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DA4Event: towards bridging the Sim-to-Real Gap for Event Cameras
using Domain Adaptation

Mirco Planamente1,3, Chiara Plizzari1, Marco Cannici2, Marco Ciccone2,
Francesco Strada1, Andrea Bottino1, Matteo Matteucci2, Barbara Caputo1,3

Abstract— Event cameras are novel bio-inspired sensors,
which asynchronously capture pixel-level intensity changes in
the form of “events”. The innovative way they acquire data
presents several advantages over standard devices, especially in
poor lighting and high-speed motion conditions. However, the
novelty of these sensors results in the lack of a large amount
of training data capable of fully unlocking their potential. The
most common approach implemented by researchers to address
this issue is to leverage simulated event data. Yet, this approach
comes with an open research question: how well simulated
data generalize to real data? To answer this, we propose to
exploit, in the event-based context, recent Domain Adaptation
(DA) advances in traditional computer vision, showing that DA
techniques applied to event data help reduce the sim-to-real
gap. To this purpose, we propose a novel architecture, which
we call Multi-View DA4E (MV-DA4E), that better exploits
the peculiarities of frame-based event representations while
also promoting domain invariant characteristics in features.
Through extensive experiments, we prove the effectiveness of
DA methods and MV-DA4E on N-Caltech101. Moreover, we
validate their soundness in a real-world scenario through a
cross-domain analysis on the popular RGB-D Object Dataset
(ROD), which we extended to the event modality (RGB-E).

I. INTRODUCTION

Event-based cameras, such as Dynamic Vision Sensors
(DVS), are novel bio-inspired devices that operate in a
radically different way from conventional cameras. In fact,
instead of capturing images at a fixed rate, in event-based
cameras, each pixel asynchronously emits an event when
it observes a local brightness change. This paradigm shift
allows cameras to operate at a very high dynamic range,
high temporal resolution and low latency with minimal
power consumption. Additionally, their high pixel bandwidth
makes them unaffected by motion blur, motivating their
high potential in challenging robotics and computer vision
scenarios, especially those involving objects moving at high
speed and in poor lighting conditions.

Recently, novel learning approaches based on standard
computer vision algorithms operating on event data achieved
competitive results w.r.t. traditional approaches [1], [2]. How-
ever, training standard off-the-shelf deep learning algorithms
requires a large amount of data, which is still limited by the
novelty of neuromorphic cameras and by their high cost. A
viable alternative to overcome the scarcity of data are event
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Fig. 1. How can we bridge the Sim-to-Real gap in event-based cameras?
DA4Events exploits unsupervised domain adaptation techniques to solve this
problem by acting at feature level. How else simulated events can be used?
We propose to use events in a real context, exploiting the complementarity
with RGB data to improve networks robustness.

camera simulators [3], which can generate reliable simulated
event data. Nonetheless, an open research question arise from
this approach: how well simulated data generalize to real
data? This issue has been recently partially addressed in [4]
and [5] where authors proposed to reduce the sim-to-real
gap by acting on simulator parameters, i.e., operating at the
input level, during the data simulation phase.

Our insight is that reducing this gap by operating at
feature level, during training, leads to more transferable
representations, enhancing the generalization performance
of deep networks. With this focus, we propose to leverage
Unsupervised Domain Adaptation (UDA) techniques [6], [7],
[8], [9], [10], as they are specifically designed to align the
distribution of features extracted from the source (simulated)
and target (real) domains. Extensive results on the object
classification task using N-Caltech101 [11] and its simulated
version Sim-N-Caltech101 [4] prove the effectiveness of the
proposed approach. In particular, we show that UDA methods
are able to fill the gap between the simulated and real event
domains, obtaining performance comparable to a model
trained on real data. We believe this is a significant step in
unlocking event-cameras potential to new tasks, especially
those requiring fine-grained annotations, as it enables to
exploit the ease of simulation as well as real event sequences
that are easy to gather when unlabeled.

Our finding unlocks novel potential uses of the event
modality even when it is not possible to collect it, or
the working dataset does not provide it. Thanks to the
effectiveness of UDA methods on event-based data, we
claim that RGB datasets can be extended with a simulated
event modality without hindering performance due to the



sim-to-real shift. This idea could be critical in many real
scenarios, especially in robotics applications where simulated
data are often necessary to compensate for the lack of
large-scale databases. To prove the quality of the simulated
events extracted from RGB images and their effectiveness
in real-world applications, we focus on the popular RGB-
D Object Dataset (ROD) [12] which provides RGB and
depth modalities collected with real sensors, paired with its
synthetic counterpart, SynROD [8], obtained through digital
rendering. We enhance both datasets with simulated events
and show how the event modality, even if simulated, achieves
remarkable results when used together with RGB data.

In summary, our contributions are the following:

• We propose to bridge the sim-to-real gap for event
cameras using UDA techniques, which so far are still
under-explored in the event-based field, reducing the
issue to a domain shift problem;

• We show how the domain shift affects in different
ways various event representations and to what extent
different UDA approaches can soften these issues;

• We propose to deal with event data through a multi-view
approach, called MV-DA4E;

• We extend the popular robotic dataset ROD (and its
synthetic counterpart) adding event data as a novel
modality, proposing a new RGB-E benchmark for object
classification.

II. RELATED WORKS

A. Unsupervised Domain Adaptation (UDA)

The goal of UDA is reducing the domain shift between a
labeled source domain and an unlabeled target one. Methods
can be categorized according to their adaptation strategy. For
instance, Discrepancy-based methods explicitly minimize a
distance metric among source and target distributions [9],
[13], [7]. Alternatively, adversarial-based methods [14], [15]
promote domain-invariant features either leveraging adver-
sarial losses or a gradient reversal layer (GRL) [6]. Another
possibility is to use self-supervised pretext tasks [8], [16],
[17], [18], whose losses act as an adaptation regularizer of
the main loss. Some of the above mentioned methods tackle
the problem of Synth-to-Real transfer for object classification
tasks [8], [9], [6], intended as the domain shift between
RGB images rendered through simulation [19] and real RGB
ones. More in general, the Synth-to-Real transfer has been
highly investigated in the semantic segmentation field. In
order to address the domain shift between datasets making
use of synthetic street view images [20], [21], [22] and real
ones [23], various adversarial-based approaches [24], [25],
[26], [27] have been proposed in this field which overcome
the synth-to-real shift by proposing unsupervised adversarial
approaches at pixel-level.

The research in the multi-modal field started from simple
applications of existing single-modal DA methods [28],
[29], and is now moving to more mature approaches which
specifically exploit the multi-modal nature of data [8].

B. Event Representations

Since event cameras produce sparse encodings of the
scene, these are often converted into more convenient in-
termediate representations before processing. Several repre-
sentations have been proposed, ranging from bio-inspired
ones [30], [31], to representations tailored for the subse-
quent processing network. Frame-like representations are
by far the most widespread since they can be used to-
gether with standard computer vision algorithms and off-
the-shelf convolutional neural networks (CNNs) for various
tasks. A 3D volume is built by computing pixel-features
resulting from accumulating events in their pixel locations.
The event contribution is either computed with hand-crafted
kernels [32], [33], [34], [31], [35], or through end-to-end
trainable layers [36], [37], [38] able to adjust by extracting
optimal features based on the task at hand. Finally, time is
often discretized into bins to extract multiple representations
and retain temporal resolution.

C. Domain Adaptation with Events

When training event-based deep neural models, synthetic
generation of event sequences through simulation, e.g., with
the ESIM [3] tool, is widely used [4], [5], [39], [40].
However, simulated events do not perfectly match data from
a real sensor, introducing performance degradation. The most
common mismatch source is C, the threshold controlling the
minimum per-pixel brightness change needed to generate an
event, which is typically unknown and may vary over time
in a real camera. Gehrig et al. [4] addressed this issue by
randomly sampling C during training, while Stoffregen et
al. [5] showed how to estimate a threshold that matches the
real one, thus reducing the domain shift. In this work, rather
than acting on the generation process, we propose using
UDA approaches to learn transferable representations that
help improve the model’s generalisation properties.

III. DA4EVENT

As pointed out by [4] and [5] the differences between
simulated and real events (see Figure 2) causes a drop in
performance in several applications, independently by their
representation. We refer to this gap as the Sim-to-Real gap
in events. While [4] and [5] propose to solve the problem
by acting on the events generation, our insight is to see the
problem as a domain-shift related issue. In this case, the
domain shift is not in the visual appearance, as in the the
well-known Synth-to-Real shift existing between rendered
RGB images [19] and real RGB ones. Indeed, the main gap
is due to a different events distribution in correspondence to
local brightness changes. In fact, simulators do not take into
account some non-idealities typical of real cameras, such as
the minimum threshold C to trigger an event, or the refractory
period of event pixels, which may vary in event cameras.

In this work, we show that by aligning the features
distribution of the source simulated domain and a target
real domain, UDA methods successfully reduce the Sim-to-
Real gap for event cameras, enabling neural networks to take
advantage of both simulated data and real unlabeled events



(a) RGB image (b) Real events (c) Simulated events

Fig. 2. Real and simulated events (voxel grid [34]) on a Caltech101 sample.

at training time. We also extend our analysis to the Synth-
to-Real gap, by pairing both synthetic rendered images and
real ones with the corresponding simulated events, showing
how the simulated event modality is affected by this shift and
how it can benefit from UDA techniques. This is different
from a concurrent work [41] that studies the combined effect
of both Sim-to-Real and Synth-to-Real shifts. Indeed, [41]
proposes an ad-hoc dataset to study this shift by providing
real event data recorded through an event camera rather than
obtained through simulation. However, [41] does not provide
an analysis on the impact of the single components of this
combined shift, which is instead provided in the current
work.

A. Formulation

Let us formalize the UDA problem. Our goal is to learn,
on a source domain S = {(xs

i , y
s
i )}Ns

i=1 with Ns labeled
samples associated with a (known) label space Ys, a model
representation able to perform well on a target domain
T = {xt

i}
Nt

i=1 with Nt unlabeled samples and (unknown)
label space Yt. Our two main assumptions are that (i) the
two domains have different distributions, i.e., Ds 6= Dt, and
(ii) that they share the same label space, i.e., Ys = Yt. The
goal is to make similar the source and target distributions by
exploiting the UDA methods described in Section IV.

B. MV-DA4Event: a Multi-View Approach

A common approach to deal with event data is to aggregate
the event stream E = {ei = (xi, yi, ti, pi)}Ni=1 describing the
spatial-temporal content of the scene over a temporal period
T , into a frame-based representation RE ∈ RH×W×F , thus
making events easily processable by off-the-shelf convolu-
tional neural networks (CNNs). While standard RGB images
encode spatial (static) information only (R,G,B channels),
these frame-based representations also carry temporal in-
formation, often producing a variable number of temporal
channels as the event sequence is commonly split into several
intervals (or bins) to retain temporal resolution, as in a video
sequence. For instance, in saccadic motion, commonly used
to gather event data from still planar images [11], these
channels correspond to the camera response to different
move directions. As a consequence, each temporal channel
represents a different observation of the recorded object,
highlighting different aspects (features) of the same.

A common practice in computer vision, as well as in the
event-based field, is to initialize CNNs with weights pre-
trained on ImageNet. However, when using a k-channels
representation, where k 6= 3, the standard approach is to

substitute the first convolutional block with a new one, and
training it from scratch. This could not only limit the
exploitation of the pre-trained model, but also be damaging
in a cross-domain scenario. In fact, we know from the
literature that the first layers of the network are usually
the most affected by the domain shift [42], thus, training
them from scratch may lead the network to specialize on
the source domain, poorly generalizing on the target one.
Instead, when transferring pre-trained layers, the network can
take advantage of robust low-level features.

Motivated by these considerations, we propose to follow
a multi-view approach to retain the first pre-trained convolu-
tional layer. This consists in aggregating the multi-channel
event representation into three-channels images, or views,
obtaining a representation R̃E ∈ RH×W×dF/3e×3. A multi-
view network (Fig. 3) has been specifically designed, where
each view is fed, separately, to a feature extractor F . The
set of features thus obtained is combined with a late-fusion
approach within a MVP module, which performs average
pooling, producing a RFout feature vector that is then used
through the remaining parts of the network. Considering
that the very first layers of the network are the more
domain-specific, while the latter carry more tasks specific
information, we believe that fusing the different views at the
final layers of the network rather than in the earliest ones
allows better generalization.

C. Network architecture

In Figure 3 we outline the structure of the proposed
network. Events are first obtained using the ESIM [3] sim-
ulator in the source domain, and directly acquired from the
event-based camera in the target domain. These are split in
B temporal bins, and a sequence of event representations
is then extracted to obtain a multi-channel volume RE
with a multiple of 3 channels. The representations are then
collected into groups views, i.e., 3-channels frames that are
treated as images and processed in parallel through a shared
ResNet feature extractor F . The set of output features is
then combined in the MVP module, which performs average
pooling both spatially and across the views within features
from the same domain, resulting in two feature vectors, one
for each domain. Features coming from the source domain
are finally used in G to perform the final prediction, as
well as in the DABlock, together with the target ones, to
perform domain adaptation. Notice that during training, two
completely random batches of source and target samples are
selected with no match constraints between them.

IV. UDA ALGORITHMS

In this section we give a brief overview of the UDA
methods applied within the DABlock of our architecture.

Gradient Reversal Layer (GRL). The idea of GRL is to
embed DA into the feature learning process. This objective
is achieved by jointly optimizing the label predictor and a
domain classifier responsible for predicting whether a sample
comes from the source or the target domain [6]. Training
is performed with the aim of fooling the domain classifier,
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Fig. 3. Top shows the process of extracting an event representation, taking voxel grids [34] and three views as an example, while bottom details the
proposed multi-view architecture (MV-DA4E). Two unpaired random batches from source and target domains are sampled and processed separately during
training. When the multi-view approach is not used (DA4E), event representations are fed as a single multi-channel tensor to the feature extractor F , and
multi-view pooling is removed. Notice that only source (labelled) data are fed to the classifier G, while both target and source data are fed to the DABlock.

maximizing its loss through a gradient reversal layer, and
thus encouraging extraction of domain-invariant embeddings.

Maximum Mean Discrepancy (MMD). The method pro-
posed by Long et al. [7] is based on the minimization of the
Maximum Mean Discrepancy (MMD) between source and
target distributions, a metric that measures the discrepancy
between them. By doing so, the final layers of the network
are encouraged to produce domain-invariant features.

Adaptive Feature Norm (AFN). Xu et al. [9] pointed out
that the main reason behind a difficult classification on target
domain is due to target vectors having smaller feature norms
if compared to that of the source domain. To tackle this
issue, the authors proposed to align the expectations between
the L2-norms of the deep embeddings of source and target
domains.

Rotation (ROT). Xu et al. [16] proposed to address UDA
with a self-supervised task based on geometric image trans-
formations. This auxiliary task, solved jointly with the main
task, predicts the absolute image rotation of images from
both the source and target domains (chosen randomly from
the set Θ = {0◦, 90◦, 180◦, 270◦}), helping the embedding
model better generalize across domains. Loghmani et al. [8]
extended ROT to multi-modal images, asking the network to
predict the relative rotation between two modalities of the
same input sample, e.g., an RGB and a depth image.

Entropy Minimization (ENT). Entropy minimiza-
tion [10] is a widely used technique to perform UDA. It
consists of representing the uncertainty on the target domain
through a functional that acts as a regularization term of the
classification loss. Adding this functional as a regularization
term of the classification loss helps soften the domain shift
effects between source and target distributions.

V. EXPERIMENTS

A. Datasets

We conduct experiments on both single- and multi-modal
settings on the object classification task. We evaluate UDA
for events on N-Caltech101 [11], and perform experiments
on multimodal UDA on the RGB-D Object Dataset [12].

(a) RGB (b) Events (c) Syn RGB (d) Syn Events

Fig. 4. Samples from the ROD [12] dataset (a)-(b), and from the synthetic
version synROD [8] (c)-(d). Event sequences are displayed using a voxel-
grid [34] representation.

N-Caltech101. The Neuromorphic Caltech101 (N-
Caltech101) [11] is an event-based conversion of the
popular image dataset Caltech-101 [43]. Samples from
N-Caltech101 have been generated by recording the original
RGB images using a real event-based camera moving in
front of a still monitor on which still images are projected.
An extension of N-Caltech101 has recently been proposed
in [4], where a simulated replica of the dataset is obtained
with the ESIM simulator [3] by re-creating the same setup
used for recording real samples. We follow [4] and use
these recordings as simulated source data and that from
N-Caltech101 as target real samples. We use the train and
test splits provided in the EST [2] official codebase, and
evaluate the proposed approach by computing the top-1
accuracy on the test set of the target real domain, as in [4].

ROD. The RGB-D Object Dataset (ROD) [12] is one
of the most common benchmarks for object recognition in
robotics. It contains 41, 877 samples of 300 items grouped
in 51 categories, captured by an RGB-D camera. A synthetic
version of the dataset, synROD, has been recently proposed
in [8] to study the Synth-to-Real domain-shift in multimodal
settings. SynROD contains RGB-D renderings [19] of 3D
models from the same categories as ROD in realistic light-
ing conditions. We extend both versions of the dataset by
introducing events as an additional third modality, following
the same procedure used for N-Caltech101. Examples of the
obtained event sequences are reported in Figure 4. We follow
the evaluation procedure in [8], and report the top-1 accuracy
score evaluated on real ROD samples.



B. Event-Representations

In this work we focus on grid-like event representations,
which consist in the process of converting a stream of
asynchronous events into a volume RE ∈ RH×W×F with
F features. We summarize them in the following.

Voxel Grids. This representation, also known as event
volume [34], splits time in a fixed number B of bins and
aggregates events in their pixel locations by interpolating
polarity values over time. The result is a B-channel rep-
resentation is which each event’s contribution is weighted
according to its occurrence in time within the temporal bin.

HATS. The Histograms of Time Surfaces (HATS) [33] is a
two channel representation combining hand-crafted features
with a memory mechanism resilient to noise. The event
stream is divided into a grid of non-overlapping memory cells
extracting local 2D surfaces from each event’s neighborhood
through an exponential kernel. Surfaces from each cell are
aggregated into histograms, one per polarity, and rearranged
according to the position of their originating cell. Temporal
resolution is lost as the entire temporal window is condensed
into a single frame that does not retain temporal resolution.

EST. The Event Spike Tensor (EST) [36] is an end-to-
end trainable representation. Its functioning is similar to a
voxel grid, with the difference that timestamp is used as
pixel feature and the kernel function used to weight events
contributions is learnt by a multi-layer perceptron network.
Events are grouped by polarity to extract a two-channels
representation from each bin.

MatrixLSTM. MatrixLSTM [37] is similar to EST, with
the difference that pixel features are computed using a matrix
of LSTM [44] cells with shared parameters. Every cell
processes the temporal-ordered sequence of events generated
by each pixel and the final output of the LSTM is used as the
pixel feature. The number of features can be customized and
bins are optionally used to extract multiple representations.

C. Implementation details

We implement the proposed method within the PyTorch
autodiff framework, using a ResNet34 [45] as the feature ex-
tractor F in N-Caltech101 experiments, and a ResNet18 [45]
in ROD ones, both pretrained on ImageNet. For a fair
comparison, we use the same network configurations as in [8]
for both the object recognition classifier G and the network
used in the pretex rotation task. We compare the proposed
multi-view approach against a baseline having the same
architecture, pre-trained on ImageNet, but in which event
representations are directly fed as a single multi-channel
tensor without view grouping. In this case, the first con-
volutional layer is replaced with a new randomly initialized
convolution matching the number of input channels, and the
multi-view pooling stage is removed. Event representations
and RGB images going through the main backbone F are
preprocessed and augmented during training following the
procedure in [8]. Input images are normalized with the
same mean and variance used for the ImageNet pre-training,
while we kept event representations un-normalized as this
provided better performance. We use 9 bins for both voxel

TABLE I
TARGET TOP-1 TEST ACCURACY (%) OF UDA METHODS ON

N-CALTECH101. BOLD: REPRESENTATION’S HIGHEST RESULT.

N-CALTECH101 (SIM =⇒ REAL)

Method Voxel
Grid HATS EST Matrix

LSTM

Source Only baseline 80.99 58.32 80.08 82.21
MV-baseline 84.59 - 83.07 84.89

GRL [6] DA4E 83.08 65.38 83.38 82.94
MV-DA4E 86.77 - 84.03 85.75

MMD [7] DA4E 86.37 69.86 83.61 84.04
MV-DA4E 88.23 - 85.36 88.05

Rotation [16] DA4E 79.13 61.52 80.69 83.57
MV-DA4E 86.63 - 84.49 85.7

AFN [9] DA4E 84.49 69.96 83.59 85.0
MV-DA4E 88.3 - 85.92 87.59

Entropy [10] DA4E 87.0 65.58 85.54 85.97
MV-DA4E 89.24 - 86.06 86.09

RealEvent 88.13 76.45 88.17 87.65Supervised MV-RealEvent 90.09 - 89.25 90.35

grids and EST representations, resulting respectively in 3
and 6 views, since the latter produces 2 channels from each
bin. The number of output channels can be customized in
MatrixLSTM, therefore we set the layer to directly produce
3-channel output representations and set the number of bins
to 3 as this configuration performed the best. Notice that
since HATS only provides 2 channels, without splitting the
temporal frames into bins by default, we are not able to apply
the proposed multi-view approach. We train all network
configurations using SGD as optimizer, batch size 32 and 64
for N-Caltech101 and ROD experiments respectively, and
weight decay 0.003. We fine tune the DA losses’ weights
for each event representation and DA method, reporting the
accuracy scores for the best configurations only, averaged
over 3 runs with different random seeds.

D. Results

Sim → Real. We first assess the effectiveness of the
UDA algorithms in reducing the domain-shift under the
Sim-to-Real scenario using N-Caltech101. In Table I, we
show the performance of GRL [6], MMD [7], Rotation
[16], AFN [9] and Entropy [10] against the baseline Source
Only, consisting in training on labelled source data only
(Sim), and testing directly on unlabelled target data (Real),
without performing any adaptation strategy. We consider as
upper-bound the performance obtained by training on real
training data, and testing directly on it, in a supervised
fashion (Supervised). For each method, we report both the
results obtained with (MV-DA4E) and without (DA4E) the
proposed multi-view approach. We consider the effect of
UDA strategies on two non-learnable event representations
(VoxelGrid and HATS), and two learnable ones (EST and
MatrixLSTM). The empirical evaluation performed allows us
to answer the following research questions.



Are UDA methods useful in reducing Sim-to-Real gap?
From the results in Table I, it has to be noticed that, for

all event representations, in almost all the cases the UDA
methods achieve better performance than the baseline Source
Only, surpassing it by up to 6% on VoxelGrid, 11% on HATS,
6% on EST and 4% on MatrixLSTM. There is one single
case where Rotation is on-pair with the Source Only, which
is VoxelGrid without multi-view approach. A reason could
be that the main benefit of Rotation is to enforce the network
to focus on the geometric part of the input by solving the
transformation. Indeed, event data already encodes geometric
information (e.g., movement direction), thus Rotation could,
in some situations, be potentially unhelpful. In fact, the
network could learn to find a trivial solution (shortcut)
to solve the pretext task [46], for instance analyzing the
movement direction over the edges.

Interestingly, we can see that not all representations suffer
in the same way from the domain shift. For instance, it
is noticeable that HATS is the representation suffering the
most from the Sim-to-Real shift, as performance decreases
by up to 16% when testing directly on target domain (Source
Only) rather that on source (Supervised). Intuitively, the
reason is intrinsic in the representation itself. Indeed, when
representing events with HATS the temporal resolution is
lost (see Section V-B), potentially causing a degradation in
performance when testing on data belonging to a different
distribution. It has to be remarked that by performing a com-
plete DA4E benchmark we found the optimal combination
which allows us to fill the Sim-to-Real gap. In Figure 6 we
showcase the scalability of our approach when the access to
target data is limited by showing how the performance of the
proposed methods changes when only a percentage of target
data is available during training (25%, 50%, 75%). It can be
noticed that an improvement by up to 4% over the source
only baseline (0% of training target data) is guaranteed, even
when a very small percentage of target samples is available.

Qualitative results are shown in Figure 7, where we pro-
vide a t-SNE visualization of the source and target samples
when adapting the two domains or not adapting them. We
also computed the Gradient-weighted Class Activation Map-
ping (Grad-CAM [47]) on several N-Caltech101 samples,
which visualize regions in the input event representation
on which the network focuses the most for prediction. As
shown in Figure 5, when trained with the proposed MV-
DA4E approach, these regions are the most discriminative
for classifying the object.

Is the proposed multi-view approach MV-DA4E effective?
Table I shows that applying the multi-view approach MV-
DA4E significantly improves over the DA4E configuration
in all experiments, regardless of the representations and DA
strategies used. These results prove the validity of the pro-
posed method, confirming the claims made in Section III-B.
Interestingly, MV-DA4E not only provides an improvement
in the cross-domain scenario (Sim-to-Real), but also in the
intra-domain (Supervised) one. Thus, we believe that this
multi-view approach could be used as a general way to
handle event representations, regardless of the task at hand.

TABLE II
TARGET TOP-1 TEST ACCURACY (%) OF UDA METHODS W.R.T. TO

METHODS THAT ACT ON THE CONTRAST THRESHOLD C.

N-CALTECH101
Baselines C=0.06 C=0.15 [5] C∼ U [4]

Source only baseline 76.81 80.99 82.29
MV-baseline 83.12 84.59 84.93

Our approach w/ C values: C=0.06 C=0.15 C∼ U

GRL [6] DA4E 80.89 83.08 81.91
MV-DA4E 84.93 86.77 86.45

MMD [7] DA4E 83.84 86.37 84.38
MV-DA4E 86.94 88.23 87.31

ROT [16] DA4E 80.05 79.13 80.36
MV-DA4E 86.31 86.63 87.08

AFN [9] DA4E 84.38 84.49 84.3
MV-DA4E 87.71 88.3 88.17

Entropy [10] DA4E 85.26 87.0 85.16
MV-DA4E 88.38 89.24 88.61

How well our approach perform w.r.t. approaches acting
on the contrast threshold C?

Several methods in the literature, such as [4], [5], address
the Sim-to-Real problem by exclusively acting on the value
of the threshold C used by the simulator for generating data.
Since we operate with a fixed threshold, a possible question
is whether our results merely derive from an optimal selec-
tion of C or they stem from our choice to favor adaptation
by working at the feature level. To answer this question,
we run the different UDA approaches using voxel grid as
representation and three choices for C, namely C = 0.06
(the starting value used to analyze the domain shift in [4]),
C = 0.15 (estimated following [5]), and C ∼ U(0.05, 0.5)
(as proposed in [4]). The baselines are the C-only based
methods (where, in particular, C = 0.15 reproduces the
settings of [5] and C ∼ U that of [4]). Results in Table
II shows that (i) our approach consistently and largely
outperforms the baselines for every choice of C, highlighting
the effectiveness of approaching DA at the feature level, (ii)
multi-view approaches benefits from UDA techniques in all
cases and (iii) also the C-only based methods benefit from
a multi-view approach since it contributes to significantly
reduce their sensitivity to the variations of C.

SynROD→ RealROD. In robotics, DA is used to take ad-
vantages of automatically generated synthetic data that come
with “free” annotations, to make effective prediction on real
data and compensate the lack of large-scale datasets. In fact,
the RGB modality tends to encode texture and appearance
information, which are the characteristics that suffer most
from the domain shift, and adaptation strategies are necessary
to alleviate this problem. In fact, a recent line of research
brought to light that “ImageNet-trained CNNs are biased
towards texture; increasing shape bias improves accuracy
and robustness” [48]. With this in mind, we believe that the
event modality could be more invariant to domain shifts, as it
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Fig. 5. Grad-CAM [47] visualizations on several real N-Caltech101
samples. In each triplet we show the input event representations (voxel grid
[34]), the activation maps when the network is trained on simulated data
only, and those obtained by training with MV-DA4E.
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Fig. 6. Difference in terms of performance based on percentage (%) of
target data used during training, obtained with constant threshold C = 0.06.

encodes additional geometric and temporal information, and
it is more robust to lighting and color variations. Moreover,
it has been demonstrated that exploiting the complementarity
of a multi-modal input leads to better adaptation performance
in this cross-domain scenario [8]. Thus, in order to verify
the soundness of event data extracted from RGB images,
and their potentiality in real-world applications, we analyze
the behaviour of event modality (both single and multi-modal
RGB+Event) in the SynROD→ RealROD scenario. In order
to assess the benefit of the event modality, we compare it to
the traditional ones, i.e., RGB and depth.

For these analysis, we chose the representation which
revealed better performances across domains, i.e., VoxelGrid,
and the multi-view approach MV-DA4E, which shown its
superiority in all the experiments performed on event data
(Table I). From the results shown in Table III, it is evident
that the event modality is more robust than depth modality,
and we also remark that UDA techniques work well in this
setting too. In particular, we show that the event modality
is less sensitive to domain changes w.r.t. the depth modality,
both in the single modal (7.56% vs 41.2%) and multi-modal
RGB+E (47.7% vs 54.68%) scenarios, when no DA tech-
niques are applied. Interestingly, when combined to the RGB
modality, event data improves performance by up to 2%,
differently from depth modality which causes a degradation
of performance as the network find difficulties in exploiting
the complementarity of the two. Furthermore, we highlight
that on average UDA performance on RGB-E is greater than
the one obtained with RGB-D.

VI. CONCLUSIONS

In this work we propose an alternative way of answering a
very recent research problem regarding how to bridge Sim-
to-Real gap for event cameras arising from event generation.
By seeing the problem under a new prospective, the domain

TABLE III
TARGET TOP-1 ACCURACY (%) OF THE EVENT, RGB AND DEPTH

MODALITIES, BOTH IN SINGLE-MODAL AND MULTI-MODAL (RGB+E).

SYNROD =⇒ ROD
Method RGB Depth Event RGB+E RGB+D

Source only 52.13 7.56 41.2 54.68 47.7

GRL [6] 57.12 26.11 44.28 56.5 59.51

MMD [7] 63.68 29.34 48.69 64.02 62.57

Rotation [16][8] 63.21 6.70 43.65 66.31 66.68

AFN [9] 64.63 30.72 51.92 66.58 62.4

Entropy [10] 61.53 16.79 46.57 66.72 63.12

Avg 62.03 21.93 47.02 64.03 62.86

(a) Source-only (b) DA4E

Fig. 7. t-SNE visualization of N-Caltech [11] features from the last hidden
layer of the main classifier. Red dots: source samples; blue dots: target
samples. When adapting the two domains with the proposed DA4E (b), the
two distributions align much better compared to the non-adapted case (a).

shift, we show that Unsupervised Domain Adaptation (UDA)
techniques working at feature level are an effective way
of tackling this issue, w.r.t. previous work that act on the
input level. Moreover we propose a multi-view approach to
deal with event representations, which outperforms existing
methods and proved to work well in conjunction with other
UDA strategies. We validate both approaches through ex-
tensive experiments on the N-Caltech101 dataset and the
popular RGB-D Object Dataset (ROD). We hope that our
work will ignite future works on the opportunity of using
UDA methods for event data.
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