
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On Control and Data Plane Programmability for Data-Driven Networking / Sacco, Alessio; Esposito, Flavio; Marchetto,
Guido. - ELETTRONICO. - (2021), pp. 1-6. (Intervento presentato al convegno 2021 IEEE 22nd International
Conference on High-Performance Switching and Routing (HPSR 2021) tenutosi a Paris nel 6-10 June 2021)
[10.1109/HPSR52026.2021.9481859].

Original

On Control and Data Plane Programmability for Data-Driven Networking

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/HPSR52026.2021.9481859

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2904833 since: 2021-09-23T21:06:31Z

IEEE

On Control and Data Plane Programmability for
Data-Driven Networking

(Invited Paper)

Alessio Sacco
Politecnico di Torino

alessio sacco@polito.it

Flavio Esposito
Saint Louis University

flavio.esposito@slu.edu

Guido Marchetto
Politecnico di Torino

guido.marchetto@polito.it

Abstract—The soaring complexity of networks has led to more
and more complex methods to manage and orchestrate efficiently
the multitude of network environments. Several solutions exist,
such as OpenFlow, NetConf, P4, DPDK, etc., that allow net-
work programmability at both control and data plane level,
driving innovation in many focused high-performance networked
applications. However, with the increase of strict requirements
in critical applications, also the networking architecture and its
operations should be redesigned. In particular, recent advances
in machine learning have opened new opportunities to the
automation of network management, exploiting existing advances
in software-defined infrastructures. We argue that the design
of effective data-driven network management solutions needs to
collect, merge, and process states from both data and control
planes. This paper sheds light upon the benefits of utilizing such
an approach to support feature extraction and data collection
for network automation.

Index Terms—control plane, network programmability, ma-
chine learning

I. INTRODUCTION

The separation of control and data plane, as suggested

in Software-Defined Networking (SDN), enables advantages

towards more intelligent and more programmable networks,

and has attracted interests from both academia and industry.

In particular, the combination of such network softwarization

and edge computing opened up new opportunities for interac-

tive systems, promising simultaneously low-latency and high-

bandwidth reliable telecommunications. Moreover, the edge

computing paradigm and the programmability of the data plane

with novel network programming languages such as P4 [1] or

the Deep Programmable Data Plane Kit (DPDK) are showing

promising business use cases, supporting private and latency-

sensitive applications.

Nevertheless, supporting 1 ms round-trip time on commu-

nication, necessary for critical Tactile Internet applications,

remains a major challenge [2]. While adaptive application

layer algorithms are rising, a proper network infrastructure

handling the traffic of applications with strict requirements

cannot be an afterthought in network management. Delivering

such promises is even more problematic when the underly-

ing infrastructure is unstable and applications impose tight

constraints. Solutions for real-time communications have been

proposed for specific applications, e.g., video streaming [3]–

[7]. However, the challenges introduced by interactive, re-

liable, and ultra-low latency communications are yet to be

solved, and go beyond the current video streaming advances.

For the past decade or so, researchers have assumed that the

logical separation of the control plane from the data plane was

a given necessity, and despite a few valid, ambitious, clean-

slate or incremental, proposals to re-architect the TCP/IP stack

exist (see for example RINA [8], XIA [9], MobilityFirst [10],

NDN [11] or even more recently NewIP [12]), researchers

and network application programmers have been obstructed

by a choice: programming the data plane or programming the

control plane.

Given this scenario, we present a position paper where we

argue that a network application process should not have to

make that choice, and that the control-data logical separation

should just be a guideline principle, not an architecture im-

passe. Although such separation mainly refers to how func-

tionalities are split, common network problems, e.g., routing,

load balancing, and so on, should operate over a flexible and

fluid abstraction of the real architecture of devices. In this

paper, we clarify the key entities that need to be present to

achieve a logically unified control and data plane. In particular,

while it is possible today to compile and run OpenFlow

or P4 programs as standalone processes, we envision high-

performance switches, routers, or other (software) network

elements that could operate sharing states across multiple

pipelines, recompiling one program while traffic flows through

the other.

While futuristic, such an architecture seems possible to

design and implement, given the recent advances on pro-

grammable data planes. We discuss how such a unifying

programmable plane approach has the potential to boost the

performance of several networked applications, and point out

how recently proposed technologies such as edge computing,

machine learning, and network management protocols could

help achieve this goal.

The rest of the paper is structured as follows. Section II

presents a few applications that would benefit from the pres-

ence of a programmable integrated data and control plane

paradigm. We then explain how such a paradigm could help

typical network mechanisms, e.g., routing, traffic engineering,

in Section III. In Section IV we propose a few alternative

approaches based on these new technologies. Finally Section V978-1-6654-4005-9/21/$31.00 ©2021 IEEE

concludes our study.

II. MOTIVATING APPLICATIONS AND NETWORKING

PROBLEMS

The advent of new technologies, e.g., SDN, 5G, and edge

computing, has been designed to support the development

of applications with very strict requirements, e.g., very low

latency and high throughput. Among them, (i) Industry 4.0,

in which robotic machinery is controlled remotely, (ii) the

Tactile Internet which can enable haptic interaction with visual

feedback, providing the illusion of remote touch, (iii) VR/AR

and Holographic-Type Communications (HTC) in which the

application is supposed to rapidly adapt streamed contents

based on changes in user position or viewing angle, (iv)

telemedicine, where medical devices, or simply medical infor-

mation, are accessed remotely during a tele-operated session,

(v) assisted or connected cars, which involves communication

and data exchange between vehicles and traffic infrastructure,

such as flog platform, are pivotal to realize the vision of

smart city and intelligent transportation. Two common traits

among these applications are the requirement of a well-defined

network latency and reliability, to guarantee an acceptable

level of user experience [7].

In this context, a deeply programmable network architecture

plays a key role for new technologies and applications, and

should help reach the goals of an Ultra-Reliable Communi-

cation (URC). The URC mode is built around the concept of

reliable service composition (RSC), associated with limited

degradation of service quality in worse communication condi-

tions rather than absolute availability/unavailability. Thus, the

communication network can offer a certain level of functional-

ity for the service even when it is not possible to fully achieve

desiderata. Moreover, the architecture has not only to achieve

ultra-reliability, but also to fulfill the stringent requirements of

ultra responsiveness and very low latency; this leads to the so-

called ultra-reliable and low-latency communication (URLLC)

services [13]. The combination of these two aspects makes the

problem of deploying such critical applications still open and

is particularly important in networks with considerable time-

varying delays and packet losses [2].

These interactive communications go beyond traditional

video streaming. While conventional video and voice appli-

cations naturally allow for graceful degradation of network

performance, e.g., adaptive video coding, this may not work

for this new class of applications, such as haptic. Since delayed

arrival or loss of critical haptic data may run into the system’s

instability, haptic communication is vulnerable to different

types of artifacts, leading to undesirable strong forces and

surface roughness, e.g., the erroneous sensation of being in

contact with a significantly rough surface.

Similarly, a telemedicine session or, more specifically, a

telepathology session, transmits delay and bandwidth-sensitive

data to be processed and shared with a remote medical doctor.

For this reason, a proper edge computing-enabled system can

help partially or fully offload processes at the edge of the

network [14], [15]. While it is clear that emerging technologies

can drastically improve service interactivity, these solutions

still require excessive overhead in essential network opera-

tions. Learning-based approaches can help towards automating

actions, but it is not sufficient. These recent applications mo-

tivate our proposed approach, which attempts to help network

management.

III. INTEGRATING CONTROL AND DATA PLANES FOR

NETWORK AUTOMATION

As suggested by recent trends, there is now increasing

interest in equipping networks with autonomous run-time

decision-making capability via the incorporation of artificial

intelligence (AI) and machine learning (ML). Given the fact

that it is almost impossible for human operators to render

network management in real-time, it is likely that future

networks will apply AI/ML to autonomously identify and

locate congestion or malfunctions in the network, and oppor-

tunely react. To accurately configure and manage itself, the

network needs to pinpoint the malfunction, collect and analyze

measurements in a stream way. Once metrics are collected, the

network reacts to address the sub-optimal behavior via network

programmability.

While for many applications this timescale is appropriate,

for many others, collecting network statistics from the control

plane and react based on the knowledge mined is too slow.

Other approaches based solely on data plane programmability

are yet too static, and do not have the same programmability

level of their control-plane counterparts. We envision a re-

design of the network architecture, that could combine a data

plane for the collection of network statistics with an enhanced

control plane.

We argue that future networked applications would greatly

benefit from a network architecture and a general-purpose

network management protocol that would use programmability

as a mechanism, and planes (management, intent, data, or

control planes) as a policy. 1 Which plane a network manager

or a network application can program should be flexible, and a

decision of the network programmer. Not only data plane and

control plane, but also management plane programmability or

intent layer programmability should be considered [16].

High-performance network hardware solutions, e.g.,

switches and routers, that support such a vision of

integrated data-control planes do not yet exist. Today,

we do have switches supporting either control plane protocols

programmability, such as OpenFlow-enabled network

components, or data plane, e.g., Tofino [17].

By programming interfaces and programmable substrates,

existing Software-Defined Networking (SDN) enables spec-

ifying and provisioning network-wide forwarding behaviors,

also adapting how the network hardware itself forwards traffic.

1From the classical network management literature, it is known that a
network architecture is composed by (i) an identification of the mechanisms,
and (ii) the separation of functionalities. A network mechanism is an
invariance — an invariant aspect of a networking problem, while a policy
is a variant aspect of such mechanism. For example, acknowledgment is a
mechanism, when to acknowledge is a policy.

routing, management and control plane

router input ports router output ports

forwarding data plane

High-speed

Switching Fabric

Probe Logic

Routing Tables

States

Manager

Topology

Manager
Learning Agent Policy Builder

Fig. 1: Control plane (green) and data plane (red) processes

interact with each other and optionally with a learning agent

for an integrated data-driven network management.

One approach has been to use SDN solutions, composed of

a centralized point for management [18]. At its core, SDN

aims to make programming networks as easy as programming

computers. However, these approaches based on centralized

controllers are inherently too slow to respond to fine-grained

traffic changes, as in short traffic bursts. Moreover, even when

the software control plane is locally on the switches, the ability

to select new routes is often limited and not fast enough.

To overcome these limitations, recent work has developed

mechanisms that, operating entirely in the data plane, en-

able real-time adaptation [19]–[22]. By using fine-grained

performance information on hardware timescales, these so-

lutions can deliver considerable performance benefits over

static mechanisms and centralized approaches. However, these

techniques are limited to trivial performance-aware policies

that are unable to learn during the execution and, consequently,

adapt to multiple scenarios.

A data plane approach must be combined with control plane

operations to realize a data-driven solution able to address the

raised complexity. Fig. 1 highlights the main functionalities

that should be present in the architecture. As shown in the

figure, the data plane offloads complex tasks, such as routing

and management, to the control plane, and the two planes

communicate without disrupting normal switch operations.

Clearly, the logic and the knowledge regarding the envi-

ronment reside in the control plane. Since its operations are

generally orders of magnitude slower than the duration of

network events, the learning agent can perform the training

procedure required to learn the dynamics of the environment.

During this phase, it needs to save the state (current and past)

and the topology. On the other hand, the data plane processes

messages and passes metrics, e.g., counters or control logic

inside the packet header, to the control space. In this plane

also reside the tables used to route packets and the logic to

write/read the telemetry information of packets.

We envision that this capability of the networks enables the

advanced intelligent operations described previously. To do so,

in our proposed architecture, packets can carry both probes and

algorithm parameters that are then extracted by the traversed

nodes. This piece of information can be introduced into pack-

L3 header L4 header + Data

Additional Header

In-Network Telemetry Control Params

Fig. 2: Additional header structure to include in the packet. It

carries information for both data and control plane.

ets as an additional header, i.e., between the traditional packet

header and user payload, for example by means of solutions

such as BPP [23] and In-Situ OAM [24]. Fig. 2 summarizes the

main components of our additional header: information about

the network state and control plane parameters. The latter,

for example, contains commands and metadata that provide

guidance to intermediate network devices for how to process

the packet. Using these techniques, our architecture also allows

the user to drive the execution of programs on network nodes.

The last feature required in our proposed architecture is the

possibility to adapt and reconfigure such programs running at

network nodes. This can be done by deploying solutions such

as P4 [1], a technology for reconfigurability of parsing and

processing of packets. The P4 language enables to program

packet processing pipelines, allowing to define custom parsing

rules and new protocol logic, thus being compliant with a

solution like ours, based on the presence of additional flexible

headers. In particular, P4’s control model follows the SDN

architecture and involves a separate control plane to deploy

commands directly on networking devices. Since our header

defines a control model that involves commands and data

carried in the packets themselves, processed as packets traverse

the network, P4 can facilitate the implementation of our

proposed framework, making its usage smoother. Moreover,

P4 offers a switch abstraction that is independent of the actual

hardware. Indeed, P4 programs are compiled to a target-

independent representation (front-end), and then compiled

again to different specific platforms, e.g., fixed-function switch

ASICs, NPUs, reconfigurable switches, software switches,

NetFPGA [25].

By combining programmable switches with extensible head-

ers, control information, carried in the header of the packets,

is locally processed. This would remove the central controller

of traditional SDN architectures, e.g., OpenFlow, where the

switches need an external entity to decide flowing rules. In

such a way, networks can finally implement a data-driven strat-

egy that adapts on-the-fly the encountered (or predicted to be)

problem and pave the way to accomplish strict requirements

of critical applications.

IV. ENABLING HIGH-PERFORMANCE DATA-DRIVEN

NETWORKING

In the following we describe four possible algorithms to

prove the viability of this architecture, and to demonstrate

that the network programming framework can indeed be used

to support applications with real-time networking demands

without needing to deploy custom software in networking

devices or even controllers.

A. Use Case 1: Data-Driven routing

Traditional solutions operate on the routing or flow path

decisions, using source routing and policy-based routing for

the path control. However, to make these decisions adaptive to

the current network utilization, the algorithm requires the abil-

ity to collect information network traffic that can be achieved

via NetFlow [26], SNMP, or custom protocols. A common

scenario, due to the ease of use of SDN in prototyping,

considers OVS switches [27] featuring OpenFlow, combined

with an SDN-controller to obtain the above requisites. These

features are key for dynamic and performance-aware routing

solutions.

Recent advances towards active networks and their dynamic

behaviors have been possible thanks to advances in SDN,

which have enabled more flexible and predictable network

control, made it easier to extend the network with new

functionality, and made it possible to verify the correctness

of network behaviors. It is not surprising, then, that we are

witnessing an increased number of networking frameworks

combining an SDN-enabled profiling phase and an ML re-

action phase. For example, in [28], the architecture adapts

the routing strategy of the underlying edge network based on

the estimated future available bandwidth. An SDN controller

gathers global traffic condition information, keeps track of past

link loads, and takes a new route if the current path is predicted

to be congested.

The desire to avoid bottlenecks as for a centralized con-

troller has pushed new studies to consider a multi-agent

setting. [29], [30] present valid solutions using multi-agent ap-

proaches. While splitting the logic among multiple controllers

partially reduces the overhead and solves the single-point-of-

failure issue, it still requires additional control traffic that can

create conflict with the application traffic.

To further optimize these decisions, in-network telemetry

can be processed directly in the data plane. Hula [21], a

state-of-the-art solution for utilization-aware routing in data

centers, uses load-aware criterion to always choose the least-

utilized path among all shortest paths. Similar to Hula, also

CONGA [19] is a recent data-plane technique that overcomes

ECMP’s limitations by using link utilization information to

balance load across paths. These solutions, sharing a dis-

tributed approach that avoids a central controller, are extremely

responsive because they operate in the data plane, permitting

it to make load-balancing decisions every few microseconds.

However, since the processing occurs in the data plane, the

implemented policies are limited to mere strategies contem-

plating, for example, links utilization. By combining control

and data planes, more complex decisions can be taken, to

either anticipate likely predicted congestion or optimize a

long-term revenue. Extensible headers are, thus, the enabling

technology, carrying latency metadata, link information, and

algorithm parameters as part of the packet itself. This al-

lows the solution to react to unforeseen variations in the

path, adjusting the forwarding as needed. Besides, to mitigate

the heavy computational resources utilization and reduce the

amount of data to transport, Federated Learning (FL) helps

aggregate the learning processes of different nodes and thus,

achieve robustness to different network conditions [31]. In

such a way, the node only aggregates model parameters, and

data remain local to reduce the bytes exchanged and the

operations performed.

Moreover, if, as in [32], the header includes latency meta-

data, such as the latency objective, network devices can

“slow down” or “speed up” packets as needed to meet the

given end-to-end latency objective. While this solution can

clearly optimize the routing decisions, so that the packet

flows on the path with expected lower latency, it can also

save network resources, e.g., available bandwidth. In cases

where a requested latency is physically impossible to meet, the

node immediately drops these packets to reduce congestion,

instead of forwarding them all the way to the destination only

to have them dropped there because they are late. In these

circumstances, the network can also provide exceeded-latency

notifications.

B. Use Case 2: Auto-Scaling Networks

Focusing on network reliability and network elasticity, i.e.,

the subproblem of autonomous networks that deals with the

ability to auto-scale resources up and down, it is impor-

tant that scaling happens in harmony with changes in the

environment, e.g., traffic demand. The advantages brought

by such techniques are multiple. By deactivating resources

that may increase unnecessary (energy) costs, they reduce

resource management costs (scale down). At the same time,

the network can provide redundant facilities to reroute traffic

when workload peaks to unexpected levels (scale up). For

example, [33] presents a proactive ML-based approach that

auto-scales VNFs in telco and cloud networks in response to

dynamic traffic changes.

In this context, reinforcement learning (RL) has been widely

studied and applied as enabling technology, given its ability

to automatically make decisions. By online capturing the

performance model of a target application and its policy

without any a priori knowledge, RL can well fit auto-scaling

problems. The problem of dynamic resource allocation was

largely studied in the literature, where [34], [35] are examples

of a profitable usage of RL. To face the greater or smaller

demand, these studies attempt to optimize the allocation of

tasks, services, and Virtual Machines (VMs).

Thanks to the advantages in SDN, auto-scaling solutions

can also be applied on network switches, as in [36]. In this

solution, SDN controllers monitor the status of nodes, that

are scaled up and down to accommodate the traffic demand

and reacts to possible failures. Decisions aim to optimize

network performance and users’ experience, exploiting SDN to

promptly change the configuration. While results are promis-

ing and benefits are noticeable, existing solutions are limited

to the presence of a (logical or physical) central controller

entity. As in routing problems, processing information via P4

would dramatically shorten control operations and data-plane

adaptation. The deployment of extensible headers, thus, is

fundamental both for monitoring and for changing reasoning.

C. Use Case 3: Physical Layer Decisions

The design and development of novel Reinforcement Learn-

ing (RL) algorithms are key for effective and efficient real-time

optimization of the physical layer of next-generation wireless

networks. Existing work has explored RL, and its well-known

variant Deep Reinforcement Learning (DRL), only from a

theoretical perspective, substantially leaving the investigation

of several critical system-level issues [37].

There is a significant knowledge gap in architectures, ef-

ficient protocols, and kernel implementations to dynamically

update network Management-Information Base (MIB) states.

Examples of MIB are the routing table, or Routing Informa-

tion Base (RIB), and the forwarding table (FIB). To make

informed and efficient decisions on wireless edge network

management, such MIBs could be populated with network and

radio signal parameters arriving from functions or middleboxes

implemented across the whole networking stack. Common

parameters to consider are the Signal-to-Noise Ratio (SNR),

or other physical layer key-performance indicators, in-network

states, such as a statistic about the queuing delay, or end-to-

end parameters, such as the congestion window size.

The challenge resides in integrating network mechanisms

that have different scope, i.e., range of operation with machine

learning parameters. For example, (i) an asynchronous Deep

Reinforcement Learning (DRL) algorithm that, during the

training phase, learns how to select the best policy according

to the specific task at hand, and (ii) a synchronous, hardware-

based subsystem, that makes decisions during the execution

phase periodically gathering data from the network, enforcing

the execution of the machine learning policy. While it is clear

that the execution should run within the data plane, the training

process, given its time-consuming nature, should occur in the

control plane. Where to run an online training phase is an open

question: if an external machine, possibly equipped with GPU,

is used, then the model needs to be sent to the (IoT/networked)

device by means of dedicated protocol, for example [23].

If instead, the networked device is also responsible for the

training process, enough resources should be allocated in order

to meet strict latency and computational (wireless) constraints.

One potential mechanism to tune with such envisioned

integration of control and data planes via a DRL action would

be the selection of the best channel based on the signals

received. For example, avoiding weak Wi-Fi signals. To do so,

it is necessary to design and implement, using real software-

defined radio, SDN-driven solutions to serve the needs of such

wireless learning engines for signal recognition. Other possible

DRL actions could optimize fairness in spectrum sharing to

tackle spectrum scarcity in the sub-6 GHz bands [38]. Some

key unaddressed challenges of spectrum sensing include (i)
extremely low latency constraints over large bandwidths to de-

tect tiny spectrum holes and (ii) strict real-time digital signal

processing (DSP) constraints; (iii) its underlying algorithms

need to be highly accurate, and flexible enough to work with

different wireless bands. While legacy spectrum sensing tech-

niques rely on ad-hoc, protocol-dependent feature extraction

techniques, they do not generalize to different protocols and

spectrum environments. A DRL algorithm with integrated data

and control planes could overcome these limitations.

Moreover, it is worth noticing how in this scenario, our pro-

posed protocol (Fig. 2) should meet specific requirements of

the wireless technology, as in the 802.11 standard. Therefore,

the additional header would be placed on top of the MAC

header, as already suggested by recent solutions [39].

D. Use Case 4: High-Performance Transport

Congestion control protocols are often classified into two

categories according to the metrics used: in-network and end-

to-end congestion controls. However, since there exist advan-

tages on both sides, we argue that to better support the decision

process of network agents, both in-network and end-to-end

statistics can be combined. Inspired by recent work [40],

this approach would bring benefits to congestion avoidance

decisions, increasing the visibility of the network. To enable

highly performant transport, our header can contain metrics

inserted by network nodes, and when one of these nodes

receives the packet, it includes its information or modifies

existing fields. Having all these values in one place, i.e., packet

header, the processing can contemplate both classes of states,

and network telemetry is dramatically simplified.

V. CONCLUSION AND NEXT STEPS

One of the main challenges that future networking applica-

tions will face concerns the ability to support high-precision

services that adhere to stringent service level objectives. The

highly flexible format of packets would help combine the

ability to express complex packet processing semantics with

compact encoding. This approach, along with a new architec-

ture and logic of switches, unleashes several exciting research

opportunities, such as the design of new packet processing

pipelines with capabilities to process incoming information.

To meet application requirements, routing protocols can au-

tonomously adapt to the current network condition and the

transported data, changing the logic on the fly. However,

more research is needed to study the applicability in real

networks and to capture the missing aspects while considering

specific applications. Our next steps include designing new

data-driven algorithms to support critical scenarios, as well as

the definition of action primitives in packets format and switch

actions. We also plan to build solutions and test for a more

extensive evaluation.

ACKNOWLEDGMENT

This material is based upon work supported in part by NSF

Awards CNS-1836906 and CNS-1908574.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM

Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[2] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE

Vehicular Technology Magazine, vol. 9, no. 1, pp. 64–70, 2014.

[3] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-
Bassett, B. Ribeiro, J. Zhan, and H. Zhang, “Oboe: auto-tuning video
abr algorithms to network conditions,” in Proceedings of the Annual

Conference of the ACM Special Interest Group on Data Communication

(SIGCOMM ’18), 2018, pp. 44–58.

[4] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis,
and K. Winstein, “Learning in situ: a randomized experiment in video
streaming,” in 17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20), 2020, pp. 495–511.

[5] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and
J. Jiang, “Server-driven video streaming for deep learning inference,”
in Proceedings of the Annual Conference of the ACM Special Interest

Group on Data Communication (SIGCOMM ’20), 2020, pp. 557–570.

[6] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han, “Neural-enhanced live
streaming: Improving live video ingest via online learning,” in Proceed-

ings of the Annual Conference of the ACM Special Interest Group on

Data Communication (SIGCOMM ’20), 2020, pp. 107–125.

[7] C. Han, Y. Wu, Z. Chen et al., “Network 2030 a blueprint of technology,
applications and market drivers towards the year 2030 and beyond,”
2018.

[8] J. Day, I. Matta, and K. Mattar, “Networking is ipc: a guiding principle to
a better internet,” in Proceedings of the 4th International on Conference

on emerging Networking EXperiments and Technologies (CoNEXT ’08).
ACM New York, NY, USA, 2008, pp. 1–6.

[9] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machado, W. Wu,
A. Akella, D. G. Andersen, J. W. Byers et al., “Xia: An architecture for
an evolvable and trustworthy internet,” in Proceedings of the 10th ACM

Workshop on Hot Topics in Networks (HotNets ’11), 2011, pp. 1–6.

[10] A. Venkataramani, J. F. Kurose, D. Raychaudhuri, K. Nagaraja, M. Mao,
and S. Banerjee, “MobilityFirst: A Mobility-Centric and Trustworthy
Internet Architecture,” ACM SIGCOMM Computer Communication Re-

view, vol. 44, no. 3, pp. 74–80, 2014.

[11] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K.
Smetters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos et al.,
“Named Data Networking (NDN) Project,” Relatório Técnico NDN-

0001, Xerox Palo Alto Research Center-PARC, vol. 157, p. 158, 2010.

[12] R. Li, K. Makhijani, and L. Dong, “New ip: A data packet framework
to evolve the internet,” in 2020 IEEE 21st International Conference on

High Performance Switching and Routing (HPSR). IEEE, 2020, pp.
1–8.

[13] P. Popovski, “Ultra-reliable communication in 5g wireless systems,” in
1st International Conference on 5G for Ubiquitous Connectivity. IEEE,
2014, pp. 146–151.

[14] A. Sacco, F. Esposito, P. Okorie, and G. Marchetto, “Livemicro: An edge
computing system for collaborative telepathology,” in Proceedings of the

2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge

’19). USENIX Association, 2019.

[15] A. Sacco, F. Esposito, G. Marchetto, G. Kolar, and K. Schwetye, “On
edge computing for remote pathology consultations and computations,”
IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 9, pp.
2523–2534, 2020.

[16] Intent-based networking - concepts and definitions. [Online]. Available:
https://tools.ietf.org/html/draft-irtf-nmrg-ibn-concepts-definitions-01

[17] Tofino barefoot, world’s fastest p4-programmable ethernet switch asics.
[Online]. Available: http://barefootnetworks.com/products/brief-tofino/

[18] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” ACM SIGCOMM Computer

Communication Review, vol. 43, no. 4, pp. 3–14, 2013.

[19] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav et al., “CONGA:
Distributed congestion-aware load balancing for datacenters,” in Pro-

ceedings of the Annual conference of the ACM Special Interest Group

on Data Communication (SIGCOMM ’14). ACM New York, NY, USA,
2014, pp. 503–514.

[20] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Contra: A
programmable system for performance-aware routing,” in 17th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

20). USENIX Association, 2020, pp. 701–721.

[21] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings

of the Symposium on SDN Research (SOSR ’16). Association for
Computing Machinery, 2016, pp. 1–12.

[22] L. Yu, J. Sonchack, and V. Liu, “Mantis: Reactive programmable
switches,” in Proceedings of the Annual Conference of the ACM Special

Interest Group on Data Communication (SIGCOMM ’20), 2020, pp.
296–309.

[23] R. Li, A. Clemm, U. Chunduri, L. Dong, and K. Makhijani, “A new
framework and protocol for future networking applications,” in Proceed-

ings of the 2018 Workshop on Networking for Emerging Applications

and Technologies (NEAT ’18), 2018, pp. 21–26.
[24] F. Brockners, S. Bhandari, C. Pignataro, H. Gredler, J. Leddy, S. Youell,

T. Mizrahi, D. Mozes, P. Lapukhov, R. Chang et al. (2020) Data
fields for in-situ oam, draft-ietf-ippm-iom-data-09. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-ippm-ioam-data-09

[25] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The p4 ->

netfpga workflow for line-rate packet processing,” in Proceedings of

the 2019 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, 2019, pp. 1–9.
[26] Cisco ios netflow. [Online]. Available:

http://www.cisco.com/web/go/netflow
[27] Open vswitch: An open virtual switch. [Online]. Available:

http://www.openvswitch.org/
[28] A. Sacco, F. Esposito, and G. Marchetto, “Rope: An architecture for

adaptive data-driven routing prediction at the edge,” IEEE Transactions

on Network and Service Management, vol. 17, no. 2, pp. 986–999, 2020.
[29] X. Zhao, C. Wu, and F. Le, “Improving inter-domain routing through

multi-agent reinforcement learning,” in IEEE INFOCOM 2020-IEEE

Conference on Computer Communications Workshops (INFOCOM WK-

SHPS). IEEE, 2020, pp. 1129–1134.
[30] X. You, X. Li, Y. Xu, H. Feng, J. Zhao, and H. Yan, “Toward packet

routing with fully distributed multiagent deep reinforcement learning,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020.

[31] A. Sacco, F. Esposito, and G. Marchetto, “A federated learning approach
to routing in challenged sdn-enabled edge networks,” in Proceedings

of the 6th IEEE Conference on Network Softwarization (NetSoft ’20).
IEEE, 2020, pp. 150–154.

[32] A. Clemm and T. Eckert, “High-precision latency forwarding over
packet-programmable networks,” in 2020 IEEE/IFIP Network Opera-

tions and Management Symposium (NOMS ’20). IEEE, 2020, pp. 1–8.
[33] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B. Mukherjee,

“Auto-scaling vnfs using machine learning to improve qos and reduce
cost,” in 2018 IEEE International Conference on Communications

(ICC). IEEE, 2018, pp. 1–6.
[34] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-

agement with deep reinforcement learning,” in Proceedings of the 15th

ACM Workshop on Hot Topics in Networks (HotNets ’16). ACM New
York, NY, USA, 2016, pp. 50–56.

[35] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre,
and I. Truck, “Using reinforcement learning for autonomic resource
allocation in clouds: towards a fully automated workflow,” in ICAS 2011,

The Seventh International Conference on Autonomic and Autonomous

Systems, 2011, pp. 67–74.
[36] A. Sacco, F. Matteo, Flocco andEsposito, and G. Marchetto, “Supporting

sustainable virtual network mutations with mystique,” IEEE Transac-

tions on Network and Service Management, 2021.
[37] F. Restuccia and T. Melodia, “DeepWiERL: Bringing Deep Rein-

forcement Learning to the Internet of Self-Adaptive Things,” IEEE

Conference on Computer Communications (INFOCOM ’20), pp. 844–
853, 2020.

[38] H. Qi, X. Zhang, and Y. Gao, “Low-Complexity Subspace-Aided
Compressive Spectrum Sensing Over Wideband Whitespace,” IEEE

Transactions on Vehicular Technology, vol. 68, no. 12, pp. 11 762–
11 777, 2019.

[39] E. Coronado, A. Thomas, S. Bayhan, and R. Riggio, “aios: An intelli-
gence layer for sd-wlans,” in 2020 IEEE/IFIP Network Operations and

Management Symposium (NOMS). IEEE, 2020, pp. 1–9.
[40] A. Sacco, F. Matteo, F. Esposito, and G. Marchetto, “A federated

learning approach to routing in challenged sdn-enabled edge networks,”
in IEEE Conference on Computer Communications (INFOCOM ’21).
IEEE, 2021.

