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1. Introduction

The dynamic behavior of phononic materials is governed 
mainly by tailored architectures, rather than by material constit-
uents.[1–3] A phononic architecture with periodically distributed 
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heterogeneities, such as cavities or inclu-
sions, can induce elastic wave scattering,[4] 
sound absorption,[5] negative refraction,[6] 
cloaking,[7] focusing,[8] waveguiding,[9] one-
way,[10] or scattering-free propagation,[11] 
and control thermal conductivity.[12,13] 
These and other fascinating effects, unu-
sual for most materials, have revolu-
tionized conventional concepts on wave 
control and opened previously unforeseen 
functionalities and applications.[14–16]

An attractive feature of a phononic 
medium is assumed independence of its 
dynamic behavior from its constituent 
materials and structural dimensions. This 
means that a property observed in a milli-
meter-size structure is likely to be found 
in meter-, centimeter- or even nanometer-
size structures, if the architecture is pre-
served.[17–19] Hence, phononic materials 
are often developed and tested at the size 
scales most suitable for experiments, with 
subsequent rescaling of their characteris-
tics to desired frequencies.[20–22] However, 
this independence assumption is true 
only if constituent materials have linear 

elastic behavior, as, for example, for infinitesimal strains in 
metals or ceramics.[10,17,23,24] In polymers or concrete, material 
losses can be sufficiently strong to alter or even suppress pho-
nonic functionalities.[22,25–28] For instance, viscoelastic damping 
described by time- and strain-dependent mechanical moduli has 
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truly multiscale effects on phononic materials: the damping is 
governed by the microstructure of a constituent material at the 
molecular level, by the size and shape of mesoscopic units (e.g., 
thin structural elements), and by topology and structural sizes at 
the macrostructural level (e.g., plates or beams). This multi-level 
dependence complicates the analysis of wave dynamics in dis-
sipative phononic materials and introduces uncertainties about 
their real performance. As a result, the design and development 
of reliable phononic technologies are considerably challenging. 
Hence, there is a need to identify key viscoelastic effects for a 
variety of constituent materials and correlate them to a limitless 
design space of phononic materials at various size scales.

To address this challenge, it is necessary to link the vast 
amount of knowledge available in the field of viscoelasticity 
to wave control mechanisms occurring in phononic materials, 
and study the interplay between material and architectural 
characteristics at different scales from the theoretical and exper-
imental points of view.

Viscoelastic effects on phononic materials have been studied 
analytically by means of single-parameter models[22,26,27,29–37] 
and numerically by using multi-parameter models.[9,26,36,38] 
These and other unmentioned studies provide useful insights 
into the influence of viscous losses on wave propagation and 
report basic effects of damping on wave scattering in phononic 
media. However, it remains unclear to which extent the derived 
conclusions are applicable to real phononic materials, due to 
the lack of experimental data and to simplified modeling where 
a single parameter is used to capture multi-scale relaxation.[39–41]

In this work, we propose a comprehensive and general 
approach to modeling wave dynamics in dissipative phononic 
media, capable of addressing the complexity of this problem in 
full. The remainder of this paper is organized as follows. First, we 
briefly overview the basic principles of the viscoelasticity theory 
and classify polymers according to their mechanical and chemical 
properties. Then, we present measured viscoelastic characteris-
tics of two main classes of polymers and derive master curves to 
describe their mechanical moduli at the frequencies of interest. 
Next, we fit the master curves by means of multi-mode Maxwell 
models using a novel flexible and computationally efficient pro-
cedure. The obtained frequency-dependent moduli are then used 
to characterize wave dispersion and transmission in phononic 
materials with two wave scattering mechanisms by means of the 
finite-element analysis. The numerical predictions based on linear 
elastic or viscoelastic models are compared with experimental data 
on ad-hoc manufactured specimens with various architectures, 
in order to validate the models in different frequency ranges. In 
contrast to previous studies, this framework can be applied to 
analyze any phononic architecture and any constituent material, 
and allows drawing general conclusions regarding the viscoelastic 
effects, including the cases when they can be safely neglected.

2. Viscoelasticity of Polymers

Dynamic mechanical properties of viscoelastic polymers 
depend on temperature T and strain rate ε•  relaxation.[42–44] At 
room temperature, many amorphous polymers are in a glassy 
state with predominantly elastic behavior and low losses. As the 
temperature increases, a polymer changes its state from glassy 

to rubbery passing through a glass transition zone.[39–41] In 
this zone, also known as the α transition, the material behaves 
viscoelastically, exhibiting a rapid decrease in the storage mod-
ulus and a peak for loss factor tan(δ). The bounds of the zone 
are governed by the glass transition temperature Tg which is 
defined ambiguously in literature.[45,46] Here, we define Tg as 
the temperature corresponding to the local maximum of loss 
factor tan(δ) in the α transition zone, that is, Tα.

Rapid variations of mechanical moduli in the α transition 
zone (Figure 1a) are caused by motions of the main polymer 
chains as a consequence of bond rotations in molecules.[47] 
Besides, the polymer backbone can also undergo local move-
ments, or side chains can rotate. These local motions result in 
additional peaks for tan(δ) that appear in the glassy state at low 
temperatures and correspond to secondary β, γ,… transitions,[45] 
as schematically illustrated in Figure 1a.

Additionally, the mechanical properties of polymers are 
sensitive to strain rate ε•  relaxation.[42–44] In particular, the 
bounds of the transition zones can vary depending on the 
excitation frequency as schematically shown in Figure  1b. 
This occurs because at a given temperature larger strain rates 
decrease molecular mobility, affecting the re-arrangements of 
macromolecular chains.[45] Hence, the α transitions shift to 
higher temperatures with increasing strain rate.

If changes in the polymer structure induced by the tempera-
ture are equivalent to those induced dynamically, the viscoelastic 
behavior can be described by means of a time-temperature 
superposition (TTS) principle.[40,41] Thus, an increase in fre-
quency has the same effect as a decrease in temperature, and 
vice versa, and a polymer is called rheologically simple. Other-
wise, a polymer is called rheologically complex. This happens if 
the temperature shift at larger strain rates strongly depends on 
the type of relaxation, with larger effects on secondary relaxa-
tions (γ > β > α). At high strain rates, this effect may cause an 
overlap of different relaxation modes, leading to a complex vis-
coelastic relaxation over broader temperature ranges.[48,49]

Apart from viscoelastic characteristics, polymers can be cate-
gorized according to their chemical structure and properties, as 
thermoplastics, thermosets, and elastomers.[41,50] In this work, 
we rely on the assumption of infinitesimal strains. Elastomers 
are thus excluded from the consideration because they exhibit 
large deformations.

Thermoplastics contain long polymer chains bound via rela-
tively weak interactions (inset in Figure  1c). The chains can 
easily slide along each other when heated or excited dynami-
cally. The strength of the secondary bonds (van der Waals inter-
actions or H-bonds) linking molecules governs the mechanical 
properties of a material. An example of a thermoplastic amor-
phous polymer is polymethylmethacrylate (PMMA). This is a 
transparent and easy-to-process polymer with a high chemical 
resistance and good strength. It is widely used as a shatter-
resistant and light-weight alternative to glass. The density of 
pure PMMA is 1180 kg m−3; Tg values vary from 85 to 140 °C 
depending on molecular weight, measuring technique, and rel-
evant conditions (e.g., heating rate or strain rate).[43,51–53]

Thermosets, in contrast, are composed of dense networks of 
cross-linked molecules formed during curing, which results in 
strong primary bonds (inset in Figure  1d). High crosslinking 
density allows retaining a significant storage modulus even above 
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Tg. A representative group of thermosets is epoxy resins.[26,54–57] 
They are produced by reacting a multifunctional epoxy com-
pound with a crosslinking agent (commonly, a multifunctional 
amine), resulting in materials with excellent thermal and chem-
ical resistance, and mechanical properties. The mass density and 
Tg of epoxies typically vary between 1100 and 1500  kg m−3 and 
50–180 °C, respectively, depending on the molecular structure, 
the cross-linking agent, and the cross-linking density.[44,55,56]

To understand how the viscoelastic behavior of polymers 
influences wave attenuation in phononic materials, we focus 
on PMMA and epoxy resin as representatives of thermoplas-
tics and thermosets, and analyze their material and mechanical 
characteristics. These materials are often used as constituents 
of phononic structures.[4,26,35,58]

3. Material and Mechanical Properties of PMMA 
and Epoxy
3.1. Material Characterization

Commercial PMMA (ICI Perplex) sheets of 3 and 12 mm thickness 
acquired from local suppliers were tested as received. To exclude 
the presence of supplementary components, we performed 
FTIR analysis that confirmed the composition of a standard 
PMMA (Section A1.1, Supporting Information). Molecular weight  

w
(p)M   = 1474 kg mol−1 and molar number n

(p)M = 344.7 kg mol−1 
were estimated by means of gel permeation chromatography  
(Section A1.2, Supporting Information). Here and further, the 
superscripts p and e refer to the PMMA and the epoxy, respectively. 
The large molecular weight suggests that the PMMA is casting 
molded. Hence, it should have a high glass transition temperature  
(Tg > 120 °C) and a finite storage modulus at temperatures above Tg.[43]

Epoxy plates of the same thicknesses were synthesized 
from bisphenol-A-diglycidyl ether (DGEBA) and amine tetra-
ethylpentamine (TEPA) (Section A1.3, Supporting Informa-
tion). To check the material quality, we performed a series of 
characterization tests. Swelling tests revealed that the epoxy 
is compact and well-cured with a high crosslinking density of  
4 mmol cm−3 (Section A1.4, Supporting Information). Scanning  
electron microscopy confirmed a dense composition without 
major discontinuities, though with randomly distributed small 
air bubbles that potentially can influence mechanical proper-
ties (Section A1.5, Supporting Information). The differential 
scanning calorimetry (DSC) data disclosed a high Tg of 134 °C 
(Section A1.6, Supporting Information). Note that since the 
DSC detects changes in heat capacity as a function of tem-
perature, these variations cannot be straightforwardly linked to 
mechanical relaxation in the glass transition governed by an 
excitation frequency.[46] Thus, to evaluate dynamic mechanical 
properties, we performed dynamic mechanical analysis in tem-
perature (DMTA).

3.2. Viscoelastic Properties

DMTA tests on a single clamped cantilever provide g
(p)T  = 136 °C 

and g
(e)T  = 148 °C for the PMMA and the epoxy, respectively, 

when performing a temperature sweep (2 °C min−1) at a con-
stant frequency of 1 Hz (Section A1.7, Supporting Information). 
These values agree very well with those reported previously.[43,59] 
Besides, both polymers have secondary transition zones.

The β transition for the PMMA occurs at ≈10 °C, that is, at 
a local maximum of tan(δ) (Figure A7, Supporting Informa-
tion) that agrees well with the reported data.[43,52] The γ and δ 
secondary transitions are reported below −180 °C,[43] thus far 

Figure 1. Master curves. a) Typical dependence of dynamic mechanical properties of a polymer on temperature at fixed frequency f1. b) Typical depend-
ence of the loss modulus of a polymer on temperature at different frequencies. c,d) Experimental (markers) and numerical (solid lines, Arrhenius fit) 
master curves for the storage and loss moduli of a commercial PMMA and home-made epoxy (DGEBA-TEPA) at reference temperature Tr = 20 °C. The 
insets schematically represent molecular arrangements in the polymer networks.
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enough in temperature from β to avoid a significant overlap 
even at relatively high frequencies. Hence, one can expect 
rheologically simple behavior for the β relaxation of PMMA 
allowing the application of the TTS principle, as previously sug-
gested, for example, in ref. [60]. The validity of this reasoning is 
confirmed by a good overlay of the data measured by sweeping 
frequency at gradually increasing temperatures, thus forming 
master curves, by applying the TTS principle. These curves are 
shown in Figure 1c for storage E′ and loss E′′ moduli at refer-
ence temperature Tr = 20 °C. Tan δE overlay, shifting factors and 
Arrhenius fit are reported in Figure A9, Supporting Informa-
tion, yielding an activation energy of ≈100 kJ mol−1. The derived 
master curves and activation energy are close to those reported 
elsewhere[51–53] at similar reference temperatures, consid-
ering the differences between experimental techniques (single 
clamped cantilever vs. resonance methods or oscillatory tensile 
tests) and various grades of PMMA (casting molded vs. extru-
sion molded). This agreement validates the reliability of our 
DMTA measurements.

The synthesized epoxy resin presents a broad β transition 
centered around −40 °C and a weak intermediate relaxation, 
referred to as ω,[59] around 70 °C (Figure A8, Supporting Infor-
mation). In fact, the DMTA plot for our epoxy resin is in a very 
good agreement with the reported temperatures for the same 
DGEBA-TEPA epoxy formulation.[59] As the molecular structure 
of crosslinked epoxy resin is intrinsically less regular than that 
of a simple linear homopolymer such as PMMA, the assign-
ment of a relaxation signal to a precisely defined chain relaxa-
tion is quite challenging. Gonzáles–Garcia  et  al.[59] proposed 
the β transition for this type of epoxy resin to correspond to 
a combination of different contributions, including relaxations 
of hydroxyl ether and diphenyl propane groups, as well as of 
segments between crosslinking points. The combination of 
several relaxation modes, possibly having different tempera-
ture vs. strain rate dependency, is expected to deliver a com-
plex rheological behavior to this epoxy. Indeed, the DMTA 
plots obtained by frequency sweeps over varying temperatures 
provide curves with different slopes that do not satisfactorily 
overlap into master curves (Figure A10a, Supporting Informa-
tion). Attempting the Arrhenius fit on the obtained shift factors 
yields an activation energy of ≈169 kJ mol−1, which appears too 
high for the β relaxation and is anyway very different from the 
reported values.[59] Hence, we conclude that our epoxy actually 
behaves as a rheologically complex material. In addition to the 
overlap of the transition zones, other reasons for this behavior 
can be dissimilar crosslinking density, irregular arrangement 
of epoxy groups and/or unreacted segments,[61] and dangling 
chains formed by possibly nonuniform heat dissipation during 
manufacturing. Hence, reliable extrapolation of viscoelastic 
behavior at high frequencies does not seem possible based on 
the available data. Reliable master curves for the epoxy can be 
obtained under isothermal conditions at broadband frequen-
cies, for example, by viscoelastic spectroscopy[53] or resonance 
techniques.[52]

Unfortunately, the measurements of isothermal viscoelastic 
properties are scarce, especially at room temperature, as most 
of them are done around Tg.[44,45,56,57,61] Furthermore, a large 
variety of epoxy compounds makes the extrapolation of appro-
priate data for our specific epoxy composition impossible. As 

broadband isothermal tests require specialized setups unavail-
able to us (which can also be the case for researchers working 
on polymer phononic materials), we propose an alternative 
way to approximate master curves for the rheologically com-
plex epoxy.

We assume that the master curve of the storage modulus 
obtained by the Arrhenius fit with the shift on E′ can be taken 
as an acceptable approximation (Figure  1d and Figure A10a, 
Supporting Information). This can be partially justified by the 
weak dependency of E′ on temperature, thus minimizing error 
in extrapolation at high frequencies. For the loss factor, we use 
a lower envelope curve for the data shifted in the same way 
(Figure  1d). This approximation captures only the minimum 
level of the losses and thus does not reproduce them correctly. 
The only purpose of this is to estimate errors introduced by the 
approximate material losses on numerical predictions of wave 
attenuation in phononic materials made of rheologically com-
plex polymers. We emphasize that this approach is applicable 
only when viscous losses are small, that is, max (tanδE) < 0.02, 
corresponding to the mechanical properties dominated by the 
elastic modulus, and cannot deliver meaningful results for 
larger losses.

For small-amplitude excitations at room temperature, vis-
cous losses in the considered polymers are governed by shear 
deformation, while volumetric viscosity can be neglected.[38,52,56] 
This occurs because the dispersion of the bulk modulus for the 
PMMA and epoxy is at least an order of magnitude smaller 
than that of the shear modulus.[38,40,52] The viscoelastic mechan-
ical response of solid polymers below Tg is typically described 
by master curves for frequency-dependent Young’s modulus 
E.[40,41] The second mechanical parameter, for example, Pois-
son’s ratio, is often assumed to be fixed. Here, we assign 
ν(p) = 0.36[52] and ν(e) = 0.35.[54,59]

3.3. Fitting Experimental Master Curves

Viscoelastic material behavior is often represented by mechan-
ical spring-dashpot models (Section A2.1, Supporting Informa-
tion). Here, we apply the models commonly used in the studies 
on viscoelastic phononic materials[25–27,30–33,35,36,62] to approxi-
mate the master curves of PMMA (Figure  1c) around the β 
transition zone. The goal is to estimate the accuracy of these 
models.

One of the simplest models is the standard linear solid 
model (or Zener model) represented by a spring and a spring-
dashpot in series. The Zener model has the following relaxation 
moduli:[27,33,62]

1
,
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2
1
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2
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2

1 1
2
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2E E

E
E

E
rω ω τ

ω τ
ω ωτ

ω τ
( ) ( )′ = +

+
′′ =

+
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where ω = 2πf is the angular frequency; τ1 = 1/(2πfmax) defines 
the most probable relaxation time with fmax indicating the fre-
quency at maximum losses (Figure 2a). To estimate E1, one can 
fit the storage modulus at fmax, which gives E1 = 3.67 GPa (thin 
curves in Figure  2a). This approximation does not match the 
experimental data for E′, and the values of E′′ around fmax are 
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overestimated. Alternatively, E′′ can be matched at fmax, leading 
to E1 = 0.31 GPa (thick curves in Figure 2a) that underestimates 
the measured values at all frequencies. Similar results can be 
obtained for other values of τ1.

The reason for the inaccuracy of the Zener model is its 
simplicity due to a single viscous parameter restricting the 
relaxation zone to limited frequencies. Hence, this model is 
inaccurate for polymers with transition zones at broad frequen-
cies. The one-parameter Maxwell (a spring and a dashpot in 
series) and Kelvin–Voigt (a spring and a dashpot in parallel) 
models suffer from the same drawback.

For polymers with a broadband moduli relaxation, the theory 
suggests so-called zeroth-order approximation:[52]

4.606
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2

E
E

f
n n

nπ
τ

π
= ′′ =  (2)

with fn indicating characteristic frequencies, at which strong 
variations of the moduli occur. The corresponding master 
curves (thin curves in Figure 2b) show that this model partially 
captures the frequencies of the PMMA β transition, but overes-
timates the storage modulus at f > fmax.

A better match can be obtained by using multi-mode models, 
for example, generalized Maxwell model:
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that has a sufficient number of viscous parameters to capture a 
full relaxation spectrum. The application of this model requires 
the estimation of relaxation times τn and relaxation moduli Er 
and En, n = 1, …, N. This can be done, for example, by using a 
least-squares fit of En for prescribed values of τn in combination 
with the Tikhonov regularization.[63] Obviously, the accuracy of 
the fit crucially depends on the choice of N and τn, which is 
theoretically unlimited.

As an alternative, we propose a fitting technique with no 
requirement on the initial choice of τn. Specifically, both 
sets of En and τn are considered unknown, providing more 
freedom and, potentially, a better fit. We call this technique 

a  Linear-NonLinear (LNL) model, as the fitting problem is 
decomposed into a linear and a nonlinear part. In the most gen-
eral setting, denoting C as the set of fitting curves, the problem 
of finding coefficients E = (En)n∈C and τ = (τn)n∈C corresponds to 
solving the following optimization problem:

min , ,
,

1 1 2 2 2 2
F E y F E y

E
τ α τ{ }( ) ( )− + −

τ
 (4)

where the notation ‖.‖2 denotes the standard l2 (Euclidean) 
norm of a vector. We introduce two vector-valued functions:
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with ( )
1 2f x

x

x
k

k

=
+

, k = 1, 2. Set P enumerates the experimental 

points on the master curves, vector Rx P∈  contains the 
ω-values from Equation (3), vectors y1 and y2 contain the E′ and 
E′′ values. Parameter α compensates for the imbalance between 
the magnitude of values in y1 and y2.

Problem (4)–(5) can be tackled by a variety of techniques, 
from classic gradient to Nelder–Mead methods.[64] However, 
without additional restrictions, the obtained coefficients are 
likely to be physically insensible (e.g., negative coefficient 
values). By adding restrictions directly to problem (4), one 
obtains a constrained non-linear optimization problem, which 
is challenging to solve. In contrast, we propose to decompose 
the problem into a complex but linear part (to optimize E) and 
a smaller non-linear part (to optimize τ). The implementation 
details are given in Section A2.3, Supporting Information.

The proposed decomposition is crucial for the performance 
and makes the proposed approach both easy to implement 
and efficient. Another advantage is its flexibility: due to the 
fact that the problem of finding the coefficients is under-
defined (there exist many sets of coefficients that fit the 
control points but give unacceptable behavior elsewhere), 
additional restrictions are necessary. In our approach, adding 
them is straightforward.

Figure 2. Numerical fits (curves) of experimental PMMA master curves (markers) at Tr = 20 °C. a) The SLS model by fitting E′ (thin curves) and E′′ 
(thick curves). b) Fits based on the LNL (thick curves) and zeroth-approximation (thin curves) models.
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The coefficients En for Equation (3) evaluated by means of 
the LNL technique (Section A2.3.4, Supporting Information) 
describe the master curves (thick curves in Figure  2b) that 
agree very well with the experimental data, proving the high 
accuracy of the technique.

Equilibrium storage modulus Er was estimated by fixing the 
value of E′ at the lowest frequency, that is, 2.77r

(p)E =  GPa and 
1.77r

(e)E =  GPa. These values perfectly agree with those derived 

from glassy modulus g r
1

E E E
n

N

n∑= +
=

 that was measured inde-

pendently by using an ultrasound time-of-flight (ToF) tech-
nique. The measured values are 4.91g

(p)E =  GPa, 2.86g
(e)E =  GPa 

(see Section A2.2, Supporting Informationfor details).

4. Experimental and Numerical Analysis of 
Viscoelastic Phononic Plates

We consider phononic architectures with periodic patterns in 
square arrangements, as schematically shown in Figure 3a. The 
patterns are formed by traversing cruciform cavities or spiral 
cuts in polymer sheets (Figure 3b). This is a common approach 
to design phononic plates.[1,2,65] Similar configurations have 
been extensively studied previously and revealed good potential 
in various applications.[4,10,17,26,28,58,66,67]

Each phononic plate is made of both epoxy and PMMA 
sheets in identical structural dimensions. The cruciform cuts 
(Figure  3b,c) form patterns with center-to-center distance a of 
either 28 mm (Large-cross) or 6 mm (Small-cross) with the 
aim to activate band gaps at different frequencies (Figures 4a  
and  5a). The center-to-center distance of the spiral cuts is  
25 mm (Spiral, Figure 3b,c) to enable low-frequency band gaps 
(Figures  4a and 5a). Other geometric parameters of the plates 
and the manufacturing details can be found in Section A3.1, 
Supporting Information.

Wave propagation in the plates is analyzed experimentally by 
measuring transmitted signals (Figure 3d and Section A3.2, Sup-
porting Information) and numerically by means of frequency-
domain finite-element simulations (Section A3.3, Supporting 
Information). Below we present and discuss the obtained results.

4.1. Transmission Characteristics

We first consider the PMMA plates due to the rheologically 
simple material behavior. Figure  4b–d shows the dB-level of 
experimentally measured signals (red curves) transmitted 
through the Small-cross, Large-cross, and Spiral architectures. 
The transmission drops of at least 20 dB are classified as exper-
imental band gaps, the bounds of which are indicated by ver-
tical red dashed lines.

The experimental results are used here as a reference to esti-
mate the accuracy of numerical predictions based on different 
material models. We considered the linear elastic (dashed blue), 
the viscoelastic Kelvin–Voight (KV, dashed cyan), and the vis-
coelastic generalized Maxwell (LNL-fit, solid black) models. 
The linear elastic behavior is specified by the Young’s modulus 
within the experimental band gaps. These values were esti-
mated directly from the master curve for E′ (Eel in Figure 4a). 
Alternatively, if the master curves are unknown, Eel can be 
measured by a ToF experiment with a pulse at a central fre-
quency within the band-gap frequencies (Section A2.2, Sup-
porting Information). The same Eel were used in the KV models 
supplemented by the viscosity parameter η. The value of η can 
be estimated empirically either by matching numerical to meas-
ured transmission curves[27] or by keeping viscous losses small 
at target frequencies.[26,30,32] We employed the second approach 
as it enables to evaluate the accuracy of the KV model. Hence, 
we assumed η to be equal to 50 Pa∙s (Small-cross), 5⋅102 Pa∙s 
(Large-cross), and 5⋅104 Pa∙s (Spiral). The coefficients of the 
generalized Maxwell model were obtained by fitting the experi-
mental master curves by the LNL technique (Section A2.3, Sup-
porting Information).

The overall agreement of the numerical results based on the 
simple models (the linear elastic and viscoelastic KV models) 
with the experimental data is poor. In contrast, the general-
ized Maxwell model allows matching the measurements well. 
Particularly, the simulations based on the simple models 
roughly predict the band gaps for the Small- and Large-
crosses, though they completely fail to estimate the band-gap 
frequencies for the Spiral plate. This can be due to different 
band-gap generation mechanisms in the plates. The cruci-
form cavities activate Bragg scattering that leads to destructive 

Figure 3. Phononic plates geometry and specimens. a) (top) Schematic representation of a phononic plate excited dynamically; (bottom) Top view of 
the plate with periodic inhomogeneities arranged in a square lattice. b) Unit cells with cruciform and spiral cavities. c) Polymer specimens with cruci-
form and spiral cavities. d) Experimental setup with a vibration amplifier and laser Doppler vibrometer for transmission measurements.
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interference of scattered and incident waves when a half-wave-
length is comparable with the lattice period.[68] According to 
previous studies,[26,30,32] a Bragg band gap can be extended to 
broader frequencies due to viscous losses, while its central 
frequency should be unchanged. This statement was derived 
for numerical results based on one-parameter viscoelastic 
models. Our results reveal that the viscoelastic effects can be 
richer. For instance, the directional and complete band gaps 
of the Small-cross sample are merged and shifted to higher 
frequencies due to the losses (Figure 4b).

In the Spiral plate, the curved elements act as resonators 
when the frequency of incident waves is close to the resonators’ 
eigenfrequency.[65] Intense vibrations induced by the resona-
tors can couple to the wave field and inhibit wave propagation, 
thus generating local-resonance band gaps.[58,65,69] The interplay 
between local resonances and material viscosity substantially 
influences wave transmission and shifts the band gap to higher 
frequencies as compared to those predicted by the simple 
models. Further analysis of the viscoelastic effects on local reso-
nances is given in Section 4.2.

The generalized Maxwell model correctly predicts the band-
gap bounds and the trends of the transmission curves around 
and within the band gaps for both wave attenuation mecha-
nisms and different levels of viscous losses (Figure  4a). The 
largest discrepancies are observed in the transmission level 
inside the band gap of the Small-cross plate. This can be due 
to the manufacturing defects resulting in non-smooth edges 

of the crosses that cause additional losses (Figure 3c). The dis-
crepancies at frequencies outside the band gaps can be due to 
various reasons, for example, differences in the experimental 
excitation/acquisition and support conditions, imperfect con-
tact between the plate and transducers, transducers sensitivity, 
etc. The in-depth analysis of these reasons is beyond the scope 
of this work, which is focused on wave attenuation within 
band gaps.

We found out that accurate estimations of the band gaps for 
the PMMA phononic plates require the use of a multi-mode 
viscoelastic model properly fitting the experimental relaxation 
moduli (Figure 2b). If the master curves are unavailable, one-
parameter viscoelastic or elastic models can suggest approxi-
mate band-gap frequencies for plates with Bragg band gaps. 
However, in these cases, the dispersion analysis can provide 
comparable approximations (shaded regions in Figure 4b–d) at 
a lower computational effort (Section 4.2). The accuracy of the 
dispersion predictions can be even better as the transmission 
simulations with periodic conditions at lateral faces can include 
spurious modes localized near the edges. These modes origi-
nate from wave reflections at the artificial boundaries and are 
not damped in the absence of losses, thus reducing the band-
gap size (see large transmission values at frequencies close to 
the upper bound of the second band gap for the small-cross 
and large-cross plates, Figure  4b–c). Note that in case of local 
resonances, the simple models completely fail in predicting the 
band gap (Figure 4d).

Figure 4. Transmission data for the PMMA phononic plates. a) The master curves for the storage and loss moduli reproducing the experimental DMTA 
data for the PMMA. b–d) The experimental data (red) in comparison with the simulation results for the elastic (dashed blue), viscoelastic generalized 
Maxwell (LNL, black), and KV (dashed cyan) models. The viscoelastic parameters are given in the text. Vertical red dashed lines indicate the bounds of 
experimental band gaps; shaded and half-shaded regions correspond to the complete and directional band gaps predicted by the dispersion analysis 
based on the elastic model.
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Next, we analyze the same phononic samples made of the 
thermoset epoxy sheets. In the same way as for the PMMA 
plates, Figure  5b–d shows experimentally measured transmis-
sion (red) and the bounds of experimental band gaps marked 
by vertical red dashed lines. The comparison of the experi-
mental curves in Figures  4 and  5 reveals similarities in the 
overall trends together with distinctions. The latter include 
smoother band-gap bounds and less wavy profiles of the curves 
for the epoxy plates. As the plate architecture is identical, these 
differences can be attributed only to the rheologically complex 
behavior of epoxy. We thus have the experimental proof that vis-
coelastic behavior alters the wave dynamics in phononic plates.

Figure  5b–d also shows numerical transmission curves. 
The notations and the parameters of the simple models are 
the same as those for the PMMA plates. This again results in 
similarities between the curves based on the simple models 
for the epoxy and the PMMA plates (cf. the dashed blue and 
cyan curves in Figures  4b–d and  5b–d) provided the distinc-
tions due to different frequency ranges are considered (e.g., cf. 
Figure  A16a,c, Supporting Information). However, in contrast 
to the PMMA plates, the simple models for the epoxy plates fail 
to predict the band-gap bounds and the transmission curves for 
all cases due to the complex material relaxation that cannot be 
captured by a single viscosity parameter.

Regarding the generalized Maxwell model, we recall that 
the LNL fit to the experimental master curves (Figure  1d) is 

approximate and cannot correctly reproduce viscous losses due 
to the inapplicability of the TTS principle (Section A1.7, Sup-
porting Information). Hence, it is unreasonable to expect a 
good match between the numerical (black) and experimental 
(red) transmission for the epoxy plates. Figure 5b–d shows that 
it is indeed the case. The comparison of the curves illustrates 
that the numerical model underestimates real viscous losses, as 
the calculated band gaps are narrower than the experimental 
ones. Nevertheless, the multi-mode model approximately pre-
dicts both Bragg and locally resonant band gaps, making it still 
useful for comparison with experimental data and practical 
applications of phononic plates made of rheologically complex 
polymers.

4.2. Dispersion Analysis

Wave dispersion in phononic structures is governed by the 
architecture introducing boundaries or interfaces scattering 
waves (geometric dispersion) and by material characteris-
tics of constituents (material dispersion). In the case of loss-
less media, the geometric dispersion can be uncoupled from 
the material properties by using non-dimensional frequency 
f*  =  fa/c and wavenumber k* = ka/2π. Here, f and k are the 
frequency and the wavenumber, a is the characteristic size, and 
c is a fundamental velocity in the medium.[70] We assume that 

Figure 5. Transmission data for the epoxy phononic plates. a) The master curves for the storage and loss moduli approximating the experimental 
DMTA data for the epoxy. b–d) The experimental data (red) in comparison with the simulation results for the elastic (dashed blue), viscoelastic gener-
alized Maxwell (LNL, black), and KV (dashed cyan) models. The viscoelastic parameters are given in the text. Red dashed lines indicate the bounds of 
experimental band gaps; shaded and half-shaded regions correspond to the complete and directional band gaps predicted by the dispersion analysis 
for the elastic model.
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a is the unit cell size and c = cp, that is, the ultrasound wave 
velocity in a polymer plate (Section A2.2, Supporting Informa-
tion). Then, non-dimensional dispersion diagrams (f* vs. k*) 
for elastic plates of the same architecture, but made of different 
materials, become identical (Figure A16, Supporting Informa-
tion) that simplifies the analysis. In the following, we employ 
non-dimensional terms, if not indicated otherwise.

4.2.1. Bragg Scattering

Figure 6a shows the dispersion diagram for waves propagating 
in the Small-cross medium in terms of non-dimensional and 
dimensional frequencies for E = Eg. The band gap shaded in 
blue originates from the Bragg scattering of longitudinal in-
plane waves, since Bragg’s frequency fB of the fundamental lon-
gitudinal mode is close to the band-gap range.[17,25] The absence 
of flat dispersion bands with close to zero group velocity con-
firms a non-resonant origin of wave scattering at the boundaries 
of the periodic cavities (see the insets in Figure 6a). Note that in-
plane polarized modes (with uz = 0, dark blue) exist in the whole 
analyzed frequency range, while out-of-plane modes (with 
ux = uy = 0, red) are transformed into mixed modes (with three 
non-zero displacement components) as frequency increases.

A deeper understanding of the bandgap origin can be 
obtained by analyzing complete dispersion diagrams, including 
evanescent modes. Such a diagram is shown in Figure  6b for 
the ΓX propagation direction in the elastic Small-cross medium 
with E = Eel. Propagating modes with real-valued wavenumbers 
are indicated in light gray, the evanescent modes with imagi-
nary and complex-valued wavenumbers are shown in light 
blue and blue, respectively. Note that the light-gray curves in 
Figure 6b have similar trends to the curves in the ΓX region of 
Figure 6a proving weak dependence of the wave dispersion on 
the material properties in the absence of losses (Section A3.3.2, 
Supporting Information). Within the band gap, the imaginary 
branches of the dispersion bands, indicating the level of wave 
attenuation,[26] vary smoothly with a parabola-shaped profile 
having a maximum at the mid-frequency. This behavior is typ-
ical for Bragg’s band gaps.[67]

If the in-plane dimensions of the Small-cross unit cell are 
increased by 4.67 times, one obtains the Large-cross unit cell 
with the dispersion diagram of a similar structure (Figures A13 
and A14, Supporting Information). Small variations in the 
bands’ arrangement are attributed to non-proportional scale 
of the thickness (4.3 times, see also Figure A17, Supporting 
Information) and to non-rounded corners of the Large-cross 
cell reducing the ligament stiffness (Figure A18, Supporting 
Information). The latter leads, for example, to the decrease 
of the frequency of the third in-plane mode characterized by 
strong vibrations in the thin ligaments (cf. Figures A16 and 
A18, Supporting Information). Isotropic scaling of the unit 
cell dimensions allows to completely preserve the structure of 
a  dispersion diagram (cf. Figure A18b,d, Supporting Informa-
tion for the Large-cross plate and for a 10-times Larger plate of 
the same architecture).

If the constituent medium is viscoelastic, propagating 
waves are attenuated. The notion of a band gap is then, strictly 
speaking, elusive, but we still use it to refer to the frequencies 
corresponding to the elastic band gaps. The losses couple geo-
metric and material dispersion, making a band structure dia-
gram unique for each combination of a phononic pattern and 
a constituent material. Nevertheless, we continue normalizing 
the diagrams for the sake of comparison with corresponding 
elastic cases.

Figure 6 c shows a dispersion diagram for the epoxy small-
cross unit cell, the viscoelastic behavior of which is described 
by the generalized Maxwell model. The overall trends of the 
modes with real wavenumbers are similar to those in the 
elastic case (Figure 7b), since the material losses are relatively 
small (Figure  5a). Comparing the diagrams in Figure  6  b,c, 
we can identify two main effects of the viscoelastic material 
behavior.

The first effect refers to more involute trends of the bands 
close to the X-point axis in comparison with the elastic case. 
This occurs due to the coupling between propagating and 
evanescent modes induced by losses, which also results in 
“rounding” of the bandgap bounds.[30] The second effect is 
a seemingly larger number of the dispersion bands in the 
viscoelastic case (cf. Figure  6b,c). The “additional” bands 

Figure 6. Wave dispersion in the Small-cross plate around a Bragg band gap. a) Dispersion diagram for propagating waves with mode shapes at the 
band-gap bounds (E = Eg). The color of the curves indicates the mode polarization ranging from in-plane (blue) to out-of-plane (red). The color in the 
mode shapes indicates minimum (blue) and maximum (red) displacements. b,c) Dispersion diagrams for propagating and evanescent waves in the ΓX 
direction for the epoxy plate with elastic E = Eel (Eel < Eg) and viscoelastic (generalized Maxwell, LNL fit) behavior. Propagating modes are shown by light 
gray, evanescent modes with complex and imaginary wavenumbers are in light-blue and blue, respectively. The complete band gaps are shaded in blue.

Adv. Funct. Mater. 2021, 2103424



www.afm-journal.dewww.advancedsciencenews.com

2103424 (10 of 12) © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

can formally be divided into three groups. The first group is 
composed of the projections of imaginary parts of the viscoe-
lastic bands originating from propagating elastic modes. As 
the imaginary components for these modes are small, the 
curves are located close the vertical Γ axis, on the left. The 
second set of additional curves appears due to the coupling 
between complex-valued evanescent modes and attenuating 
propagating modes located close to the Re k* plane. These 
modes have small real values of k* and occur close to the 
vertical Γ and X axes in the Re k* plane. The third set of the 
additional bands originates from the requirement on conti-
nuity of dispersion curves with respect to frequency. Namely, 
every curve should span the full frequency range, from zero 
to infinity.[70,71] The mentioned bands link evanescent modes 
to the zero-frequency plane. Note that all “additional” bands 
are poorly predicted (if at all) by simple viscoelastic models 
as a single viscosity parameter enables only to shift disper-
sion bands along the frequency axis,[26,30] while more compli-
cated behavior due to multi-mode energy dissipation cannot 
be captured. This highlights the importance of multi-mode 
viscoelastic models to correctly predict the wave dispersion in 
dissipative phononic materials.

To verify the validity of the observed viscoelastic effects 
at other frequencies, we calculated the dispersion dia-
grams for Large-cross unit cell made of a viscoelastic epoxy 
(Figures A13b and A14b). The curve trends in Figure 6c and 
Figure A14b, Supporting Information are similar considering 
the differences originating from the plate geometries dis-
cussed above. Concurrently, the viscoelastic effects are even 
more pronounced for the Large-cross plate. In particular, 
there exists a larger number of “additional” bands in the 
low-frequency range, governed by the multi-mode energy 
dissipation.

Therefore, identical phononic patterns inducing Bragg scat-
tering result in similar or even identical (when losses are neg-
ligible) dispersion characteristics at broad frequencies. The 
non-dimensional analysis allows to separate the material and 
geometric dispersion effects enabling a straightforward com-
parison of dispersion bands even for viscoelastic media, when 
the material dispersion is coupled to geometric features.

4.2.2. Local Resonances

We finally analyze the wave dispersion induced by local reso-
nances and viscoelastic losses. Figure 7a presents a dispersion 
diagram for propagating waves in the elastic Spiral plate for 
E = Eel, that is, the value of E′ within the band gap (Figure 4a). 
The narrow band gap (shaded in gray) is generated at deep 
sub-wavelength frequencies around f* = 7.5e-3 due to resonant 
vibrations of the spiral resonators (the bottom inset). Note that 
in-plane (blue) and out-of-plane (red) modes are fully decoupled 
in the considered frequency range. For a stiffer plate with E = Eg, 
the structure of the dispersion diagram for the propagating 
modes is fully preserved (cf. light-gray curves Figure  7a and 
bands for ΓX direction in Figure  7b or Figures  A20 and A21, 
Supporting Information).

In the complete diagrams, the trends of evanescent modes 
(Figure 7b and Figure A15, Supporting Information) are very dif-
ferent from those for the cruciform pattern (Figure 6b), which 
can be explained by a different nature of the locally resonant 
and Bragg band gaps. The signature of a locally resonant band 
gap is the presence of a large number of almost flat modes with 
(close to) zero group velocity suggesting strong energy localiza-
tion. These flat bands are poorly resolved in Figure 7b because 
the employed solution procedure fails in evaluating multiple k 
at a fixed frequency.[25,26,32] The same features can be found in 
the dispersion diagram of a plate with epoxy-coated inclusions 
that also has a locally-resonant band gap (Figure A22, Sup-
porting Information and ref. [58]).

Viscoelastic losses dramatically change the overall structure 
of the bands (cf. Figure 7c,b) due to strong coupling between 
different types of modes. Nevertheless, one can observe sim-
ilar viscoelastic effects as found for the viscoelastic Bragg 
scattering (Section 4.2.1). Namely, more involute trends of the 
bands also result in “smearing out” of the band-gap bounds. 
Further, the occurrence of a large number of “additional” 
bands not only governs the multi-mode energy dissipation, 
but also substantially changes the structure of the disper-
sion spectrum. An additional viscoelastic effect, not typical 
for the Bragg scattering, is the transformation of the flat real-
valued bands (in the elastic case) into spiral-shaped inherently 

Figure 7. Wave dispersion in the Spiral plate around a locally resonant band gap. a) Dispersion diagram for propagating waves with mode shapes at 
the band-gap bounds. The color of the curves indicates the mode polarization ranging from in-plane (blue) to out-of-plane (red). The color in the mode 
shapes shows minimum (blue) and maximum (red) displacements. b,c) Dispersion diagrams for propagating and evanescent waves in the ΓX direc-
tion for an epoxy plate with elastic or viscoelastic (generalized Maxwell, LNL fit) behavior. Propagating modes are shown by light gray, the evanescent 
modes with complex and imaginary wavenumbers are indicated in dark gray and black, respectively. The band gaps are shaded in gray.
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complex bands (see Figure A15b, Supporting Information). 
The same behavior was observed previously for phononic 
materials with viscoelastic coated inclusions,[26] and can thus 
be considered a distinctive feature of local resonances in a vis-
coelastic medium.

Note that the mentioned viscoelastic effects on the wave dis-
persion driven by local resonances are relevant not only to the 
rheologically-complex epoxy. The band diagrams for the Spiral 
unit cells made of viscoelastic PMMA (not shown) are very 
similar to those discussed above. This reveals that the interplay 
between the geometric and material dispersion is general and 
can be expected for any dissipative polymer, regardless of its 
chemical structure.

5. Conclusion

This work presents a comprehensive analysis of the influence 
of material and mechanical properties of two commonly used 
polymers on the phononic plates dynamics, the consideration 
of which is often either (over)simplified or not validated experi-
mentally. By analyzing several phononic architectures with two 
key wave control mechanisms at different frequency ranges, 
we show that this influence cannot be neglected for any com-
bination of geometric and physical parameters of the plates, 
and must be taken into account to adequately predict the plate 
dynamics. This claim is validated by experimental tests over 
broad frequency ranges.

We have investigated dissipative phononic materials made 
of both thermoplastic and thermoset polymers and discussed 
the effect of viscoelasticity on their dynamics driven by the two 
wave scattering mechanisms—Bragg scattering and local reso-
nances. In particular, we have conducted a combined exper-
imental-numerical study allowing to identify the cases when 
simplified material models are unable to reliably predict the 
dynamic behavior of a phononic medium, so that a full viscoe-
lastic modeling is necessary. The full modeling includes experi-
mental characterization of the frequency-dependent character-
istics of constituent materials (in our cases, PMMA and epoxy 
resin) in order to derive master curves for target frequencies, 
followed by the proposed fitting procedure to determine the 
parameters of multi-mode mechanical models approximating 
the material relaxation. These multi-mode models reproduce 
viscoelastic properties in finite element simulations that enable 
estimating dispersion and transmission spectra for phononic 
plates of any architecture, with band baps in wide frequency 
ranges. The applicability of both elastic and viscoelastic simu-
lations has been verified by comparisons of numerical predic-
tions with experimental transmission measurements on ad-hoc 
fabricated specimens.

Our results indicate that the wave dynamics, and hence band 
gaps, strongly depend on the material relaxation spectrum 
governed by the main and the secondary transition zones of 
polymers. In the case of rheologically simple polymers, such 
as PMMA, a linear elastic model can correctly approximate the 
location and the width of Bragg band gaps induced by non-
resonant scattering when viscous losses are small. However, in 
the presence of thin architectural elements subject to local reso-
nances, the influence of material losses is amplified, making 

elastic or simple viscoelastic models unreliable. In this case, 
only multi-parameter models reproducing experimental master 
curves can correctly capture the dynamic response.

For rheologically complex polymers, such as our epoxy 
resin, linear elastic, or one-parameter viscoelastic models 
cannot reproduce the real dynamics of phononic plates. Mul-
timode models can predict the frequencies and width of band-
gaps provided viscous losses are reproduced correctly, which 
may require measurements of relaxation parameters under 
isothermal conditions due to the inapplicability of the TTS 
principle.

Overall, this work provides a solid foundation for future 
developments in the field of viscoelastic phononics. The 
obtained results can be useful, for example, to correlate 
dynamic and mechanical properties of phononic materials with 
their dielectric, thermal, magnetic, and other characteristics.[72] 
In addition to the formulated guidelines on how to perform the 
viscoelastic analysis of phononic media, our findings can also 
be useful for other problems related to, for example, tempera-
ture-dependent or nonlinear dynamics of polymer phononics, 
nonlinear viscoelastic materials, pores-induced damping in 
additively manufactured materials, etc. Besides, our results 
provide a platform for developing tunable and shape-morphing 
phononic materials sensitive to temperature, humidity, 
etc.[73–75]
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