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Abstract
A class of metal-doped polyanilines (PANIs) was synthesized and investigated as electrocatalysts for the carbon dioxide 
reduction reaction  (CO2RR). These materials show good affinity for the electrode substrate and allow to obtain stable binder-
free electrodes, avoiding the utilization of expensive ionomer and additives. The emeraldine-base polyaniline (EB-PANI), 
in absence of metal dopant, shows negligible electrocatalytic activity and selectivity toward the  CO2RR. Such behavior sig-
nificantly improves once EB-PANI is doped with an appropriate cationic metal (Mn, Cu or Sn). In particular, the Sn-PANI 
outperforms other metal-doped samples, showing a good turnover frequency of 72.2  h−1 for the  CO2RR at − 0.99 V vs the 
reversible hydrogen electrode and thus satisfactory activity of metal single atoms. Moreover, the Sn-PANI also displays 
impressive stability with a 100% retention of the  CO2RR selectivity and an enhanced current density of 4.0 mA  cm−2 in a 
10-h test. PANI, a relatively low-cost substrate, demonstrates to be easily complexed with different metal cations and thus 
shows high tailorability. Complexing metal with conductive polymer represents an emerging strategy to realize active and 
stable metal single-atom catalysts, allowing efficient utilization of metals, especially the raw and precious ones.
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1 Introduction

Energy consumption rapidly grows all around the world, 
from emerging countries with conventional industries to 
western society with more and more sophisticated tech-
nologies, demanding fast increase in the fossil fuels com-
bustion and consequently boosting the  CO2 emission. 
Conversion of  CO2 into valuable chemicals and fuels is 
supposed to bring benefits not only to the climate and 
natural carbon cycle, but also to the long-term energy 
storage for confronting the future fossil fuel shortage [1]. 
Among many technologies, the electrochemical process is 
of great interest since it can be conducted at mild condi-
tions using excess electricity from the grid as energy input 
and the products are highly tunable by utilizing different 
catalysts and applying various potentials. Although being 
very promising, the electrochemical  CO2 conversion con-
fronts many challenges due to the high energy barriers, 
slow kinetics and complex pathways of the  CO2 reduction 
reaction  (CO2RR). Hence, rationally designed electrocata-
lysts are essential to advance this technology. An ideal 
electrocatalyst should have high activity, good selectiv-
ity toward specific products and satisfactory stability over 
long-time operation. Among numerous investigated metal-
lic electrodes [2], copper nanoparticles are uniquely able 
to produce  C2 and  C3 molecules [3–5]; silver, gold and 
zinc show the best selectivity for CO production [6–8]; 
p-block metals (In, Sn, Pb) are selective catalysts for the 
HCOOH/HCOO− formation [9]. Significant improvements 
can be reached switching from mono-metal systems to 
rationally designed multi-metal alloys taking advantage of 
the synergistic effect of different metals [10–12]. Despite 
the promising performance, a general limit of metallic 
electrodes is the high price and the scarce availability of 
many chemical species. These materials, even in the form 
of nanostructures, have low active sites-to-mass ratios. 
Hence, it could be of vital importance to increase the uti-
lization efficiency of the metal, especially considering that 
many metals are critical raw materials due to limited avail-
ability, geopolitical conflicts in the source’s countries, tox-
icity and other factors [13]. In order to enhance the metal 
utilization, an ideal strategy is to constrain each single 
metal atom to act as active site for the reaction [14–17]. 
From this perspective, organometallic complexes are the 
best example, in which each metal cation/atom coordinates 
different ligands, being stabilized and enriched in elec-
tron density [18]. Those molecules are commonly used in 
homogeneous catalysis systems that require the catalyst 
dissolution in a proper solvent without being immobilized 
onto the working electrode. Even though high turnover 
number and turnover frequency values are reported, the 
stability of this class of molecules is often discouraging 

[19]. In addition, high overpotentials could be required to 
form the active catalytic species and to overcome the low 
conductivity.

This work aims at obtaining metal single-atom catalysts 
with a high active sites-to-metal ratio, possessing satisfac-
tory activity, selectivity and stability in the  CO2RR. Pol-
yaniline (PANI) has been widely studied as a support for 
metal nanoparticles like Cu, Pd and Pt [20, 21], and also as 
a precursor for nitrogen-doped carbon materials synthesized 
through a pyrolysis process [22, 23]. However, it has never 
been investigated itself as electrocatalyst for the  CO2RR. It 
is known to be semiconductive in the non-protonated form 
(emeraldine base, EB-PANI) and conductive in the emer-
aldine protonated form (emeraldine salt, ES-PANI) [24]. 
The conductive PANI can also be obtained through the use 
of Lewis acids such as metal cations [25]. In the present 
work, EB-PANI and PANIs doped with various metal cati-
ons (Mn, Cu, Sn and Fe ions) were synthesized and inves-
tigated for the first time as heterogeneous catalysts for the 
 CO2RR, combining the single metal atom activity typical of 
the homogenous molecular catalysis with the good stability 
of the heterogeneous catalysts.

2  Experimental section

2.1  Chemicals and materials

All reagents were purchased from commercial sources with-
out further purification. N-phenyl-1,4-phenylenediamine 
(DANI, 98%), copper (II) chloride  (CuCl2, 99%), iron 
(III) chloride  (FeCl3

.6H2O, 97%), manganese (II) chloride 
 (MnCl2, 99%), tin (IV) chloride  (SnCl4

.5H2O, 98%) ammo-
niumpersulfate (APS,  (NH4)2S2O8, 98%), methanol (MeOH, 
99.9%), N-methyl-2-pyrrolidinone (NMP, 99.5%), hydro-
chloric acid fuming (HCl, 37%), potassium bromide (KBr, 
99%), Nafion™ 117 containing solution (5% in a mixture 
of lower aliphatic alcohols and water) were all purchased 
from Merck.

2.2  Synthesis

The ES-PANI was synthetized by bulk polymerization using 
DANI (5 gr, 27.1 mmol) as monomer and APS (9.29 gr, 
40.7 mmol) as oxidizing agent in 20 mL of solution 70:30 
v/v MeOH:H2O with 1% w/w of HCl. DANI was dissolved in 
15 mL of the starting solution and placed in an ice bath under 
stirring, while APS was dissolved in the remaining 5 mL of 
the starting solution. Then, the APS solution was slowly added 
dropwise into the DANI solution in 5 min and kept under stir-
ring for 3 h at room temperature (RT). The obtained dark green 
precipitate was filtered, washed several times with a solution 
70:30 MeOH:H2O (in order to dissolve the low molecular 
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weight polymers) and then dried at 60 °C. In order to obtain 
EB-PANI, the powder was dispersed in 40 mL of ammonia 
32% solution and stirred overnight, then filtered and washed 
with water several times and dried overnight at 60 °C. Doping 
reaction was performed dissolving 100 mg (around 1 mmol) 
of EB-PANI and 11 mmol of the relative metal salt  (MnCl2, 
 CuCl2,  SnCl4·6H2O or  FeCl3) in 20 mL of MeOH and stirred 
at 60 °C overnight. The solution was then diluted in water to 
promote the metal-PANI precipitation. The obtained precipi-
tate was thus filtered, washed several times with water in order 
to remove any residual trace salts, and then dried overnight at 
60 °C.

2.3  Physical and chemical characterizations

Fourier-transform infrared spectroscopy (FT-IR) analysis was 
performed using KBr pellets on a Bruker Tensor II in transmis-
sion mode. The pellets were prepared grinding 1 mg of sample 
with 200 mg of anhydrous KBr and then compacting with a 
pressure of 10 ton  cm−1.

Inductively coupled plasma-mass spectroscopy (ICP-MS) 
analysis was performed on an Icap Q ICP-MS (Thermo Fisher) 
and the data were collected and processed by the related 
Thermo Fischer ICP software.

UV–Vis spectroscopy was performed with a Perkin-Helmer 
UV/Vis/NIR spectrometer LAMBDA™ 650 S in absorption 
mode. Each sample (1 mg) was dissolved in NMP (5 mL) to 
prepare the solution. Blank solvent spectrum was subtracted 
from each recorded spectrum.

Field-emission scanning electron microscopy (FESEM) 
characterization was performed on a ZEISS Supra 40 FESEM 
microscope.

X-ray photoelectron spectroscopy (XPS) analysis was 
performed with a PHI 5000 Versaprobe spectrometer (Physi-
cal Electronics), equipped with monochromatic Al K-alpha 
X-ray source (1486.6 eV). Surface charge compensation was 
obtained with a combined system, based on an electron gun 
and  Ar+ ion gun. Survey and high-resolution (HR) spectra 
were acquired using pass energy (PE) values of 187.85 and 
23.50 eV, respectively. The calibration of the binding energy 
(BE) scale was obtained by setting the C–C  sp2 component 
of the C 1 s region to 284.5 eV. Casa XPS software was used 
for the analysis of the experimental data. The Shirley back-
ground function was subtracted from HR spectra to remove 
the background signal [26]. The reported uncertainties on rela-
tive atomic concentrations were calculated with Monte Carlo 
routines implemented in Casa XPS.

2.4  Electrochemical characterization

2.4.1  Preparation of electrodes

The as-prepared catalysts were coated onto a carbon paper 
(gas diffusion layer, GDL; SIGRACET 28BC, SGL Tech-
nologies) to obtain electrodes. To prepare a binder-free 
electrode, 1  mg of catalyst (EB-PANI, Cu-PANI, Sn-
PANI, Mn-PANI or Fe-PANI) was dispersed in 160 µL of 
ethanol by sonication. The obtained uniform slurry was 
then drop-casted on the GDL and dried in air overnight. 
Each electrode has a catalyst loading of 0.7 mg  cm−2. To 
study the composition effect on the  CO2RR, four Cu-PANI 
electrodes with various compositions were prepared: (i) a 
free-standing one with only catalyst, (ii) a second one with 
the addition of 0.3 mg of carbon black (CB, Shawinigan 
Black AB50), (iii) a third one with the addition of 40 µL 
of Nafion solution (Nafion® 117 solution, 5 wt. %) and 
(iv) the last one with the addition of both CB (0.3 mg) and 
Nafion solution (40 µL).

2.4.2  Cyclic voltammetry (CV) and electrochemical 
impedance spectroscopy (EIS)

The electrochemical characterization was firstly per-
formed through CV and EIS in a three-electrode H-type 
cell at RT with a Metrohm Multi Autolab/M101 potentio-
stat. The working electrode was a catalyst-coated carbon 
paper with a geometric area of 0.15  cm2. A Pt wire was 
used as counter electrode and an Ag/AgCl (3 M NaCl) 
was used as reference electrode. A membrane (Nafion™ 
Membrane N117, Sigma-Aldrich) was employed to sepa-
rate the cathodic and anodic compartments. CV meas-
urements were performed from 0.73 to −  1.07  V vs 
Reference Hydrogen Electrode (RHE) at a scan rate of 
10 mV  s−1 in  N2- and  CO2-saturated/purged (5 mL  min−1) 
0.1 M  KHCO3 aqueous solution. Unless otherwise spec-
ified, all the potentials refer to RHE in this work. The 
potential applied versus Ag/AgCl was converted to that 
versus RHE using the formula E (vs RHE) = E (vs Ag/
AgCl) + 0.197 V + 0.0591 × pH. To determine the double-
layer capacitance of the electrode, CV was executed in a 
potential range of − 0.24 V to − 0.39 V at scan rates of 
2 mV  s−1, 5 mV  s−1, 10 mV  s−1, 25 mV  s−1, 50 mV  s−1, 
75 mV   s−1 and 100 mV   s−1 in the  N2-saturated 0.1 M 
 KHCO3 aqueous solution. EIS measurements were per-
formed at various potentials from − 0.19 V to − 0.99 V 
with an AC signal of 10 mV of amplitude and 1–105 Hz 
frequency range in  N2- and  CO2-saturated 0.1 M  KHCO3 
aqueous solutions.



 Journal of Applied Electrochemistry

1 3

2.4.3  Chronoamperometric (CA) measurement and product 
analysis

CA tests were performed with a CHI 760D (CH Instruments, 
Inc.) potentiostat in a customized H-type EC cell (Electro-
Cell™, Scheme S1) in order to study the  CO2RR and to 
quantify the products. A catalyst-coated carbon paper of 
1.5  cm2 was used as the working electrode, a platinum foil 
as the counter and an Ag/AgCl (1 mm, leak-free LF-1) as 
the reference. Gas-phase products were analyzed on-line by 
a micro gas chromatograph (µGC, Fusion®, INFICON) with 
two channels containing a 10 m Rt-Molsieve 5A column and 
an 8 m Rt–Q–Bond column, respectively. Both channels are 
equipped with a micro thermal conductivity detector (micro-
TCD). The inlet of the µGC equipment was connected to the 
cathodic side of the electrochemical cell through a GENIE 
filter to remove the humidity from the gas. During the CA 
measurements, a constant  CO2 flow rate of 10 mL  min−1 was 
maintained to saturate the electrolyte and to carry out the 
gaseous products to the µGC. Liquid products were analyzed 
by a High-Performance Liquid Chromatograph (Thermo 
Scientific Ultimate3000 HPLC) with a UV–Vis Detector 
set at 210 nm using a ReproGel (300 × 8 mm) column, with 
9.0 mM  H2SO4 (flow rate of 1.0 mL  min−1) as mobile phase. 
The faradaic efficiency (FE) for each product was calcu-
lated by dividing the coulombs needed to produce the actual 
determined amount of this product by the total coulombs 
consumed during a corresponding reduction period.

3  Results and discussion

3.1  Physical and chemical properties of the samples

FT-IR was performed to study the correct polymerization of 
EB-PANI and metal-doped PANI samples. A typical absorp-
tion pattern of polyaniline is observed for the ES-PANI 
(Figure S1) and it is preserved for the EB-PANI and metal-
doped samples (Fig. 1). EB-PANI shows the characteris-
tic νN–H at 3172  cm−1 stretching of secondary amines, the 
νC–H at 3031  cm−1 stretching of aromatic rings, the νC–N at 
1597  cm−1 of the benzenoid ring and the νC–C at 1495  cm−1 
stretching of the quinoid ring of the polymer chain, the νC–N 
at 1312  cm−1 stretching of aromatic amines, the quinoid 
ring stretching at 1151  cm−1, and the out of plane bending 
of para-disubstituted benzene at 819  cm−1. Similar patterns 
are recorded for the metal-doped PANI samples, indicating 
good preservation of the polymer chains during the doping 
reaction.

Successful incorporation of metal elements is confirmed 
by ICP-MS and XPS analysis. Figure S2 reports representa-
tive survey spectra for all the analyzed samples, alongside 
labels for the most intense peaks related to the detected 

chemical elements. The weight percentage of doped metal 
and the atomic ratio of metal to coordinated nitrogen were 
quantified and listed in Table 1. It is confirmed that the 
chemical composition of the synthesized EB-PANI is in 
accordance with the reported molecular structure [27, 28], 
alongside slight oxidation and residual chlorine content from 
the polymerization process.

High-resolution XPS studies further provide information 
on the oxidation state of the metal cations. For Cu-PANI 
sample (Fig. 2a), the  Cu2p3/2 peak can be deconvoluted into 
two main contributions at 932.6 eV (75.6% peak area) and 
934.6 eV (24.4% peak area), which can be attributed to Cu(I) 
and Cu(II), respectively, in accordance with the literature on 
CuCl [29],  CuCl2 [30] and Cu-doped polyaniline [31]. Based 
on the  Sn3d5/2 peak position (487.3 eV), it is possible to 
exclude the presence of metallic Sn in the Sn-PANI sample 
(Fig. 2b), while it is difficult to define the exact oxidation 
state (IV or II) of the Sn cations, due to the low sensitiv-
ity of the binding energy on the oxidation state of Sn [32]. 
Concerning the Mn-PANI sample (Fig. 2c), the identifica-
tion of the oxidation state of Mn is not straightforward due 
to its low concentration and the well-known complexity 
of interpretation of the Mn2p region caused by multiplet-
splitting and satellite structure [33]. Based on the estimated 

Fig. 1  FT-IR spectra of EB-PANI and metal-doped PANI samples
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Table 1  Metal percentage 
by ICP quantification and 
chemical composition by semi-
quantitative high-resolution 
XPS analysis

a The uncertainties on the relative atomic concentrations are reported in brackets and they refer to the last 
digit

Sample ICP XPSa

Metal
(wt%)

C
(at%)

O
(at%)

N
(at%)

Cl
(at%)

Metal
(at%)

Metal/N
(at%/at%)

EB-PANI / 80.5 (4) ± 0.4 3.9 (2) ± 0.2 15.2 (4) ± 0.4 0.4 (1) ± 0.1 / /
Cu-PANI 8.9 ± 1.6 78.3 (7) ± 1.1 6.2 (3) ± 0.3 12.3 (6) ± 1.2 2.5 (1) ± 0.1 0.7 (1) ± 0.1 0.06 (1)
Sn-PANI 6.6 ± 1.1 71.5 (5) ± 0.5 9.8 (3) ± 0.3 11.2 (5) ± 0.5 4.7 (1) ± 0.1 2.8 (1) ± 0.1 0.25 (1)
Mn-PANI 2.2 ± 1.0 80.1 (4) ± 0.5 5.0 (2) ± 0.2 12.9 (5) ± 0.5 1.5 (1) ± 0.1 0.5 (1) ± 0.1 0.04 (1)
Fe-PANI 1.4 ± 1.0 72.0 (4) ± 0.5 13.8 (2) ± 0.2 8.6 (3) ± 0.5 4.6 (1) ± 0.1 1.1 (1) ± 0.1 0.13 (1)

Fig. 2  High-resolution XPS acquisitions of the Cu2p, Sn3d,  Mn2p3/2 and Fe2p regions for samples a Cu-PANI, b Sn-PANI, c Mn-PANI and d 
Fe-PANI
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binding energy of the  Mn2p3/2 peak (641.6 eV), the pres-
ence of Mn(III) and Mn(IV) seems most probable [34]. 
Regarding the Fe-PANI sample (Fig. 2d), both the  Fe2p3/2 
peak at a binding energy of 711.2 eV and the presence of 
characteristic satellite, point to Fe(III), in accordance with 
the literature on  FeCl3 [35] and Fe-doped polyaniline [36]. 
Concisely, detailed XPS analysis unveils that Cu, Sn, Mn 
and Fe ions are successfully introduced in the EB-PANI as 
coordinated ions.

The UV–Vis spectra of various samples, normalized 
based on the as-obtained data, are shown in Fig. 3. Two tran-
sitions, the π-π* between 300 and 400 nm associated with 
the benzoid moiety absorption, and the π-polaron between 
500 and 700 nm related to the bipolar formation, are present 
for EB-PANI. The spectra of metal-doped samples resem-
ble the one recorded for EB-PANI, in agreement with the 
literature [37]. The absorption peaks are slightly different 
for each sample: 322 nm (π-π*) and 585 nm (π-polaron) for 
EB-PANI, 305 nm and 534 nm for Cu-PANI, 305 nm and 
548 nm for Sn-PANI, 305 nm and 574 nm for Mn-PANI, 

300 nm and 569 nm for Fe-PANI. It is interesting to note 
that the presence of metal cations leads to a hypsochromic 
shift (blue shift) for both π-π* and π-polaron transitions and 
causes an increase in the π-polaron absorption, evidencing 
that a doping process is involved at different scales for each 
cations [38]. The presence of cations indicates the forma-
tion of a metal complex and its chemical composition is 
influenced by the anion specie of the metal precursor. In the 
case of halogen metals, the anion is still present in the metal 
complex as halogen ligand due to its favorable coordina-
tive properties, as evidenced by XPS result (Table 1), while 
less coordinative anions such as nitrate could result in more 
complexation for the polyanilines [39].

Further study on the morphology has been performed by 
FESEM. As shown in Fig. 4, Sn-PANI preserves the mor-
phology of EB-PANI without the presence of newly formed 
nanostructures. Similar morphology is also observed for 
Cu-, Mn- and Fe-PANI (Figure S3). This outcome indicates 
the successful doping of metal cations in the PANI matrix, 
in consistence with XPS and UV–Vis analysis.

3.2  Investigation of the electrode composition

To enable the electrochemical evaluation of the powder-
like materials toward the  CO2RR, the as-prepared catalysts 
are usually coated onto a carbon paper to obtain the elec-
trodes. In the literature, one commonly underestimated but 
crucial aspect is the composition of the electrode. Unlike 
in other research fields such as fuel cells, where the elec-
trode composition has already been intensively studied, the 
investigation on the electrode fabrication for the  CO2RR 
is still not mature. In the literature, several methods are 
reported for the electrode preparation [40], while a specific 
study on the composition and the roles of each component 
is still missing. Generally, electrode fabrication requires 
a current collector that is usually a metal or carbon-based 
conductive substrate, a catalyst that is dispersed on the col-
lector to maximize the accessibility, a binder that immo-
bilizes the catalyst on the collector and other additives for 

Fig. 3  Normalized UV–Vis spectra of PANI-based samples dissolved 
in NMP solution

Fig. 4  FESEM images of a EB-
PANI and b Sn-PANI
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enhancing the electrical contact or the ionic conductiv-
ity. In the  CO2RR, commercial carbon papers (equipped 
with GDL) are commonly used as the current collector 
and carbon blacks (CBs) are widely employed to enhance 
the electrical conductivity in the  CO2RR. Another com-
monly used additive is Nafion, an ionomer that acts both 
as a binder and as an ionic conductor. In order to study 
the effect of the individual components on the  CO2RR, 
we performed a cross investigation on various electrodes, 
including one containing only the catalyst (Cu-PANI), one 
containing Cu-PANI and CB, one containing Cu-PANI 
and Nafion, and a last one containing Cu-PANI, CB and 
Nafion, as shown in Fig. 5. Interestingly, Nafion addition 
dramatically favors the hydrogen evolution reaction (HER) 
in terms of both selectivity (higher  FEH2) and electrode 
activity (higher partial current density,  jH2), while it does 
not influence the electrode activity of the  CO2RR. It is 
believed that the fluorinated groups of the ionomer could 
increase the hydrophobicity of the electrode and promote 
the selectivity toward the reduction of  CO2 rather than 
protons [41]. However, the terminal chain sulfonic groups 
in Nafion lead to an increase in the overall surface polar-
ity [27], resulting in the enhancement in the HER. The 
co-presence of Nafion and CB further enhances the HER 
activity, while CB alone does not add any significant 
beneficial effect for the  CO2RR (Fig. 5b). Based on the 
above analysis, it is considered unfavorable to fabricate 
electrodes with Nafion addition, and it is even more dis-
advantageous taking into account the high price of com-
mercially available Nafion solution. PANI is an ionomer 
itself and can act as an ionic conductor. It also shows great 
affinity for the GDL substrate without a binder. Hence, 
it is encouraging that the PANI-based electrodes can be 
fabricated without any additives.

3.3  Electrochemical performances of various 
metal‑doped PANI samples

The catalytic properties of EB-, Mn-, Cu-, Sn-, and Fe-PANI 
binder-free electrodes were investigated at − 0.79 V and 
− 0.99 V. Fe-PANI shows a  FEH2 of 100%, even though 
the highest current densities of 4.9 and 8.8 mA  cm−2 are 
obtained at − 0.79 and − 0.99 V, respectively (Figure S4 
and S5). Figure S6a compares the selectivity of EB-, Mn-, 
Cu- and Sn-PANI for the  CO2RR at − 0.79 V. It is noticed 
that PANI alone shows a FE of 2.8% for HCOOH formation. 
The  FEHCOOH is enhanced to about 9.1% for Cu- and Sn-
PANI. CO is observed on all three metal-doped PANI elec-
trodes, with  FECO values of 2.5–7.3%. The  CO2RR activity 
of EB-PANI electrode is significantly enhanced with Cu and 
Sn-doping, as evidenced by higher current densities for the 
CO and HCOOH production (Figure S6b). This outcome is 
in good agreement with the cyclic voltammetry and elec-
trochemical impedance spectroscopy analysis (Figure S7 
and S8). Doping of PANI with Fe ions leads to the highest 
electrode activity, while it results in no selectivity for the 
 CO2RR, as evidenced by a much lower charge transfer resist-
ance in  N2-purged electrolyte than in the  CO2-saturated one 
at the same potential. In contrast, the PANI doped with Cu or 
Sn ions shows enhancement not only on the electrode activ-
ity, but also on the  CO2RR selectivity, as evidenced by the 
charge transfer resistance values obtained in  CO2-saturated 
electrolyte, which are similar or lower with respect to those 
obtained in  N2-purged solution [12].

Detailed analysis has been performed at − 0.99 V and 
shown in Fig. 6. As at − 0.79 V, the EB-PANI shows a 
selectivity only for HCOOH formation with a FE of 3.6% 
at − 0.99 V (Fig. 6a). While all Mn, Cu and Sn dopants 

Fig. 5  CO2RR on various electrodes with different compositions at − 0.99 V in  CO2-saturated 0.1 M  KHCO3 electrolyte: a Faradaic efficiencies 
and b partial current densities
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lead to a significant enhancement in the  CO2RR selectiv-
ity, the individual selectivity for CO or HCOOH formation 
is distinct. The Mn-PANI achieves a  FECO of 11.8% and a 
small  FEHCOOH of 1.1%. The Cu-PANI enhances both the 
CO and HCOOH formation, with  FECO and  FEHCOOH values 
of 19.1% and 13.4%, respectively. The Sn-PANI shows a 
significant increase in the  FEHCOOH (35.6%) and a modest 
 FECO of 14.6%. Concisely, Mn-PANI is more selective for 
the CO and Sn-PANI is more selective for the HCOOH, 
while Cu-PANI produces CO and HCOOH almost equally. 
Figure 6b shows the electrode activity of various samples in 
terms of geometric current density. In general, the electrode 
activity of PANI can be enhanced by metal doping. The 
total current density on various electrodes follows the trend 
PANI ≈ Mn-PANI < Sn-PANI < Cu-PANI at − 0.99 V. The 
PANI electrode shows almost no partial current density for 
CO formation, while the metal doping significantly improves 
the CO formation, with a highest value of 0.3 mA  cm−2 at 
the Cu-PANI electrode. HCOOH formation is remarkably 
enhanced on the Cu-PANI and Sn-PANI electrodes with 

respect to the PANI one. CO and HCOOH are the only 
detected  CO2RR products and the production rate of the  C1 
products (CO + HCOOH) displays the trend Sn-PANI > Cu-
PANI > Mn-PANI > PANI. These results demonstrate that 
the Cu- and Sn-doping have successfully modified the prop-
erties of PANI toward the  CO2RR.

The current normalized by the geometric surface area 
of the electrodes does not reflect the intrinsic activity of a 
catalyst. To evaluate the intrinsic activity of these materials, 
the current density is normalized by the electrochemically 
active surface area (ECSA). Since the ECSA is considered to 
be proportionally associated to the double-layer capacitance 
(Cdl), the intrinsic activity of various materials are compared 
by investigating the Cdl-normalized current densities at the 
electrodes. As detailed in the supporting information and 
shown in Figure S9, the Cdl values are found to be 3.6, 1.2, 
4.3 and 2.0 mF  cm−2 for EB-PANI, Mn-PANI, Cu-PANI 
and Sn-PANI electrodes, respectively. As shown in Fig. 6c, 
doping the PANI with a metal leads to an increase in the 
activity of the materials for reduction reactions, including 

Fig. 6  CO2RR on various electrodes in  CO2-saturated 0.1 M  KHCO3 electrolyte at − 0.99 V: a Faradic efficiencies for  CO2RR products, b par-
tial current densities, c double-layer capacitance-normalized partial current densities and d turnover frequency for CO and HCOOH products
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HER and  CO2RR. It is observed that the Mn-PANI shows 
the highest activity and the Cu-PANI has the lowest activ-
ity among the metal-doped samples. However, most of the 
activity of the Mn-PANI is attributed to the HER, leading to 
a comparable activity for the  CO2RR with respect to the Cu-
PANI, and even a lower activity compared to the Sn-PANI 
sample. While the activity for CO formation is compara-
ble at the three doped catalysts, the HCOOH formation is 
much more favorable on the Sn-PANI than on the others. It 
is also worth to note that the HER activity becomes inferior 
to  CO2RR for Sn-PANI, which is correlated with the low 
activity of p-group metals for the HER [42]. Figure 6d com-
pares the CO and HCOOH formation rates normalized by 
the total metal atoms, that is turnover frequency (TOF,  h−1), 
at the three metal-doped PANI electrodes. It is evident that 
Sn-PANI outperforms the other counterparts with a higher 
atom efficiency for both CO and HCOOH formation. The 
TOF value is comparable with reported results for similar 
metal single-atom materials [43] and definitely higher than 
the bulk and nanostructured Sn-based catalysts [44], imply-
ing the good utilization efficiency of metal in the Sn-PANI 
complex.

The stability of Sn-PANI has further been investigated 
over 10-h  CO2 electrolysis at − 0.99 V, as shown in Fig. 7. 
The selectivity for CO and HCOOH formation remains 
quasi-stationary during the test (orange and blue squares, 
respectively), while the  FEH2 firstly increases and then 
reaches a plateau (red squares). Surprisingly, the electrode 
activity displays a continuous growth over time (green line, 
current density), which could be attributed to the activation 
of the catalyst or the deeper wetness of the electrode. Since 
the selectivity is not notably changed, it is supposed that the 
characteristic of the catalyst is not changed either. Hence, the 
increase of current density is probably due to the increase 

of the electrode wettability that leads to higher accessibility 
of active sites in the electrode [45]. Further investigation 
is needed to concretely elucidate this point. However, it is 
considered a positive aspect, since the  CO2RR rate is two-
fold enhanced during 10-h operation.

4  Conclusions

In summary, the investigation of the electrode composition 
evidences the interesting propriety of PANI-based materi-
als to be employed without any binder or ionic conductor, 
thus dramatically lowering the price and simplifying the pro-
cess of the electrode preparation. The binder-free electrode 
shows good mechanical stability and higher selectivity for 
the  CO2RR with respect to the ones fabricated with Nafion 
binder. It is highlighted that an easy and novel process has 
been employed to anchor metal cations on PANI, resulting 
in new active sites for the  CO2RR. The metal cations of 
Mn, Cu, Sn and Fe have been investigated and show distinct 
characteristics, indicating the high tunability of the metal-
PANI complexes. Sn-PANI outperforms the other samples 
and exhibits good selectivity, activity and durability for the 
 CO2RR, implying its good potential to be implemented in 
real devices. To the best of our knowledge, the Sn-PANI is 
synthesized and studied as electrocatalyst for the first time 
and its encouraging performance implies the good potential 
of exploring this material for the  CO2RR as well as other 
challenging electrochemical reactions.
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