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Temporal-Spatial Soil Moisture Estimation from
CYGNSS Using Machine Learning Regression

With a Preclassification Approach
Yan Jia , Member, IEEE, Shuanggen Jin , Senior Member, IEEE, Haolin Chen, Qingyun Yan , Member, IEEE,

Patrizia Savi , Senior Member, IEEE, Yan Jin , and Yuan Yuan , Member, IEEE

Abstract—Global navigation satellite system-reflectometry
(GNSS-R) can retrieve Earth’s surface parameters, such as soil
moisture (SM) using the reflected signals from GNSS constellations
with advantages of noncontact, all-weather, real-time, and
continuity, particularly the space-borne cyclone GNSS (CYGNSS)
mission. However, the accuracy and efficiency of SM estimation
from CYGNSS still need to improve. In this article, the global SM
is estimated using machine learning (ML) regression aided by a
preclassification strategy. The total observations are classified by
land types and corresponding subsets are built for constructing
ML regression submodels. Ten-fold cross-validation technique is
adopted. The overall performance of SM estimation with/without
preclassification is compared, and the results show that the SM
estimations using different ML algorithms all have substantial
improvement with the preclassification strategy. Then, the optimal
XGBoost predicted model with root-mean-square error (RMSE)
of 0.052 cm3/cm3 is adopted. In addition, the satisfactory daily
and seasonal SM prediction outcomes with an overall correlation
coefficient value of 0.86 and an RMSE value of 0.056 cm3/cm3 are
achieved at a global scale, respectively. Furthermore, the extensive
temporal and spatial variations of CYGNSS SM predictions are
evaluated. It shows that the reflectivity plays a main role among
the predictors in SM estimation, and the next is vegetation. In
some extremely dry places, the roughness may become more
important. The value of SM is positively correlated with RMSE
and also another limit condition that will constrain the variation
of predictors, thus affecting correlation coefficient R and RMSE.
Also, we compare both SMAP and CYGNSS SM predictions
against in situ SM measurements from 301 stations. Similar
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low-median unbiased RMSEs are obtained, and the daily averaged
CYGNSS-based SM against the in situ networks is 0.049 cm3/cm3.
The presented approach succeeds in providing SM estimation at a
global scale with employing the least ancillary data with superior
results and this article reveals the spatio-temporal heterogeneity
for SM estimation using CYGNSS data.

Index Terms—CYGNSS, GNSS-Reflectometry, preclassifica-
tion, SMAP, soil moisture, XGBoost.

I. INTRODUCTION

SOIL moisture (SM) is an important indicator in the fields
of climate, hydrology, ecology, and agriculture [1]–[3]. The

spatio-temporal change and distribution of SM have a significant
impact on the Earth-atmosphere energy balance, atmospheric
circulation, and soil temperature [4], [5]. Hence, the monitoring
of SM on a large scale is an important part of agricultural
research and the evaluation of environmental factors. It is of
great significance in improving the global climate and predicting
regional precipitation events [6]–[7].

Many passive microwave sensors have been used to observe
surface SM (<5 cm), such as NASA’s the Advanced Microwave
Scanning Radiometer-Earth Observing System [8] (AMSR-E),
the Soil Moisture Passive and Active [9] (SMAP), and the Soil
Moisture and Ocean Salinity [10] (SMOS) of the European
Space Agency. Although microwave sensors can be used to
obtain high-precision SM products, the 2–3 days revisit period
(SMAP) restricts its applications on higher time resolution.
Additionally, some active platforms, e.g., Sentinel-1 [11] and
ERRASAR-X [12], can also provide SM estimation through
radar backscattering measurements, but the time resolution is
lower with around 6 days.

In recent years, the technology of Global Navigation Satel-
lite System-Reflectometry (GNSS-R) has been receiving much
attention due to its free, 24-h, and flexible properties [13].
The GNSS-R signal is very sensitive to the properties of the
reflecting surface. The reflected signal is especially related to
the permittivity that can be detected depending on the strength
of the reflected signal [14]. GNSS-R was first proposed for ocean
remote sensing and further extended to the land surface [15]–
[17]. Many institutions, for example, Jet Propulsion Laboratory
(JPL), the University of Colorado at Boulder, Institut d’Estudis
Espacials de Catalunya-Universitat Politècnica de Catalunya
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(IEEC-UPC), and Starlab in Spain carried out a series of theo-
retical studies and experiments using GNSS reflection signals,
and successively developed soft/hardware GNSS-R receivers
[18]–[20].

With the continuous development of GNSS-R SM retrieval,
new constellation observation programs [21]–[26] with long-
term observation data have become a new approach for GNSS-R
SM retrieval. At present, some significant results have been
found utilizing cyclone GNSS (CYGNSS) data for the SM appli-
cation [27]–[32]. Among them, Kim and Venkat [27] proposed
that the relative signal-to-noise ratio (rSNR) of CYGNSS can
be used to retrieve SM, and the regional daily SM estimation
was derived by combining the rSNR of CYGNSS and the SM of
SMAP. In moderate vegetation condition areas, the correlation
coefficient (R) between SM obtained by CYGNSS and SMAP
is 0.77, but in high-density vegetation areas, the R drops to
0.68. Chew and Small [28] found that the change of CYGNSS
reflectivity was related to the change of SM in SMAP, and
explained this correlation by a linear regression method. An
unbiased root-mean-square error (ubRMSE) of 0.045 cm3/cm3

was reported, thus further improving the accuracy of CYGNSS
SM retrieval. Their CYGNSS-based SM data product, called
“UCAR/CU,” has been made publicly available. The perfor-
mance was validated against point-scale in situ observations,
with a median ubRMSE of 0.049 cm3/cm3 and a median R of
0.4. For the same station, the median ubRMSE between SMAP
and in situ data sets was 0.045 cm3/cm3, with a median R of
0.69, showing that the SM product is complementary to SMAP
[29]. Al-Khaldi et al. [30] used the maximum and minimum SM
values of SMAP to limit the range of CYGNSS retrieval results,
and the total root mean square error (RMSE) obtained for sites
of interest was 0.04 cm3/cm3. Clarizia et al. [31] proposed an
RVR algorithm, which uses CYGNSS reflectivity, roughness
coefficient, and vegetation opacity (VO) in SMAP to perform
a linear regression to obtain daily SM. The estimated RMSE is
0.07 cm3/cm3. Calabia et al. [32] proposed regional SM estima-
tion using bistatic radar physical models and Fresnel reflection
coefficients. An R-square of 0.6 and an RMSE of 0.05 cm3/cm3

were provided. Yan et al. [33] reported an effective schematic for
estimating SM by utilizing the statistics of CYGNSS reflectivity.
Then, the SM estimation was determined through the linear
regression technique with an R of 0.80 and an RMSE of 0.07
cm3/cm3.

With the demand for higher accuracy and efficiency, different
from the above traditional statistical regression methods, the
intelligent retrieval based on machine learning (ML) algorithms
has developed rapidly for CYGNSS SM estimation. Eroglu et al.
[34] employed a fully connected artificial neural network (ANN)
regression model to perform regional SM predictions through
learning the nonlinear relations of SM and other land geo-
physical parameters to the CYGNSS observables. This learned
network used eight input features. Three features are from
CYGNSS data and the other five features are from other sources.
As an extension work, Senyurek et al. [35] adopted three ML
models, RF, ANN, and SVM, for comparison purposes. An
overall RMSE value of 0.052, 0.061, and 0.065 cm3/cm3 are
achieved for the RF, ANN, and SVM techniques, respectively.
The RF method performed best and was then adopted to show the

performance of CYGNSS-based SM estimates involving SMAP
data. Mean unbiased ubRMSE of 0.055 and 0.054 cm3/cm3 were
obtained with CYGNSS estimates and SMAP against in situ
observations, respectively, with a higher R with the CYGNSS
retrievals [36]. The number of ancillary data that are from
other sources was not reduced [35], [36]. Yang et al. [37] also
used backpropagation (BP)-ANN to compare and evaluate the
SM estimation performance of the two spaceborne GNSS-R
satellite missions (TDS and CYGNSS), which has quite a few
(six) ancillary variables. The results showed that TDS-1 and
CYGNSS agree and correlate very well with the SMAP SM in
Mainland China.

The majority of the previous CYGNSS-based SM retrieval
studies considered SMAP data as the reference SM and validated
their performance with SMAP or point-scale in situ observa-
tions. Some of them achieved very high resolutions. However,
it is difficult to directly compare the CYGNSS-based SM data
products from these studies against each other because each
paper shows differences in (1) time spans, (2) the number of
data samples and spatial coverage, (3) validation and reference
data sets, (4) assumptions regarding gridding, (5) ancillary data
used, and (6) spatial resolutions. These factors all impact the
performance of SM retrieval. Despite these differences, most
approaches have shown a moderate performance in CYGNSS-
based SM retrieval. Relevant information about the abovemen-
tioned SM estimates at a spatial resolution of 36 km is summa-
rized in Table I.

Up until now, CYGNSS has proved to be a powerful tool
for producing accurate SM estimates when applied at small and
medium scales. However, alternative approaches are necessary
for the following reasons: (1) Due to a large amount of input
auxiliary data, the existing ML models are difficult to imple-
ment and are time-consuming; (2) there remains a need for a
comprehensive large-scale SM estimation method based on ML
since larger amounts of data put even stricter requirements on
algorithm performance and efficiency; (3) although ML algo-
rithms are commonly characterized by good universality and
transferability, a single ML framework may not address all prob-
lems. Each algorithm has different advantages and applicable
data structures that have to be examined.

This article proposes a novel preclassification aided strategy
for global CYGNSS SM estimation. The performances of dif-
ferent ML regression models with and without the strategy are
compared. Using the least ancillary data, the performance of
the proposed ML regression with a preclassification approach is
evaluated for all types of land surfaces, exhibiting its simple
and effective property. This article is organized as follows.
Section II describes the employed CYGNSS and SMAP data
and observables. Section III presents the design of the proposed
ML model. Section IV shows the results for SM estimation
with analyzing on the spatio-temporal heterogeneity. Section V
summarizes the conclusions.

II. DATA SETS AND OBSERVABLES

A. Satellite Data

The CYGNSS mission has been a topic of interest since it
was launched in Dec. 2016 [38]. The CYGNSS constellation
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TABLE I
APPLICATIONS OF CYGNSS SM ESTIMATION METHODS WITH A RESOLUTION OF 36 KM

is composed of eight micro-satellites, and each satellite can
acquire data from four specular reflection points on the Earth’s
surface simultaneously. The orbit of the constellation is in the
middle and low latitudes, and the specular reflection points are
distributed within the range of ±37° (latitude). Therefore, it
can provide data with extensive spatial coverage that can reach
up to 7×0.5 km and high temporal resolution [28]. In terms
of temporal resolution, despite the variety of other global SM
satellite products, the revisit time of satellites and orbits is
generally limited to 2–5 days or even longer. The revisit period
of CYGNSS is effectively shortened by eight low-inclination
satellites. With all satellites working, it can currently achieve a
temporal resolution of several hours and make almost full global
coverage in 1 day.

CYGNSS provides three levels of scientific data products
to the public. The CYGNSS data used in this work is Level
1 (L1), version 2.1 data. It provides free access to metadata1

that contains the bistatic radar cross section (BRCS or σ),
and signal-to-noise ratio (SNR) as well as other geometry and
navigation messages, such as the incident angle and the distance
between the satellite and specular points.

The SMAP mission is an orbiting observatory that has mea-
sured the amount of water in the surface soil, since January
2015 [9]. It is a joint radar + radiometer operating at the L band
(same band as CYGNSS). Radar ceased operation a few months
after launch, but the radiometer is still working well. It provides
measurements of the land surface SM and freeze–thaw state
with near-global revisit coverage in almost 3 days. These data
products are made available.2 The L3 global daily Equal-Area
Scalable Earth Grid (EASE-Grid) data with a spatial resolution
of 36 km are employed [28], [31].

The SMAP daily data contain SM estimates, quality flags,
roughness coefficient, VO, and other auxiliary information that
can be gridded over the EASE-Grid. To facilitate the further

1[Online]. Available: https://podaac.jpl.nasa.gov
2[Online]. Available: https://nsidc.org/data/SPL3SMP

Fig. 1. CYGNSS plot figure (BRCS) before the data filtering on the day of
2020.1.1.

comparison and validation, the CYGNSS data (e.g., brcs in
Fig. 1) are also resampled into 964 × 406 grids over the EASE-
Grid, based on the longitude and latitude of the SMAP data and
the CYGNSS observables at the specular reflection point [28],
[31]. Thus, the SM data product is 36 × 36 km since it was
trained with data at this resolution.

B. Data Quality Control

The total observation period was two years, from June 2018
to June 2020. The quality of CYGNSS and SMAP data was
needed to be evaluated before modeling since the quality of data
directly related to the performance of the ML predictions. Hence,
the obtained CYGNSS observables calculated for each specular
point (SP) acquisition and SMAP data gridded daily over the
EASE-grid were first filtered according to the following rules:
(1) The CYGNSS reflectivity had to be positive and smaller
than 0.1 to remove the anomalies [33]; (2) the incident angle of
CYGNSS data was above than 60° are commonly disregarded
(a degradation in data quality often occurs at larger incidence
angles [39]) [30], [37]; (3) the negative antenna gain in the
direction of the specular point (corresponding to uncertainties
reported in the measured antenna gain patterns) was removed
[28],[34], [35], [37]; (4) to ensure that the error in the CYGNSS
SP location estimation is within a reasonable range, only the
BRCS data with a Delay Doppler Map (DDM) peak position

https://podaac.jpl.nasa.gov
https://nsidc.org/data/SPL3SMP
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between the 5th and 11th bins in the delay axis were preserved
[35], [40]; (5) the SMAP “retrieval successful/unsuccessful”
quality flag was used as well to filter the SMAP data to ensure
the quality of SM estimation [31], [41].

C. CYGNSS Data Observables

In this work, the CYGNSS data were employed to obtain
surface reflectivity. The SMAP roughness coefficient as well as
VO was taken as ancillary data for SM estimation, and SMAP
SM was considered as the reference ground-truth data. It has
been reported the method for obtaining the CYGNSS reflectivity
Γ that was readily derived from CYGNSS brcs σ [see (1)] or
an approximately substituting the CYGNSS ddm_snr into P coh

[see (2)] as shown below [34]–[40]:

Γbrcs =
σ(Rt +Rr)

2

4π(RrRt)
2 (1)

Γsnr =

(
4π

λ

)2
P coh(Rr +Rt)

2

PtGtGr
(2)

where Rt and Rr are the distances from the transmitter and re-
ceiver to specular points, respectively. P coh denotes the bistatic
coherently received power. Pt is the transmitted signal power,
Gt is the transmitter antenna gain, andGr is the receiver antenna
gain.

The CYGNSS reflectivity can be obtained from (1) or (2).
Moreover, another observable Γratio that was derived by the
ratio of the reflected SNR (ddm_snr) and the direct SNR (di-
rect_snr) was also obtained as a comparison [34], [42].

As mentioned before, the adopted SMAP data is published and
distributed in the EASE-Grid format with a spatial resolution of
36 km. Therefore, when using SMAP data as ancillary data for
estimating SM, the data of CYGNSS reflectivity are grided and
resampled on the same EASE-Grid. In this case, each grid cell
contains multiple CYGNSS samples and one SMAP sample,
due to a higher spatial resolution of the CYGNSS data. In this
work, the CYGNSS reflectivity in one grid was averaged and
used to calculate the SM together with the SMAP data.

III. DESIGN OF SM ESTIMATION USING ML MODELS

A. Typical Traditional ML and Deep-Learning Algorithms

ML is used to attempt to construct intrinsically nonlinear
relationships between input and output data [43], [44]. ML can
automatically learn and evolve as the amount of available data
increases. ML algorithms are not entirely based on rules. As
experience progresses, they learn to give specific answers by
evaluating large amounts of data.

Random Forest (RF) is one of the most popular and powerful
ML algorithms. It is a type of ensemble ML algorithm called
Bootstrap Aggregation or bagging, proposed by Breiman [45].
Its performance can compete with the popular boosting-based
gradient boosting regression tree (GBRT) algorithm. RF is easy
to parallelize and implement in “big data.” Due to the use
of random sampling, the trained model has a small variance
and strong generalization ability. However, it also has some
disadvantages: a) Over-fitting may occur in classification or

regression problems when data sets exhibit relatively large noise;
b) the number of features is likely to have a greater impact on
decision-making, thereby affecting the performance of the fitted
model.

The support vector machine (SVM) was established by Vap-
nik [46] on the basis of statistical learning theory. It is a typical
ML algorithm, which was originally used for classification.
Moreover, the SVM not only performs well in the classification
but can also be used as a typical solution to the regression
problem. It requires fewer samples and it is quite efficient.
However, for large-scale training samples, SVMs may not be
effective, and they are sensitive to the choice of parameters and
kernel functions [47].

Extreme gradient boosting (XGBoost) is an optimized dis-
tributed gradient boosting library designed to be highly efficient,
flexible, and portable. It implements the ML algorithm under
the gradient boosting framework. XGBoost provides a parallel
tree boosting (also known as GBRT) that solves many data
science problems in a faster and more accurate way. XGBoost is
essentially a GBRT, but strives to maximize speed and efficiency.
However, since boosting is naturally executed sequentially, they
are difficult to parallelize [45].

ANN is a typical example in the traditional neuron network
(NN) framework [45]. An ANN is based on a collection of
connected units or nodes called artificial neurons, which loosely
model the neurons in a biological brain. Each connection, like
the synapses in a biological brain, can transmit a signal to other
neurons. It is widely used in various disciplines and engineering
fields since it has good function approximation performance
and strong robustness. Meanwhile, computational and space
complexity is quite high.

B. SM Estimation Using ML Regression Aided By the
Preclassification Strategy

With the assumption that the signal over land is predominantly
determined by the coherent reflection from the surface and is
eventually reduced by the roughness and the vegetation, the
SM estimation was obtained by considering the data product of
the reflectivity, roughness, and vegetation [31]. The CYGNSS
reflectivity was taken as the main predictor in the SM estimation
model, and the SMAP roughness coefficient δand VO τ were
employed as ancillary data.

The previous study [32]–[37] has tried to add alternative
ancillary data to improve the accuracy of SM estimates. We
found that most of the added ancillary data are related to terrain,
such as topography and soil texture [32]–[37]. These ancillary
data have shown the ability to improve the accuracy of the
estimates but are heavy-loaded and technically difficult to obtain,
especially in the case of global estimates. Hence, we proposed
a novel preclassification strategy that employs resampling and
submodeling procedures based on the traditional ML regression
approach to minimize the influence of different land types and
improve the SM estimation accuracy in an easy and practical
way. The flowchart showing the training and validation for
CYGNSS SM estimation by using ML regression with the
preclassification strategy approach is shown in Fig. 2.
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Fig. 2. Flowchart showing the training and validation for the CYGNSS SM estimation with the proposed approach.

Two years of CYGNSS and corresponding SMAP data were
used for the analysis. The first-year data were used to build
the model which was then used to predict the appropriate SM
with the second-year data. The surface reflectivity, derived from
CYGNSS BRCS σ or other variables, was calculated and re-
garded as the primary input with the other vectors (δ and τ )
of the model (Fig. 2). The SMAP SM values were used as the
output of the model and were also taken as the reference data
for training and verifying the proposed ML approach.

The proposed preclassification strategy procedure that esti-
mated SM by land type was compared with traditional ML
regressions. The preclassification methodology trains a separate
retrieval algorithm corresponding to each of the available IGBP
land types, instead of presenting a single SM retrieval algorithm.
When it refers to “traditional ML regressions,” it means a single
retrieval algorithm for all land types. First, the overall samples of
different land types were grouped according to the International
Geosphere-Biosphere Programme (IGBP) land-type classifica-
tion provided by SMAP and then they were used to build several
submodels (e.g., for land types 1, 2, …) for SM estimation.

The 10-fold cross-validation (CV) was adopted to train and
verify the feasibility of the proposed regression with preclassifi-
cation modeling and to select the optimal feature and algorithm.
The 10-fold CV is commonly used and popular, it generally
results in a less biased model compare to other methods. Because
it ensures that every observation from the original dataset has
the chance of appearing in the training and test set. The whole
dataset is randomly partitioned into 10 folds (depending on the
data size). Then we fit the model with nine folds that are used
as a training set, and validate the model using the remaining
set. Note down the RMSE as the performance metric. Repeat
this process until every 10-fold has been served as the test set.
The final evaluation performance metric is the average result
of the recorded RMSE in each iteration. In general, the RMSE
was calculated and showed for an entire dataset, except for the
distribution map showing the performance of each pixel.

We extracted over 10 million groups of daily samples of
CYGNSS and SMAP for the period ranging from July 2018

TABLE II
RMSE OF SM ESTIMATED BY XGBOOST MODEL USING 10-FOLD CV WITH

DIFFERENT OBSERVABLES

to June 2019. We shuffled the order of each group of data to
ensure the accuracy of the 10-fold CV procedure. Additionally,
sufficient training data were needed for obtaining a stable model.
This also ensured that each submodel had enough data for train-
ing and testing (each submodel contained at least 300 thousand
groups of data).

As shown in Fig. 2, the CYGNSS data of one year (between
June 2018 and June 2019) under the 10-fold CV was used to
evaluate the performance of the SM estimation model. Then,
the optimal performing feature and model were applied to the
SM prediction with “unseen” data (from July 2019 to June 2020)
to validate its generalization ability and conduct further analysis.
The SM predictions were compared with the reference SMAP
data to verify the performance of the established model and to
investigate the spatio-temporal variation of the SM estimates.

C. Examination of Different Input Observables

Reflectivity is the primary CYGNSS observable related to
SM, which is taken as one of the input predictors in the regression
model. Several different methods have been described in the
previous section to compute the reflectivity. Combined with dif-
ferent deviations of reflectivity, three types of input vectors were
investigated using the 10-fold CV to compare the performance of
SM estimation: (1)Γbrcs+δ+τ ; (2)Γsnr+δ+τ ; (3)Γratio+δ+τ .

As an example shown in Table II, three types of observables
were taken as inputs to build the XGBoost regression model,
respectively. The Γbrcs performed better than Γsnr and Γratio,
which agrees with [34]. The reason could be the diverse levels
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TABLE III
EVALUATION PERFORMANCE (RMSE) FOR SM ESTIMATION USING 10-FOLD CV AND DIFFERENT ML WITH/WITHOUT PRECLASSIFICATION STRATEGY

of errors coming from changing calibration parameters in differ-
ent reflectivity calculations. Hence, the term “reflectivity” was
referred to Γbrcs in the following sections.

Except for the input vector, as introduced previously, different
ML algorithms search for different trends and patterns. The
prediction performance directly depends on the model that was
chosen. One algorithm is not the best across all data sets or for
all use cases. So, it is so important to know how to match an ML
algorithm to a particular problem. To select and know what kind
of algorithm works best for the type of SM regression problem
is quite critical. Hence, different ML regression models are built
and validated also respectively by a 10-fold CV technique to
access the performance of the SM prediction.

IV. RESULTS AND ANALYSIS

A. Comparisons of Different ML Regression Models
With/Without a Preclassification Strategy

The SM estimates from the different traditional ML (RF,
SVM, XGBoost) and DL (ANN) algorithms with and without
preclassification strategies are shown in Table III. The optimal
input vector (Γbrcs+δ+τ ) was used to determine the best ML
modeling method (Table III). The behavior of the proposed ML
regression aided by preclassification was demonstrated in detail
by using annual data to build the model. The result was also
compared with the traditional regression models. The final eval-
uation results for the preclassification strategy are the weighted
average results of each sub-model and show the overall good
performance of the SM global estimation, indicating a clear drop
in RMSE when using the preclassification strategy.

According to the IGBP land classification provided by SMAP,
the CYGNSS samples contain a total of seventeen categories.
Due to the quality control procedure for the CYGNSS and SMAP
data, the number of data for certain categories were far from
enough for building ML models. Therefore, (seven) categories
with a data volume of less than 20 000 throughout the year were
excluded and were not used in the modeling. Besides, according
to the statistical results, these categories that were excluded are
water bodies, permanent wetlands, ice, and snow, or areas with
extremely thick vegetation, which is difficult to retrieve SM in
these areas with current techniques.

Fig. 3. An example of density plots (in log-scale) comparing CYGNSS and
SMAP SM by using the proposed XGBoost with the 1:1 reference line.

The presented preclassification (aided by submodeling) strat-
egy method yielded good results with a smaller RMSE in all
algorithms (traditional ML and DL) and also in all land types.
Moreover, comparing different ML algorithms, the RF outper-
formed ANN and SVM, which agrees with [35]. Furthermore,
the XGBoost had the best performance with the least RMSE
0.052 cm3/cm3, which has not yet been reported on a global
scale SM estimation.

In Fig. 3, an example of the density plots in log-scale showing
the comparison between estimated CYGNSS SM and the refer-
ence SMAP SM data is presented. The density plot is shown to
exhibit the performance of SM estimation using XGBoost with a
preclassification strategy. The numbers of data for the first year
with 10 million samples in total are shown. The density plot
highlights an overall fairly good consistency between CYGNSS
SM and SMAP SM, especially when the data are the densest.
Each data cloud in density plots is centered along the 1:1
line. However, where the data density is lower, a tendency to
deviate from the line is displayed. The slope shows a downward
trend, which is less than 1, meaning that the CYGNSS tends to
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Fig. 4. Spatial coverage of CYGNSS observables and SMAP SM. (a) 1-day
CYGNSS reflectivity, (b) 1-day SMAP SM on 2020.1.1, and (c) 3-day SMAP
SM on 2020.1.1–2020.1.3.

underestimate SMC values to some degree. This phenomenon
was also reported in [31] and explanation could be investigated
in future work. In the next section, the XGBoost with preclas-
sification strategy is adopted as the optimized prediction model
(RMSE = 0.052 cm3/cm3) to demonstrate the performance of
SM estimation on the aspect of spatio-temporal heterogeneity.

B. Sensitivity of CYGNSS Predictors to SM Estimation

The sensitivity analysis of CYGNSS predictors to SM estima-
tion was analyzed in detail to investigate the relationship of the
input predicting variables with SM estimations. Fig. 4 presents
1-day CYGNSS reflectivity, 1-day SMAP SM, and 3-day SMAP
SM mapped into the EASE-Grid, respectively. The examples are
based on the data of 2020.1.1 for illustration purposes.

The 1-day CYGNSS reflectivity in Fig. 4(a) was obtained
from (1), and the spatial coverage was higher than that of 1-day
SMAP SM [Fig. 4(b)]. Compared with Fig. 1, some grid cells
not covered with CYGNSS data are present in Fig. 4(a), since
some data has been removed due to insufficient data quality. The
data in Fig. 4(a) still provided global coverage. Since the SMAP
satellite can provide full global coverage within three days, the 3-
day SMAP SM in Fig. 4(c) almost covers a global area, providing
sufficient reference data for modeling and SM estimation. Most
areas with higher CYGNSS reflectivity in Fig. 4(a) correspond
to a higher SM in SMAP (Fig. 4c), and vice versa.

Fig. 5. CYGNSS predictors sensitivity to SMAP SM. (a) The spatial correla-
tions (Rreflectivity) of CYGNSS reflectivity and SMAP SM. (b) The daily aver-
age of VO. (c) The dominant land type of each grid cell on 2020.1.1–2020.1.4.

In order to further validate the capability of CYGNSS reflec-
tivity for SM estimation, the spatial correlation (Rreflectivity) is
calculated as the distribution of correlation coefficient of the
CYGNSS reflectivity and SMAP SM for each grid cell (July
2019 to June 2020), which is shown in Fig. 5(a). It is clear that
the consistency varies over different regions. High Rreflectivity

shows a strong correlation between CYGNSS reflectivity and
SMAP SM for each grid, which agrees with the phenomenon
observed in Fig. 4(a) and (c). Meanwhile, high correlations are
observed in most of the areas, demonstrating that CYGNSS
reflectivity plays the main role in SM estimation, which is
consistent with the results of [31].

The daily average VO τ is also shown for further investi-
gation in Fig 5(b). The areas with very high τ (bright green),
e.g., the tropical areas of South America, the Congo Basin
in Africa, and Southeast Asia, correspond to locations with
very low Rreflectivity in Fig 5(a). In addition to this, the other
high τ areas (e.g., dark green) in Fig. 5(b) also correspond
to regions with low Rreflectivity in Fig 5(a). Hence, we infer
that the Rreflectivity is negatively correlated to the VO τ . This
phenomenon can be explained by the fact that a higher τ leads
to more diffuse scattering and weakens the signal reception of
CYGNSS reflectivity [31]. In this case, the τ has a large weight
among the input variables.

Few exceptions (e.g., the Sahara Desert) showing a very low τ
were noticed [see Fig. 5(b)] corresponding to a low Rreflectivity
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TABLE IV
STATISTICAL ANALYSIS OF PREDICTORS WITH DIFFERENT LAND TYPES

in Fig. 5(a). This area corresponds to the barren or sparsely
vegetated land type, as shown in Fig. 5(c). In Table IV, compared
with the other land types, the τ is quite small and the Rreflectivity

is greatly decreased, but the roughness coefficient δdid not
change much. More importantly, a quite low SM (light blue)
can be observed in this place in Fig. 4(c). In this case, it could
be speculated that roughness may have a larger weight than
τ impacting the CYGNSS reflectivity reception.

This phenomenon can be seen in the detailed statistics re-
ported in Table IV. The Rreflectivity, τ , and δare shown and
classified by land types. The IGBP land types with a data volume
of less than 20 000 throughout the year were excluded from the
modeling.

In forest regions (evergreen broadleaf, deciduous broadleaf,
and mixed forest), the Rreflectivity increased evidently with the
decrease of τ , which agrees with the previous inference and the
fact that vegetation mainly reduces coherent reflection [31]. In
most of the areas, Rreflectivity was negatively correlated with
τ . This rule was found also in the savannas (woody savannas
and savannas) and cropland (cropland and natural vegetation
mosaic) regions. Moreover, there were variations to the rule of δ
with respect to Rreflectivity in those three regions and no pattern
emerged, such as in the savannas region. The δ increased with the
increases of Rreflectivity, which is opposite in the cropland region.
This implies that the variation of δ did not impact the Rreflectivity

and thus δ had a much smaller weight than τ . Hence, in addition
to reflectivity, vegetation played the main role in SM estimation;
roughness had a much lower weight, as expected for most land
types. Furthermore, as we have mentioned before, barren or
sparsely vegetated areas show a very low τ corresponds to a low
Rreflectivity. Sharp decreases were observed in VO [see Fig. 5(b)
and Table IV], and the roughness coefficient did not change
much compared to other cases (see Table IV). The Rreflectivity

was the lowest among different land types as the same to the very
low SM [see Fig. 4(c) and Table V]. In this case, the reason can
be explained by that the roughness in a very dry region (e.g.,
with a big sandhill or peculiar terrain) may become the main
factor impacting the reflectivity reception among the predictors.

TABLE V
STATISTICAL ANALYSIS OF DAILY SM ESTIMATION PERFORMANCE WITH

DIFFERENT LAND TYPES

Fig. 6. Prediction performance: (a) Distribution of predicted daily averaged
CYGNSS SM by the proposed XGBoost model, (b) Rsm, and (c) RMSE
considering reference SMAP SM on global coverage.

C. Daily SM Estimation Performance

In this section, the CYGNSS SM predicted by the presented
XGBoost model was compared with SMAP SM to demonstrate
the applicability and feasibility of the proposed approach on a
daily basis. The XGBoost prediction model was constructed by
training the data of the first year (July 2018–June 2019), while
the data of the second year (July 2019–June 2020) was used
as the testing set. Fig. 6 shows an example of daily averaged
CYGNSS SM predicted by the proposed model with global
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coverage, with the corresponding RMSE and spatial correlation
(or, Rsm) between the predicted CYGNSS SM and reference SM
for each grid.

In Fig. 6(a), the predicted CYGNSS SM captures the main
macroscopic features of the SMAP SM. The strong relationship
of the predicted SM and SMAP SM can be observed also in
Fig. 6(b), showing the high spatial correlation Rsm, which is cal-
culated as the correlation coefficient of the predicted CYGNSS
SM and reference SM. Moreover, the pattern of Rsm is in
good agreement with Rreflectivity [Fig. 5(a)], confirming that
reflectivity plays the main role in SM estimation. More than that,
it has to be noted that higher values (brighter colors) in Fig. 6(b)
than in Fig. 5(a) are present for each grid, indicating a stronger
relationship for Rsm than Rreflectivity. Hence, it is conceivable
that the adopted estimation model is capable of SM predictions
and the other input predictors (including τ and δ) still produce
improvements in SM predictions.

A higher RMSE is related to higher τ [see Figs. 5(b) and 6(c)],
validating the conclusion that higher vegetation weakens the
signal reception, impacting SM estimation and that vegetation is
an important predictor. Other deviations could be the incidence
angle of the specular point, mean elevation for each specular
point, and the slope of the trailing edge of the reflectivity
[34]–[37]. We also noticed that, in most areas, high SM was
always accompanied by higher RMSE [see Fig. 6(a) and (c)].
The phenomenon can be further corroborated by the statistics in
Table V.

The statistics of daily estimations are shown on the basis
of predicted average SM, Rsm, and RMSE in Table V with
the standard deviations (SD) of SMAP SM. Overall values of
RMSE 0.056 cm3/cm3 and Rsm 0.86 were attained. Besides, a
high spatial correlation Rsm always appears with a high value of
SMAP SD, which agrees with the finding by [49]. Moreover, the
averaged VO and the SD of VO are summarized and shown. The
areas with high values of SD of τand τ are usually accompanied
by high RMSE (e.g., forest region).

Furthermore, three region types were summarized for the
analysis: sparse vegetation (e.g., open shrublands and barren or
sparsely vegetated), dense forest (e.g., broadleaf forest areas),
and moderately vegetated regions (e.g., grassland), according
to the IGBP land types shown in Fig. 5(c) and Table V. We
concluded that 1) for sparsely vegetated areas (τ is very low),
SM, RMSE, and the Rsm are all very low; 2) For forest areas,
the τ and SM are very high, which leads to very high RMSE
and the Rsm increases; 3) for grassland areas, the SM and the
τ are in the middle of the former two cases, the RMSE is also
between the two but the Rsm is a little higher. This rule can be
summarized and confirms the conclusion that the τ is one of the
main actors impacting the accuracy of SM predictions, which,
as they increase, will lead to a higher RMSE. Also, the high SM
always yields high RMSE, which has been mentioned with the
comparison of Fig. 6(a) and (c).

At the same time, a decrease of SM decreases the soil per-
mittivity and thus the Fresnel coefficient. It was observed that a
very low SM corresponds to a low Rsm even when the τ is quite
low (decreased diffuse scattering). One reason could be that a
very low SM (low Fresnel coefficient) is more vulnerable to be

TABLE VI
DAILY AVERAGED VEGETATION OPACITY IN THE SOUTHERN AND NORTHERN

HEMISPHERE

influenced by other factors. The small variation of other input
predictors (e.g., roughness) or other random factors will gen-
erate considerable impacts and errors, thus affecting the signal
receptions. This could be another explanation for the exception
observed between Rreflectivity and τ before. Another possible
reason could be due to the mechanism of the ML algorithm, since
the values of samples for the low SM region hardly changed,
which is not favorable to ML modeling and predictions. Hence,
in some extreme cases (very dry regions), SM is also another
limiting condition affecting spatial correlation R.

D. Seasonal SM Estimation Performance

The seasonal predicted SM distributions obtained in four
seasons using the XGBoost model are presented in Fig. 7. The
distributions of the SM predictions are similar to each other.
The CYGNSS SM captures the main macroscopic features of
the SMAP SM. Further details of predicted SM and its related
performance matrix for each grid cell are demonstrated in the
temporal domain.

The predicted time series of daily CYGNSS SM, RMSE,
and temporal correlations (or, Tsm) that are calculated as the
correlation coefficients between the CYGNSS SM and SMAP
SM for all grid cells in the northern and southern hemispheres
are shown in Fig. 8. Due to the different seasonal distribution
between the two hemispheres, the predicted seasonal SM time
series were considered separately. The average predicted SM
values in the four seasons are presented in Fig. 8(a) and (b).
The time series was divided into four quarters, corresponding
to autumn, winter, spring, and summer seasons with respect to
the northern hemisphere. The SM predictions agree with SMAP
SM and the trend of one-year SM predicted by CYGNSS in the
northern hemisphere is reversed with the southern hemisphere,
which conforms to the expectations.

The average one-year time series of RMSE and temporal
correlation Tsm that is calculated as the correlation coefficient
between daily CYGNSS SM and SMAP SM are also shown
in Fig 8(c) and (d). From Fig. 8(d), it appears that there is a
higher Tsm [see Fig. 8(d)] in the first and second seasons in
both hemispheres. From Fig. 8(c), the RMSEs in the southern
hemisphere, which are higher than in the northern hemisphere,
increase with the seasonal variability (from the first season to the
third season). This can be explained by Table VI, since the VO,
which is higher in the southern hemisphere, also increases with
time. Hence, higher RMSE always appears with high τ , which
also confirms the conclusion that vegetation plays an important
role in SM estimation except for CYGNSS reflectivity.

The statistical analysis for seasonal Tsm and RMSE is sum-
marized and shown in Table VII, classified by IGBP land types
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Fig. 7. Distribution of predicted seasonal CYGNSS SM. (a) First season (b) Second season. (c) Third season. (d) Fourth season.

TABLE VII
STATISTICAL ANALYSIS OF SEASONAL SM ESTIMATION PERFORMANCE WITH DIFFERENT LAND TYPES

and four quarters in one year. Overall values of RMSE 0.056
cm3/cm3 and Rsm 0.86 can be achieved as the same with daily
SM estimations. For most land types, in the third and fourth
quarters, the RMSE is high, and Tsm is low. Very few land
types show high RMSE in the first and second quarters, such as
croplands, which could be that the cropland presents variability
from cultivation practices.

E. Validation of CYGNSS-Based SM Estimation Results With
In Situ Measurements

Although a similar CYGNSS-based SM model CV method
using SMAP SM has been used in other publications [27], [28],
[30],[31],[33], it is better to involve other data sources to cross-
validate the SM results. Given the limitation of the dependence of
SMAP data during the training and prediction stage of the model,
an independent SM source was added. The CYGNSS-based
SM product obtained by the proposed model was compared
against in situ measurements derived from dense SM ground

networks from Mainland China for further validation. The in
situ SM validation data set was collected by China’s automatic
SM observation stations throughout the year of 2018. Given that
each site provides hourly SM measurements from 0 to 100-cm
depth below the soil surface with an interval of 10 cm, the SM
data with the top 10 cm of soil in each day are utilized and
regarded as the ground-truth value in this study [50]. For quality
control purposes, some unrealistic SM values (e.g., SM < 0
cm3/cm3 or SM > 1 cm3/cm3) were removed before validation.

The overall and regional results of both the proposed
CYGNSS-based and SMAP SM products against in situ SM
sites from five networks are shown in Table VIII. Performance
metrics such as RMSE and the unbiased-RMSE (ubRMSE) are
shown to facilitate the comparison with other studies [29].

In Table VIII, the overall median ubRMSE for CYGNSS
against in situ SM (0.049 cm3/cm3) is similar to SMAP
(0.046 cm3/cm3). A similar performance can also be seen from
the median RMSE with the results of CYGNSS-based SM
against in situ data (0.059 cm3/cm3) and SMAP against in situ
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Fig. 8. Time series of seasonal predictions throughout the year (2019.7–
2020.6). (a) Daily averaged SM in the northern hemisphere. (b) Daily aver-
aged SM in the southern hemisphere. (c) RMSE in the southern and northern
hemispheres. (d) Temporal correlation of Tsm in the southern and northern
hemispheres.

data (0.056 cm3/cm3). Apart from that, different regions are
dominated by different land types, which impacts the perfor-
mance of SM estimation. In particular, higher median RMSE of
0.064 cm3/cm3 and ubRMSE of 0.057 cm3/cm3 were recorded
for the Guangxi Region, which performed more poorly than

TABLE VIII
OVERALL PERFORMANCE OF THE PROPOSED SM AND SMAP PRODUCTS

AGAINST IN SITU MEASUREMENTS

Fig. 9. Daily averaged ubRMSE between CYGNSS-based SM and in situ
observations in Mainland China.

other regions. Its dominant land type is forest, which tends to
have mountainous areas. Thus, the reflected signal was signifi-
cantly affected by dense vegetation and the high terrain, which
also has been evidenced in the previous section.

A map of the distribution of all employed in situ stations
along with their respective ubRMSE values is shown in Fig. 9.
We calculated the ubRMSE between daily averaged CYGNSS
retrievals and in situ measurements. As mentioned, the ubRMSE
values vary depending on the site and the surrounding environ-
ment. Generally, we find a good spatial correspondence between
CYGNSS-based SM and in situ observations, indicating that the
SM derived from the proposed CYGNSS-based approach is in
good agreement with in situ measurement and can be used to
produce the expected SM estimates.

Examples of SM time series derived from the CYGNSS-based
models, SMAP and in situ time-series at each site of 2018
are shown for comparison and to further analyze the temporal
variations of the estimated SM [Fig. 10(a–f)]. Six stations are
selected as indicated in Fig. 9, i.e., Dehong (evergreen broadleaf
forest), Huaifang (croplands), Maoming (natural vegetation mo-
saic), Tongchuan (woody savannas), Geermu (grasslands), and
Kaili (mixed forest), corresponding to each region representing
different land types.
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Fig. 10. Comparison for time series of SM derived from the CYGNSS-based
model, SMAP, and in situ measurements from stations. (a) Guizhou region,
Dehong. (b) East-central region, Huaifang. (c) Southeastern coastal region,
Maoming. (d) Northwest Region, Tongchuan. (e) Other points, Geermu. (f)
Guizhou Region, Kaili.

Fig. 11. Density plot in the log-scale of SM derived from (a) the CYGNSS-
based model, (b) SMAP, and in situ measurements.

The SM retrievals from the CYGNSS-based model at stations
agreed well with in situ measurements. CYGNSS-based SM
from some stations shows comparable [Fig. 10(a,b)] or even
better [Fig. 10(c–e)] SM estimation performance against in situ
measurements compared to the SMAP product. The fluctuations
of SM estimates show that the CYGNSS-based model has the
ability to retrieve both low and high SM.

Meanwhile, some stations [e.g., Fig. 10(f)] show that the SM
retrieved from CYGNSS are worse than SMAP and deviates
from the in situ values. Commonly, since the SMAP data were
employed as the reference SM in the training stage of the
SM model, we can expect the CYGNSS-based SM to perform
similarly or better than SMAP. In the meantime, the SMAP bias
will be passed on to the CYGNSS SM retrieval. The deviation
of the CYGNSS-based SM compared to that of SMAP could be
mitigated by adding many more samples in the training step and
can be investigated in the future. In short, the CYGNSS-based
SM estimation shows some levels of variability from site to
site but is generally close to the in situ measurements with low
ubRMSE.
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The density scatter plots in the log-scale of the CYGNSS-
based SM [Fig. 11(a)] and SMAP [Fig. 11(b)] products against
in situ measurements are shown. Overall, the comparison of the
CYGNSS-based SM and SMAP against in situ measurements
yields R of 0.753 and 0.823, respectively. SMAP achieves a
slightly higher correlation compared to the CYGNSS-based SM.
Both density plots highlight an overall fairly good agreement
with the in situ measurements.

V. CONCLUSION

This article proposed an enhanced ML approach for estimat-
ing the global SM from CYGNSS with the least ancillary data.
The novel preclassification strategy possesses a high integration
feature that aggregates data from the same land type, helps to
minimize the influence of different terrain, and increases the pos-
sibility to identify the rules from the data of each category. The
CYGNSS data were used for learning the nonlinear relationship
between the input vectors (obtained reflectivity, vegetation, and
roughness) and the reference SM (SMAP). The approach was
implemented as following: the overall data were first resampled
according to the IGBP land type and, then, the data from each
category were trained and tested separately to build land-specific
sub-models.

The overall result was compared with that from the traditional
ML regression approach. The preclassification strategy showed
an enhanced prediction ability. Several submodels were con-
structed and compared through their RMSE, which can make
full use of the data mining feature of ML. Compared with dif-
ferent typical ML methods, a clear drop of RMSE was observed
when the preclassification strategy was employed. The XGBoost
model performed best with RMSE of 0.052 cm3/cm3. Moreover,
three types of input vectors with different deviations of reflectiv-
ity were investigated with a 10-fold CV process. The optimized
reflectivity derived from CYGNSS BRCS was adopted with the
proposed XGBoost to demonstrate the daily and seasonal SM
estimation from the spatial and temporal aspects.

The results indicate that different land types have a significant
impact on SM estimation [33], which also explains the effec-
tiveness of the preclassification strategy in SM estimation. A
strong correlation between CYGNSS reflectivity and SMAP was
shown. Among the three predictors, the CYGNSS reflectivity
has a larger positive weight, which is consistent with the fact
that the enhancement of SM increases the soil permittivity and
thus the Fresnel coefficient. The coefficient of VO is also quite
large and positive, because the vegetation mainly reduces the
coherent reflection [31] and, thus, the variable compensates
for this effect. The roughness has a much smaller weight, as
expected, but still produces some improvement in the empirical
regression performances.

Additionally, in most areas, daily and seasonal SM predictions
showed that the VO is negatively correlated to the spatial correla-
tion Rreflectivity and positively correlated to RMSE. Meanwhile,
the values of SM are positively correlated with RMSE and also
affect the contribution of the predictors. In some extremely dry
places (e.g., barren or sparsely vegetated areas), variations in
roughness or vegetation are very sensitive and the roughness

may become a very important factor affecting signal receptions.
On the other hand, the almost unchanged values of low SM are
not good for ML modeling and thus also affect spatial correlation
Rsm. Moreover, the high spatial correlation Rsm always appears
with a high value of SD SMAP. Higher S.D. of VO and VO lead
to increases in RMSE. The RMSEs in the southern hemisphere
increase with the seasonal variation (increase with VO) and
are higher than in the northern hemisphere. Furthermore, the
satisfactory outcome of Rsm value of 0.86 and the RMSE of
0.056 cm3/cm3 were achieved at a global scale for daily and
seasonal SM prediction.

Furthermore, validation of SM with an independent in situ
source results in a median ubRMSE of 0.049 cm3/cm3 and R of
0.753, demonstrating that it could be generalized for regional
SM estimation. Meanwhile, the promising results generated by
the proposed CYGNSS-based model show comparable accuracy
and a higher R with the UCAR/CU SM product [29]. A similar
performance of CYGNSS and SMAP is expected since SMAP is
the reference data for training the proposed SM model [29]. The
proposed SM model obtained comparable results and showed
the huge potential of CYGNSS as a complementary data source
to SMAP, providing SM retrievals with high revisit times.

The proposed novel preclassification strategy based on the
traditional ML regression model can greatly reduce the number
of ancillary data and the complexity of modeling while minimiz-
ing the influence of different land types, and improve the SM
estimation accuracy in a simple and practical way, especially for
the big global scale data. The presented approach has been shown
to be effective for different ML algorithms, and the estimated
CYGNSS SM achieved a satisfactory performance in daily and
seasonal predictions. Last but not least, the proposed preclas-
sification strategy can be applied to other training and testing
problems and could benefit such as hydrology and agriculture
where accurate SM estimates play an important role.
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