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Abstract—Bayesian navigation filters are broadly exploited
in precise state estimation for kinematic applications such as
vehicular positioning and navigation. Among these, Particle
Filter (PF) has been shown as a valuable solution to support
hybrid positioning algorithms such as sensor fusion to Global
Navigation Satellite System (GNSS) and Cooperative Positioning
(CP). Despite of an increased computational complexity w.r.t.
conventional Kalman Filters (KFs), an effective weighting of the
input measurements generally provides an improved accuracy
of the output estimate. In the framework of the Differential
GNSS (DGNSS) CP, this work presents an algorithm for the
automated selection of the most appropriate error models for the
tight-integration of non-stationary Differential GNSS (DGNSS)
collaborative inter-agent distances. A model switching technique
named Automated Adaptive Likelihood Switch (AALS) is pro-
posed for a Cognitive Particle Filter (C-PF) architecture, based
on the real-time approximation of the statistics of the inter-agent
distances errors. The results achieved through realistic simula-
tions demonstrated the effectiveness of the proposed solution in
terms of error model selection. Therefore, an improvement of
the position estimation accuracy was observed, since the cases in
which DGNSS-CP would degrade performance due to possible
mismodelling of the selected likelihood function are avoided.

Index Terms—Bayesian estimation, Particle filter, adaptive
estimation, global navigation satellite system, positioning and
navigation

I. INTRODUCTION

Positioning, navigation and timing are of the utmost impor-
tance to support the fast pace of a reliable, connected mobility
[1]. In order to achieve improved accuracy in navigation,
Global Navigation Satellite System (GNSS) must overcome
its intrinsic limitations regarding the lack of visible satellites
and degraded signals quality in harsh environment (i.e. mild-
urban scenarios and urban canyons) [2].

Despite of the extensive effort devoted to the fusion of
inertial sensors and GNSS, absolute positioning solutions
still suffer from the aforementioned impairments. Therefore,
the integration of auxiliary range information to the posi-
tioning problem have been investigated to compensate for
such limitations [3], [4]. Indeed, along with relative bear-
ing, inter-agent distances are the most diffused source of
auxiliary information to improve localisation capabilities in
standalone or cooperative multi-agent systems. Pioneering
implementations first demonstrated the effectiveness of their
integration in navigation units in the field of robotics [5] and

later in vehicular technologies [6], whenever such data can
be distributed through ad-hoc, low-latency links (e.g. Direct
Short Range Communication (DSRC) based on IEEE 802.11p)
[7], [8] or alternative, pre-existent network infrastructures.
In the most popular applications, inter-agent distances are
estimated through Radio-Frequency (RF) ranging via Ultra-
Wide Band (UWB) transceivers [9], vision-based ranging or
less reliably through the Round-trip Time (RTT) or Received
Signal Strength (RSS) of Wi-Fi signals [10]. With the aim
of overcoming Line-of-Sight (LoS) and coverage constraints
of sensor-based ranging, recent research works proposed the
exchange of GNSS observables among multiple agents.

Since in principle GNSS receivers work independently,
these measurements need to be synchronised at receiver side
through consolidated DGNSS techniques, thus imposing a
maximum latency bound on the transmission of such mea-
surements [6], [11], [12]. The analysis of such a bound and
of the message transmission protocols are out of the scope of
this paper.

Along with the possibility of retrieving GNSS corrections
for high-precision positioning (e.g. Differential Global Posi-
tioning System (GPS), Real Time Kinematics (RTK), Wide
Area RTK), DGNSS approaches allow for the computation
of inter-agent distances among generic networked receivers
in a cooperative fashion. DGNSS-Cooperative Positioning
(CP) hence represents a promising paradigm towards the
enhancement of standalone GNSS positioning, leveraging on
the well-known properties of common error cancellation of-
fered by DGNSS measurements [13]. However, when sequen-
tial Bayesian navigation filters (i.e. Particle Filter (PF)) are
considered for the tight integration of GNSS pseudoranges
and DGNSS ranges, a rigorous modelling of such input
measurements is of paramount importance to guarantee high-
accuracy solutions and to limit possible injection of biases.
Indeed, compared to other Bayesian filters, the PF has the
capability to natively handle non-Gaussian and non-linear
measurement models typically observed in DGNSS inter-agent
distances. According to its architecture, PF can provide a
more accurate solution dealing with scenarios where Kalman
Filter (KF)-based navigation filters are not effective due to
the Taylor linearization of the measurements model and the
Gaussian approximation of the noise statistics which affect



the input measurements [14], [15]. In fact, early studies on
DGNSS-CP confirmed that a proper choice of the Probability
Density Function (PDF)s modelling the inter-agent distances
was needed to ensure higher performance w.r.t. state-of-the-
art hybridised Extended Kalman Filter (EKF) solutions [16].
This was achieved through an off-line estimation of the
statistics of the inter-agent distances in a controlled simulation
environment, and their subsequent integration through a C-
PF. In order to automate the error model selection, this work
provides a run-time automated algorithm to determine the
best-matching distribution among a set of pre-defined models,
thus making C-PF architectures adaptive w.r.t. to the relative
position and velocity of the surrounding collaborating agents.

The remainder of this paper is structured as follows: Section
II describes the fundamentals on DGNSS-based inter-agent
distances and how they are integrated in a PF for DGNSS-
CP. In Section III, the proposed approach is presented by
discussing the statistical properties of the distance between
the collaborating agents. A summary of numerical and real-
istic results are discussed in Section IV and conclusions are
eventually drawn in Section V.

II. THEORETICAL BACKGROUND

Given the positions, θa,k, θb,k of two kinematic agents A
and B at given time instant tk, ranging techniques aim at
estimating their inter-agent distance (a.k.a. baseline length)

dab,k = ||dab,k|| = ||θa,k − θb,k|| (1)

where the operator || · || is the Euclidean norm and θa, θb
are the true locations of the two agents in a given Cartesian
reference frame, as depicted in Figure 1. While RF-based
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Fig. 1: Baseline vector and associated error covariance ellipsoid in
a 3D Cartesian reference frame centered at the location of receiver
A, θa.

solutions directly provide an estimate of (1) through the Time
of Flight (ToF) or the RTT of the signal, conventional DGNSS
techniques first estimate the quantity of interest

dab(tk) =
[

∆xab ∆yab ∆zab
]

(2)

and provide then an indirect estimate of (1), namely d̂ab,k,
through the Euclidean norm of an estimate of (2).

A. DGNSS inter-agent distance estimation

Inter-agent distances computed through DGNSS techniques
are far from being assumed stationary when kinematic condi-
tions are experienced by the agents [16]. Their PDFs change
according to the proximity of the cooperating GNSS receivers.
This substantial difference requires a less trivial integration
scheme of the measurements which must somehow take into
account the relative position and speed of the cooperating
agents [4]. Let assume two sets of S pseudorange measure-
ments retrieved by two independent GNSS receivers, thus
independently affected by additive noise terms modelled as
uncorrelated Gaussian random vectors. It is worth recalling
that such a ”Gaussianity assumption” does not generally
hold in real environments but it constitutes an ideal scenario
(statistically-wise) in absence of multi-path phenomena. The
measurements sets ρa,k and ρb,k are assumed to be retrieved
at the same time instant, tk, or to be aligned in post-processing
by one of the agents, as proposed in [17]. The DGNSS
estimation of inter-agent distances can be approached through
few differential methods [18], based on the pseudorange
measurements of independent GNSS receivers. Among the
available techniques, the Weighted Double Difference Ranging
(W-DDR) was chosen being suitable for the use with raw
pseudorange measurements and the cancellation of all the
systematic biases (i.e. receiver and satellites clock biases) [19].
In order to perform a W-DDR we first consider the single
difference vector obtained subtracting the GNSS pseudorange
measurements of the two receivers w.r.t. the set of shareable
satellites [18].

∇ab,k = ρa,k − ρb,k. (3)

By assuming independent identically distributed input mea-
surements, the error covariance matrix associated to ∇ab is
diagonal, with equal variance terms and it can be expressed
as R∇ = 2σ2

ρIS×S , where σ2
ρ is the variance associated to

each pseudorange measurements. The computation of Double
Differences (DD) measurements can be obtained through the
linear combination ∇∆ab = L∇∆∇ab, as

D12
ab,k

D13
ab,k
...

D
1(S−1)
ab,k


︸ ︷︷ ︸
∇∆ab

=


−1 1 0 · · · 0

−1 0 1
. . . 0

...
...

. . . . . .
...

−1 0 · · · · · · 1


︸ ︷︷ ︸

L∇∆


S1
ab,k

S2
ab,k

S3
ab,k
...

SSab,k


︸ ︷︷ ︸
∇ab

. (4)

and the error covariance matrix associated to ∇∆ab is hence
given by

R∇∆ = L∇∆R∇L
>
∇∆ = 2σ2

ρ

(
L∇∆IS×SL

>
∇∆
)

= 2σ2
ρ (1V×V + IV×V )

(5)

where L∇∆ is the matrix describing the differencing operation
among the set of single differences [12], 1 is a unitary matrix
and V = S − 1, is the number of computable DDs using
a predefined reference satellite. By neglecting the residual
noise contribution affecting the DD, dab,k can be estimated



by collecting S − 1 double difference measurements from a
set of S satellites simultaneously visible to agents a and b,
inverting

∇∆ab,k '



[
h2
a,k − h1

b,k

][
h3
a,k − h1

b,k

]
· · ·[

hSa,k − h1
b,k

]

dab,k (6)

where the generic hsr,k is a unitary vector pointing to the s-th
satellite from the location of the r-th receiver and part of the
Direction Cosine Matrix (DCM) evaluated by the receivers for
the conventional Position Time Velocity (PVT) computation
[2]. Furthermore, by considering an effective selection of the
reference satellite [16], the set of equations implied by the
inversion of (6) can be solved through a Weighted Least Square
(WLS) algorithm, as

d̂ab,k = (H>∇,kWH∇,k)−1H>∇,kW∇∆ab,k (7)

where H∇,k is the second term in (6), and W =
[
R

(∇∆)
d

]−1

is
a weight matrix. An estimate of the inter-agent distance is then
obtained by taking the Euclidean norm of (7). The computation
of the error covariance matrix, R(∇∆)

d of the baseline length
is given by

R
(∇∆)
d =

(
H>∇H∇

)−1
H>∇R∇∆H∇

(
H>∇H∇

)−1
(8)

Generally, if i.i.d. pseudorange measurements are assumed
as input, (8) is a fully-populated, positive definite matrix.
It is worth remarking that the eigenvectors ei of the error
covariance matrix, R(∇∆)

d , are independent w.r.t. the direction
of the baseline vector, as depicted in Figure 1. Their orientation
depends on the geometry of the observed GNSS satellites and
of the cooperating receivers, hence on the matrix H∇.

B. Variance Estimation of the Inter-agent Distance

Assuming unbiased input measurements, an estimate of the
variance of the inter-agent distance would be sufficient to
weight the contribution or to at least approximate a suitable
PDF model. Unfortunately, there are no closed form to esti-
mate the variance σ2

d of the Euclidean norm of a multivariate
random vector from its covariance matrix. Therefore, a set
of popular heuristics can be used to provide a quantitative
analysis of σ2

d:

• ψ1 =
Tr

(
R

(∇∆)
d

)
k The trace does not take into account the

correlation of the differential terms in (2), therefore is
suitable for diagonal error covariance matrices. See also
[20], [21].

• ψ2 = |R(∇∆)
d |1/3 where | · | is the determinant of the

argument. It takes into account correlation terms [22]–
[26].

• ψ3 = R
(∇∆)
d,11 . Accounts for the first term of the error

covariance matrix.
• ψ4 = λ1

(
R

(∇∆)
d

)
considers the first eigenvalue of the

matrix which can be related to the variance along the

most relevant axis of the multi-variate error distribution.
It is typically used in principal component analysis.

These quantities can be used to only approximate the variance
of an inter-agent distance, being alternative to a direct, signal-
processing-oriented approach (e.g. windowed time-based esti-
mation). The behaviour of the estimation error on the inter-
agent distance is analyzed hereafter by varying both the value
of the mean quantity and its estimated variance, ψ2.

C. Bayesian Estimation through Cognitive Particle Filter

The sequential Bayesian estimation implemented through
PFs is generally based on the processing of a set of particles
aiming at modelling the statistics of the space state vector,
according to the high-level scheme shown in Figure 2.

Local GNSS
Measurements

Evaluate 𝑖-th
weight

Estimate states

Resample
particles

Propose i-th
particle

𝑖 = 1

𝑖 = 𝑁
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𝑖 = 1

For 𝑖 = 1 to 𝑁

DU
External GNSS
Measurements

𝒅𝑎𝑏𝝆,𝝓

Differential Unit

Fig. 2: Hybrid PF proposed in [27] and extended in [12] to
implement the tight integration of non-stationary DGNSS inter-agent
distances.

A hybrid state estimation based on PF can be performed
by integrating DGNSS inter-agent distances, dk, with con-
ventional GNSS pseudorange and Doppler measurements, zk,
and optimising the PF for sensor-less navigation purposes [16].
The set of particles is generated over a spatial region according
to a given statistical distribution:

θ̂ik ∼ D(xk−1,Pk) (9)

where xk−1 is the previous state estimate, Pk is the state
covariance matrix and D represents a generic statistical dis-
tributions (e.g. Gaussian, Rayleigh). The i-th particle θ̂ik,
represents a possible realisation of the state space vector at
time tk, defined as

θ̂ik = [xik yik zik bik ẋik ẏik żik ḃik] (10)

where xik = [xik yik zik] refers to the spatial coordinates,
vik = [ẋik ẏik żik] to the axial velocity components, while
bik and ḃik are respectively the bias and drift of the local clock.
After each particle θ̂ik is predicted following the dynamic sys-
tem model, the nominal measurement vector ẑik is computed.
Then, auxiliary ranges are integrated by appending them to
zik, creating a new nominal measurements vector z̄ik as

z̄ik = [zik dik] = [z̄1,k z̄2,k . . . z̄M,k] (11)

where M is the number of measurements in z̄ik. The
weights are then obtained by relying on a pre-defined PDF,



p
(
z̄n,k|θ̂ik

)
, w.r.t. the expected measurements computed for

each particle. The normalised weights are hence defined as

wik =
L(z̄k|θ̂ik)∑N
i=1 L(z̄k|θ̂ik)

=

∏M
m p

(
z̄m,k − z̄im,k

)
∑N
i=1

∏M
m p

(
z̄m,k − z̄im,k

) (12)

A number of resampling methods can be used to redistribute
the particles and accurately model the multi-variate PDF of
the state vector and avoid degeneracy problem [28]. The state
estimation is eventually given by the weighted average of the
generated particles. Given a sufficient number of generated
particles, the covariance matrix Pk (associated to the state
estimate θ̂k) can be estimated through the sample covariance
over the set of output particles, θik. To achieve an optimised PF
implementation for DGNSS-CP, the GNSS pseudoranges (and
Doppler) measurements and the auxiliary inter-agent distances
can be respectively processed as Gaussian-distributed and non-
Gaussian-distributed measurements, by exploiting two differ-
ent likelihood functions L(zk|θ̂ik) and L(dk|θ̂ik), obtained in
turn through the related PDFs

p(zk|θ̂ik) ∼ N (0,Rz,k) (13)

p(dk|θ̂ik) ∼ D(0,Rd,k). (14)

The matrices Rz and Rd are the observation noise covari-
ance matrices and D(0,Rd) is a generic non-Gaussian, non-
stationary distribution which is expected to be automatically
identified (or at least approximated). The two likelihoods are
then combined and employed for the weight computation.

III. METHODOLOGY

Previous investigations showed that a considerable im-
provement in estimation accuracy was obtained by choosing
proper error PDFs for different parts of the travelled trajectory
[16]. This approach is based on a-posteriori knowledge only
available in simulation environment, therefore it is not suitable
for a real implementation. Furthermore, such a choice is intrin-
sically tied to the specific scenario to which the simulations are
referred. The architecture proposed in this paper aims instead
at a real-time likelihood selection based on proximity of the
agents only, therefore is a more flexible strategy that can be
applied to any kinematic scenario. According to these observa-
tions, a set of suitable models has been identified by applying
a statistical classification via Monte Carlo simulations. The
proposed approach aimed then at describing the dependency
between the transition among different error PDFs and a given
heuristic to be used to trigger the switch among the available
models. It is worth mentioning that GNSS pseudorange and
Doppler measurements were considered to be affected by an
error modelled as a random variable with Gaussian PDF [2].

A. Mahalanobis distance to model PDF transitions

Early studies showed that the error on the Euclidean Dis-
tance between two multivariate random vectors changes its
PDF according to the Batthacharyya distance between their

statistical distributions [29]. By keeping constant the condi-
tions of the experiment and moving two agents further at each
time instant the behaviour of the estimation error follows the
trend shown in Figure 3. Due to the fact that the information
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Fig. 3: PDFs of the inter-agent distances computed in a simulated
environment. The skewness of the PDF reduces with the increase of
the mean µi.

related to the positioning solutions of the cooperating agents
is unknown at the time of the estimation of their inter-agent
distance, we aim at computing a meaningful metric relying
on the observables and on the output of the Differential Unit
(DU) (implementing the estimation of DGNSS inter-agent
distances), d̂, and covariance Rd, show in Figure 2. To the
purpose, a statistical distance, known as Mahalanobis dis-
tance, is proposed to automatically trigger a mechanism named
Likelihood switch and detailed hereafter. Such a simple metric
is popular in literature for position-related applications such as
collision avoidance [30], [31] and motion planning [32]. The
generic Mahalanobis distance (a.k.a. Generalized Squared In-
terpoint Distance) is computed to measure a statistical distance
of the observation x = [x1, x2, x3, . . . , xN ] from a set of ob-
servations with mean µ = [µ1, µ2, µ3, . . . , µN ] and covariance

matrix R, and is defined as Md =

√
(x− µ)

>
R (x− µ). It

can be considered as a restriction of the Batthacharyya distance
which instead provides the statistical distance between two
distributions. Indeed, differently from the Euclidean distance,
both Batthacharyya and Mahalanobis distances consider the
covariance terms of the observations, as depicted in Figure 4.
The Mahalanobis distance, Md, is used in this study to
measure the distance of the baseline length distribution from
the origin, in the modified form

Md =

√(
01×k − d̂ab

)>
R

(∇∆)
d

(
01×k − d̂ab

)
(15)

and it provides a statistical magnitude of the distance between
two agents. It has to be remarked that
• if the error covariance matrix, R

(∇∆)
d is the identity

matrix, Md reduces to the Euclidean distance.
• if the covariance matrix, R

(∇∆)
d , is diagonal, then the

resulting distance is called a standardised Euclidean dis-
tance
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Fig. 4: Comparison of the Mahalanobis distances evaluated between
two points x1, x2 located at the same Euclidean distance from the
mean µ of the distribution.

Figure 5 shows the theoretical behaviour of the Md obtained
through a Monte Carlo simulation over 105 samples of a
baseline vector perturbed by axial-independent Additive White
Gaussian Noise (AWGN) terms, by varying both the magni-
tude of the baseline vector and ψ2 of the covariance matrix.
It can be observed how the statistical distance from the origin

Fig. 5: BIC classification between Normal (empty markers) and
Rayleigh (filled markers) PDFs, by varying the magnitude of the
inter-agent distance and its error covariance over 104 Monte Carlo
samples per evaluation point. Mahalanobis distance of (2) from the
origin varying baseline length statistics through dab and ψ2 (3D plot).

intuitively increases when the actual distance dab increases,
and further increases for small values of ψ2. According to
this metric, the best statistical fit for the error distribution of
the baseline length can be analysed as discussed hereafter.

B. Bayesian Inference Criterion for PDF classification

The Bayesian Information Criterion (BIC) can be used to
classify the PDF of a given distribution considering a set
of possible fitting models [33], [34], and varying Md. The
corresponding likelihood for a given model µ is computed as

βµ = −2Λµ +Wµ log(L) (16)

where Λi is the log-likelihood of a given fit model, W is
the number of the modelling parameters for the corresponding
PDF and L is the number of data points. The BIC uses the
optimal value of the log-likelihood function and penalises for
more complex models, i.e., models with additional parameters.
This approach hence considers goodness-of-fit and parsimony

BIC-Matching model Agent 1 (%) Agent 2 (%) Agent 3 (%)
GEV 40.47 44.40 36.35

T-loc Scale - 3.14 2.75
Rayleigh 59.53 30.45 60.90
Normal - - -

TABLE I: Occurrence percentage of pre-defined PDF models for
the inter-agent distances computed through W-DDR, for pairwise
cooperating agents on a sample trajectory [16].

and it favours models that minimise the complexity. Despite
this aspect has been discussed as a potential drawback [35],
the proposed BIC classification is hence suitable for the actual
implementation in navigation filters.

In Figure 5, it can be observed that for higher values
of Md, the suggested PDF changes according to the value
assumed by β. In the trivial case of a diagonal error covariance
matrix describing independent terms in (2), a switch between
Rayleigh and Gaussian PDFs is observed and is depicted w.r.t.
Md in Figure 5. By considering the previous assumptions
made on the error covariance properties, a threshold TM can
be defined based on Md to operate the actual PDF switch.
It can be observed that for MD ' 3 where the value of
β assumed by the two models is similar, the PDF best fit
changes from a Rayleigh to a Gaussian PDF, as shown in
Figure 6. A theoretical analysis of the candidate PDF for
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10
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1
 Gaussian PDF model

2
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Model switch

Fig. 6: Approximation of the optimal threshold TM through the
intersection of the BIC likelihood, (16), computed for two PDF
models.

the differential inter-agent distances was required through
analytical simulations which took into account pre-defined
trajectories and properly randomised satellites visibility con-
ditions. Preliminary investigations about the error distribu-
tion of DGNSS range measurements provided that W-DDR
measurements can be reliably modelled through Generalized
Extreme Values (GEV) or Rayleigh distributions when they are
obtained from Gaussian-distributed input pseudoranges [12],
as supported by the occurrences reported in Table I. The
fact that the off-diagonal terms of the error covariance matrix
cannot be neglected modifies the best matching distribution
from Gaussian to GEV. Both the selected distributions depend
on two parameters (ξ for GEV and σ for Rayleigh) which
modify the shape of their PDFs. When the two distribution
models are integrated in the C-PF, these parameters affect



the generation of the likelihood, the weights computation, and
eventually the accuracy and precision of the state estimation.

C. Automated Adaptive Likelihood Switch in C-PF

Two approaches can be addressed for the determination
of a matching PDF: (a) a statistical analysis based on
multiple samples of the inter-agent distance and a BIC-based
discrimination or (b) a threshold-based switch relying on the
statistical distance proposed in Section II-B. The approach
(b) is hereafter discussed through the Automated Adaptive
Likelihood Switch (AALS) algorithm. Referring to the general
architecture in Figure 2, an Hybrid PF was equipped with
an additional stage devoted to the computation of Md and a
threshold was set according to preliminary simulations in dif-
ferent condition. A previous implementation of a sub-optimal
PF architecture revealed remarkable improvement in accuracy
when the cooperating agents were far from each other, thanks
to the reliability of a Gaussian approximation of the baseline
length error and to its negligible non-stationarity [36]. In case
of a pass-by instead (e.g. vehicle overtaking a second vehicle),
the overall performance was reduced due to the introduction
of non-negligible mismodeling of the error PDF in the col-
laborative measurements. Threfore, the architecture proposed
in this paper includes the AALS to limit accuracy drops in
the state estimation due to badly modelled PDF functions for
the incoming collaborative measurements. According to the
fundamental findings of the previous section, the algorithm
computes Md at each epoch and switches among different pre-
defined PDF models. The pseudocode in Algorithm 1 shows
the binary likelihood classification performed on top of the
computation of Md, given the estimates of the inter-agent
distance and the associated covariance for each of the M −S
cooperative measurements.

Algorithm 1 AALS

1: if N > 0 then
2: for i = 1 : N do Md = f

(
d̂

(k)
i , R̂

(k)
d

)
3: if Md > TM then DistrType ← 1; . GEV
4: else DistrType ← 2; . Rayleigh
5: end if
6: ProbCOOP(:,i)=Likelihood(DistrType,ξGEV,σRAY)
7: end for
8: end if

IV. RESULTS

In realistic scenarios, the error covariance matrix associated
to the inter-agent distance is non diagonal and the off-diagonal
terms are non-negligible. No assumptions can be made on the
error correlation which strictly depends on the geometry of
the scenario, as recalled in Section II.

A. AALS in realistic overtaking manoeuvre

A sample scenario is analysed hereafter by considering
an overtaking manoeuvre for two cooperating vehicles, as
depicted in Figure 7 (top plot). A BIC-based classification

A

BA A

Fig. 7: Comparison of the off-line BIC classification between
Rayleigh and GEV PDF (mid plot), and the proposed AALS (bottom
plot) analysed for an overtaking scenario (top plot), with realistic
error covariances.

Likelihood Selection 50-th PCTL 75-th PCTL 95-th PCTL
Fixed 1.98 m 2.68 m 3.92 m
AALS 1.94 m 2.57 m 3.83 m

Improvement 1.87 % 3.96 % 2.19 %

TABLE II: Percentiles of the Cumulative Density Function (CDF)
of the error on the positioning solution computed using different
likelihood selection strategies. Percentiles are indicated as PCTL.

of the PDF of the inter-agent distance between A and B
was provided as a baseline to identify the switching instants
from GEV to Rayleigh PDF (mid plot). The proposed AALS
was used to automatically operate the switch between the
aforementioned models, by setting the threshold TM = 3. As it
can be noticed by comparing mid and bottom plots of Figure 7,
the switch was operated over a window that was slightly wider
w.r.t. the one identified by the reference BIC classification.

B. Position accuracy in realistic kinematic scenarios

The performance of the AALS algorithm were further tested
on a realistic scenario, involving a platoon of aiding agents
moving counter clock-wise on a circular trajectory and a
target agent moving clock-wise on a parallel round trajectory
on the opposite lane. The accuracy improvement, which can
be seen from Table II, were obtained for a set of S = 8
visible satellites simulated through realistic RF signals and
by exploiting only one additional inter-agent distance (i.e. a
worst-case scenario in terms of network cooperation). The
fixed likelihood selection strategy used a GEV distribution
with shape parameter ξ = 0 for the cooperative measurements
for the entire simulation. The AALS instead performed a
switch to shape parameter ξ = 1 only for those epochs when
the computed Md was below the given threshold, while ξ = 0
was identified for all the other cases.



V. CONCLUSIONS

This paper describes helpful methodologies to monitor the
behaviour of non-stationary cooperative inter-agent distances.
It contextually provides an heuristic to classify their error
PDF when they are obtained through DGNSS-inherited W-
DDR, according to relative geometry of collaborative ter-
restrial agents and available GNSS satellites. The AALS
algorithm, based on the Mahalanobis distance and designed
to complement C-PF, is capable to classify the best-matching
PDF among a set of pre-defined models, thus improving
localisation accuracy in kinematic environment and requiring
a limited computational overhead. Despite of the specificity of
the results presented in this work, the proposed methodology
can generally hold for any inter-agent distance being indirectly
computed via Euclidean norm of the baseline vectors (e.g. sin-
gle difference ranging). In the specific context of DGNSS-CP,
the proposed solution guarantees continuity and reliability by
avoiding degraded integration of the auxiliary measurements
when statistical mismodeling is encountered.
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