥ 32, we obtain
a slight memory overhead due to the additional alignment buffers,
not needed in [13]. However, our library explicitly targets ultra-
compact BNNs, therefore this small overhead on larger networks is
acceptable.

Ultra-compact Binary Neural Networks for Human Activity Recognition on RISC-V Processors CF ’21, May 11–13, 2021, Virtual Conference, Italy

Ultracompact Conv Padded Conv

2 4 8 16 32 64
Channels in

0

25K

50K

75K

100K

Cy
cle

s

2 4 8 16 32 64
Channels in

8K

9K

10K

11K

12K

To
t.

M
em

or
y

[B
yt

es
]

(a)𝐶𝑜𝑢𝑡 = 8

2 4 8 16 32 64
Channels in

0

100K

200K

300K

400K

Cy
cle

s

2 4 8 16 32 64
Channels in

8K

10K

12K

14K

To
t.

M
em

or
y

[B
yt

es
]

(b)𝐶𝑜𝑢𝑡 = 32

Figure 5: Comparison between our Ultracompact Convolu-
tion implementation and [13]. Total clock cycles per infer-
ence and totalmemory occupation versus𝐶𝑖𝑛 , for two values
of 𝐶𝑜𝑢𝑡 , and averaged over multiple layers with, 𝐾 ∈ {3, 5, 7},
and 𝑇 ∈ {32, 64, 128, 256}.

4.4 Comparison with the State-of-the-art
Figure 6 shows a comparison between RF and BNN-based classi-
fiers on the two target HAR datasets. Results are reported as Pareto
frontiers in the accuracy versus cycles and accuracy versus total
memory planes, and refer to end-to-end inferences, i.e., including
both feature extraction and classification. For each classifier, differ-
ent points correspond to Pareto-optimal sets of hyperparameters,
determined with an extensive grid search 1. For RFs, we varied the
number of trees and their maximum depth, whereas for BNNs we
explored the networks’ depth (number of layers) as well as the type
and parameters of each layer (𝐶𝑖𝑛 , 𝐾 , etc). For both datasets, we
compared our library (Ultracompact BNN) with the state-of-the-art
BNN implementation of [13] (Padded BNN) as well as with two RF
variants, one applied directly to raw data (RF raw) and the other to
the features detailed in Section 4.1 (RF features). For the latter, cy-
cles and memory results also include feature extraction. The black
dashed line in the plots highlights the global Pareto-frontier con-
sidering all classifiers together. Notice that the two graphs relative
to the UniMiB-SHAR dataset are semi-logarithmic.

On the UniMiB-SHAR dataset, RF models achieve up to 60% accu-
racy with a very small number of cycles, using a small number of
trees with high depth. However, this depth comes at the cost of an

1Notice that the points in the cycles and memory Pareto curves are not necessarily the
same, as one configuration may be Pareto-optimal in terms of cycles and not memory
or vice versa.

exponential memory increase (up to > 200 kB). Interestingly, RF raw
outperforms RF features, probably because the simple magnitude
features proposed in [22] are not very informative for the model.
On the other hand, BNNs have a higher initial baseline memory
(≈ 12 kB) due to the larger code size, but then sharply improve the
accuracy with a small increase in memory occupation. In terms of
cycles, RFs clearly outperform BNNs for accuracy values < 60%,
requiring around 2.5k cycles even for large models. However, we
could not find a RF-based solution able to produce higher accuracy,
without exceeding the entire 520kB of memory of the target HW. In
contrast, BNNs reach up to ≈70% accuracy (10% improvement over
RFs) with <30kB of total memory and ≈ 500k cycles. At 59% accu-
racy, i.e. the maximum reached by RF raw, the latter requires 211kB
of memory while our BNN library only occupies 18kB, resulting in
a 91% memory reduction. Our BNN library also outperforms the
implementation in [13], reducing the total memory and cycles by up
to 7% and 21% respectively, for the same accuracy. Crucially, some
of the BNN configurations are on the global Pareto-front (black
dashed line) in both planes.

On the simplerWalk dataset, all models require less cycles and
memory.When comparing RFs and BNNs, themain difference is due
to the more informative features extracted for this dataset. Thanks
to this more elaborated feature extraction step, RF features models
obtain higher accuracies compared to RF raw ones; however, feature
extraction also increases the cycles of former significantly, making
them completely Pareto-dominated by BNNs. As for UniMiB-SHAR,
our BNN library obtains the highest accuracy overall (up to ≈
95%), outperforming a padded implementation. Furthermore, BNN
solutions appear again on both Pareto frontiers, demonstrating the
effectiveness of these models for HAR.

4.5 Detailed deployment results
The wide ranges of clock cycles and memory footprints achieved
by our ultra-compact BNNs for HAR translate into very different
accuracy versus latency and accuracy versus energy trade-offswhen
the networks are deployed on an edge processor. This is shown in
Table 1, which details the metrics of the two extreme BNN Pareto
points of Figure 6 for both datasets, i.e., those with the minimum
(Min) and maximum (Max) accuracy. Furthermore, the smallest
models able to achieve a <5% and <10% accuracy drop compared to
“Max” are also shown. For eachmodel, the table reports the accuracy
in [0 : 1], the total memory footprint (code + data), and the total
latency and energy consumption per inference. Latency and energy
results have been derived from the power values in [26] at 205MHz,
assuming that the processor is power gated after an inference is
completed, while the cycles have been estimated simulating the
hardware with GVSOC [32].

Finally, the table also shows the hyper-parameters configura-
tions corresponding to each deployed BNN, as a comma-separated
sequence of layers. In particular, Conv(𝐶𝑜𝑢𝑡 ,𝐾) denotes a convo-
lutional layer with 𝐶𝑜𝑢𝑡 output channels and kernel size equal to
𝐾 , Pool(𝐾 ,𝑆) denotes a MaxPool layer with stride to 𝑆 and kernel
size 𝐾 , and FC denotes a fully connected layer with a number of
output neurons equal to the number of classes of the dataset. Notice
that, as explained in Section 3, the first convolutional layer of each
network is actually processing 8bit integer inputs.

CF ’21, May 11–13, 2021, Virtual Conference, Italy F. Daghero et al.

Ultracompact BNN Padded BNN RF features RF raw Pareto Front

104 105

Tot. Memory [Bytes]

20

40

60

Ac
cu

ra
cy

 [%
]

9K 10K 11K 12K 13K 14K 15K
Tot. Memory [Bytes]

80

85

90

95

Ac
cu

ra
cy

 [%
]

103 104 105

Cycles

20

40

60

Ac
cu

ra
cy

 [%
]

(a) UniMiB-SHAR

0 2K 4K 6K 8K
Cycles

80

85

90

95

Ac
cu

ra
cy

 [%
]

(b) Walk

Figure 6: Accuracy versus total inference clock cycles and totalmemory occupation of different RFs and BNNs implementation.
Each point represents a different configuration of hyperparameters.

Table 1: Detailed deployment results of the proposed Ultracompact BNNs.

Dataset Config. Accuracy Tot. Memory [kB] Tot. Energy [`𝐽] Latency [`𝑠] Architecture

Walk

Min 0.837 10.82 0.036 9.36 Conv(2,7), Conv(2,15), Pool(4,4), FC
Max - 10% 0.85 10.83 0.035 9.22 Conv(2,7), Conv(2,15), Pool(2,2), FC
Max - 5% 0.9 10.85 0.04 10.4 Conv(2,7), Conv(2,7), Pool(2,2), FC
Max 0.946 13.5 0.45 118.8 Conv(8,7), Conv(32,15), Pool(4,4), FC

UniMiB-SHAR

Min 0.33 13.32 0.38 99.94 Conv(4,7), Conv(4,7), Pool(4,4), Conv(4,7), Pool(4,4), FC
Max - 10% 0.586 19.7 3.95 1037.22 Conv(8,15),Conv(32,7),Pool(4,4), Conv(32,7), Pool(4,4), FC
Max - 5% 0.651 23.98 9.08 2385.31 Conv(32,7),Conv(32,15),Pool(4,4), Conv(32,15), Pool(4,4), FC
Max 0.68 26.07 9.84 2583 Conv(32,15),Conv(32,15),Pool(4,4), Conv(32,15), Pool(4,4), FC

The small latency values (< 3𝑚𝑠 even for the largest models)
demonstrate that all deployed BNNs are suitable for a real-time
implementation of HAR. In fact, the latency constraint for real-
time classification is given by the input sampling period, which
for UnMiB-SHAR and Walk corresponds to 20ms and 40ms, re-
spectively. This result is achieved while consuming a very limited
amount of energy (< 10`J) per inference.

Despite the different complexity of the two datasets, in both
cases different BNN configurations can span a significant range of
accuracies, 11% and 35% for Walk and UniMib-SHAR respectively,
with a corresponding increase of 15x and 26x between the minimum
andmaximum energy per inference. With respect to RFs, the energy
benefits at iso-accuracy reach up to 70% for the Walk dataset at
92% accuracy, i.e., the point where the total cycles difference is
maximal (see Figure 5). Globally, these results show that BNNs are
able to obtain both acceptable accuracies with a very low energy
consumption, but also highly accurate results at a still moderate
energy cost, offering a wide spectrum of solutions to select based
on application needs.

5 CONCLUSIONS
In this paper, we applied BNNs to HAR for the first time. We de-
scribed in detail an optimized BNN implementation that targets
ultra-compact models (i.e., with fewer than 32 channels per layer),
to be deployed on edge devices. In comparison with state-of-the-art
hardware-friendly models (RFs) we not only obtain higher accuracy,
but also save up to 70% energy (or 91% memory) at iso-accuracy,
depending on the target dataset. Moreover, we showed that BNN-
based solutions can cover a wide range of accuracy versus energy
and accuracy versus latency trade-offs, among which designers can
select based on their needs.

REFERENCES
[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L Reyes-

Ortiz. 2012. Human activity recognition on smartphones using a multiclass
hardware-friendly support vector machine. In International workshop on ambient
assisted living. Springer, 216–223.

[2] Ferhat Attal, SamerMohammed,MariamDedabrishvili, Faicel Chamroukhi, Latifa
Oukhellou, and Yacine Amirat. 2015. Physical human activity recognition using
wearable sensors. Sensors 15, 12 (2015), 31314–31338.

Ultra-compact Binary Neural Networks for Human Activity Recognition on RISC-V Processors CF ’21, May 11–13, 2021, Virtual Conference, Italy

[3] Serkan Balli, Ensar Arif Sağbaş, andMusa Peker. 2019. Human activity recognition
from smart watch sensor data using a hybrid of principal component analysis
and random forest algorithm. Measurement and Control 52, 1-2 (2019), 37–45.

[4] Akram Bayat, Marc Pomplun, and Duc A Tran. 2014. A study on human activity
recognition using accelerometer data from smartphones. Procedia Computer
Science 34 (2014), 450–457.

[5] Valentina Bianchi, Marco Bassoli, Gianfranco Lombardo, Paolo Fornacciari, Mon-
ica Mordonini, and Ilaria De Munari. 2019. IoT wearable sensor and deep learning:
An integrated approach for personalized human activity recognition in a smart
home environment. IEEE Internet of Things Journal 6, 5 (2019), 8553–8562.

[6] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

[7] Jiasi Chen and Xukan Ran. 2019. Deep learning with edge computing: A review.
Proc. IEEE 107, 8 (2019), 1655–1674.

[8] Francesco Conti, Pasquale Davide Schiavone, and Luca Benini. 2018. XNOR
Neural Engine: A Hardware Accelerator IP for 21.6-fJ/op Binary Neural Network
Inference. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 37, 11 (2018), 2940–2951. https://doi.org/10.1109/TCAD.2018.2857019

[9] Francesco Daghero, Daniele Jahier Pagliari, and Massimo Poncino. 2020. Energy-
efficient deep learning inference on edge devices. (2020).

[10] Lin Fan, Zhongmin Wang, and Hai Wang. 2013. Human activity recognition
model based on decision tree. In 2013 International Conference on Advanced Cloud
and Big Data. IEEE, 64–68.

[11] Eric Flamand, Davide Rossi, Francesco Conti, Igor Loi, Antonio Pullini, Florent
Rotenberg, and Luca Benini. 2018. GAP-8: A RISC-V SoC for AI at the Edge of
the IoT. In 2018 IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). IEEE, 1–4.

[12] Francesco Daghero. 2021. Ultra-compact BNNs. https://github.com/
francescodaghero/ultracompactBNN

[13] Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca Benini.
2020. PULP-NN: accelerating quantized neural networks on parallel ultra-low-
power RISC-V processors. Philosophical Transactions of the Royal Society A 378,
2164 (2020), 20190155.

[14] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep Learning with Limited Numerical Precision. CoRR abs/1502.0 (2015).
http://arxiv.org/abs/1502.02551

[15] Nils Y Hammerla, Shane Halloran, and Thomas Plötz. 2016. Deep, convolutional,
and recurrent models for human activity recognition using wearables. In Proceed-
ings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.
1533–1540.

[16] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks. In Advances in Neural Information
Processing Systems. 4114–4122. arXiv:1602.02505

[17] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized Neural Networks: Training Neural Networks with
Low Precision Weights and Activations. J. Mach. Learn. Res. 18, 1 (jan 2017),
6869–6898.

[18] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE.

[19] Daniele Jahier Pagliari, Roberta Chiaro, Enrico Macii, and Massimo Poncino. 2020.
CRIME: Input-Dependent Collaborative Inference for Recurrent Neural Networks.
IEEE Trans. Comput. (2020), 1–1. https://doi.org/10.1109/TC.2020.3021199

[20] Daniele Jahier Pagliari, Enrico Macii, and Massimo Poncino. 2018. Dynamic
Bit-width Reconfiguration for Energy-Efficient Deep Learning Hardware. In
Proceedings of the International Symposium on Low Power Electronics and Design
(ISLPED ’18). ACM, New York, NY, USA, 47:1—-47:6. https://doi.org/10.1145/
3218603.3218611

[21] Wei Mao, Zhihua Xiao, Peng Xu, Hongwei Ren, Dingbang Liu, Shirui Zhao, Feng-
wei An, and Hao Yu. 2020. Energy-Efficient Machine Learning Accelerator for
Binary Neural Networks. In Proceedings of the 2020 on Great Lakes Symposium on
VLSI (Virtual Event, China) (GLSVLSI ’20). Association for Computing Machinery,
New York, NY, USA, 77–82. https://doi.org/10.1145/3386263.3407582

[22] Daniela Micucci, Marco Mobilio, and Paolo Napoletano. 2017. Unimib shar: A
dataset for human activity recognition using acceleration data from smartphones.
Applied Sciences 7, 10 (2017), 1101.

[23] Francisco Javier Ordóñez and Daniel Roggen. 2016. Deep convolutional and lstm
recurrent neural networks for multimodal wearable activity recognition. Sensors
16, 1 (2016), 115.

[24] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European conference on computer vision. Springer, 525–542.

[25] Davide Rossi, Francesco Conti, Andrea Marongiu, Antonio Pullini, Igor Loi,
Michael Gautschi, Giuseppe Tagliavini, Alessandro Capotondi, Philippe Flatresse,
and Luca Benini. 2015. PULP: A parallel ultra low power platform for next
generation IoT applications. In 2015 IEEE Hot Chips 27 Symposium (HCS). IEEE,

1–39.
[26] Pasquale Davide Schiavone, Davide Rossi, Antonio Pullini, Alfio Di Mauro,

Francesco Conti, and Luca Benini. 2018. Quentin: An ultra-low-power PULPis-
simo SoC in 22nm FDX. In 2018 IEEE SOI-3D-Subthreshold Microelectronics Tech-
nology Unified Conference (S3S). IEEE, 1–3.

[27] Semidynamics. 2021. Avispado Core. https://www.semidynamics.com/amp/
products/avispado

[28] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
computing: Vision and challenges. IEEE internet of things journal 3, 5 (2016),
637–646.

[29] SiFive. 2021. SiFive Core IP. https://www.sifive.com/risc-v-core-ip
[30] STMicroelectronics. 2019. iNEMO inertial module: always-on 3D accelerometer

and 3D gyroscope. Website. www.st.com/resource/en/datasheet/lsm6dsox.pdf.
[31] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient

processing of deep neural networks: A tutorial and survey. Proc. IEEE 105, 12
(2017), 2295–2329.

[32] The PULP Platform. 2020. GVSOC: PULP Virtual Platform. https://github.com/
pulp-platform/gvsoc

[33] Haojin Yang, Martin Fritzsche, Christian Bartz, and Christoph Meinel. 2017.
Bmxnet: An open-source binary neural network implementation based on mxnet.
In Proceedings of the 25th ACM international conference onMultimedia. 1209–1212.

[34] Jianhao Zhang, Yingwei Pan, Ting Yao, He Zhao, and Tao Mei. 2019. dabnn: A
super fast inference framework for binary neural networks on arm devices. In
Proceedings of the 27th ACM International Conference on Multimedia. 2272–2275.

https://doi.org/10.1109/TCAD.2018.2857019
https://github.com/francescodaghero/ultracompactBNN
https://github.com/francescodaghero/ultracompactBNN
http://arxiv.org/abs/1502.02551
https://arxiv.org/abs/1602.02505
https://doi.org/10.1109/TC.2020.3021199
https://doi.org/10.1145/3218603.3218611
https://doi.org/10.1145/3218603.3218611
https://doi.org/10.1145/3386263.3407582
https://www.semidynamics.com/amp/products/avispado
https://www.semidynamics.com/amp/products/avispado
https://www.sifive.com/risc-v-core-ip
www.st.com/resource/en/datasheet/ lsm6dsox.pdf
https://github.com/pulp-platform/gvsoc
https://github.com/pulp-platform/gvsoc

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Human Activity Recognition
	2.2 IoT end-nodes and RISC-V
	2.3 Binary Neural Networks

	3 Ultra-compact BNNs for HAR
	3.1 Motivation
	3.2 Binarized Convolution
	3.3 Fused batch normalization and pooling
	3.4 Binarized Fully-Connected Layer

	4 Experimental Results
	4.1 Setup
	4.2 Comparison baseline
	4.3 Comparison with existing BNN libraries
	4.4 Comparison with the State-of-the-art
	4.5 Detailed deployment results

	5 Conclusions
	References

