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Computationally efficient stochastic MPC: a probabilistic scaling
approach

Martina Mammarella1, Teodoro Alamo2, Fabrizio Dabbene1,∗, and Matthias Lorenzen3

Abstract— In recent years, the increasing interest in stochas-
tic model predictive control (SMPC) schemes has highlighted
the limitation arising from their inherent computational de-
mand, which has restricted their applicability to slow-dynamics
and high-performing systems. To reduce the computational
burden, in this paper we extend the probabilistic scaling
approach to obtain a low-complexity inner approximation of
chance-constrained sets. This approach provides probabilistic
guarantees at a lower computational cost than other schemes
for which the sample complexity depends on the design space
dimension. To design candidate simple approximating sets,
which approximate the shape of the probabilistic set, we
introduce two possibilities: i) fixed-complexity polytopes, and
ii) `p-norm based sets. Once the candidate approximating set
is obtained, it is scaled around its center so to enforce the
expected probabilistic guarantees. The resulting scaled set is
then exploited to enforce constraints in the classical SMPC
framework. The computational gain obtained with respect to
the scenario approach is demonstrated via simulations, where
the objective is the control of a fixed-wing UAV performing a
crop-monitoring mission over a sloped vineyard.

I. INTRODUCTION

In recent years, the performance degradation of model
predictive control (MPC) schemes in the presence of un-
certainty has driven the interest towards stochastic MPC
(SMPC), to overcome the inherent conservativeness of robust
approaches. A probabilistic description of the disturbance or
uncertainty allows to optimize the average performance or
appropriate risk measures. Furthermore, allowing a (small)
probability of constraint violation, by introducing so-called
chance constraints, seems more appropriate in some applica-
tions, as described in [1]. The craved control performance
and constraint satisfaction can be guaranteed by properly
generating a sufficient number of uncertainty realization
and solving a suitable constrained optimization problem, as
proposed in [2], [3]. The main advantage of this class of
SMPC algorithms is given by the inherent flexibility to be
applied to (almost) every class of systems, including any type
of uncertainty and both state and input constraints, as long
as the optimization problem is convex. On the other hand,
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they share the main drawback: a significant computational
burden required for real-time implementation, narrowing
the application domains to those involving low-computation
assets and slow dynamics, with sample time measured in tens
of seconds or minutes. Some examples are described in [4]
for water networks, in [5] for river flood control, in [6] for
chemical processes, and in [7] for energy plants.

An efficient solution to the aforementioned disadvantages
was proposed in [8], where the SMPC controller design is
based on an offline sampling approach and only a predefined
number of necessary samples are kept for online implemen-
tation. In this approach, the sample complexity is linearly
dependent to the design space dimension and the sampling
procedure allows to obtain offline an inner approximation of
the chance-constrained set. This approach has been extended
to a more generic setup in [9] and experimentally validated
for the control of a spacecraft during rendezvous maneuvers.

Among challenging applications, the control of unmanned
aerial vehicles (UAVs) during assorted scenarios, have been
triggering the attention of MPC community. These platforms
are typically characterized by fast dynamics and equipped
with computationally-limited autopilots. In the last decade,
different receding horizon techniques have been proposed,
see e.g. [10], [11], [12], [13], including a stochastic approach
by [14]. In this case, preliminary analysis have confirmed
the need to further reduce the dimension of the optimization
problem to comply with faster dynamics and low-cost, low-
performance hardware.

The main contribution of this paper is to propose a
new methodology that combines the probabilistic-scaling
approach proposed in [15], which allows to obtain a low-
complexity inner approximation of the chance constrained
set, with the SMPC approach of [8], [9]. In [15], authors
show how to scale a given set of manageable complexity
around its center to obtain, with a user-defined probability,
a region that is included in the chance constrained set. In
this paper, we extend the aforementioned approach showing
how it is possible to reduce the sample complexity via prob-
abilistic scaling exploiting so-called simple approximating
sets (SAS). The starting point consists in obtaining a first
simple approximation of the “shape” of the probabilistic set.
To design a candidate SAS, we propose two possibilities: i)
based on the definition of an approximating set by drawing a
fixed number of samples and ii) envisioning `p-norm based
sets, first proposed in [16]. Solving a standard optimization
problem, it is possible to obtain the center and the shape of
the SAS, which will later be scaled to obtain the expected
probabilistic guarantees following the approach described in



[15]. Then, the scaled SAS is used in the classical SMPC
algorithm to enforce constraints.

The proposed approach is validated in an agriculture
scenario, in which a fixed-wing UAV performs a crop-
monitoring mission over a sloped vineyard. The example
has been chosen due to the increasing interest of using
drones in an agriculture 4.0 framework, as explained in
[17]. The technology has a great potential to support and
address some of the most pressing dares in farming. The
performance of the proposed probabilistic-scaling SMPC
(PS-SMPC) approach in terms of tracking capabilities and
computational load has been compared with those obtained
exploiting the offline sampling SMPC (OS-SMPC) proposed
in [14].

Notation: The set N>0 denotes the positive integers, the
set N≥0 = {0} ∪ N>0 the non-negative integers, and Nba
the integers in the interval [a, b]. Positive (semi-) definite
matrices A are denoted A � 0 (A � 0) and ‖x‖2A

.
= x>Ax.

[H]Tj denotes the j-th row of a matrix or vector H . Pra
denotes the probabilistic distribution of a random variable a.
Sequence of scalars/vectors are denoted with bold lower-case
letters, e.g. v.

II. OFFLINE SAMPLING-BASED STOCHASTIC MPC

In this section, we first recall the SMPC framework
proposed in [8] and [9].

A. Problem setup

We consider the case of a discrete-time system subject to
a generic uncertainty wk ∈ Rnw

xk+1 = A(wk)xk +B(wk)uk + aw(wk), (1)

with state xk ∈ Rn, control input uk ∈ Rm, and the vector
valued function aw(wk) representing the additive disturbance
affecting the system states. The system matrices A(wk) and
B(wk), of appropriate dimensions, are (possibly nonlinear)
functions of the uncertainty wk at step k. The disturbances
(wk)k∈N≥0

are modeled as realizations of the stochastic
process (Wk)k∈N≥0

, on which we take the following assump-
tions.

Assumption 1 (Random Disturbances): The
disturbances Wk, for k ∈ N≥0, are independent
and identically distributed (i.i.d.), zero-mean random
variables with support W ⊆ Rnw . Moreover, given
G = {(A(wk), B(wk), aw(wk))}wk∈W, a polytopic outer
approximation Ḡ .

= co
{
Aj , Bj , ajw

}
j∈NNc1

⊇ G with Nc
vertices exists and is known.

The assumption of independent random variables is nec-
essary to perform the offline computations discussed next.
Note that the system can be augmented by a filter, to model
a specific stochastic processes of interest. A known outer
bound is assumed to establish a safe operating region, in
which recursive feasibility of the MPC optimization can be
established, see [8] for details. We remark that the system
representation in (1) is very general, and encompasses e.g.,
those in [8], [9], [18]. Given the model (1) and a realization
of the state xk at time k, state predictions l steps ahead are

random variables and are denoted xl|k, to differentiate it from
the realization xl+k. Similarly, ul|k denotes predicted inputs
that are computed based on the realization of the state xk.

The system is subject to p state and input chance con-
straints of the form

Prw
{

[Hx]
T
j xl|k + [Hu]

T
j ul|k ≤ 1 | xk

}
≥ 1− εj ,

l ∈ N>0, j ∈ Np1, (2)

with εj ∈ (0, 1), Hx ∈ Rp×n, and Hu ∈ Rp×m. The
probability Prw is measured with respect to the sequence
w = {wi}i≥k. Hence, equation (2) states that the probability
of violating the linear constraint [Hx]

T
j x + [Hu]

T
j u ≤ 1

for any future realization of the disturbance should not be
larger than εj . Note that hard input constraints can also be
formulated in a similar framework, cf. [8].

The objective is to derive an asymptotically stabilizing
control law for the system (1) such that, in closed loop, the
constraints (2) are satisfied.

B. Stochastic Model Predictive Control

To solve the constrained control problem, an SMPC al-
gorithm is considered. The approach is based on repeat-
edly solving a stochastic optimal control problem over
a finite, moving horizon, but implementing only the first
control action. Define the control sequence as uk =
(u0|k, u1|k, . . . , uT−1|k), the prototype optimal control prob-
lem that is to be solved at each sampling time is obtained
minimizing the cost function

JT (xk,uk) =

E

{
T−1∑
l=0

(
x>l|kQxl|k + u>l|kRul|k

)
+ x>T |kPxT |k | xk

}
(3)

with Q � 0, R � 0, and appropriately chosen P � 0, subject
to the system dynamics (1) and constraints (2).

The online solution of the SMPC problem remains a
challenging task but several special cases, which can be
evaluated exactly, as well as methods to approximate the
general solution have been proposed in the literature. The
approach followed in this work was first proposed in [8], [9],
where an offline sampling scheme was introduced. Therein,
with an input parametrization

ul|k = Kxl|k + vl|k, (4)

with a prestabilizing control gain K ∈ Rn×m and free
optimization variables vl|k ∈ Rm, equation (1) is solved ex-
plicitly for the predicted states x1|k, . . . , xT |k and predicted
inputs u0|k, . . . , uT−1|k. In this case, the expected value of
the finite-horizon cost (3) can be evaluated offline, leading
to a quadratic cost function of the form

JT (xk,vk) = [xTk vTk 1Tn ]S̃

xkvk
1n

 (5)

in the deterministic variables vk = (v0|k, v1|k, . . . , vT−1|k)
and xk. The reader is referred to [9, Appendix A] for a
detailed derivation of the cost matrix S̃.



Similarly, with wk = {wl}l=k,...,k+T−1, the j-th chance
constraint defined in (2) becomes the linear chance constraint

Xjε =

{[
xk
vk

]
∈ Rn+mT |

Prwk

{
fTj (wk)

[
xk
vk

]
≤ 1

}
≥ 1− ε

}
, (6)

on the new optimization variables vk with fj being a
function of the sequence of random variables wk. Similarly
to the matrix S̃, functions fj are derived by explicitly solving
the system dynamics over the prediction horizon and the
reader is referred to [9] for a detailed derivation.

The advantage of this explicit formulation is that, given in-
dependence of the random variables, an inner approximation
of the chance constraints can be derived offline. In [8], results
from statistical learning theory (cf. [19], [20]) are exploited
to construct an inner approximation Xj of the constraint set
Xjε by extracting NLT i.i.d. samples w

(i)
k of wk and taking

the intersection of the sampled constraints, i.e.,

XjLT =

{[
xk
vk

]
∈ Rn+mT |

fTj (w
(i)
k )

[
xk
vk

]
≤ 1, i = 1, . . . , NLT

}
. (7)

In particular, it has been shown in [8], that for given
probabilistic levels δ ∈ (0, 1) and εj ∈ (0, 0.14), choosing
the sample complexity N j

LT ≥ Ñ(d, εj , δ) with

Ñ(d, εj , δ)
.
=

4.1

εj

(
ln

21.64

δ
+ 4.39d log2

(8e

εj

))
, (8)

with d = n + mT , guarantees that with probability at least
δ the sample approximation XjLT is a subset of the original
chance constraint Xjε, i.e.,

Pr
{
XjLT ⊆ Xjε

}
≥ 1− δ, j = 1, . . . , p. (9)

Exploiting these results, the SMPC problem can be approx-
imated conservatively by the linearly constrained quadratic
program

min
vk

JT (xk,vk)

s.t. (xk,vk) ∈ XjLT , j = 1, . . . , p. (10)

While the result reduces the original stochastic optimiza-
tion program to an efficiently solvable quadratic program,
the ensuing number of constraints, equal to

NLT =

T∑
i=1

N j
LT ,

may still be too large. For instance, even for a moderately
sized MPC problem with n = 5 states, m = 2 inputs and
horizon of T = 10, and for a reasonable choice of proba-
bilistic εj = 0.05, δ = 10−6, we get N j

LT = 20, 604. For
this reason, in [8] a post-processing step for the constraint
set was proposed to remove redundant constraints. While it
is indeed true that all the cumbersome computations may
be performed offline, it is still the case that in applications
with stringent requirements on the solution time the final
number of inequalities may easily become unbearable. This

observation motivates the approach presented in the next
section, which builds upon the results presented in [15]. We
show how the probabilistic scaling approach directly leads
to approximations of user chosen complexity and which can
be directly used in applications instead of creating the need
for a post processing step to reduce the complexity of the
sampled set.

III. COMPLEXITY REDUCTION VIA PROBABILISTIC
SCALING

In this section, we focus on efficiently solving the SMPC
optimization problem. To this end, we consider the more
generic problem of finding a decision variable vector ξ,
restricted to a set Ξ ⊆ Rnξ , subject to p uncertain linear
inequalities. Formally, we consider uncertain inequalities of
the form

F (q)ξ ≤ g(q) (11)

where F (q) ∈ Rp×nξ and g(q) ∈ Rnp are continuous
functions of the uncertainty vector q ∈ Rnq . The uncertainty
vector q is assumed to be of random nature, with given prob-
ability distribution Prq and (possibly unbounded) support Q.
Hence, to each sample of q corresponds a different set of
linear inequalities. We aim at finding an approximation of
the ε-chance-constraint set, defined as

Xε
.
=
{
ξ ∈ Ξ | Prq {F (q)ξ ≤ g(q)} ≥ 1− ε

}
(12)

that represents the region of the design space Ξ for which this
probabilistic constraint is satisfied. Note that this captures
exactly the SMPC setup discussed in the previous section.
Indeed, the chance-constrained set in (6) is a special instance
of (12), with ξ = [xTk vTk ]T and q = wk.

The characterization of the chance constrained set has
several applications in robust and stochastic control. A
classical approach is to find an inner convex approximation
of the probabilistic set Xε, obtained for instance by means
of applications of Chebyshev-like inequalities, see e.g. [21]
and [22]. A recent approach, which is the one applied in the
previous section to the SMPC problem, is instead based on
the derivation of probabilistic approximations of the chance
constraints set Xε through sampling of the uncertainty. That
is, we aim at constructing a set X, which is contained in Xε
with high probability.

Denote Fj(q) and gj the j-th row of F (q) and j-th
component of q, respectively. Consider the binary functions

hj(ξ, q)
.
=

{
0 if Fj(q)ξ ≤ gj(q)
1 otherwise , j = 1, . . . , p.

Now, if we define

h(ξ, q)
.
= max
j=1,...,p

hj(ξ, q),

we have that h is an (1, p)-boolean function since it can be
expressed as a function of p boolean functions, each of them
involving a polynomial of degree 1. See e.g. [20, Definition
7] for a precise definition of this sort of boolean functions.
Suppose that we draw N i.i.d. samples q(i), i = 1, . . . , N .
Then, we can consider the (empirical) region XN defined as

XN
.
= { ξ ∈ Rnξ : h(ξ, q(i)) = 0, i = 1, . . . , N }.



It has been proved in [20, Theorem 8], that if ε ∈ (0, 0.14)
and N is chosen such that1

N ≥ 4.1

ε

(
ln

21.64

δ
+ 4.39nξ log2

(
8ep

ε

))
then XN ⊆ Xε with a probability no smaller than 1− δ.

We notice that XN is a convex set, which is a desirable
property in an optimization framework. However, the number
of required samples N might be prohibitive for a real-time
application. To tackle this issue, in this paper we exploit
an appealing alternative approach proposed in [15], and we
specialize it to the problem at hand. This work proposes
a probabilistic scaling approach to obtain, with given con-
fidence, an inner approximation of the chance constrained
set Xε avoiding the computational burden due to the sample
complexity raising in other strategies.

The main idea behind this approach consist in first ob-
taining a simple initial approximation of the “shape” of the
probabilistic set Xε by exploiting simple approximating sets
of the form xc ⊕ S. This set is not required to have any
guarantees of probabilistic nature. Instead, to derive such
probabilistic guaranteed set, a scaling procedure is devised.
In particular, an optimal scaling factor γ is derived so that
the set scaled around its center xc,

S(γ)
.
= xc ⊕ γS. (13)

is guaranteed to be an inner approximation of Xε with the
desired confidence level δ.

A. Simple Approximating Sets

The idea at the basis of the proposed approach is to define
Simple Approximating Sets (SAS), which represent specif-
ically defined sets with a low – and pre-defined – number
of constraints. First, we note that the most straightforward
way to design a candidate SAS is to draw a fixed number
NS of uncertainty samples, and to construct a sampled
approximation as follows:
1. Sampled-poly

SS =

NS⋂
i=1

Xi =

NS⋂
i=1

{
ξ ∈ Ξ | F (q(i))ξ ≤ g(q(i)), i = NNS1

}
(14)

Clearly, if NS << NLT , the probabilistic properties of SS
before scaling will be very bad. To tackle this unwanted
behavior, a probabilistic scaling approach is proposed and is
detailed in Section III-B.

A second way to construct a SAS considered in this paper
exploits a class of `p-norm based sets introduced in [16] as
follows

A(xc, P )
.
= {ξ ∈ Rnξ | ξ = xc + Pz, z ∈ Bp} , (15)

where Bp ⊂ Rnξ is the unit ball in the p norm, xc is the
center and P = PT � 0 is the so-called shape matrix. In
particular, we note that for p = 1,∞ these sets take the form
of polytopes with fixed number of facets/vertices. Hence, we
introduce the following two SAS:
2. `1-poly, defined starting from a cross-polytope, also

1Note the difference under the log2 with respect to (8).

known as diamond, of order nξ with 2nξ vertices and 2nξ

facets, i.e.

S1 = {ξ ∈ Rnξ | ξ = xc + Pz, ‖z‖1 ≤ 1} . (16)

3. `∞-poly, defined starting from a hyper-cube of dimension
nξ with 2nξ vertices and 2nξ facets, i.e.

S∞ = {ξ ∈ Rnξ | ξ = xc + Pz, ‖z‖∞ ≤ 1} . (17)

Hence, the problem becomes designing the center and shape
parameters (xc, P ) of the set S1 (resp. S∞) so that they
represent in the best possible way the set Xε. To this end,
we start from a sampled design polytope

D =

ND⋂
i=1

Xi,

with a fixed number of samples ND, and construct the largest
set S1 (resp. S∞) contained in D. It is easily observed that
to obtain the largest `1-poly inscribed in D, we need to solve
the following convex optimization problem

max
xc,C

tr(P ) (18)

s.t. P � 0,

fTi Pz
[j] ≤ gi − fTi xc, i = NND1 , z[j] ∈ V1,

where V1 = {z[1], . . . , z[2nξ]} are the vertices of the unit
cross-polytope while the vertices of the optimal `1-poly can
then be obtained as

ξ[j] = xc + Pz[j], j = 1, . . . , 2nξ. (19)

It should be remarked that, from these vertices, one could
then recover the corresponding 2nξ linear inequalities, each
one defining a facet of the rotated diamond. However, this
procedure, besides being computationally extremely demand-
ing (going from a vertex-description to a linear inequality
description of a polytope is known to be NP hard, [23]),
would lead to an exponential number of linear inequalities,
thus rendering the whole approach not viable. Instead, we
exploit the following equivalent formulation of (15), see
e.g. [16] for details

S1 = {ξ ∈ Rnξ | ‖Mξ − c‖1 ≤ 1} (20)

where M
.
= P−1 and c

.
= P−1xc. From a computational

viewpoint, this second approach results to be more appealing.
Indeed, using a slack variable ζ, it is possible to obtain the
following system of 3nξ + 1 linear inequalities mT

i ξ − ci ≤ ζi, i = 1, . . . , nξ
−mT

i ξ + ci ≤ ζi, i = 1, . . . , nξ∑nξ
i ζi ≤ 1.

The same convex optimization problem of (18) could be
solved to define the center and the shape of the largest `∞-
poly inscribed in D. However, this would involve an expo-
nential number of vertices 2nξ . To avoid this, an approach
based on Farkas lemma can be adopted, exploiting again a
formulation in terms of linear inequalities. The details are
not reported here due to space limitations. In this second
case, once the center xc and the rotation matrix P have
been obtained, the correspondingH-poly has only 2nξ hyper-
planes, each one representing a different linear inequality.



Once the initial SAS, SS and the `1- and `∞-polys, i.e. S1
and S∞ respectively, have been evaluated in terms of linear
inequalities, the probabilistic scaling approach can be applied
to determine the corresponding scaling factor γ. The scaling
procedure is described in details in the paper [15]. For the
sake of completeness, in the next subsection we recall its
basic ideas and illustrate its application to the SAS case.

B. SAS probabilistic scaling

Given a candidate SAS set, the following simple algorithm
can be used to guarantee with prescribed probability 1 − δ
that the scaled set S(γ) is a good inner approximation of Xε.

Algorithm 1 Probabilistic SAS Scaling
1: Given probability levels ε and δ, let

Nγ ≥
7.67

ε
ln

1

δ
and r =

⌈
εNγ

2

⌉
.

2: Draw Nγ samples of the uncertainty q(1), . . . , q(Nγ)

3: for i = 1 to Nγ do
4: Solve the optimization problem

γi
.
= arg max γ (21)

s.t. S(γ) ⊆ Xi
5: end for
6: Return the r-th smallest value of γi.

The following Lemma applies to Algorithm 1.

Lemma 1: Given a candidate SAS set in the form S(γ) =
xc⊕γS, assume that xc ∈ Xε. Then, Algorithm 1 guarantees
that

S(γ) ⊆ Xε

with probability at least 1− δ.

The proof of to Lemma 1 follows from Proposition 1 in [15]
and Lemma 1 in [24].

IV. UAV CONTROL OVER A SLOPED VINEYARD

The selected application involves a fixed-wing UAV per-
forming a monitoring mission over a Dolcetto vineyard at
Carpeneto, Alessandria, Italy (44◦40′55.6′′N, 8◦37′28.1′′E).
The Mission Planner of ArduPilot open source autopilot has
been used to identify a grid pattern with a peculiar path
orientation with respect to the grapevine rows, as shown in
Fig. 2. The main objective is to provide proper control capa-

Fig. 1. Carpeneto vineyard, Piedmont, Italy (credit: Google).

bilities to the UAV to guarantee a fixed relative altitude with
respect to the terrain of 150 m while following the desired

optimal path defined by the guidance algorithm (described in
detail in [25]) at a constant airspeed, i.e. Vref = 12 m/s. The
controllability of the aircraft shall be guaranteed despite the
presence of external disturbances. For this application, the
disturbance source is represented by a fixed-direction wind
turbulence, which intensity can randomly vary among ±1
m/s.

TABLE I
STATE AND INPUT CONSTRAINTS BOUNDARIES.

State variable Boundary Input variable Boundary
u [m/s] ±1.5 ∆T [-] ±0.36
h [rad] ±2 δe [deg] ±20

For validation purpose, the longitudinal control of the UAV
has been analyzed, exploiting both OS-SMPC and the new
PS-SMPC. For this scenario, the controlled state variables
are the longitudinal component of the total airspeed in body
axes u and the altitude h whereas the control variables are
represented by the throttle command ∆T and the elevator
deflection δe. The complete linearized model for the aircraft
dynamics can be found in [26]. The main objective is to track
reference airspeed and altitude profiles, defined by the grid
path, during a monitoring mission to guarantee that UAV
velocity u and quote h remain within predefined boundaries,
applying optimal control actions, also bounded by physical
limitations, as defined in Table I. In compliance with typical
setting for MPC applied to UAV (see e.g. [14]), the prediction
horizon T has been set equal to 15. Consequently, with ε =
0.05, δ = 10−6, we get NLT = 20, 604 and Nγ = 2, 063. On
the other hand, the sample complexity selected for generating
the `1-poly has been set equal to ND = 100 obtaining 3, 500
hyper-planes but only 107 linear constraints implemented
online.

The preliminary results are represented in Fig. 2 and Fig.
3. We can notice that both MPC schemes provide acceptable
tracking capabilities, despite larger (but still acceptable)
deviations from the reference trajectory can be observed
when the scaled set is exploited. Moreover, from Fig. 3,
we can observe that both controllers are able to track the
airspeed signal maintaining the UAV velocity within the
boundaries. On the other hand, the vertical component of
the wind significantly affects the aircraft altitude, which in
some cases violates the given tracking constraint, deviating
over 2 m from the reference path. This behavior has been
observed for both controllers during the turn phases and it
can be ascribable to neglected nonlinearities.

Additional details on controller performance are reported
in Tab. II in terms of maximum and average values of the
computational time required to solve online the SMPC prob-
lem for 3 different run each. The results show a significant
reduction (about 100 times lower) of the computational load
when a lower complexity constraint set is employed. This
makes the PS-SMPC approach not only effective from a
performance viewpoint but also presumably compliant with
the computational capabilities of typical autopilot hardware.



Fig. 2. UAV controlled trajectories obtained running OS-SMPC and PS-
SMPC three times each.
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Fig. 3. Zoom-in on the behavior of controlled state variables with respect
to corresponding reference signals (black lines) during a turn phase around
two consecutive WPs (at t = 420 s and t = 490 s).

TABLE II
MAXIMUM AND AVERAGE ONLINE COMPUTATIONAL COST.

n. tcMAXOS
tcAVGOS

tcMAXPS
tcAVGPS

1 2.0959 0.4178 0.0966 0.0087
2 2.9411 0.5626 0.7221 0.0190
3 2.1497 0.5434 0.2628 0.0086

V. CONCLUSIONS

In this paper, we proposed a novel approach which ex-
ploits a probabilistic scaling technique recently proposed by
some of the authors to derive a novel SMPC scheme. The
introduced framework exhibits a lower computational com-
plexity, while sharing the appealing probabilistic guarantees
of offline sampling.
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