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Abstract. In modern data centers, storage system failures are major
contributors to downtimes and maintenance costs. Predicting these fail-
ures by collecting measurements from disks and analyzing them with
machine learning techniques can effectively reduce their impact, enabling
timely maintenance. While there is a vast literature on this subject, most
approaches attempt to predict hard disk failures using either classic ma-
chine learning solutions, such as Random Forests (RFs) or deep Recur-
rent Neural Networks (RNNs).

In this work, we address hard disk failure prediction using Temporal
Convolutional Networks (TCNs), a novel type of deep neural network
for time series analysis. Using a real-world dataset, we show that TCNs
outperform both RFs and RNNs. Specifically, we can improve the Fault
Detection Rate (FDR) of = 7.5% (FDR = 89.1%) compared to the state-
of-the-art, while simultaneously reducing the False Alarm Rate (FAR =
0.052%). Moreover, we explore the network architecture design space
showing that TCNs are consistently superior to RNNs for a given model
size and complexity and that even relatively small TCNs can reach satis-
factory performance. All the codes to reproduce the results presented in
this paper are available at https://github.com/ABurrello/tcn-hard-disk-
failure-prediction.

Keywords: Predictive maintenance, [oT, Deep Learning, Sequence anal-
ysis, Temporal Convolutional Networks
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1 Introduction

The storage systems of modern data centers can easily include from thousands
to millions of hard disk drives. Therefore, despite single hard drives having a
very high Mean Time To Failure (MTTF), storage system failures remain one
of the main contributors to data center downtimes and maintenance costs [17,
15]. One solution to reduce the impact of such failures is to resort to predictive
maintenance techniques, where disks operations are continuously monitored. An
alarm is raised whenever a drive is predicted to fail shortly, hence allowing timely
maintenance actions (replacement of the hard drive, data integrity restoration,
etc.)[3,18,19,14,2,1].

Most hard disk producers adopt Self-Monitoring Analysis and Reporting
Technology (SMART) as the tool to enable predictive maintenance [4]. SMART
consists of the periodic collection of a set of measurements (SMART features)
during disk operation, including temperature, seek and read errors, reallocated
sectors, etc. These features are then analyzed to determine the likelihood of
failure, typically with data-driven approaches based on machine/deep learning
models. In particular, most state-of-the-art methods are either based on Random
Forests (RFs) or Recurrent Neural Networks (RNNs) [3,18, 19, 14,2, 1].

Recently, however, many works [12,5] have demonstrated the superiority of
Temporal Convolutional Networks (TCNs) for time series analysis. TCNs are
particular types of 1-dimensional Convolutional Neural Networks (CNNs), in-
cluding specific architectural elements (causality and time-dilation) to better
adapt to time series. In [12, 5], TCNs have been shown to outperform the more
expensive and complicated RNNs in many sequence modeling tasks.

In this paper, we assess the effectiveness of TCNs for predicting hard disks
failures. To the best of our knowledge, this is the first work to consider Temporal
Convolutional Networks for this task. The contribution of this work is three-fold:
i) we describe a comprehensive analysis of the imbalance management of the
failure prediction in hard drives, demonstrating that using a Synthetic Minority
Over-sampler improves the performance of up to 43.5% for different classification
algorithms.7) We show that the proposed TCN can outperform both RFs and
RNNS for failure prediction, mostly thanks to the excellent long-term memory of
these networks, which allows them to benefit from a long history of input data.
Specifically, with a 90-days input window, we can improve the Fault Detection
Rate (FDR) by ~7.5% compared to state-of-the-art methods, while simultane-
ously reducing also the False Alarm Rate (FAR) to 0.052%. 4ii) We explore
the architectural design space to provide a family of models that offer differ-
ent trade-offs in terms of processing complexity and memory occupation versus
performance. In doing so, we also show that TNCs are consistently superior to
RNNS for a given size or complexity. The codes used in all the analysis are public
at https://github.com/ABurrello/tcn-hard-disk-failure-prediction.
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2 Background and Related Works

2.1 Temporal Convolutional Networks

The main layer type included in TCNs is a particular 1-D Convolution, with two
differences compared to standard CNNs:

(1) Causality, which implies that each layer output is produced looking only at
past samples, i.e. y;, is obtained from the convolution of x;, with t; < txn.

(2) Dilation, which is the fundamental element behind the success of these nets.
Rather than performing convolution on a contiguous time-window of input sam-
ples, dilation inserts a fixed step between convolution inputs, thus increasing the
receptive field, while keeping the number of parameters low.

Formally, a 1-D causal dilated convolution is computed as:

N—-1K-1

y7' = Dilated-Conv (x) = Z Z X g W™
n=0 t=0

where x is the input feature map and y the output feature map, T the time
index, W the weights matrix, N the number of input channels, m the output
channel, d the dilation parameter, and K the filter size.

2.2 Backblaze Dataset

Our experiments target a real-world hard drive dataset from Backblaze [4], which
contains hard drives from many vendors. As [1, 18] pointed out, different disk
models require dedicated training since they are characterized by different failure
modes. Therefore, we focus on one of the most represented models, the Seagate
ST300DMO001, comprising data between 2014 and 2017, with a high number of
failures, i.e. 1009. The dataset is composed of 90 SMART features collected daily,
and the date of failure of the drive, if any. It includes a total of 3828 hard drives
of the selected model, resulting in more than one million samples. For each of
the 1009 failed hard drives, we assigned the failed label to samples in the last
week, as suggested in [18]. With this labeling, the algorithm will learn to predict
whether a given hard drive will fail in the upcoming week.

Table 1 summarises the main characteristics of the dataset, highlighting the
strong class imbalance that is intrinsic in the problem (only 0.60 % of the samples
are labeled as failed).

2.3 Related Works

Two main formulations of hard disk predictive maintenance have been proposed
in the literature, i.e. Failure Prediction (FP) and Remaining Useful Lifetime
(RUL) estimation. In FP, predictive maintenance is addressed as a classifica-
tion problem. The goal is to predict in advance the occurrence of a failure in
the monitored drive. RUL estimation, instead, considers the issue as regression
and tries to predict the remaining healthy operating life of the target drive [1].
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Table 1. Dataset summary.

Dataset Backblaze [4]

Model ST300DMO001
# of Hard Disks 3828
# of failed Hard Disks 1009
# of non-failed Hard Disk 2819
Non-failed class samples 1.25M

Failed class samples 7k (0.69%)

# of SMART features (total/after feature sel.) 90/18

Researchers have been attempting to approach both formulations with different
machine learning models. In [3], the authors perform FP with Random Forests
(RFs), Support Vector Machines, Gradient Boosted Trees, and Logistic Regres-
sion, applied to pre-processed SMART features. They also propose to periodi-
cally switch algorithms based on their performance in the previous period. RF's
are used for fault prediction also in [18], where the authors focus mostly on
using online learning to adapt their model to the variance of SMART features
over time. Other works have addressed hard disks predictive maintenance using
different flavors of deep Recurrent Neural Networks (RNNs), mostly using the
Long-Short Term Memory (LSTM) architecture. RNNs have been used for both
failure prediction [19] and RUL estimation [14,2]. The authors of [1] propose
to simultaneously perform FP and RUL estimation with a single multi-target
LSTM. Interestingly, [2] shows that RFs outperform LSTMs on both continuous
and quantized RUL estimation. Moreover, the authors of [14] also experiment
with using a standard Convolutional Neural Network (CNN) to estimate the
RUL but obtain worse results than those achieved with an LSTM.

3 Methods

In this section, we describe the steps of the pipeline applied to the data to
distinguish between failed and healthy hard drives. First, we apply a feature
selection stage, followed by the split of train and test data. A re-sampling of the
training dataset is then used to manage the strong class imbalance. We conclude
with the classification through our proposed Temporal Convolutional Network.
Fig. 1 depicts the whole flow of our process, described in the next paragraphs,
to assess the status of a hard drive from its SMART values.

3.1 Feature Selection

Before classification, we exclude redundant and irrelevant features from the
dataset. This step is crucial to reduce the processing time while also increas-
ing the prediction performance. Therefore, we propose a novel three-step feature
selection process to reduce from 90 to 18 the features used during classification:
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Fig. 1. Pipeline of our method. From raw SMART features to failure prediction.

Step 1. Each SMART attribute is characterized by a rew and a normalized
value. The latter is a vendor-specific normalization of the attribute,
computed to obtain a similar distribution of features across different
hard drive models. However, for a single model, the raw and normalized
values are strongly correlated (Pearson’s coefficient |r| > 0.99, p-value
< 0.001). Therefore, we removed all normalized attributes from our
analysis, reducing the features from 90 to 45.

Step 2. We removed all the attributes which have more than 60% of NaN in
their values, reducing the features from 45 to 25.

Step 3. To verify the effective predictive power of each attribute, we applied
a two-coiled t-test with a significant p-value < 0.001. After the test,
we selected only attributes that resulted significant for the distinction
between failed and non-failed samples, obtaining the final set of 18 fea-
tures.

Finally, we normalize the 18 features selected using a Min-Max scaler to avoid
bias towards features with larger values:
T — Tmin

Tnorm =
Tmaz — Tmin

3.2 Imbalance Management

As anticipated, the failed class is strongly under-represented in our dataset
(0.69%). For this reason, the authors of many prior works [2,18, 3] propose a
random under-sampling of the majority class to reduce the ratio, A, between the
majority and minority class:

Ny,
=7,
where IV, is the number of the non-failed samples and N of the failed ones. The
typical target A range is [1, 20].

A
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In this paper, we propose to use a more advanced imbalance management
technique, i.e. a Synthetic Minority Oversampler (SMOTE). The reader can find
details on SMOTE, which are out of the scope of this paper, in [7]. In Sec. 4.2 we
show that using SMOTE with a fixed A = 20 yields better results compared to
those obtained without imbalance management or with random under-sampling.

3.3 TCN Architecture

Dilated

: Batch - Fully
Convolution @ o d b Pooll RelU u Dropout
NN NxN: filter . Normalization E E—— - Connected

Receptive. Field: 42
Out F Map n/8x1x128 Out F Map 1x64

features @@.O@..*@@. > ot
features anl S . . * Not failed

Dllated Conv. Dlm Reductlon Fully Cnnn

Fig. 2. Topology of the proposed Temporal Convolutional Network.

The TCN architecture used in this work combines dilated 1-D convolutions
with max-pooling layers to create a modular structure that progressively reduces
the time-length of the input while increasing the number of channels. We de-
signed the network to increase the receptive field through convolutional layers
while consuming the time dimension. Note that the architecture is composed of
repeated identical blocks, as typical in many modern networks, e.g. for computer
vision [10, 16]. The whole structure is shown in Figure 2.

The network stacks three convolutional blocks to extract time-relationships
between inputs. The three blocks comprise two dilated 1-D convolutions with a
3 x 1 filter and d = 2,2, 4, respectively, followed by Relu activations and batch
normalization. Each block increases the number of channels to 32, 64, and 128,
respectively. A final pooling layer halves the time dimension after each block
(filter 2 x 1, stride = 2). At the end of the network, three Fully Connected layers
with dropout classify the input sequence. A detailed description of the dilated
convolutions can be found in [5]. The max-pooling, strided-convolutions, and
linear layers are conventional [13].

4 Experimental Results

4.1 Experimental Setup and Metrics

To benchmark our approach, we compared it to the Random Forest of [18] and
the LSTM proposed in [1] on the dataset introduced in Sec. 2.2. These two
methods are representative of the two most common approaches to hard drives
failure prediction in the state-of-the-art. The RF is composed of 30 trees, while
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Fig. 3. Effect of different re-sampling methods on the performance of the three classi-
fication algorithms.

the LSTM network has a layer of 384 recurrent neurons followed by two fully
connected layers. We refer to [18, 1] for further details on the architectures. Note
that while the Random Forest receives as an input a single day by construction
[18], both the LSTM and the TCN can manage time windows of different lengths.
For our experiments, we consider window dimensions between 4 and 90 days.

We use randomly stratified sampling, with 70% of the data used to train all
the algorithms and the remaining 30% for testing. On the training dataset, we
perform internal validation to search for the best parameters set for the TCN.
In detail, we used a batch size of 256 and a learning rate of 0.001, the Adam
optimizer, and a decaying factor for the learning rate of 10 every 20 epochs. The
maximum number of epochs has been set to 200, using a plateau on the training
accuracy of the last 10 epochs as an early stop criterion.

The prediction performance is measured in terms of the following metrics:
(1) Fault Detection Rate (FDR), i.e. the ratio between the samples predicted as
failures and all the real failures, a.k.a. recall; (2) False Alarm Rate (FAR), i.e. the
ratio between the samples wrongly predicted as failures and all the non-failure
samples; (3) Precision, i.e. the ratio between the correctly predicted failures and
all the predicted failures; (4) F1-score, i.e. the harmonic mean between precision
and recall. All metrics should be maximized except the FAR, which should be
minimized. All results are given as mean + standard deviation, averaging the
last 5 models from the training of the networks, or 5 different Random Forests.
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4.2 Comparison of the Sampling Techniques

Our first set of experiments targets the different re-sampling methods used for
the management of class imbalance. In Fig. 3, we compare three approaches,
namely SMOTE, random under-sampling, and ”All” (no re-sampling), using
both our TCN and the state-of-the-art methods. For the latter, we apply the
same pipeline as for our algorithm, replacing only the final classification step.
A window of 30 days has been used in these experiments®. As the graph of
Fig. 3 demonstrates, not applying any re-sampling techniques results in a very
poor FDR from 12% to 28%, lower compared to the application of the random
under-sampling/SMOTE for all the three classification algorithms. Moreover,
although the random under-sampling guarantees a good FDR, it causes the FAR
to increase by a factor of 9x/20x compared to the previous case. On the other
hand, SMOTE maximizes the FDR for the TCN and the LSTM (for the RF, the
FDR is less than 1% lower than with random-undersampling), while achieving
a FAR on the TCN and the RF only 1.65x/1.75x higher compared to not
applying re-sampling. Overall, the F1l-score of the TCN, LSTM, and RF using
SMOTE increases of 20.48%, 38.5%, and 9.08% compared to not re-sampling
and of 21.38%, 43.5%, and 17.16% compared to the random under-sampling.

Therefore, we use the SMOTE to re-sample our training dataset in all the
following experiments.

4.3 Algorithms Comparison

S
= 70
E —8— TCN
60 / )~ LSTM
—k— RF
50 +—
1 t\f — ___
Z 01
E = "\o\.‘__"
0.01
0 20 40 60 80

Input window dimension [days]

Fig. 4. LSTM and TCN performance for different input window sizes.

5 For this input window size, the TCN achieves a FDR similar to the RF, but the
following experiments show that the TCN FDR improves for longer inputs.
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Fig. 4 shows the performances of LSTM and TCN with respect to the length
of the input data used as input. Note that the RF has been executed on single
day input samples as in its original work [18] since it intrinsically doesn’t support
the analysis of time series. Both the LSTM and our TCN demonstrate better
performance by using more days in the input signal. However, for both FDR and
FAR, the TCN is capable of taking more advantage from a longer input window.
In particular, compared to an input window of size 24, on which the LSTM and
the TCN achieve a similar FDR (79.21% vs. 80.23%), the LSTM increases its
FDR by less than 2.5% when using a window of 90 days, while the TCN reaches
FDR = 89.1%, with an improvement of 8.87% compared to the 24 days case.

Table 2 summarises the comparison of the three methods: the TCN proposed,
the LSTM of [1], and the RF presented in [18]. Note that all three algorithms
exploit the same steps of pre-processing, differing only in the classification step.
When using 90 days of history, the TCN surpasses the competitors by 7.49%
(RF) and 7.55% (LSTM) in FDR, achieving slightly lower FAR (0.052 vs. 0.063).
We use the Fl-score to give an idea of the overall comparison between the
three methods. Our TCN achieves an average Fl-score of 90.05%, compared
to the 85.52% obtained by the RF and the 65.5% of the LSTM (the reached
performance in our work are almost equal to the ones presented by the authors
of the referenced papers). Note that both [1,2] already showed that RF often
outperforms LSTM for this kind of task.

These better metrics would directly translate into monetary savings, e.g.
for cloud storage providers. Focusing on the FDR, i.e. the number of correctly
predicted hard drives failures, we can see that our algorithm mispredicts only 1
failure over 10, compared to the 2 errors over 10 made by the other methods.
Considering a realistic cloud storage using a Redundant Array of Independent
Disk (RAID) [8] with hot-spare disks, we can link the FDR to a reduction in the
number of spare drives with a 1:1 relationship, e.g. 80% FDR allows to reduce
the number of the spare disks by 80%. Hence, halving the failure mispredictions
implies decreasing by a factor of 2x the extra cost for the redundancy in the
data center.

Table 2. Performance comparison of the three algorithms.

RF [18] | TCN-90d |[LSTM [1] - 90 d
FDR [%] | 81,55 + 0,40 | 89,10 + 0,57 | 81,61 £ 0
FAR [%] 0,063 + 0,003[0,052 + 0,004] 0,387 & 0
Precision [%)]] 89,92 + 0,47 [ 91,00 £ 0,69 | 54,8 £ 0
F1-Score [%]| 85,52 + 0,22 | 90,05 + 0,13 | 65,5 + 0

4.4 Model Size Exploration

Finally, inspired by the results in [10], we analyze the impact of the size of
the proposed TCN by applying a width multiplier and a depth multiplier to
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Fig. 5. FDR, FAR and F1 for varying TCN and LSTM model sizes.

increase and decrease the number of channels per layer and the number of layers.
Consequently, we increase or reduce both the network size and the number of
operations performed for each classification.

Specifically, we regulate the depth of the network considering six models
with {1, 2, 3, 4, 5, 6} convolutional blocks respectively (labeled TCN1 in Fig 5).
Convolutional blocks after the third are identical to the first three described in
Section 3.3 and use 128 channels, d = 4, and full padding, but do not include
any time dimension reduction. Then, we also multiply the number of channels of
each layer by {0.125, 0.25, 0.5, 1, 2, 4}, keeping the default depth of 3, creating
six additional models (TCN2 in Fig. 5).

For comparison, we also explore variations of the state-of-the-art RNN archi-
tecture using either one or two stacked LSTM layers and {32, 64, 128, 258, 384,
512} hidden layer dimensions. In Fig. 5, we label single-layer models LSTM1 and
two-layer models LSTM2. We train all TCNs and LSTMs with identical hyper-
parameter settings. We do not report any exploration for the Random Forest,
since increasing the number of trees does not improve the performance.

Fig. 5 shows the FAR, FDR, and F1 score of the twenty-four models con-
sidered in this exploration. On the x-axis, the plots report either the number
of Multiply-and-Accumulate (MAC) operations or the number of parameters of
the corresponding models. The first conclusion that can be drawn from this ex-
ploration is that the TCN with channel multiplying factor (CMF) = 1 and three
layers (the default structure presented in the paper, shown as a green dot in the
figure) is the smallest model that saturates performance, and therefore repre-
sents a good trade-off point. Increasing the model size further does not cause a
dramatic increase in performance. We obtain the best performance using CMF
= 2, reaching an F1 score of 90.9 %, only 0.8 % better compared to the base
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architecture. We also note that with progressively bigger architectures, the FAR
is almost constant (min 0.44, max 0.55), while we can observe an increase of the
FDR of nearly 30%. Hence, we conclude that small TCNs are sufficient to ex-
tract features that distinguish well the not-failing category. On the other hand,
larger and deeper networks are needed to identify failing hard drives correctly,
due to the wide range of possible failure modes.

Importantly, for a similar number of MAC operations or parameters, the
proposed TCN versions almost always outperform the LSTMs. In particular, the
top-right plot of Fig. 5 shows that LSTM architectures are never Pareto optimal
in terms of Fl-score versus the number of MAC operations. When considering
the number of parameters (bottom-right plot), the trend is similar; the only
exception is represented by architectures with less than 55k parameters, which,
however, reach a F1-score lower than 70%, insufficient for an accurate monitoring
system.

5 Conclusions

We have shown that TCNs can outperform state-of-the-art methods for hard
disk failure prediction. This improvement is mostly thanks to their excellent
long-term memory, which allows them to take advantage of long input time-
windows. We have also shown that, for TCNs, applying SMOTE before training
helps to improve the FDR while keeping FAR contained. In our future work,
we will use TCNs also for RUL estimation, and experiment with unsupervised
training to tackle the class imbalance problem. Moreover, this work has shown
that small and low-complexity TCNs can still achieve good performance (e.g.
the model with CMF=0.25 in Fig. 5 has 32x/160x fewer parameters/MACs
than the biggest TCN, while achieving a decent F1 score of 80.3%, and a FAR
<0.1%). This result could allow the execution of TCN-based inference in emerg-
ing ultra-low-power MCU architectures, which despite being performance- and
memory-limited, offer specific HW and SW features for the execution of tiny ML
models [9, 6, 11]. Our result, combined with these new architectures, could allow
the embedding of the TCN in the HDD controller, enabling a scenario in which
each hard drive autonomously provides fault prediction alarms to the system.
Investigating this scenario will also be part of our future work.
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