
05 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automatic Management of N×N Photonic Switch Powered by Machine Learning in Software-defined Optical Transport /
Khan, Ihtesham; Tunesi, Lorenzo; Masood, Muhammad Umar; Ghillino, Enrico; Bardella, Paolo; Carena, Andrea; Curri,
Vittorio. - In: IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY. - ISSN 2644-125X. - ELETTRONICO. -
2:(2021), pp. 1-1. [10.1109/OJCOMS.2021.3085678]

Original

Automatic Management of N×N Photonic Switch Powered by Machine Learning in Software-defined
Optical Transport

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/OJCOMS.2021.3085678

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2906672 since: 2021-06-15T01:11:39Z

IEEE

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 1

Automatic Management of N×N Photonic Switch Powered by
Machine Learning in Software-defined Optical Transport

Ihtesham Khan, Lorenzo Tunesi, Muhammad Umar Masood, Enrico Ghillino,
Paolo Bardella, Andrea Carena, and Vittorio Curri

Optical networking is fast evolving towards the applications of the Software-defined Networking (SDN) paradigm down to the
(Wavelength-division Multiplexing) WDM transport layer for cost-effective and flexible infrastructure management. Optical SDN
requires each network element’s software abstraction to enable full control by the centralized network controller. Nowadays, modern
network elements, especially photonic switching systems, are developed by exploiting the fast-emerging technology of Photonic
Integrated Circuit (PIC) that consists of complex fabrics of elementary units that can be driven individually using a large set of
elementary controls. In this work, we focus on modeling the elementary control states of the topological structures behind PIC
N×N switches under a fully blind approach based on Machine Learning (ML) techniques. The ML agent’s training and testing
datasets are obtained synthetically by software simulation of the photonic switch structure. The proposed technique’s scalability and
accuracy are validated by considering different dimensions N and applying it to two different switching topologies: the Honey-Comb
Rearrangeable Optical Switch and the Beneš network. Excellent results in terms of prediction of the control states are achieved for
both of the considered topologies.

Index Terms—Machine learning, Optical switches, Photonic integrated circuits, Silicon photonics, Microring resonators.

I. INTRODUCTION

THE ever-increasing demand for global internet traffic and
evolving concepts of connectivity demand for flexible

and dynamic networking at every layer. To obtain the required
degree of flexibility, network elements and functions must be
virtualized within the network operating system, implementing
the SDN paradigm. With the introduction of coherent opti-
cal technologies for wavelength-division multiplexed optical
transport and re-configurable optical switches for transparent
wavelength routing, in optical networking, the SDN paradigm
extends down to the physical layer [1], [2]. To pursue such an
objective, optical network elements and transmission functions
must be abstracted for quality-of-transmission (QoT) impair-
ments and for controlling to enable full management by the
optical control plane within the optical network controller [3],
[4] as pictorially described in Fig. 1. This work focuses on the
abstraction of control states of optical switches based on PICs
with a structure-agnostic approach based on ML techniques.

Nowadays, smart optical network elements are progres-
sively exploiting PICs to perform complex functions at the
photonic level. In particular, in fiber-optics communications
and data centers, large-scale photonic switches together with

June 14, 2021

Ihtesham Khan is with Politecnico di Torino, Corso Duca degli Abruzzi,
24, 10129, Torino, Italy (e-mail: ihtesham.khan@ polito.it).

Lorenzo Tunesi is with Politecnico di Torino, Corso Duca degli Abruzzi,
24, 10129, Torino, Italy (e-mail: tunesi.lorenzo@gmail.com).

Muhammad Umar Masood is with Politecnico di Torino, Corso Duca degli
Abruzzi, 24, 10129, Torino, Italy (e-mail: muhammad.masood@polito.it).

Enrico Ghillino is with Synopsys, Inc., 400 Executive Blvd Ste 101,
Ossining, NY 10562, United States (e-mail: enrico.ghillino@synopsys.com).

Paolo Bardella is with Politecnico di Torino, Corso Duca degli Abruzzi,
24, 10129, Torino, Italy (e-mail: paolo.bardella@polito.it).

Andrea Carena is with Politecnico di Torino, Corso Duca degli Abruzzi,
24, 10129, Torino, Italy (e-mail: andrea.carena@polito.it).

Vittorio Curri is with Politecnico di Torino, Corso Duca degli Abruzzi, 24,
10129, Torino, Italy (e-mail: vittorio.curri@polito.it).

This work has been supported by Synopsys within the activities of a
research MSA with Politecnico di Torino.

wavelength selective switches have a ubiquitous role, with
primary merits due to their wide-band capabilities together
with low latency and low power consumption. Typically
photonic switches are based on the principle that electrical
control signals can maneuver the flow of light: using this
mechanism, optical signals can be routed to different paths.
Before the development of PIC solutions, different switching
technologies have been proposed, such as three-dimensional
Micro-Electro-Mechanical Systems (MEMS) [5] and beam-
steering technique [6]. They both give stable optical switching
and a reasonable degree of scalability, but the obligation for
precise calibration and installation of discrete components
makes them much more costly and bulkier. This increases
the trend of using PICs-based components, especially photonic
switches, which demands a generic softwareized control model
for photonic switches’ control states to enable full control by
the single centralized controller.

PIC-based solutions mostly rely on elementary cells such
as Mach-Zehnder Interferometers (MZI) [7] or optical Micro
Ring Resonators (MRR) [8]. The generic N×N optical switch
fabric is built by interconnecting multiple stages of elementary
cells following a defined switching topology, where N input
signals at different wavelengths can be routed to any of the
N output ports by varying M control states. In scaling up the
size of N×N switch fabrics, the fundamental requirement is
to efficiently define the control states of the internal switches
and obtain the requested signals’ permutation at the output of
the integrated circuit.

Currently, the research on control/routing states of the
photonic switches has been sparsely reported. Unlike the
electronic switches routing algorithms [9], where the per-
formance of all paths are equal, the optical switches gen-
erally have path-dependent performance [10]. Variations in
performance can be intrinsically due to the topology, or they
can originate by fabrication and design defects, which may
affect the elementary cells’ different switching states and their
cascading effect on the whole device. Deterministic routing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 2

Optical Network Controller

Optical Switching
Fabric

HW abstraction

Fig. 1: Abstraction of the optical switch in a SDN-controlled
optical network.

algorithms can efficiently calculate the control state of the
internal switches for any requested output permutation. The
efficiency of these algorithms originates in their topology
dependence, which allows for a faster and more effective
evaluation of the multistage networks. In contrast, general-
purpose routing algorithms do not provide scalable solutions,
as the computational complexity increases rapidly [11], [12],
[13]. This is caused by the exponential growth of the control
states Nst in the network, which depends on the number of
switches M as Nst = 2M . This makes the generation and
evaluation of the entire routing space unfeasible and evaluating
the weighted penalties for all configurations.

In contrast with traditional topology-dependent strategies,
we propose a generic data-driven model based on ML to
predict the control states of any N×N photonic integrated
switching system. ML strategies have already been tested in
managing PICs. An algorithm powered by the artificial neural
network is proposed in [14] to calibrate 2×2 dual-ring assisted-
MZI switches. In [15], the author reported and experimentally
demonstrated a full self-learning and reconfigurable photonic
signal processor based on an optical neural network chip. The
proposed chip performs various functions by self-learning,
such as multi-channel optical switching, optical multiple-
input-multiple-output de-scrambling, and tunable optical fil-
tering. In [16], it is proposed to use the Deep Reinforcement
Learning (DRL) technique to reconfigure silicon photonic
Flexible Low-latency Interconnect Optical Network Switch
(Flex-LIONS) according to the traffic characteristics in High-
Performance Computing (HPC) systems. Furthermore, a novel
reinforcement ML-based framework called DeepConf is intro-
duced in [17], for automatically learning and implementing a
range of data center networking techniques. Such a framework
simplifies configuring and training of deep learning agents by
using intermediate representation to learn different tasks.

In this work, we present a novel topology-agnostic blind
approach exploiting an ML agent to predict the control states
of the N×N photonic switch with an arbitrary and potentially
unknown internal structure. The agent is trained by a dataset
obtained by the component under test used as a black-box.
The training dataset can be either obtained experimentally or
synthetically by relying on a component software simulator.

Preliminary and partial results for this approach are pre-

Fig. 2: Illustration of Bar and Cross states of a 2×2 elementary
switching element (CrossBar switch).

sented in [18]. In this paper, besides describing in detail
the methodology, we extend the framework towards the op-
timization of the ML models in terms of prediction, accuracy,
and complexity, as well as verifying and analyzing the error
distribution in the predicted control states. The error analysis
aims at assessing the quantitative effects of the trained ML
agent in predicting the proper internal switching routing,
given the PIC topology. Furthermore, the future evolution of
the proposed work will target the inclusion of transmission
penalties in ML agent prediction to evaluate the impact on the
QoT of channels processed by the switching system.

The remainder of the paper is organized as follows. In
Sec. II, we describe the specific architecture of the Beneš and
HCROS switches used for the demonstration of the proposed
ML agent. In Sec. III, we describe the simulation environment
used to generate datasets, presenting its structure and various
statistics. Then, in Sec. IV, we describe the structure of the
proposed ML agent, showing how it is trained on the datasets
of different controls and output signals permutations in order
to predict the control states of internal switching elements.
In this work, we do not aim to develop a specific ML model;
instead, our focus is to show the general effectiveness of ML in
this scenario. So, we exploit an extensively tested opensource
project, namely the TensorFlow© library [19]. Results of our
approach are shown in detail in Sec. V. We demonstrate
that the trained ML agent enables the correct estimation of
the internal switching elements control states for different
N×N sizes and topologies. We also show that a heuristically
enhanced ML agent can further improve the predictions’ accu-
racy in the present scenario. Finally, conclusions are presented
in Sec. VI.

II. SWITCHING TOPOLOGIES

The switching networks analyzed to validate the proposed
ML-based routing approach belong to a class of multistage
crossover switches akin to the Banyan and Clos networks:
these topologies are composed by several elementary 2×2
crossbar switches, arranged in multiple stages with variable
interconnections, to route a generic number N of inputs to
a required output configuration. From a topological point of
view, the most important property for the optical application
is to route each possible requested output permutation without
internal conflicts. Based on this property, the networks can
be divided into two main classes: non-blocking and blocking,
representing the ability to route all possible permutations of
N inputs to the N output ports. For the scope of this analysis,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 3

TABLE I: Dataset Statistics

Network type
Size (N ×N)

Beneš
8x8

Beneš
10x10

HCROS
12x12

Beneš
15x15

Permutations (N !) 40,320 3,628,800 479,001,600 1,307×109
Switches (M) 20 26 36 49

Combinations (2M) 1,048,576 67,108,864 68×109 562×1012

Dataset 100,000 300,000 300,000 1,000,000

only non-blocking networks have been analyzed, as they pro-
vide a more useful application and more complex topological
characteristics with respect to the blocking networks.

A. The 2×2 CrossBar switch

A 2×2 CrossBar switch is the basic building block used for
the generation of these networks. Such a device has two main
states: the BAR state, where the inputs are directly routed to
the output ports (

(
λ1

λ2

)
→
(
λ1

λ2

)
), and the CROSS state, where

the signals target ports are inverted (
(
λ1

λ2

)
→
(
λ2

λ1

)
), as shown

in Fig. 2. These ideal switches can be implemented through
different structures at the circuit level: add-drop MRR and
MZI can be used to design these devices for both colorless
and wavelength-dependent systems.

B. The N×N Beneš network

A Beneš network is a sub-type of Clos networks with 2×2
basic elements. By definition, the number of inputs is limited
to N = 2k, k ∈ N although it is possible to generalize
its size to any number of inputs through a structure called
Arbitrary Sized Beneš (AS-Beneš) [20]: the properties of
the network are unchanged with respect to the constrained
definition, so the generalization will be called Beneš as the
strict-sense one (Fig. 3a). In the strict-sense definition of non-
blocking network, new links can always be established without
changing the previously set paths; the Beneš networks is a
rearrangeable non-blocking structure, meaning that new input-
output links can always be established (all output permutations
are possible), but the existing links may need to be routed
through different paths. In terms of complexity, the Beneš
networks can be analyzed through two main parameters:

• the number of unique output permutations, equal to N !.
• the number of different configurations of the network that

grows exponentially with the number of switches as 2M ,
with M = N log2N − N

2 for strict-sense Beneš, while
for AS-Beneš the formula must be evaluated recursively
[20].

Due to the size mismatch between the number of unique
output and network configurations, this class of topologies
allows alternative routings for the same output permutations:
the number of equivalent routings differs depending on the
requested output permutation, with an average of 2M/N !
alternatives for each output. It is worth observing that deter-
ministic algorithms exist for the Beneš network, which allows
calculating a control configuration driving the requested output
permutation [9], [21]. In this work, however, we consider
the whole switch as a generic black box, regardless of the
specific internal implementation, to validate the ML-based
approach. To demonstrate the scalability of the proposed

(a)

(b)

Fig. 3: Topology of switching architectures: (a) Beneš network,
(b) HCROS 12×12.

method with respect to the network complexity, three different
instances of Beneš topologies were studied, with increasing
size N = 8, 10 and 15. The corresponding number of 2×2
switching elements in each configuration is M = 20, 26 and
49, which represent the control vector size, or the labels of
the ML agent.

C. The HCROS configuration

The HCROS is an alternative with respect to the Beneš
network [22]. It maintains similar properties as non-blocking
rearrangeability and number of switches, although showing a
different topology without the horizontal symmetry and recur-
sive structure, as shown in Fig. 3b. The 6×6 structure has been
used to create a 12×12 switch, to achieve a dimension more
suitable for the proposed analysis. The device is composed
of M = 36 basic switching elements, comparable with the
three Beneš switches studied. It offers a necessary benchmark
for evaluating the ML-agent performance for less regular
and recursive structures and, in particular, to demonstrate the
capability to handle any switch structure.

III. SIMULATION & DATASET GENERATION

Datasets are needed for training and verification: they are
obtained through an abstracted implementation of the previ-
ously discussed topologies. Each 2×2 switch element is driven
by a control bit, with 0 representing the BAR state and 1
the CROSS state: each configuration of the network can be
then described by a bit-array of length equal to the number

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 4

λ1
λ2
λ3

λ8

λ2
λ6

λ3

λ8CASE 1

λ1
λ2
λ3

λ8

λ7

λ1

λ8

CASE N!
λ6

M (Controls)

M (Controls)

Full Optical SwitchFull Optical Switch

Full Optical SwitchFull Optical Switch

Fig. 4: Graphical representation of all possible N ! output states
for a N×N fabric.

of switches M . The considered structures are implemented as
a cascade of permutation matrices, representing each switch
and crossing stage. In multistage structures like the Beneš
switch and HCROS, the network’s output for a given control
vector can be calculated applying the permutation matrices for
each stage sequentially [9], without having the explore a more
complex and computationally expensive graph structure.

In non-blocking network switch topologies, the M control
states’ variation typically generates 2M total combination,
whereas N ! is the number of distinct permutations of the N
input signals, as shown in Fig. 4. For practical purposes, the
dataset’s size for training should be much smaller than the
full-sized look-up table: if such a table could be evaluated,
no other algorithm would be needed to route the inputs.
Here, the training dataset is assembled from unique random
control vectors to avoid any possible bias toward certain switch
configurations or preferential paths within the network. The
total train and test dataset for the considered Beneš networks
and HCROS is a subset of the total 2M control combinations,
as reported in Table I.

After having trained the ML agent, the testing procedure is
the following. For each of the randomly selected permutations
of the test dataset’s output channels, a corresponding sequence
of control states is returned by the ML agent. This sequence
is used to calculate the actual outputs permutation by using
the simulator based on the permutation matrices’ product.
Comparing the requested output permutation with the one
obtained using the predicted control states sequence, we can
determine the ML agent’s accuracy.

IV. MACHINE LEARNING FRAMEWORK

This section describes the proposed ML agent’s structure
and workflow trained on the generated dataset. We also
describe the orchestration of the trained module specifying
features, labels, and the additional configuration parameters
of the ML engine.

The proposed ML-based technique considers the N×N
photonic switch as a black-box, requiring a sufficiently large
amount of training data to develop a cognitive model without
considering the internal architecture. We select a Deep Neural
Network (DNN) [23] as an ML algorithm since it is a powerful

𝟏
𝟐

𝑵

Tra in Set

Test S et Feat ures

 ,

ML Model

Tra in ing

Test ing

Pred ict ion

Fig. 5: Description of the Machine Learning agent.

Deep neural network for control state M

x1

x2

xN

YM

Deep neural network for control state .

x1

x2

xN

Y1

Deep neural network for control state .

x1

x2

xN

Y1

Deep neural network for control state 3

x1

x2

xN

Y1

Deep neural network for control state 2

x1

x2

xN

Y1

Deep neural network for control state 1

x1

x2

xN

Y1

Fig. 6: Parallel architecture of a deep neural network with
three hidden layers.

tool that has shown significant results in numerous frameworks
like the one under investigation. Like all other supervised
ML-based learning methods, in order to perform the training
and prediction processes, the proposed model requires the
definition of the features and labels representing the system
inputs and outputs, respectively. The manipulated features
include the various permutations of the input signals (λ1, λ2,
λ3....λn) at the output ports of the switch, and it exploits its M
control states shown in Fig. 5 as labels. The proposed DNN
is developed by using higher-level APIs of the TensorFlow©

platform [19], which provides various learning algorithms as
well as appropriate functions to refine the dataset before using
it as the model input.

The considered DNN is configured by several parametric
values that have been optimized (such as the training steps,
set to 1000), loaded with the Adaptive Gradient Algorithm
(ADAGRAD) Keras optimizer, with learning rate set to 10-2

and L1 regularization set to 10-3 [24]. Moreover, several non-
linear activation functions such as Relu, tanh, sigmoid have
been tested during the model building. After testing, Relu has
been selected to implement DNN as it outperforms the others
in terms of prediction and computational load [25].

Another important DNN parameter is the number of hidden-
layers. The model has been tuned on several numbers of
hidden-layers and neurons to achieve the best trade-off be-
tween precision and computational time. Although an increase

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 5

0 100 200 300 400 500 600 700 800 900 1000
Training Steps

14

12

10

8

6

4

2

0
M

ea
n

S
qu

ar
e

E
rr

or
 (

lo
g)

Fig. 7: DNN loss function vs. the training steps for Beneš 8×8
architecture.

in the number of layers and neurons improves the accuracy of
the DNN up to a certain extent, a further increase in these
values introduces diminishing returns that cause over-fitting
while simultaneously increasing the computational time. After
this trade-off analysis, we decided upon a DNN with three
hidden-layers with several cognitive neurons for each hidden
layer optimized for each dimension N. To improve prediction
accuracy, we propose to use a parallel architecture for the DNN
as shown in Fig. 6: in practice, we have an independent DNN
for the prediction of each of the control states. The reason
for using the parallel architecture of DNN is to give better
cognition to the DNN engine and consequently achieve high
efficiency in terms of prediction. Firstly, we performed the ML
module training; after that, we tested the trained model on a
separate subset of the dataset: the conventional rule of 70%
and 30% has been chosen to partition the available dataset.
The train set is 70% while the test set is 30% of the total
considered dataset in Table I. In order to avoid over-fitting the
model, we set the training steps as the stopping factor and the
Mean Square Error (MSE) as the loss function, given by:

MSE =
1

n

n∑
i=0

(
M∑
m=1

∣∣Ctrl Statepi,m − Ctrl Stateci,m
∣∣)2

(1)

where n is the number of test realizations, M is the total
number of switching elements in the specific N×N switching
system, while for each tested case i, Control Statepi,m and
Control Stateci,m are the predicted and correct control states
of the m-th switching element of the considered configuration.
The MSE loss function, with respect to the training steps, is
shown in Fig. 7 for the single considered case of 8×8 Beneš.
Similar behavior is observed for all the other considered
switching architectures. Once the desired accuracy of the
model predictions has been reached; the trained ML agent can
be used to predict control states of the switch.

V. VALIDATION RESULTS

In this section, we describe the results achieved for each
considered Beneš size and HCROS regarding the predictions
of control states. The validation has been carried out consider-
ing a dataset completely independent with respect to the one
used in the training step. The first analysis we conducted is

0 10 20 30 40 50 60 70 80 90 100
Training Data %

40

50

60

70

80

90

100

C
or

re
ct

 P
re

di
ct

io
n

%

Bene 8x8
Bene 10x10
HCROS 12x12
Bene 15x15

Fig. 8: Percentage of correct predictions vs. normalized train-
ing dataset size. The normalization is performed with respect
to the total generated dataset dimension for the considered
N×N fabric, see data in Table I.

5 10 15 20 25 30 35 40 45
Neurons/Hidden layer

0

20

40

60

80

100

C
or

re
ct

 P
re

di
ct

io
n

%

Bene 8x8
Bene 10x10
HCROS 12x12
Bene 15x15

Fig. 9: Percentage of correct predictions vs. hidden layer size
for the considered switching configurations.

the prediction accuracy dependence on the training dataset’s
dimension and the size of hidden layers, as shown in Fig. 8
and Fig. 9. In Fig. 8, the effect of increasing training dataset
size is depicted. The trend shows that the prediction ability of
the ML agent improves by increasing the training dataset size.
It can be observed that a reduction in the dataset dimension
induces a loss of performance. To achieve a good level of
accurate predictions, we must use the whole dataset, whose
size is indeed a small fraction of the total number of possible
combinations of the switching states; see Table I.

Similarly, in Fig. 9, the effect of increasing the number of
neurons per hidden layer is shown: the prediction ability of
the ML model improves when increasing the hidden layer size
until the diminishing return trend is encountered, as explained
previously. The minimum number of required neurons per
layer depends on the configuration under analysis: the values
selected for the following analysis are listed in Table II.

The effect of increasing the hidden layer size on the training
time is shown in Fig. 10, for an Intel® Core™ i7 6700 3.4 GHz
CPU workstation equipped with 32 GB of 2133 MHz RAM.
Results reveal that to train each of the M parallel DNN, i.e., a
single control state, the time increases linearly with the number
of neurons per hidden layer. Consider that even if training
may be computationally demanding, with required times on the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 6

5 10 15 20 25 30 35 40 45
Neurons/Hidden layer

0
30
60
90

120
150
180
210
240
270

S
in

g
le

 c
o
n
tr

o
l s

ta
te

 (
M

)
 t
ra

in
in

g
 t
im

e
 (

m
in

u
te

s)
 Bene 8x8

Bene 10x10
HCROS 12x12
Bene 15x15

Fig. 10: Single switch training time vs. hidden layer size.

Algorithm 1 Heuristic to correct single-ring errors
Require: Topology Graph G, Control States M , Number of Inputs/outputs

N , Test set T S, ML Predicted set PS
Ensure: Control State Correction
1: error-index = find control state where T S 6= PS
2: for all D ∈ error-index do
3: PredictedControl States (ON/OFF) (PCtrl) = PS(D)
4: ActualControl States (ON/OFF) (ACtrl) = T S(D)
5: ActualOutput Signals (Aotp) = T S(D)
6: PredictedOutput Signals (Potp) = Test-Control-States(PCtrl,G,N)
7: CheckOutput Signals (Cotp) = Potp

8: for flip bit = 1 to M Step = 1 do
9: if find Aotp 6= Cotp then

10: TransitControl States (ON/OFF) (TCtrl) = Flip-One-Bit(PCtrl)
11: CCtrl = Test-Control-States(TCtrl,G,N)
12: Clear TCtrl

13: else
14: error-index corrected
15: Break
16: end if
17: end for
18: end for

order of hours, this will not affect the ML agent’s operation.
Each prediction of control states can be obtained in real-time
because of the negligible computational effort required once
the agent is trained and it is compatible with the envisioned
application in control-planes of open optical networks.

Finally, the rate of correct prediction for the optimized ML
agents are summarized for the three considered Beneš sizes
(8×8, 10×10 and 15×15) along with the 12×12 HCROS in
Table II. In the case of the Beneš network, we observe an
excellent level of accuracy (>96%), although with reduced
effectiveness of prediction when increasing N: correct predic-
tions reach 100%, 99.72% and 96.25% for N equal to 8, 10
and 15, respectively. In order to further validate the proposed
approach, similar results were obtained based on HCROS:
also, here, we observe a high level of accuracy (>97%).

TABLE II: Summary of ML prediction results

Network type
Size (N ×N)

Beneš
8x8

Beneš
10x10

HCROS
12x12

Beneš
15x15

Neurons per hidden layer 15 35 35 35
Accuracy (no heuristic) 100% 99.72% 97.83% 96.25%
Single switch control error 0% 0.28% 2.17% 3.75%

Multiple switch control error 0% 0% 0% 0%
Accuracy (with heuristic) 100% 100% 100% 100%

R
_

1

R
_

2

R
_

3

R
_

4

R
_

5

R
_

6

R
_

7

R
_

8

R
_

9

R
_

1
0

R
_

1
1

R
_

1
2

R
_

1
3

R
_

1
4

R
_

1
5

R
_

1
6

R
_

1
7

R
_

1
8

R
_

1
9

R
_

2
0

Number of Rings

E
rr

o
r

(a) Bene 8x8

No
Error

Medium
Error

High
Error

R
_

1

R
_

2

R
_

3

R
_

4

R
_

5

R
_

6

R
_

7

R
_

8

R
_

9

R
_

1
0

R
_

1
1

R
_

1
2

R
_

1
3

R
_

1
4

R
_

1
5

R
_

1
6

R
_

1
7

R
_

1
8

R
_

1
9

R
_

2
0

R
_

2
1

R
_

2
2

R
_

2
3

R
_

2
4

R
_

2
5

R
_

2
6

Number of Rings

E
rr

o
r

(b) Bene 10x10

No
Error

Medium
Error

High
Error

R
_

1
R

_
2

R
_

3
R

_
4

R
_

5
R

_
6

R
_

7
R

_
8

R
_

9
R

_
1

0
R

_
1

1
R

_
1

2
R

_
1

3
R

_
1

4
R

_
1

5
R

_
1

6
R

_
1

7
R

_
1

8
R

_
1

9
R

_
2

0
R

_
2

1
R

_
2

2
R

_
2

3
R

_
2

4
R

_
2

5
R

_
2

6
R

_
2

7
R

_
2

8
R

_
2

9
R

_
3

0
R

_
3

1
R

_
3

2
R

_
3

3
R

_
3

4
R

_
3

5
R

_
3

6

Number of Rings

E
rr

o
r

(c) HCROS 12x12

No
Error

Medium
Error

High
Error

R
_

1
R

_
2

R
_

3
R

_
4

R
_

5
R

_
6

R
_

7
R

_
8

R
_

9
R

_
1

0
R

_
1

1
R

_
1

2
R

_
1

3
R

_
1

4
R

_
1

5
R

_
1

6
R

_
1

7
R

_
1

8
R

_
1

9
R

_
2

0
R

_
2

1
R

_
2

2
R

_
2

3
R

_
2

4
R

_
2

5
R

_
2

6
R

_
2

7
R

_
2

8
R

_
2

9
R

_
3

0
R

_
3

1
R

_
3

2
R

_
3

3
R

_
3

4
R

_
3

5
R

_
3

6
R

_
3

7
R

_
3

8
R

_
3

9
R

_
4

0
R

_
4

1
R

_
4

2
R

_
4

3
R

_
4

4
R

_
4

5
R

_
4

6
R

_
4

7
R

_
4

8
R

_
4

9

Number of Rings

E
rr

o
r

(d) Bene 15x15

No
Error

Medium
Error

High
Error

Fig. 11: Heatmap showing normalized error in prediction of
control states using DNN.

After evaluating the accuracy, we analyzed the distribution
of errors in the predicted states, as shown in Fig. 11. The
amount of errors in the control state prediction of each
switching element when considering the validation dataset
is encoded in color. We observe a non-uniform distribution:
errors are concentrated on a small number of switch elements
of the overall fabric. Based on this observation, we analyzed
the number of wrong switch elements where the prediction
fails. Results in Table II show that only a single error in one
of the switches controls is responsible for the incorrect routing
in wrong prediction instances. This is common for all the
analyzed sizes of Beneš network as well as for the HCROS.
Observing this phenomenon, we derived a simple heuristic
that can further improve the prediction performance of our
ML agent (see Algorithm. 1).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 7

The heuristic we propose requires several device properties
such as topological graph (G), M control states, and N number
of inputs/outputs signals. Additionally, Test set (T S) and ML
Predicted set (PS) are also loaded as inputs. The simple idea is
to correct single switch errors by switching the control state of
one element at a time while comparing the output sequence
against the target output signals permutation. This approach
requires only a maximum of M attempts, and this number is
reasonably small, so it can be considered practical for real-
time implementations. Moreover, it is topologically agnostic
like the whole ML framework. For all four considered cases,
the ML assisted by heuristic improves the accuracy to 100%.

VI. CONCLUSION

Photonic switching systems hold great importance for core
optical transport and disaggregated data center networks since
they provide high bandwidth, better reconfigurability, and high
computing performance. In addition to these features, they
present a low-cost, small footprint and high energy efficiency.
To improve photonic switching systems’ scalability, efficient
routing strategies always stand out as a key challenge.

In this work, we analyzed a data-driven ML technique to
control and manage photonic switching systems in an open op-
tical networking context. The proposed scheme demonstrates
a DNN based softwarized system that is both topological and
technological agnostic and can be employed in real-time. The
adopted ML approach can effectively determine the control
states for a generic N×N photonic switch without requiring
any topology knowledge. The presented ML approach is
trained and tested assuming the N×N photonic switch as
black-box: the ML only needs sufficient training instances
without considering the device’s internal architecture. The
technique we propose is also scalable to larger input sizes
N since a high level of accuracy can be reached with limited
size datasets. Moreover, we have shown that a simple heuristic
approach can increase the prediction accuracy to 100% with a
marginal increase of the control state computational cost for
the considered switching topologies.

REFERENCES

[1] C.-S. Li and W. Liao, “Software defined networks,” IEEE Communica-
tions Magazine, vol. 51, no. 2, pp. 113–113, 2013.

[2] M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, and M. Tomizawa,
“Elastic and adaptive optical networks: possible adoption scenarios
and future standardization aspects,” IEEE Communications Magazine,
vol. 49, no. 10, pp. 164–172, 2011.

[3] V. Curri, “Software-defined WDM optical transport in disaggregated
open optical networks,” in 2020 22nd International Conference on
Transparent Optical Networks (ICTON), 2020, pp. 1–4.

[4] L. Velasco, A. Sgambelluri, R. Casellas, L. Gifre, J.-L. Izquierdo-
Zaragoza, F. Fresi, F. Paolucci, R. Martı́nez, and E. Riccardi, “Building
autonomic optical whitebox-based networks,” J. Lightwave Technol.,
vol. 36, no. 15, pp. 3097–3104, Aug 2018. [Online]. Available:
http://jlt.osa.org/abstract.cfm?URI=jlt-36-15-3097

[5] J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss,
C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally,
D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B.
Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle,
P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100
port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE
Photonics Technology Letters, vol. 15, no. 11, pp. 1537–1539, 2003.

[6] A. N. Dames, “Beam steering optical switch,” Jun. 17 2008, US Patent
7,389,016.

[7] K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda,
S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient
32× 32 silicon photonics switch with extremely high-δ silica PLC
connector,” Journal of Lightwave Technology, vol. 37, no. 1, pp. 116–
122, 2019.

[8] Q. Cheng, L. Y. Dai, N. C. Abrams, Y.-H. Hung, P. E. Morrissey,
M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-
blocking microring-based optical switch,” Photonics Research, vol. 7,
no. 2, pp. 155–161, 2019.

[9] D. Opferman and N. Tsao-Wu, “On a class of rearrangeable switching
networks part I: Control algorithm,” The Bell System Technical Journal,
vol. 50, no. 5, pp. 1579–1600, 1971.

[10] Y. Huang, Q. Cheng, Y.-H. Hung, H. Guan, X. Meng, A. Novack,
M. Streshinsky, M. Hochberg, and K. Bergman, “Multi-stage 8 × 8
silicon photonic switch based on dual-microring switching elements,”
J. Lightwave Technol., vol. 38, no. 2, pp. 194–201, Jan 2020. [Online].
Available: http://jlt.osa.org/abstract.cfm?URI=jlt-38-2-194

[11] M. Ding, Q. Cheng, A. Wonfor, R. V. Penty, and I. H. White, “Routing
algorithm to optimize loss and IPDR for rearrangeably non-blocking
integrated optical switches,” in CLEO: Applications and Technology.
Optical Society of America, 2015, pp. JTh2A–60.

[12] Y. Qian, H. Mehrvar, H. Ma, X. Yang, K. Zhu, H. Fu, D. Geng,
D. Goodwill, P. Dumais, and E. Bernier, “Crosstalk optimization in
low extinction-ratio switch fabrics,” in Optical Fiber Communication
Conference. Optical Society of America, 2014, pp. Th1I–4.

[13] Q. Cheng, Y. Huang, H. Yang, M. Bahadori, N. Abrams, X. Meng,
M. Glick, Y. Liu, M. Hochberg, and K. Bergman, “Silicon photonic
switch topologies and routing strategies for disaggregated data centers,”
IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 2,
pp. 1–10, 2020.

[14] W. Gao, L. Lu, L. Zhou, and J. Chen, “Automatic calibration of silicon
ring-based optical switch powered by machine learning,” Opt. Express,
vol. 28, no. 7, pp. 10 438–10 455, Mar 2020. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-28-7-10438

[15] H. Zhou, Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “Self-
learning photonic signal processor with an optical neural network chip,”
arXiv preprint arXiv:1902.07318, 2019.

[16] R. Proietti, X. Chen, Y. Shang, and S. J. B. Yoo, “Self-driving recon-
figuration of data center networks by deep reinforcement learning and
silicon photonic flex-lion switches,” in 2020 IEEE Photonics Conference
(IPC), 2020, pp. 1–2.

[17] S. Salman, C. Streiffer, H. Chen, T. Benson, and A. Kadav,
“Deepconf: Automating data center network topologies management
with machine learning,” in Proceedings of the 2018 Workshop on
Network Meets AI & ML, ser. NetAI’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 8–14. [Online].
Available: https://doi.org/10.1145/3229543.3229554

[18] I. Khan, L. Tunesi, M. Chalony, E. Ghillino, M. U. Masood,
J. Patel, P. Bardella, A. Carena, and V. Curri, “Machine-learning-aided
abstraction of photonic integrated circuits in software-defined optical
transport,” in Next-Generation Optical Communication: Components,
Sub-Systems, and Systems X, G. Li and K. Nakajima, Eds., vol. 11713,
International Society for Optics and Photonics. SPIE, 2021, pp. 146
– 151. [Online]. Available: https://doi.org/10.1117/12.2578770

[19] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system
for large-scale machine learning,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), 2016,
pp. 265–283. [Online]. Available: https://www.usenix.org/system/files/
conference/osdi16/osdi16-abadi.pdf

[20] C. Chang and R. Melhem, “Arbitrary size Beneš networks,” Parallel
Processing Letters, vol. 07, no. 03, pp. 279–284, 1997.

[21] A. Chakrabarty, M. Collier, and S. Mukhopadhyay, “Matrix-based non-
blocking routing algorithm for Beneš networks,” in 2009 Computation
World: Future Computing, Service Computation, Cognitive, Adaptive,
Content, Patterns, 2009, pp. 551–556.

[22] M. R. Yahya, N. Wu, G. Yan, T. Ahmed, J. Zhang, and Y. Zhang,
“Honeycomb ROS: A 6 × 6 non-blocking optical switch with optimized
reconfiguration for ONoCs,” Electronics, vol. 8, no. 8, p. 844, Jul 2019.

[23] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[24] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” JMLR, vol. 12, no. Jul, pp.
2121–2159, 2011.

http://jlt.osa.org/abstract.cfm?URI=jlt-36-15-3097
http://jlt.osa.org/abstract.cfm?URI=jlt-38-2-194
http://www.opticsexpress.org/abstract.cfm?URI=oe-28-7-10438
https://doi.org/10.1145/3229543.3229554
https://doi.org/10.1117/12.2578770
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 8

[25] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation
functions: Comparison of trends in practice and research for deep
learning,” arXiv preprint arXiv:1811.03378, 2018.

	INTRODUCTION
	Switching Topologies
	The 2x2 CrossBar switch
	The NxN Beneš network
	 The HCROS configuration

	Simulation & Dataset Generation
	Machine Learning framework
	Validation Results
	Conclusion
	References

