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Abstract — Recent advances in the manufacturing industry
have paved the way for a systematical deployment and
implementation of systems, including Cyber-Physical Systems
(CPS) and smart tools, aimed at reaching Zero Defect
Manufacturing (ZDM). Nowadays, ZDM strategies are easier to
be implemented due to the availability of the required amount
of data coming from the distributed sensor network
architectures of the production systems. Such a trend is
transforming the manufacturing industry to the next
generation, namely Industry 4.0. In this context, there is an
urgent need to identify and adopt effective quality controls to be
performed on the products. This paper proposes a probabilistic
model that can be used to evaluate quality inspection
effectiveness, i.e., the ability to identify product defects. This
model, which integrates perfectly within the current modern
manufacturing context, can act as a support tool for decision
making and guide designers toward zero-defect strategies.

Keywords—Quality control, probabilistic model, inspection
effectiveness, zero defect manufacturing.

L INTRODUCTION

In manufacturing, the concepts of Industry 4.0,
Manufacturing 2.0, Smart Factory and Internet of Things
(IoT) are increasingly recognized as enabling factors for a
more flexible, customized, traceable, quality-oriented
production [1]. At the same time, with the rapid development
of IoT and the emerging Key Enabling Technologies - KETs,
including in-line data gathering solutions, data storage and
communication standards, data analytics tools and digital
manufacturing technologies, more and more real-time data
can be collected in situ from production processes, allowing
to improve their quality and efficiency. Nowadays, the
combination and integrated adoption of these technologies
offer new opportunities for Zero Defect Manufacturing
(ZDM) in modern complex production systems [2]. When
these technologies are properly integrated with a cross-KETs
approach, new Cyber-Physical Systems (CPSs) for supporting
systemic ZDM solutions can be designed and implemented

[3].

The strategy of ZDM, which was conceived in the late
1980s, has the goal to decrease and mitigate failures and
defects in various manufacturing processes during production
[4]. The main challenges associated with ZDM have been the
integration of large amounts of data from many sources, the
need to develop advanced technologies and methods,
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modeling of ZDM, and timely computation (online or real-
time) [5], [6]. In light of this, CPSs contribute to achieving the
goals of ZDM by integrating computation and physical
actuation capabilities for improving manufacturing efficiency.
In detail, networks and embedded computers are used to
monitor and control physical processes, usually with feedback
loops and, at the same time, physical processes affect
computations, and vice versa [3]. Such CPSs are often used in
the factory floor to support the implementation of efficient in-
line and real-time quality-oriented production solutions [3].
To this aim, data-driven methods, including Machine
Learning (ML) techniques, are typically combined with
optimization algorithms and models for improving product
and/or process quality in a framework of ZDM [7], [8].

In this context, the adoption of suitable inspection
strategies able to achieve the goals of ZDM is of paramount
importance. To this aim, this paper proposes a probabilistic
model that can be integrated into CPSs to assess the
effectiveness of quality inspections. The research question
that is specifically addressed is the following: "How to model
quality control effectiveness in a CPS for supporting the
achievement of ZDM goals?". In order to answer this question,
this study proposes a model that extends previous authors'
research in the field of performance evaluation and planning
of quality inspections [9], [10]. In detail, the proposed model
considers possible interactions between process and
inspection variables in terms of cause-and-effect relationships
and potential inspection errors. Moreover, a synthetic
indicator depicting the residual product defectiveness not
detected by the quality control process is provided. Such a
model, adequately integrated into CPSs, can act as a liaison
between ML algorithms used to estimate the required model
variables (both process and inspection related) and
optimization algorithms to improve final products' quality.

The remainder of the paper is structured as follows. In
Section II, the manufacturing process and the inspection
process variables are described and integrated into an overall
probabilistic model. Section III discusses the approach
adopted for assessing inspection effectiveness, including
possible variables interactions and inspection errors. A
practical example to illustrate the proposed method are the
subject of Section IV. Finally, Section V proposes closing
remarks, research limitations, and future developments.



II.  PRODUCT AND QUALITY INSPECTION MODELING

The proposed probabilistic model relies on modeling both
product and related quality inspections, as detailed below. It
has to be pointed out that this study refers to either final or
semi-finished products that are produced by a manufacturing
process not decomposable into steps (also called
workstations), e.g. Additive Manufacturing (AM) processes.

The quality of each product, in nominal settings
condition, can be examined through the inspection of »
quality characteristics, i.e., output variables (as shown in Fig.
1) [10]. The output variables are denoted as Y;, where j is in
the range from 1 to #n, being n the total number of output
variables. Each j-th output variable of the product can be
described by a probability Py; of occurrence of a specific

defect, i.e., the parameter of a Bernoulli distribution [11].
Moreover, each inspection of the j-th output variable may be
affected by inspection errors. Hence, three probabilities can
be associated to each j-th output variable: the first one related
to the quality of the manufacturing process, while the latter
two to the quality of the inspections. In detail, these are:

* Py probability of occurrence of a defect related to
output variable Y; in nominal operating conditions
(i.e., the parameter of the Bernoulli distribution);

° ay; probability of erroneously classifying the output
variable Y; as defective (i.e., type I inspection error);

e [3,.: probability of erroncously not classifying the
j
output variable Y; as defective (i.e., type II inspection

error).
Output ¥, Output ¥, - Output ¥, - Output¥,
1@ By P2 @z P2 P a; By Pn @n B

Output variables inspected (V)
Fig. 1. Representation of product and quality inspection modeling.

The probability Py; concerns the quality of the process

and is strictly related to its propensity to generate defects. It
should be remarked that this probability should be evaluated
under nominal working conditions. It represents, therefore,
the physiological defectiveness of the production process. On
the other hand, the inspection errors ay; and fy; depend on
the quality of the j-th output variable inspection activity. The
latter includes the type of inspection performed, the technical
skills and experience of the inspectors, the time allowed for
inspection, the work environment, and other work- and
inspection-related factors [12]-[15].

Referring to each output variable Y, the tree diagram
illustrated in Fig. 2 shows the four different situations
(represented by branches) that can occur during the
inspection process. In detail, ¥; can be classified as defective

when it is actually defective with a probability Py; - 1-
ﬂy].) , or when it is conforming (false positive) with a
probability (1 — py].) Ay, On the other hand, in the case no

defect is detected, i.e., the output variable Y; is classified as
conforming, there can be an inspection error (false negative)

with a probability Py; - ,8,,]., or there can be the real absence
of any defect, with a probability (1 — py].) -(1- ay].).

Output variable ¥;

. 1-py, Pr)
Conforming Defective
ayj ~ I.—qyf B"'j =3 1 "ﬁl",
Cunfbrming s
(false negative)

P
Defective

(false positive) Defective

Conforming

Fig. 2. Tree diagram of the inspection process of an output variable ¥;.

Referring to Fig. 2, n Bernoulli random variables (W;) can
be defined as follows:

e W; =0, when either (i) the truly defective output
variable Y; is classified as such or (ii) the output
variable Y; is not defective;

e W, =1, when the truly defective output variable Y is
not classified as such (false negative).

Accordingly, the following probabilities arise:
P(W;=0)=py,- (1 =By)+(1=py) =1=py, By, (1)
P(W; =1) =Py, By, ®)

III.  QUALITY CONTROL EFFECTIVENESS

A. Model description

In most real situations, there may be interactions between
defects and inspection errors of different output variables. In
other words, different defective-output variables can occur
jointly. Consequently, the corresponding output variables
cannot be decoupled, and the related events cannot be
considered disjoint events. The model proposed in this study
takes into account the possible interactions between variables
(defect probabilities and inspection errors). Such interactions
have to be intended as cause-and-effect relationships between
variables and not merely as correlations. Indeed, a correlation
is a statistical measure of association between two or more
variables that, however, does not provide information about
the cause-and-effect relationship of the data [16]. Moreover,
in the proposed model, both independence and dependence
between events or variables are covered. It has to be remarked
that two events are independent if the occurrence of one does
not affect the probability of occurrence of the other.
However, independence does not preclude interaction
because this latter may arise when the effect of one causal
variable on an outcome depends on the state of a second
causal variable [17].

The following is a brief example to clarify the concepts
described above. Consider the case of »=2 output variables,
denoted by Y; and Y,, inspected on the final product. In the
case of interaction between defects and inspections errors of
Y, and Y,, there are 16 different possible configurations in
such an inspection process, i.e., the tree diagram branches
illustrated in Fig. 3. These include cases of misclassifications
(due to inspection errors) and other of correct classifications.

As shown in Fig. 3, the dependence between the
occurrence of defective-output variables is considered. In
detail, the four possible combinations of defects that can
occur are:
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e Event (A): Y; defective and Y, defective;
e Event (B): Y] defective and Y, non-defective;
e Event (C): Y, non-defective and Y, defective;

e Event (D): Y; non-defective and Y, non-defective.

The probabilities associated with each event are reported
in the tree diagram of Fig. 3. Specifically, the probability that
the two defective-output variables occur jointly, py, ny,, can

be obtained by using the definition of conditional probability
[18], as follows:

Py, " Py, (@
Py, * Py, (D) 3
Pv,|v, " Pr, ©

Pyiny, =

where: (a) if the occurrence of Y; and that of Y, are
independent, (b) if the occurrence of ¥; and that of Y, are
dependent (the occurrence of Y; is the conditioning event),
(c) if the occurrence of ¥; and that of Y, are dependent (the
occurrence of Y, is the conditioning event). In light of this,
according to the structure of the problem and the
directionality of the cause-and-effect relationship between
the output variables, in the graphical model depicted in Fig.
3, Pv,ny, should be replaced by the probabilities reported in

3).

P Eoaformiing P, Conforming (false negative)
By, g - g

balze ot Yefective
(A) ¥y defective and (talsc nogative)y — Br, Defectiye

7 - defottive By,
¥y defective 1— Jgr. Defiective 3
1- By,

Conforming @y, Defective (false positive)

Conforming (false negative)
Defective

& " false negative) Confi 3
a ) false neg: 1 — @y, Conforming
¥ (B) ¥y defective and Y ; L
s R P . _ iy, Defective (false positive)
P zconforming 1 —fi- Defeclive - i
/____—__:.> - ¥ 1—ay, Conforming
“-..P_ _L_E < P B, o Defective P € onforming (false negative)
=10 L {false positive i
= (€} ¥, conforming and (false positive] By, Defective
\,9_ ¥y defective 1~ Coriforming By, Conforming (false negative)
\-o hi 1- g Defective
% T
& > &y Defective @y, Defective (false positive)
% L il mositive B
q;’x (D) ¥, conforming Hilse poxitive) 1 = gy, Conforming
and ¥y o . X i sfective (falss positive
and ¥y conforming 1 — & Conforming Yo L_h.lll.ll\\- (false positive)
! 1—ay, Conforming

Fig. 3. Tree diagram of the inspection process of two output variables Y;
and Y,.

As far as inspection errors are concerned, their
occurrences are considered independent in this study. Indeed,
in practical applications, inspection errors are not mainly
related to the part to be inspected and its defects. Instead, they
depend closely on factors such as the measuring device and
procedure, the inspector's abilities, and other work- and
inspection-related factors [19], [20]. For that reason, as a first
approximation, the model and the performance measure
proposed in this study rely on the independence between
inspection errors, and between inspection errors and the
occurrence of defects, as depicted in Fig. 3. This situation is
modeled by considering simple probabilities for the
inspection errors. This assumption is necessary to model
quality control effectiveness when n output variables are
considered, as described in Section II1.C.

More in general, when » output variables are inspected,
the possible combinations in which the defects can occur are
2", each one associated with 2" possible combinations of
inspection errors, resulting in a total of 2% combinations,
corresponding to all possible branches of the tree diagram.
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B. Estimates of model variables

Both the defect probabilities and the inspection errors
considered in the proposed model (py]., ay; and ﬁy}.) can be

estimated using adequate prediction models or empirical
methods (historical data, previous experience on similar
processes, process knowledge, etc.) [10], [21]-[25].

In the modern industrial context, these estimates can be
derived by exploiting emerging techniques described in
Section 1. In detail, the growing data sets coming from the
distributed sensor network architectures integrated into CPSs
can be used by data mining applications to acquire knowledge
from historical data [7]. In particular, data-driven techniques
from the machine learning and deep learning domains may be
used to model defects (e.g., Artificial Neural Networks) [8],
[26].

C. Modeling quality control effectiveness

According to the model proposed in the previous sections,
a Bernoulli random variable related to the product (Wp) can
be defined as follows:

e W, =0, when ecither (i) a truly defective output
variable is classified as defective or (ii) an output
variable is not defective;

e W, =1, a truly defective output variable is not
classified as defective.

According to the graphical model of Fig. 3, P(Wp = 0)
can be obtained by multiplying the probabilities on the paths
where conforming (both false positive and truly conforming)
and truly defective output variables are encountered. On the
other hand, P(Wp = 1) can be derived by multiplying the
probabilities on the paths where false negative output
variables are encountered. As a result, given that the two
probabilities are complementary, the following relationships
may be obtained:

PWp=0)=1- Py, 'ﬁyl — Py, 'ﬁYz + Py,ny, 'ﬁyl 'BYZ 4)

P(Wp =1) =py,ay, [ﬁyl + (1 - ﬁyl) 'ﬁyz] + (Pyl -
Pylnyz) - Py, + (PY2 - Pylm'z) @y, - Py, + (PYZ - pylnyz) NG
(1= ay,) - By, = by, * By, + Py, " Br, — Pr,nv, * By, * P,

Therefore, according to (4) and (5), the mean total number
of defective-output variables that are erroneously not
detected in the inspection process for the two variables Y; and
Y, can be defined as:

Insp eff = E(Wp) = py, - By, + Py, - By, — P, * B, * By, (6)

More in general, if there are n output variables to be
inspected on the product, by exploiting the total probability
theorem [ 18], the inspection effectiveness indicator becomes:

Insp eff = X3 (pv, - Br,) -
2 j1<iz [(Pyjlnyjz) : (ﬁyh : ﬁyjz)] + -t
(_l)tJr1 'Zj1<j2<-~<jt Py;, nvj,n..nyj,
(B, Bry, = By )| o+ (=D
[(mean...nYn) : (Byl 'ﬁyz Ce Byn)] =

(N



n _1\Jj+1 . . .
Z]:l( 1) 215k1<~-~< e jSn [(Pn{Fl qu)

( £=1 ﬁykq)]

where each sum }; < <...<j, is calculated for all the (rtl)

possible subsets of 7 elements of the set {1,2,...,n}. Thus,
Insp eff is obtained by summing the probabilities of
occurrence of defects multiplied by the related type II errors,
minus the probabilities associated with defects appearing in
even numbers, also multiplied by the related type II errors,
and by summing again the probabilitics associated with
defects appearing in odd numbers, also multiplied by the
related type 11 errors. Although (7) is formulated for the case
of independence between inspection errors and the related
defective-output variables, it can be considered a reasonable
approximation of the inspection effectiveness when n
defective-output variables can occur jointly.

For each output variable Y, a total cost related to the
inspection, including costs for the inspection activity, defects
removal and undetected defects, can also be considered, as
described in [9]. However, a detailed cost analysis will be the
object of future developments of this research.

The proposed model and related indicator can be
implemented in a CPS within production systems for three
different reasons: (i) to make assessments — in absolute terms
— of the effectiveness of individual quality inspection
procedures; (ii) to facilitate the comparison — in relative terms
— between alternative inspection procedures; and (iii) to
support the selection of the optimal inspection strategy that
minimizes residual defectiveness. To this aim, the proposed
model gets as input data the variables' estimates (see Section
III.B) and returns as outputs the quantification of the
inspection effectiveness indicators, /nsp eff. Such outputs can
be then embedded in a robust mathematical program
performed in the CPS that, through optimization approaches,
aims at reaching a local or global optimum for improving
final product quality and achieving zero-defect goals.

IV. PRACTICAL APPLICATION

In this Section, an example taken from AM is proposed to
show how the inspection effectiveness indicator can be
calculated.

The aim of the application is to check the quality of a
product made by a metal-based additive manufacturing
process, immediately after the production (i.e., before any
further post-processing treatments, such as surface finishing).
Three output variables are inspected: porosity (PO),
mechanical properties (MP), e.g., tensile strength, and
dimensional accuracy (DA). Each output variable is inspected
by using a specific inspection activity and test equipment.

TABLE L ESTIMATES OF MODEL VARIABLES USED IN THE EXAMPLE
Output Model variables
variable Defect Type Il Joint defect
Y; probabilities inspection error probabilities
PO Pro = 2% Bro =7% Puparo = 1.6%
=13%
MP = 2.98% = 5% Pbanro
Pur ° Pue ° Poanmp = 1.8%
DA Poa = 3% Bpa="7% Pupapanpo = 0.06%

The probabilities of occurrence of defective-output
variables, both single and joint probabilities, as well as the
type Il inspection errors, are provided in Table I. These values
are obtained by a statistical analysis of historical data. Similar
results can be obtained by using ML techniques.

According to (7), inspection effectiveness of the adopted
quality inspections is the following:

Insp eff = ppo - Bro + Pup - Bup + Ppa * Bpa -
(Pmparo * Bup * Bro) — ®panro * Ppa * Pro) — (8)

(pDAnMP ’ ﬁDA 'ﬁMP) + (pMPnDAnPO 'ﬂMP : ﬂDA :
Bro) = 4.38-107°

As shown in (8), given a production of 1000 components,
there will be nearly 5 defective-output variables that are
erroneously not identified.

This indicator of inspection effectiveness can be useful to
depict the quality of the inspection performed. Furthermore, it
can enable to evaluate alternative inspection procedures to the
one currently adopted.

V. CONCLUSIONS

In modern manufacturing industry, it is increasingly
important to identify effective quality control procedures to
achieve Zero Defect Manufacturing goals. To this aim, this
paper presents a probabilistic model derived by combining
probabilities of occurrence of defects in manufacturing
products, related to selected output variables, and inspection
errors. Such a model takes also into account potential cause-
and-effect and dependence/independence relationships
between variables. The model and the indicator of quality
inspection effectiveness can be an effective decision support
tool (i) to evaluate the effectiveness of alternative inspection
strategies and (ii) to select the most appropriate according to
manufacturer requirements.

The main critical aspect of this study concerns the
empirical determination of process variable probabilities.
These can be estimated using machine learning techniques
applied to historical data and/or by using prior manufacturing
experience. Further developments will be devoted to testing
the proposed methodological approach within a real CPS by
exploiting real-time data on defectiveness and inspection
errors and performing optimization to improve the product's
overall quality. Moreover, we are planning to extend this
methodology to evaluate the overall inspection costs,
including them within a broader performance assessment of
a manufacturing process.
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