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Abstract—Digital twins of production lines do not focus solely
on the management of the production process, they can also
monitor and optimize other extra-functional aspects such as
energy consumption and communications. This paper proposes
the extension of digital twin concept in such directions. First, we
extend the digital twin with models of energy consumption, that
allow the monitoring of production line components throughout
production lifetime. Then, we propose a flow to design the
communication network starting from information obtained from
the digital twin concerning the production, usage and flowing
of information through the plant. All these methodologies start
from the production line specification, then they enrich it with
data collected during operation, and finally information is used
to perform design and optimization. Results have been shown on
a real Industry 4.0 research facility.

Index Terms—Digital twin, Extra-functional properties, Cyber-
Physical Production System (CPPS), Energy consumption moni-
toring and optimization, Network design

I. INTRODUCTION

Digital twins of production lines and shop floors aim at
connecting the manufacturing physical space with its virtual
representation to improve the production process [1]. The
virtual part records the historical evolution of the physical
plant and predicts its evolution with the goal of identifying
malfunctioning and possible optimizations. Meanwhile, the
physical part provides sensed data and behaviors, to allow a
continuous refinement and calibration of the virtual part.

The role of the digital twin in the lifetime of a production
line is crucial at different stages [2], [3]:

• it acts as a virtual prototype of the production line, to
evaluate its behavior before its actual implementation;

• it enables effective decision making to make informed
data-driven decisions and reduce possible sources of in-
efficiencies;

• it monitors line operation at run time and predicts its
behavior thus providing a reference golden model of its
evolution for failure detection and possible optimizations.

During the construction of the digital twin of a production
line, the focus is mostly on its functional behavior, i.e., on the
interaction between human and equipment, on the movement
of items on the production line, and on the manipulation of
items by robots and machinery. Monitoring is indeed relevant
to keep track of the evolution of the production line [4], [5].

However, this is only one aspect of the problem: other
dimensions, hereby called extra-functional, can be considered

Figure 1. Dimensions considered for digital twin construction: monitoring of
equipment and interaction with humans and produced items must be accom-
panied with energy consumption monitoring, and with network awareness.

with positive benefits on the effectiveness and efficiency of
the production process. Figure 1 depicts this idea by showing
the two extra-functional dimensions considered in this work:
namely, energy consumption and communication.

Energy consumption monitoring, prediction and optimization
is important to improve the cost effectiveness of a production
line, to meet the emission goals and also to monitor the state
of health of the equipment. Power models can be used both at
design and configuration time, to identify efficient production
recipes and to optimize energy waste [6], [7]. Additionally,
power models included in the virtual part of the digital twin
are extremely useful at run time, to detect any gradual increase
of energy consumption as an effect of degradation of the
equipment components, to detect the health of the production
line, and to schedule maintenance operations [8].

Another important dimension is networking and communica-
tion. Today’s factory machines are ever more connected with
PLC, SCADA, MES, ERP applications as well as external
systems for data analysis. Communications have different types
of requirements: control communications at the lowest level
are susceptible to delays and errors, while monitoring data to
be used by machine learning procedures require large network
capacity but with not particularly short latency constraint. The
spatial features (i.e., walls and distances) may block commu-
nications or impact on cabling costs. No automatic technique
is currently available in the context of Industry 4.0 to choose



Figure 2. Structure of the ICELab production line.

the best mix of (wired and wireless) network architectures
according to spacial constraints, cost, and quality-of-service
requirements.

This paper outlines how such extra-functional aspects can
be put in relationship with digital twin to improve the design
and maintenance of the production plant. The concepts are
exemplified on a real setup in an Industry 4.0 research facility.

II. ICE LABORATORY CASE STUDY

The reference production line for this work is an Industry 4.0
research facility called Industrial Computer Engineering (ICE)
Laboratory (ICELab) [9]. The general structure of the ICELab
includes a fully fledged production line (Figure 2):

• a vertical warehouse for storing materials and products;
• two collaborative Autonomous Mobile Robots (AMRs),

i.e., two Robotnik RB-Kairos AMR [10] equipped with
anthropomorphic manipulators, that can load and unload
materials from the warehouse to a dedicated point on the
conveyor belt, actively cooperate with an operator, and
perform advanced and cooperative handling tasks;

• a quality check station;
• a collaborative robotic assembly station, comprising two

lightweight collaborative robots: an ABB Yumi [11], and
a Kuka Lightweight Robot [12];

• two 3D printers: a stereolithography mono material 3D
printer and a multi-material polijet 3D printer;

• a milling machine;
• an electronic automatic tester;
• a complex transportation system composed of a main

conveyor belt that spans across the entire laboratory in
a ring configuration, and an unloading conveyor bay for
each machine and for the AMRs.

This particular structure of the laboratory allows to represent
the most modern automation technologies adopted in produc-
tion processes. This paper focuses on a subset of the equipment,
specifically, the parts labeled in Figure 2.

The considered production process is divided into four
phases. First, a set of LEGO-like blocks is transported from
the vertical warehouse to the assembly station by means of
the transport belts. Second, the pieces are assembled by the
two cooperating robotic arms, i.e., Kuka and ABB. Third, the
assembled product is transported to the quality check station

Figure 3. ICELab digital twin.

by means of the same transportation belts used before. At the
quality check station, a robotic arm rotates the assembled piece
and exposes all the critical parts to the cameras: if the quality
standards are achieved the piece is then put back on the belt
and transported to the vertical warehouse for storage.

As depicted in Figure 3, all the active entities of the pro-
duction line are instrumented to provide the IT office with
real-time data by using OPC-UA protocol with end-to-end
encryption [13]. Each sensor implements an OPC-UA server
that exposes some relevant parameters of the equipment.

III. FUNCTIONAL DIGITAL TWIN

A. State-of-the-art

Digital twins can be used in very different contexts, e.g.,
manufacturing, cities, transportation and energy sector [14].
Moreover, the nature of a digital twin can be manifold, and
can consider different aspects, e.g., visualize, identify, predict
and control [15]. The digital twin of each production line is
designed for a specific target, and thus, is different from one
factory to another, depending on the factory, on the level of
detail of information and on the desired twin accuracy. Different
typologies of digital twin are reviewed in [16] and [17].

B. Case study: ICE laboratory twin

The digital twin of the functional behavior of the ICELab
plant has been implemented in Tecnomatix Plant Simulation
[18], an industrial-grade tool with a strong manufacturing-

oriented focus and wide popularity among industrial actors
[19] (Figure 3). The digital twin includes a discrete-event

simulation, reproducing the behavior of the real production line,
plus collects data coming from the real equipment and sends
commands to influence production [20].

The virtual part of the digital twin is described in Plant
Simulation by using the simTalk object-oriented programming
language [21]. It reproduces the movement of pallets carrying
the pieces in the production line towards the different bays and
the processing performed by each equipment.



The digital twin communicates with the actual production
line via the OPC-UA communication protocol: the digital twin
acts as an OPC-UA client, communicates with the OPC-UA
servers located on the equipment, and is able make asyn-
chronous calls of the methods exposed by the servers to actively
control the actions of the production line. Data related to
production and machine operation are retrieved by subscribing
to the servers variables, and is used to update the virtual replica
of the digital twin and to perform analysis on the production
line, e.g., tracing power consumption and evaluating equipment
reliability.

IV. ENERGY CONSUMPTION MONITORING AND MODELING

Energy consumption is an important aspect of any manu-
facturing process, and it is tightly dependent on the operation
of the equipment: different activation sequences and different
equipment configurations may lead to very different energy
consumption. For this reason, energy monitoring and modeling
can be fruitfully included in the digital twin of the plant (Figure
4):

• the physical part of the digital twin can be enriched with
sensors monitoring energy consumption and equipment-
relevant parameters, useful to determine the operating
conditions and the corresponding functional behavior;

• the virtual part can be extended with models of energy
consumption, either developed a priori, based on the
equipment specifications, or from available historical data.

Figure 4. Role of the digital twin for energy consumption monitoring and
modeling, with mutual impact of the physical part and the virtual part.

The models of energy consumption implemented by the
virtual part can be of very heterogeneous nature, ranging from
energy consumption equations based on mechanical models
of the equipment [22], [23] to machine learning algorithms
applied to historical sensor data [24].

The virtual part and the physical part mutually influence
each other. Sensory devices are attached to the physical equip-
ment, to measure both energy consumption and parameters
related to the functional operation (e.g., vibrations, speed, load)
[25]–[27]. Such measurements can be used to adjust the virtual

part at run time to the evolving conditions of the production
line: as an example, any gradual increase of energy consump-
tion induced by equipment degradation (e.g. wear, corrosion

and crack) can be used to adjust the models of power consump-
tion [8]. On the other hand, the configuration and design of the
physical part can be influenced by simulations run on the virtual
part, to identify optimal configurations and settings and to
optimize energy waste through a careful management of active
and idle times of the equipment [6], [7], [24], [27], [28].

A. Construction of the models of energy consumption

Energy efficiency is one of the main goals of the ICELab
production line, thus the extra-functional dimension was con-
sidered as relevant as the functional perspective. To allow a
simulation-based estimation of energy consumption, we thus
adapted an ESL paradigm to production line modeling and
simulation. We measured typical values of power consumption
of each equipment in the different operation states. Energy
consumption data has been recovered through measurements
performed in isolation on each machine, directly within ICE-
Lab. This allowed the construction of a power state machine
(PSM) [29] of each equipment of the production line. These
models are then merged in the digital twin of the production
line to monitor its overall energy consumption as a function of
the different operations.

To construct a PSM, the designer shall identify the most
relevant states of each equipment item, typically including one
or more active states and an idle state. Then, each state is
associated with a value of power consumption, that can be taken
from a measurement or from technical documentation. In our
case, the value was measured with power consumption sensors
when operating each item separately from the production line.
Figure 5 shows an exemplification of power modeling for
the collaborative robotic assembly station: each robot has one
active state, a hold state, and an idle state; the belt is modeled
with only one active state and an idle state; each state is
annotated with the corresponding power consumption. The
evolution of the power state machines is controlled by the
operation of the production line, either as events from the
simulated Plant Simulation model, or as data collected from
the real plant. The power consumption of the production line
at any instant is given by the sum of the power consumption
of each equipment item, estimated as the power consumption
of the current state of its power state machine.

Kuka
Idle

0.75kW

Kuka
Hold

1.25kW

Kuka
Active
2.35kW

Belt
Idle

0.0kW

Belt
Active
0.25kW

Yumi
Idle

0.75kW

Yumi
Hold

0.84kW

Yumi
Active
0.92kW

Figure 5. Example of PSM model for the collaborative robots in the assembly
station and the transport belt.

As an example, power consumption of the collaborative
robotic assembly station is given by the consumption of the
Kuka robot (e.g., Active = 2.35kW ), of the Yumi robot
(e.g., Hold = 0.84kW ) and of the belt (e.g., Idle = 0kW ,



overall 3.19kW ). Figure 6 describes how the PSM of the Kuka
robot is implemented inside the digital twin created with Plant
Simulation by adding one block to the simulation setup (top,
EnergyAnalyzer block) and its corresponding implementation
code (bottom).

As a next step, the production line equipment will be
equipped with external sensors of power consumption for each
machine of the production line. In the medium term, these
sensors will be used to collect historical data, to infer a
more accurate model through machine learning and statistical
techniques [24], [27], when coupled with information on the
equipment operational state gathered from the physical plant
and from the Plant Simulation traces. In the long term, sensor
data is compared at run time with the evolution of the power
state machines, to rapidly detect malfunctioning and unexpected
conditions.

var currentPowerState := KukaSensor.readPSMState()
if currentPowerState = KUKA_STATE_IDLE

Kuka.PowerInputWorking := 0.75
elseif currentPowerState = KUKA_STATE_HOLD

Kuka.PowerInputWorking := 1.25
elseif currentPowerState = KUKA_STATE_ACTIVE

Kuka.PowerInputWorking := 2.35
else

Alert("Wrong Kuka State")
end

Figure 6. Implementation of the Kuka PSM inside Plant Simulation: dedicated
EnergyAnalyzer block (top) and corresponding code (bottom).

B. Simulation in the digital twin

The power-enriched digital twin can be used to simulate
different production recipes and find the best trade-off between
peak power absorption, energy consumption and production
throughput. The graphs in Figure 7 reproduce the evolution of
simulated power consumption (in kW ) for the production of
two pieces by following two different recipes; a simple recipe,
with one single piece being handled by the production line
at any time, is compared to a more complex recipe handling
two pieces simultaneously. The handling of the first piece and
of the second piece is denoted by the blue arrow and the
red arrow, respectively. The curves reported in these graphs
do not exhibit abrupt variations since the change from low
current consumption to high current consumption follows a
smooth trend, as typical in industrial machines. The most
relevant phases from the point of view of power consumption
are carried out by the Assembly station and the Quality check
station, respectively (see labels on top): the former includes the
operation of the collaborative robots (Yumi and Kuka), that are
the most consuming equipment of the production line; the latter

involves a robotic arm to rotate the assembled piece exposing
it to the cameras for quality assessment. In both recipes the
total energy consumption is 0.41 kWh, but in the first one
the peak of power is 6.67 kW , while for the second one it
is 7.02 kW . The simulation shows that when more pieces are
handled in parallel (bottom), there is an increase in peak power
consumption (+5%) with respect to sequential production, but
at the same time it is possible to reduce idle times and thus
overall production time (−16%).

As exemplified by these graphs, digital twin simulation
allows to explore the impact of different production recipes on
industrial parameters such as cost due to energy and production
time. Power peaks may also be analysed and optimized, as they
have a strong impact on machine aging [30].

Figure 7. Power behavior of the plant for the production of two pieces
sequentially (top) or in parallel (bottom). The production of the first/second
piece is highlighted by the blue/red arrow, respectively. The plot on top also
highlights the two most important phases of production carried out by the
assembly station and the quality check station, respectively.

V. COMMUNICATIONS

Machine-to-machine communications as well as interactions
with applications outside the plant (e.g., the digital twin) are
crucial in smart manufacturing. To support the designer in man-
aging communication complexity we need an approach for the
computer-aided design of the physical network infrastructure
by satisfying plant constraints (e.g., required quality of service)
and optimizing a given metric (e.g., overall cost).

The starting point is the identification of communication
flows involving the plant. Currently, this activity is performed
manually by asking directly to people who designed or manage
the plant. This approach is time-consuming and may lead
to an inconsistent set of information. We propose to extract
communication requirements automatically from the digital
twin.

A. Automatic extraction of communication requirements

Figure 8 shows the graph created in Plant Simulation to
model the movement of pieces between the different entities



Figure 8. Plan Simulation model of the ICELab production line with highlights
on data flows that are represented as arrows between source and destination
tasks (red and green circles).

of the ICELab plant. For instance, the mobile robot takes the
raw pieces from the warehouse and puts the finished ones there.

It is reasonable to assume that the movement of a piece
between two machines is associated to a communication flow
between them and, eventually, a third agent acting as coordina-
tor. Since the simulation model describes all these interactions,
we propose to extract data flows from simulation code. Without
loss of generality, let us assume that each blue arrow in Figure 8
represents also a data flow between the machines involved in
the exchange of pieces. We also highlighted by red circles the
tasks that act as sources and destinations of such data flows.
The figure also reports tasks (denoted by green circles) that
send data (black arrows) to the digital twin through OPC-UA
as explained in Section III-B.

B. Synthesis of the physical network infrastructure

The physical network infrastructure can be considered as
a container of the data flows extracted with the previously
described approach. The problem of the automatic allocation
of data flows into physical channels and network protocols
can be seen as a network synthesis problem as stated in [31].
For this purpose, the designer should map the communication
requirements of the plant onto the set of entities formalized in
the network synthesis approach, i.e., tasks, data flows, abstract
channels, zones and contiguity relationships.

We already discussed how tasks and data flows can be
extracted from the digital twin. They should be annotated with
computational and communication requirements, respectively.
Groups of tasks belonging to the same machine can be mapped
onto zones which can be nested to represent not only rooms
but also a machinery inside the room of even different parts
of a machinery. Network solutions (from the physical channel
up to transport layer), to be chosen at the end, can be mapped
onto the concept of Abstract channel. The designer should also
provide the Network Synthesizer with a catalog of network
architectures to be used as abstract channels (e.g., Ethernet,

Figure 9. Network synthesis problem statement for the ICELab.

WiFi, CAN bus). Contiguity relationship ties two zones and
an abstract channel. It can be used to model the impact of the
environment between the two given zones on the behavior of
the given network architecture (e.g., bandwidth reduction or
cabling cost). Such information can be specified by performing
a site survey of the shop floor.

Starting from this formalization, network synthesis consists
in finding the solution of an optimization problem which
describes the communication infrastructure in terms of mapping
of data flows onto abstract channels taken from a catalog.

C. Application to ICELab

Figure 9 shows the details of the network synthesis problem
for some items of Figure 8. Tasks are denoted by circles whose
radius is proportional to their computational complexity. Zones
are denoted by boxes. They are used to group tasks belonging
to the same item, i.e., warehouse, office, robot and belt (as
well as parts of it). Data flows are denoted by arrows. Green
data flows are generated by OPC-UA monitoring tasks, that
require a high bitrate without constraints on delay. Red data
flows convey control loop information with low bitrate but a
strict constraint on delay. Brown data flows are used for plant
coordination with medium bitrate and a moderate constraint on
delay. Task VS_MR and TS_MR are mobile with respect to the
communication with other tasks since they are executed on the
mobile robot.

Listing 1 shows the output of the Network Synthesizer.
The most relevant result is the allocation of data flows to
the network architectures provided as catalog to the optimizer.
Most of the data flows have been assigned to Ethernet, which
provides high capacity without strong guarantees on delay. Data
flows related to control loops have been assigned to CAN bus.
Data flows involving mobile tasks have been assigned to WiFi
as expected. The tool also provides statistics on relevant metrics
for the infrastructure such as cost, energy consumption, sum of
delay values and error rate values.



* List of activated channels:

* Use 3 channels of type Ethernet

* Use 1 channels of type WiFi

* Use 2 channels of type CAN

* Data-Flows allocation:

* Dataflow DF32 inside c WiFi.1

* Dataflow DF33 inside c WiFi.1

* Dataflow DF34 inside c Ethernet.3

* Dataflow DF35 inside c Ethernet.3

* Dataflow DF36 inside c Ethernet.1

* Dataflow DF37 inside c Ethernet.1

* Dataflow DF38 inside c Ethernet.2

* Dataflow DF39 inside c Ethernet.2

* Dataflow DF40 inside c CAN.1

* Dataflow DF41 inside c CAN.2

* Dataflow DF42 inside c CAN.2

* Dataflow DF43 inside c Ethernet.1

* Dataflow DF44 inside c Ethernet.3

* Dataflow DF45 inside c Ethernet.3

* Economic Cost : 9031

* 2442 (Nodes) + 1201 (Wireless) + 5388 (Channels)

* Energy Consumption : 581

* 42 (Nodes) + 201 (Wireless) + 338 (Cable)

* Total Delay : 128

* 80 (Wireless) + 48 (Cable)

* Total Error : 16

* 4 (Wireless) + 12 (Cable)

* Elapsed Time : 1.20 s

* File parsing : 0.02 s

* Structure creation : 0.12 s

* Constraints definition : 0.63 s

* Optimization : 0.42 s

Listing 1. Network synthesis output for the ICELab.

Network design, that is currently performed manually, will
benefit from this approach especially in case of complex
infrastructures and continuous plant reconfiguration.

VI. CONCLUSIONS

This paper highlighted that the digital twin concept can
have an even more effective role in smart manufacturing if
extra-functional properties are taken into account. First, overall
energy consumption has been modeled by associating a power
state machine to each equipment item, as currently done in
embedded system modeling. This extension allows to explore
the effect of different production recipes on energy consump-
tion and production throughput by using simulation before a
real commissioning of the plant. Furthermore, by feeding the
digital twin with real-time energy data it is possible to highlight
deviations with respect to the energy model witnessing aging
and faults of machines. Second, the digital twin can be used to
extract communication flows that can be used to synthesize the
optimal physical network topology, if not yet available.
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