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Abstract: Power line communication (PLC) is increasingly emerging as an important communication

technology for the smart-grid environment. As PLC systems use the existing infrastructure, they

are always exposed to conducted electromagnetic interference (EMI) from switching mode power

converters, which need to be tightly controlled to meet EMC regulations and to ensure the proper

operation of the PLC system. For this purpose, spread-spectrum modulation (SSM) techniques

are widely adopted to decrease the amplitude of the generated EMI from the power converters so

as to comply with EMC regulations. In this paper, the influence of a spread-spectrum-modulated

SiC-based buck converter on the G3-PLC channel performance is described in terms of channel

capacity reduction using the Shannon–Hartley equation. The experimental setup was implemented

to emulate a specific coupling path between the power and communication circuits and the channel

capacity reduction was evaluated by the Shannon–Hartley equation in several operating scenarios

and compared with the measured frame error rate. Based on the obtained results, SSM provides the

EMI spectral peak amplitude reduction required to pass the electromagnetic compatibility (EMC)

tests, but results in increased EMI-induced channel capacity degradation and increased transmission

error rate in PLC systems.

Keywords: power line communication (PLC); electromagnetic interference (EMI); spread-spectrum

modulation (SSM)

1. Introduction

Nowadays,using of the smart-grid has increased due to the increase in renewable
energy resources and the remarkable enhancements in the reliability of the electrical
network grid. Thus, communication between smart-grid elements is essential to ensure
the proper operation of the grid. In the complex smart-grid and micro-grid environment,
the power line communication (PLC) is one of the most common techniques used for
smart-meter applications [1], as it uses the existing power cables in the system to provide
data transmission capabilities.

Using existing power cables for data transmission, PLC leads to reduced investment
and maintenance costs. The smart-meters use the narrowband PLC following the European
Norm (EN) 50065 that was established by CENELEC in 1992 [2]. Many industries begin the
development of a PLC solution based on the regulation G3-PLC that has been established
by the G3-PLC Alliance, while the industry specification PRIME (Power-line Related
Intelligent Metering Evolution) has been developed by the PRIME Alliance [3,4]. However,
many problems could influence the PLC performance.
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Indeed, most switching-mode power converters utilize a switching frequency in
the CISPR A band between 9 and 150 kHz. Consequently, the generated EMI lies in
the same frequency band of the PLC that follows the CENELEC frequency band (from
3 to 150 kHz) [2,5]. EMI is coupled from the power circuit (the source of EMI) to the
communication circuit (the victim) due to the presence of a parasitic coupling path between
both circuits. EMI causes a decrease in the signal-to-noise ratio (SNR) below the level of
noise-free communication, leading to data transmission error and sometimes failure of the
communication [6]. Thus, a great deal of research has introduced utilizing wideband semi-
conductors like silicon carbide (SiC) and gallium nitrite (GaN) [7,8], for the advantage of low
switching losses and the high switching frequency capability (over 100 kHz), which could
be one possible solution to overcome the overlapping in the frequency band. However, the
high switching frequency increases the level of EMI in the high-frequency ranges [9–12].
In addition, the shape and nature of the interference signal out of the PLC band, which
does not affect the SNR directly, are crucial for its potential impact on communication
errors. Therefore, many researchers choose an experimental approach to study the impact
of real sources (power electronic converters) on the operation of existing communication
systems [13–15].

In the same framework, many researches aim at the application of spread-spectrum
modulation (SSM) techniques on power converters as a suitable method of EMI mitigation,
as SSM spreads EMI power into a wider band of frequencies so as to significantly reduce
the EMI amplitude at the harmonics of the switching frequency [16–18]. Indeed, SSM
has been found to be effective to keep the electromagnetic emission levels below EMC
standard limits and has been used in some applications like electronic ballasts [19] and
LCD panels [20,21]. However, some research was conducted to determine the effect of the
SSM on telecommunication devices, especially in the range 2 to 150 kHz [22]. The impact
of the SSM on communication system performance was found to be different in systems
employing forward error correction codes.

Generally speaking, communication systems can be divided into two main types:
those featuring forward error correction codes and un-coded communication systems. In
the case of coded communication systems like in [22,23], the influence of SSM on I2C was
studied and the results show that the SSM modulation results in more problems for digital
communication channels than the normal non-SSM switching signals. In contrast, in the
case of un-coded communication systems such as RS 232, the SSM EMI has almost the
same effect on the communication system as the EMI generated from the conventionalmod-
ulation.In [24], a model is present that illustrates that the SSM and non-SSM have the same
effect on the performance of the RS 232 protocol. In addition, some studies have confirmed
there is no difference between the conventional PWM and SSM, and it has been shown that
ostensible reduction of the EMI level generated by spread spectrum modulated converters
results from the methodology of the EMI spectrum measurement [25,26].

Based on what is given in the literature, the purpose of this paper is to study the
influence of the interference from a SiC-based DC buck converter, with or without SSM, on
the robustness of the G3-PLC communication signal, as a common communication protocol
used in smart-metering systems. In addition, we performed the PLC channel evaluation
in terms of the Shannon–Hartley equation. The paper is organized as follows. Section 2
shows how SSM works. The G3-PLC channel evaluation is introduced in Section 3. The
practical implementation is presented in Section 4 and the results are discussed in Section 5,
followed by a conclusion in Section 6.

2. Spread-Spectrum Modulation

In the standard PWM with the programmed switching frequency, the signal is gener-
ated using a timer in any digital controller, which compares the reference values for duty
cycle and frequency to the constant carrier frequency generated by the timer. However,
most of the spread-spectrum modulation techniques use frequency modulation of the
reference timing signal [27], and this approach of SSM is named random carrier frequency
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modulation with a fixed duty cycle (RCFMFD). Other types of SSM techniques depend
on changing the duty cycle without changing the frequency, such as random carrier fre-
quency modulation with a variable duty cycle (RCFMVD), which, on average, gives the
same response as for the first case [28,29].In this paper, we utilize the RCFMFD as an SSM
technique for our converter.

In the same framework, the switching signal from the conventional pulse width
modulation(PWM) could be represented in terms of its Fourier series expansion as:

S(t) =
∞

∑
k=−∞

Akej2πk f 0t (1)

where k is the harmonic order, Ak is the amplitude of the k-th harmonic and f0 is the
fundamental frequency of the switching signal. By contrast, when using the RCFMFD, the
switching signal can be expressed in terms of its Fourier series as:

Sss(t) =
∞

∑
k=−∞

Akej2πk f 0t+j2πk∆ f
∫ t
−∞

ε(τ)dτ (2)

∆ f = α f0 (3)

where ∆ f is the frequency deviation around the main switching frequency f0 and α is the
spreading factor used to set the required frequency bandwidth, i.e., the Carson bandwidth
of the switching signal [ f0 − ∆ f /2, f0 + ∆ f /2], as shown in Figure 1. The value of the
spreading factor α could vary in practice from 0% to 30%; the increase of the α value
increases signal bandwidth and decreases its spectral amplitude. ξ(τ) is a driving signal
operated with variable amplitude varying with the time; the function of the driving signal
ξ(τ) could be sinusoidal, triangular, or a random pulse amplitude modulated (PAM)
signal [27]. Considering the driving signal ξ(τ) as a random PAM signal, the ξ(τ) can be
expressed as:

ξ(τ) = ∑
k

δk g(t − kT) (4)

where δk is a uniformly distributed pseudo-random number varying between −0.5
and +0.5, and g(t − kT) is a rectangular function with duration time T.

Figure 1. Conventional PWM vs. SSM techniques.
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Consequently, the power spectral density of the EMI of the signal Sss(t) will be
expressed as [22]:

SEMI( f ) = |H( f )|2
∞

∑
k=0

|Ak|
2 1

k∆ f
· ρ

f − k f0

k∆ f
(5)

where H( f ) is the transfer function of the EMI coupling and ρ(x) is the amplitude proba-
bility density function of the spread function.

3. The G3-PLC Channel Modeling

After evaluating the source of the EMI, the victim, i.e., the G3-PLC system, is con-
sidered. The G3-PLC works by modulating the carrier signal and adding it to the main
power signal. The data can be modulated by different digital modulation schemes, such
as M-array phase shift keying (M-PSK) or quadrature amplitude modulation (M-QAM).
In addition, the data are modulated through orthogonal frequency division multiplexing
(OFDM), in which a serial data stream is split into several parallel slower data streams that
are modulated around orthogonal sub-carriers [30]. The parameters of the G3-PLC OFDM
signal are stated in Table 1. Figure 2 shows the PLC system block diagram in the presence
of EMI disturbance.

Table 1. G3-PLC specifications.

Specification G3-PLC

Frequency Range 35-91 kHz
Sampling Frequency fs 400 kHz

FFT size 256
Length of Cyclic Prefix 30

Sub-Carrier Spacing 1.5625 kHz
No. of Carriers Used 36

Max Data Rate 33.4 kbps
Modulation DBPSK, DQPSK, and D8PSK

Based on the EN 50065 standard, the highest limit for intentional emissions generated
by mains PLC communicating equipment is 120 dBuV, and the non-intentional emissions
on the PLC channel should be below the maximum intentional power by 20–30 dB to allow
reliable PLC communication [31].

The PLC signal propagates through copper wires, so the signal may attenuate with
the increase in the length of the line, in addition to the presence of the background white
noise and the periodical impulsive noise that interferes with the OFDM symbol. In the
context of the communication framework, the Shannon–Hartley equation could be used for
evaluating the PLC channel capacity to confirm the behavior of the G3-PLC system in the
presence of noise [22]. The Shannon–Hartley equation calculates the maximum allowable
data transmission rate over a communication channel in the presence of noise, which
is close to the rate achieved in practice by communication systems featuring advanced
channel coding, like the forward error correction FEC codes adopted in G3-PLC and
PRIME [4]. The capacity of the PLC channel is expressed as:

CG3 =
∫ Bmax

Bmin

log2

(

1 +
SPLC( f )

N( f )

)

d f (6)

where Bmin and Bmax are the limit frequencies of the PLC bandwidth channel, SPLC( f ) is
the power spectral density of the PLC signal, and N( f ) is the total noise power spectral
density. The total noise of the channel in our case is equal to:

N( f ) = S0 + SEMI (7)
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where S0 is the power spectral density of the background noise, modeled as additive white
Gaussian noise (AWGN), and SEMI is the EMI power spectral density. Consequently, the
capacity loss percentage CLoss could be calculated as:

CLoss =
C0 − CG3

C0
× 100 (8)

where C0 is the calculated capacity of the PLC channel in the EMI-free case, i.e., only
including the AWGN (N( f ) = S0).

Figure 2. Block diagram representing the G3-PLC channel with the EMI noise.

4. Proposed Experimental Setup

The setup in Figure 3 could be applied in the case of residential DC Microgrid systems,
in which there are many DC and AC loads connected to the same grid with the presence
of solar panels, batteries, and small-scale-power wind turbines [32]. The hardware setup
consists of two main circuits. The first circuit is the point-to-point PLC communication
circuit. The circuit works using two Microchip ATPL360 PLC modems representing the
transmitting and the receiving points as shown in Figure 3; both modems are configured
to work based on the CENELEC-A standard frequency range and the G3-PLC mode. In
addition, to isolate the outside EMI noise and to make certain of the robustness of the
results, an isolating transformer and a line impedance stabilization network (LISN) are
connected between the PLC circuit and the grid.

The second circuit is a power circuit of a SiC-based DC buck converter supplying a
resistive load as shown in Figure 3 . The EMI coupling path is represented by an artificial
circuit consisting of a parasitic capacitor connected to the PLC circuit through a common
resistance. In the real system, the artificial circuit corresponds to a typical common mode
path of interference for high-frequency EMI, the presented inductance can be associated
with the inductance of the connected wire, and the presented capacitance corresponds to
parasitic couplings to the ground that could exist because of the load enclosures or any
other reasons [26].

Usually, there is a type of filter on the output of the buck converter, but the purpose
of the circuit is to show the influence of simple first-order oscillatory mode current on
the G3-PLC performance. For this reason, the filter was not considered in our setup. The
converter used in the setup is built using a CREE SiC MOSFET KIT8020CRD8FF1217P-1
evaluation board and connected to a variable DC supply varying from 10 V to 50 V. The
buck converter is controlled by a Texas Instruments TMS320F28335 digital signal processing
card. Table 2 shows the electrical data for the converter used in the setup. As the test was
implemented using laboratory equipment, the power of the applied load is not too high
and a sliding resistor was used to set the required current. The cables used were copper
cables of diameter 2 mm2 for both communication and power circuits. Figure 4 shows the
setup testbed with both circuits.
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Table 2. Buck converter electrical data.

Item Value

Transistor type C2M0080120D
Input voltage 50 V
Input current 0.6 A
Output voltage 25 V
Output current 1.2 A
Switching main frequency Varies from 50 to 75 kHz
Duty cycle 50 %

Figure 3. Connection diagram of the system.

Figure 4. Setup testbed.

5. Experimental Results and Discussion

5.1. EMI Spectrum Measurements

The Gauss Instruments company TDMI X6 digital EMI test receiver was used to take
the measurements. All the measurements were taken based on CISPR A in the range 9 to
150 kHz, using the average (AV) and quasi-peak (QP) detectors with 200 Hz intermediate
frequency bandwidths (IFBWs). As the G3-PLC uses the CENELEC-A standard, the
frequency range of the PLC OFDM signal is in the frequency range between 35 and 91 kHz,
as shown in the QP and AV detector frequency spectrum in Figure 5 (measured from the
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PLC side as in Figure 3). The level of the PLC spectrum reaches 81.16 dBuV for the AV
detector at the intermediate frequency of 63 kHz of the PLC signal.
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Figure 5. The spectrum of the G3 signal for PLC.

Figure 6 shows the parasitic current coming from the coupling path due to the parasitic
capacitance existence as shown in Figure 3. The current was measured at a converter
switching frequency f0 equal to 63 kHz in the case of conventional PWM.
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Figure 6. The common mode current due to the parasitic coupling path.

To study the influence of the SSM on the PLC signal, several parameters should
be set for the control signal. Figure 7 shows the voltage spectrum of the SSM in case
of changing the spreading factor from 0% (the conventional PWM) to 30% at a central
switching frequency of 63 kHz and converter supply voltage of 50 V, measured from the
PLC side using the AV detector and IFBW = 200 Hz. From the EMC standards point of
view, the increase in α decreases the EMI noise in the channel. Thus, the SSM signal in the
case of α = 30% should be better than in the case of 10%. In contrast, the results show an
opposite conclusion to this hypothesis as we will see in the next subsection.

35 40 45 50 55 60 65 70 75 80 85 90

Frequency (kHz)

30

40

50

60

70

80

90

100

M
ag

n
it

u
d

e 
(d

B
u

V
)

 = 0%

 = 10%

 = 20%

 = 30%

Figure 7. The spectrum of SSM EMI measured from the PLC side.



Electronics 2021, 10, 1416 8 of 13

5.2. The PLC Channel Performance in the Presence of EMI

The transmitter modem settings are stated in Table 3. The performance of the PLC
channel could be evaluated by the mean of the bit error rate (BER) or the frame error
rate (FER); the FER was chosen for the evaluation of the PLC performance as there are
many PHY layer procedures (such as equalization, header decoding, and Viterbi decoding)
included per frame. In addition, the FER is more connected to the final evaluation of the
medium access control (MAC) from the PLC system [33]. The FER percentage represents
the ratio between the broken frames to the total sent frames as a percentage, as expressed
in Equation (9):

FER(%) =
Sent f rames − Recieved f rames

Sent f rames
× 100 (9)

Table 3. PLC communication assumptions.

Type of PLC communication standard G3-PLC
Data size 65 bytes
Physical layer OFDM
Modulation DBPSK-DQPSK-D8PSK
Total sent frames 3000
The time between each packet 100 ms
The medium Single-phase cable of length 42 m

In this paper, we considered changing three parameters in the SSM signal. The first is
the amplitude of the converter input voltage. The second is Carson’s band ∆ f of the SSM
signal, which, based on Equation (3), changes by varying of the spreading factor α. The
third is the switching frequency f0 of the converter, to study the effect of SSM with several
central switching frequencies working at the same frequency band of the PLC signal.

Figure 8 shows the FER percentage in case of changing the SSM spreading factor
at a central switching frequency of 63 kHz, in three operating input voltage cases:10, 20,
and 50 V. Obviously, the increase in the amplitude of the input voltage will increase the
FER in the PLC channel as shown clearly in the figure. However, the decrease in the
amplitude provided by the SSM delivers more problems to the communication signal. The
FER reaches its maximum value at a spreading factor of 25% and saturate on 30% in all
three cases of input voltages.

Figure 9 shows the channel capacity evaluation based on Equation (6) in all cases of
input voltages. It seems clear that the channel capacity is decreased with the increase in
the spreading factor of the signal, and the capacity loss in the channel increases with the
increase in the spreading factor as shown in Figure 10. The channel capacity calculation
confirms the behavior of the FER of the PLC channel with the spreading factor of the SSM,
knowing that the channel capacity represents the maximum allowable data that can be
transmitted through the communication channel (the maximum bit rate for the G3-PLC is
33 kbit/s). Consequently, those results show an opposite hypothesis to that used in the
EMC standards.
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Figure 9. The PLC channel capacity in the case of several values of spreading factor with the change

in input voltage amplitude of the converter.
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Figure 10. The PLC channel capacity loss in the case of several values of spreading factor with the

change in input voltage amplitude of the converter.

Figure 11 shows the FER percentage in the presence of EMI in the case of operating
SSM with different central switching frequencies at a constant input voltage of 50 V. The
results show that at any value of SSM of central frequency ranging from 50 to 75 kHz, the
FER increases with the increase in the spreading factor α from 0% to 30%. In addition, the
highest values of FER appear around the intermediate frequency of the communication
bandwidth, between 56 and 69 kHz.

The variation in the central frequency of the SSM signal creates two situations in terms
of EMI noise: fully overlapped with the intentional bandwidth of the PLC signal or partially
overlapped with the intentional bandwidth of the PLC signal. The first case appear when
the bandwidth of the SSM is smaller than the bandwidth of the communication signal, in
addition, the value of the SSM central switching frequency is near to the intermediate
frequency of the PLC signal (which is 63 kHz in the case of the G3-PLC). However, the



Electronics 2021, 10, 1416 10 of 13

second case appears when part of the signal is out of the PLC bandwidth, as the switching
frequency starts to go away from the intermediate frequency of the PLC bandwidth.
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Figure 11. The PLC channel FER evaluation in the case of SSM EMI with several switching frequencies

and spreading factors α.

Figure 12 shows the channel capacity calculation for the G3-PLC channel in the case of
SSM utilizing three central switching frequencies; the first one is equal to the intermediate
frequency of the PLC (63 kHz), the second is less than this by 13 kHz (50 kHz) and the third
is greater than this by 12 kHz (75 kHz). It is noted that that the channel capacity in the case
of the frequency equal to 50 kHz is less than that in the case of 63 kHz. However, in the case
of 75 kHz, the channel capacity values are near that in the case of the intermediate frequency
due to the nature of the EMI noise amplitude with the increase in the SSM central switching
frequency. In addition, the channel capacity decreases with the same slope in all switching
frequency cases as shown in the figure. Figure 13 shows channel capacity loss due to the
variation in the spreading factor in the three utilized central switching frequencies.
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Figure 12. The PLC channel capacity in the case of several values of spreading factor with the change

in the central switching frequency of SSM.
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Figure 13. The PLC channel capacity loss in the case of several values of spreading factor with the

change in the central switching frequency of SSM.

6. Conclusions

In this paper we have shown the influence of EMI generated from a spread-spectrum-
modulated SiC-based buck converter on the G3-PLC communication channel performance
in terms of the Shannon–Hartley channel capacity equation. In the literature, researchers
have proposed many spread spectrum modulation techniques as a useful tool for EMI
mitigation instead of adding a filter to the power converter circuit, and also as a good way
to pass the EMC compliance test; however, the results presented in this paper show the
opposite hypothesis. At certain circuit parameter conditions, results show that the SSM
could deliver more problems to the PLC system, despite the reduced peaks in the EMI
spectra measured according to the standard EMC measurement procedures. The FER test
was performed and the behavior of the PLC system was confirmed by the channel capacity
equation of the G3-PLC in several working scenarios. The first scenario involved changing
the EMI amplitude of the SSM signal as well as increasing the SSM spreading band at a
certain central frequency of SSM. As a result, the FER percentage increased as the spreading
factor of the SSM increased in all tested EMI amplitudes. The second scenario involved
changing the central switching frequency of the SSM as well as changing the spreading
factor at a constant EMI amplitude; the results show that the highest probability of data
transmission errors appeared when the central switching frequency of SSM was equal to or
near the intermediate frequency of the PLC bandwidth. As the central frequency of the
SSM signal moved away from the intermediate frequency of the PLC bandwidth, the SSM
signal appeared to be partially overlapped with the communication bandwidth, leading
to the increase in channel capacity data transmission capability, as only part of the SSM
signal interferes with the communication bandwidth. The spreading of the modulation
signal could be a good approach to pass the EMC compliance tests; however, this could
also create more problems for the G3-PLC system.
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