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Abstract
Joint identification of blade-root joints in typical bladed-disk assemblies is not possible with the classic
decoupling methods due to inaccessibility of interface degrees-of-freedom. In a recent study, an attempt
was made to identify such a joint by an expansion based decoupling strategy called System Equivalent
Model Mixing (SEMM). The expanded sub-models of the connected substructures and their assembly can
be influenced by the measurement errors and the discrepancies between the numerical and experimental sub-
models. Therefore, the accuracy of the identified joint is compromised. In this work, we investigate some
key factors to improve the expanded sub-models through a new measurement campaign on the unconstrained
substructures and the assembly. These factors are i) expansion error, ii) interface type, and iii) singular value
filtering. The resulting identified joint properties are validated by recoupling the joint with the respective
substructures. It is shown that, by controlling these factors, the joint identification can be highly improved.

1 Introduction

Bladed-disks are critical structural components in turbomachines for adding or extracting mechanical energy
to or from the surrounding fluid. The blades are subjected to high dynamic forces which can cause their fail-
ure due to high cycle fatigue. Their accurate response prediction is, therefore, necessary in the design phase.
A typical bladed-disk assembly includes multiple joints (blade-root, shroud, under-platform etc.) [1, 2]. The
joints might be beneficial in regards to the friction damping [1], however, they introduce uncertainty and
variability even for linear response prediction in the assembly. The problem becomes even more challenging
as the interfaces in the bladed-disk joints are small, intricate and inaccessible for measurements. In order
to predict the assembly’s dynamics (considering typical non-rigid connections), the joint dynamics have to
be estimated or measured. This can be achieved by the reverse approach i.e. by decoupling the known
subsystems from the known assembled system [3, 4].

The decoupling of the known subsystems requires knowledge of the interface dynamics. Since the joint
interfaces in the blade-roots are not accessible for measurements, the dynamics have to be expanded there.
For this purpose, the technique System Equivalent Model Mixing (SEMM) [5] can be used to produce a
frequency-domain hybrid model with the expanded dynamics. Essentially, the method mixes different model
descriptions (numerical and experimental) of a component. These expanded dynamics in the substructures, if
predicted accurately, can then be decoupled from the assembled system’s measured dynamics to identify the
joint – since the joint can be seen as the difference between the assembly and the associated substructures.
The identification of the joint can be done by the decoupling methods based on a primal formulation [6–9].
However, the cited methods have been used on relatively simpler joint interfaces.

Using the idea of dynamic expansion (by SEMM) also to the assembly, an iterative decoupling strategy was
proposed in [10] to identify the joint dynamics. The method was recently applied to a blade-root joint of
an academic bladed-disk in [11]. However, the actual joint identification was marginally successful in a
localized frequency band. Since the method is based on Frequency Based Substructuring (FBS) [12], it is
likewise sensitive to measurement inaccuracies [13–15] as well as the expansion error.
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In this paper, we investigate some of the key factors that affect the expansion (SEMM) based joint identi-
fication method on the same test-case as examined in [11]. The factors considered are: i) expansion error,
ii) interface description and iii) singular value (SV) based filtering. They encompass the substructure hybrid
models (substructures) and the connections between them (the interface) which are essential elements in the
decoupling (or coupling) process. First, the expansion error is reduced by performing a new measurement
campaign on the substructures in free boundary conditions as well as the assembly to produce better hybrid
models. In fact, the modelling discrepancies posed by the constraints caused a high expansion error in [11].
Secondly, different interface (connection points) variants are studied to know which locations and which
joint model size is appropriate to accurately predict the assembled system’s dynamics. Thirdly, the singular
value filters are used to reduce noise in the hybrid models’ quality. The SV filters in SEMM were introduced
for the first time in [16] on a single substructure level. They are applied here in the context of joint identifi-
cation. The results show that in order to achieve a good joint identification, these factors play an important
role and must be considered in this expansion based joint identification method.

The paper is organized as follows: the theoretical and mathematical background is briefly reviewed in Sec-
tion 2. The measurement campaign, the experimental model details and low expansion error effects are
discussed in Section 3. The results of effects of interface types and singular value filtering on the joint iden-
tification are presented in Section 4 and Section 5, respectively. The paper is then concluded in Section 6.

2 Theoretical Background

In this section, we briefly write the key sets of equations used in the analysis. For more details, the readers
can refer to the related previous work and the cited literature. Frequency based Substructuring (FBS) [12]
provides a convenient framework to couple substructures. Consider two substructures A and B with their re-
ceptance (or accelerance) expressed as YA and YB , respectively, can be coupled by the Lagrange multiplier
FBS [17] form:

YAB = Y −YBT (BYBT )−1BY with Y =

[
YA

YB

]
(1)

where B is the signed Boolean matrix to make the interface displacements compatible. If B is appropriately
defined, the receptance for coupling YAB in Eq. (1) is expressed in the compact notation as:

YAB = fbs
(
YA,YB

)
. (2)

Similarly, it can also be used to decouple a substructure from a known coupled system to identify the dy-
namics of the unknown subsystem [3, 4]. In order to identify a joint ȲJ in an assembled system YAJB , the
subsystems YA and YB are decoupled as negative substructures:

ȲJ = fbs
(
YAJB,−YA,−YB

)
. (3)

In Eq. (2)–(3), square FRF matrices of the structures are required which may not be practically feasible in
an experiment. Consider the substructure A whose FRF matrix is square consisting of FRFs on the internal
(?)i and boundary (?)b DoF.

YA =

[
Yii Yib

Ybi Ybb

]A
(4)

In many cases, the boundary or interface DoF are not accessible for measurements. This implies that only
YA

ii can be obtained by measurements. Even so, it would not be possible to measure all the elements of this
matrix. Therefore, we further divide the FRF matrix YA

ii into:

YA
ii =



Ycc Yce Yco

Yec Yee Yeo

Yoc Yoe Yoo




A

(5)
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The different subscripts denote the DoF sets where:

(?)c: displacements are measured

(?)e: excitations are applied

(?)o: one or both of the above can be measured – to be reserved for validation.

Based on these definitions, in Eq. (5), the diagonal blocks contain the drive-point FRFs which are difficult to
measure in practice. The FRF blocks shown in the box in Eq. (5) are more feasible and easy. This means that
the sensors and impacts are not collocated and overdetermined (non-square) FRF matrices can be measured.
The remaining matrix blocks may not be possible to measure due to practical limitations.

2.1 Experimental Model

The FRFs YA
ce are more practical and convenient for measurements, as discussed above. We choose YA

ce to
be our experimental model denoted by Yov,A. This model is measured on the internal DoF of substructure
A and then used for expansion on its interface DoF.

2.2 Numerical Model

A numerical FRF model obtained from a Finite Element (FE) analysis can provide the FRFs for all the
DoF including the ones inaccessible (interface) and inconvenient (drive-point) for measurement. It can then
provide all the elements in the FRF matrices of Eq. (4) and (5). This model is denoted by YN,A. Note that
some discrepancies in modelling always exist between the numerical and experimental models.

2.3 Hybrid Model by SEMM

Using the above two models, one can construct a hybrid model by System Equivalent Model Mixing (SEMM)
[5]. The method uses the DoF structure of the numerical model YN,A and overlays the measured dynamics of
the experimental model Yov,A. The resulting hybrid or expanded model YS,A is computed by the following
expression:

YS,A
gg = semm(YN,A,Yov,A) = YN,A

gg −YN,A
gg (YN,A

cg )+
(
YN,A

ce −Yov,A)(YN,A
ge )+YN,A

gg (6)

where (?)+ denotes the pseudo-inverse and (?)gg the set of all the DoF i.e. g = {i, b} = {c, e, o, b}. Thus,
the dynamics on the interface of substructureA are obtained through expansion by Eq. (6) in YS,A. Similarly,
the hybrid models YS,B for substructure B and YS,AJB for the coupled system AJB can also be obtained,
if their respective numerical models are viable. The use of J here is to emphasize an explicit presence of the
joint dynamics in the assembly.

Remark 1. The pseudo-inverses in Eq. (6) can be computed by singular value decomposition (SVD). This
allows to filter the lowest singular values. This effect on the hybrid models of a single substructure have
been studied in [16]. The resulting models are called the filtered hybrid models and their effect on the joint
identification is discussed here in Section 5.

2.4 Joint Identification by SEMM

Using the hybrid models of the substructures A and B and measured dynamics Yov,AB on the assembled
(built-up) system AB, the coupled hybrid models can be created. In order to identify the joints dynamics, an
iterative method was proposed in [10] and applied to a real geometry in [11]. Here only the essential steps
are briefly recapitulated.

1. Construct hybrid models of substructures A and B, denoted by YS,A and YS,B , respectively.
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(a) (b)

Figure 1: Setup for FRF measurements on (a) the disk and (b) the blade-disk assembly. Due to limited DAQ
channels availability, the assembly measurements were carried out in two steps. The picture of the assembly
(b) shown is one of those steps in which the sensors are mounted on the blade. The dummy masses are
installed on the disk to cancel out the mass effect in the joint decoupling. The arrows represent the locations
of reference FRF measurements for validation.

2. Measure FRFs on the built-up system AB in which the joint dynamics are sufficiently observed.

3. Create the numerical model of the coupled system AJB with nth joint dynamics YJ
n :

YN,AJB
n = fbs(YS,A,YJ

n ,Y
S,B) (7)

4. Generate the coupled hybrid model

YS,AJB
n = semm(YN,AJB

n ,Yov,AB). (8)

5. Identify the joint by FBS decoupling

YJ
n+1 = fbs(YS,AJB

n ,−YS,A,−YS,B). (9)

6. Update the coupled numerical model YN,AJB
n+1 in step 3 with YJ

n+1 until the expansion error decreases
below a set tolerance or remains unchanged for at least 03 iterations.

Remark 2. While computing YS,AJB
n in Eq. (8) through Eq. (6), the inverses are computed by weighted

pseudo-inverses, for example, for a matrix P

P+ = (PTWP)−1PTW (10)

where W is a diagonal weighting matrix assigning higher weights to some DoF. This was shown on an
assembly of a blade and disk in [11] by assigning higher weights to the boundary DoF. This resulted in a
decrease in the subsystem internal effects and an improvement of the convergence. The same or a greater
order of weights (1× 1010) was applied for the joint identification in this paper.

3 The Test Campaign

In this section, the measurement campaign on the test geometries of a blade, disk, and their assembly con-
nected through a dove-tail joint are described. Since this type of interface is not accessible for measurements,
FRFs at the interfaces are predicted by the SEMM expansion. The same test-case was studied by these au-
thors in [11] with a fixed constraint on the disk (and also on the assembly). The constraint seemed to greatly
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Table 1: Measurement channels and models details for the joint identification

Description Blade A Disk B Assembly AB

Number of response channels (α) 15 15 30
Number of impacts (β) 18 19 37
Experimental validation channels – Figure 1a Figure 1b
Total internal DoF (γ = α+ β) 33 34 67
Size of experimental FRF matrix Yov 14×18 14×19 27×36 a

Number of Boundary DoF b 27 27 –
Size of numerical FRF matrix 60×60 61×61 – c

Size of hybrid FRF matrix (before VP transformation) 60×60 61×61 –

aOne sensor channel had unusually high noise and it had to be discarded, therefore, the experimental FRF matrices are one
channel short for the blade and disk and two channels short for the assembly. However, one response channel and one input channel
was additionally left out for the validation in the assembly

bThese DoF are inaccessible and expanded over. Some or all of the boundary DoF are then used to represent the interface in
Section 4

cThe size of the coupled system depends on the interface type discussed in Section 4 and the formulation in FBS (primal or
dual).

affect the joint identification results. In this work, the fixed constraint has been removed and so the FRFs have
been measured in free conditions, as shown in Figure 1. Consequently, the modelling and expansions errors
caused by the constraint are reduced. However, other modelling errors, for example, FE model updating or
non-coincident DoF in experimental and numerical models, are unavoidable.

Figure 1 shows the sensors (triaxial accelerometers) and impacts positions for reference (validation) mea-
surements. The readers can refer to [11] for their locations, as they have been kept the same in this new
test campaign. Some key details regarding the experimental setup and the different models are presented in
Table 1.
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Figure 2: Validation of SEMM on the disk. The output/input locations of these FRFs are indicated in
Figure 1a.

Before proceeding for the joint identification from the assembly, the effectiveness of the SEMM expansion is
first checked at the substructure level. The method is tested on the disk which has been modelled and tested
in free boundary conditions, as mentioned above. In Figure 2, three FRFs are plotted. The numerical (black
dotted) FRF agrees well with the the experimental FRF (reference) despite having no damping and slight
differences at the resonances. Comparing these disk FRFs with those in [11], such agreement was achieved
by removing the constraint and updating the material properties in the FE model. The hybrid FRF obtained
by SEMM – using an overlay model without the reference FRF – predicts those resonance peaks exactly.
Some differences in the anti-resonances are attributed to the unavoidable errors in the FRF output or input
locations while conducting tests. This expansion in the disk FRFs is certainly more reliable than with the
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(a)

(b) (c)

(d) (e)

Figure 3: Different representations of interface DoF on the blade. (a) Assembled blade and disk depicting
the connection (b) Left and right surfaces on the blade interface with three translational DoF per node. (c)
Another view of the blade interface indicating additional three nodes on the bottom surface. (d) One virtual
point interface formed by transforming all the translational DoF on nodes 1 through 9. There are six DoF
per virtual point. (e) Two virtual point interface.

fixed constraint in [11]. As a results, it should improve identifiability of the joint.

In the next sections, the linear joint dynamics are identified by varying different parameters. In detail, these
parameters are the description of interface (Section 4) and singular value filtering in the substructure hybrid
models (Section 5). In each case, the same method of Section 2.4 is used. The weights mentioned in
Remark 2, have been used on the boundary DoF to avoid the influence of internal subsystem resonances on
the joint identification.

4 Effect of Interface Type on the Identification

An interface provides the links or paths through which the dynamic coupling between substructures is estab-
lished. The more accurately they are measured or expanded, the more accurate will be the coupled system’s
predicted dynamics (also for the decoupling or joint identification). Therefore, it is essential that the interface
is described appropriately. In this section, different cases of interface modelling based on different discretiza-
tion are studied on the blade and disk assembly in the context of joint identification. For a fair comparison of
different interfaces, the identified joint dynamics are not compared with each other as the joint system and
size, depending on the interface type, would be different. Instead, the identified joint (converged) for each
interface type is recoupled to the blade and disk and compared with the reference FRF measurement which
was not used in the identification process.

4.1 Translational DoF Interface

In an FRF testing, measuring translations are generally preferred but the interface lacks the rotational infor-
mation. The rotations can be computed by the method of finite difference [18]. Alternatively, if sufficient
translational DoF are present on the interface such that they are non-collinear, the rotational effect is indi-
rectly included in the interface [19]. This is why the explicit inclusion of rotations at the interface in FE
models with only translational DoF is not necessary. In the numerical models of the blade and disk, some
translational DoF on the mating surfaces are selected as representative boundary DoF (Figure 3b and 3c)
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(a) Interface nodes set {1,3,4,6}
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(b) Interface nodes set {1,4,7,9}

Figure 4: FRFs on the coupled blade-disk by considering only translational DoF at the interface. The refer-
ence FRF is measured at the locations shown in Figure 1b.

which are then expanded over in their respective hybrid models. Since the expansion is done by virtue of
measurements on the internal DoF, it is assumed that these DoF can properly represent the interface DoF.
However, it is not true for any arbitrary set of interface DoF, because different interface DoF combinations
will produce different effects (to be discussed next).

It is seen in Figure 3a that the blade-root joint has three mating sides. A total of 27 translational DoF (9
nodes) are selected on these sides, indicated in Figure 3b and 3c. The nodes are shown only on the blade. Of
course, a corresponding set is also selected on the disk interface. Among these nodes, multiple combinations
can be tried. We examine only two cases of 12 DoF per substructure (24× 24 joint model) here:

Case 1: Coupling of the DoF at nodes {1, 3, 4, 6} – two physical nodes on the left and two on the right side,
as shown in Figure 4a.

Case 2: Coupling of the DoF at nodes {1, 4, 7, 9} – one physical node on the left, one on the right and two
on the bottom, as shown in Figure 4b.

Remark 3. Identification Rank: Since measurements on the assembled system have a rank of 27 (see
Table 1), one can identify a joint with the same maximum rank. However, one or more channels are kept for
validation and we allow for some over-fitting, the maximum rank of the joint system is set to be 24. That is,
a 24× 24 joint FRF matrix is identified.

The reconstructed FRFs in blue in Figure 4 are obtained by recoupling the identified joint YJ with the hybrid
model of the blade YS,A and disk YS,B . Note YJ is retrieved after the convergence criterion has been met,
as outlined in Section 2.4. Clearly, the interface of Case 1 has a lot of spurious effect even though it follows
the shape of the reference FRF (orange colour in Figure 4a). This means that by considering only two sides
of the interface, the joint is not properly identified. In Case 2, the third (bottom) side of the interface is taken
into account through nodes 7 and 9. The reconstructed FRF overlaps the reference FRF well until 2000 Hz
with the exceptional spurious peaks around 250, 600 and 800-1000 Hz. The response near anti-resonance
of 600 Hz is also not accurately predicted. The reconstructed FRF of Case 2 is certainly better than that of
Case 1 because the bottom side is thought to be a key location where the bolts are connected and push the
blade to fit the other two surfaces of the disk. The interface seems to be better described by these locations
and it gives an idea to consider these locations for further analysis. However, an interface defined by only
the translational DoF of the two bottom nodes (7 and 9) would not be sufficient i.e. the other sides should
also be considered.

4.2 Virtual Point Interface

In an interface defined only by the translational DoF, the selection of the corresponding nodes is an arbitrary
choice of the user in terms of location (and numbers of nodes) involved in the identification. Therefore,
many combinations are possible and it is not easy to understand what is the most promising combination.
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(b) Two virtual points

Figure 5: FRF of the blade-disk assembly coupled by the virtual interface descriptions. The reference FRF
is measured at the locations shown in Figure 1b.

This problem can be overcome by creating a virtual interface characterized by both translations and rotations.
All the measured or expanded translational DoF can then be used and projected to the virtual interface by
least-squares [20]. Consider the hybrid model, for example, of the blade YS,A with the expanded dynamics
on all the translational DoF uA

b in Figure 3. The boundary translations uA
b relate to the virtual displacements

(translational and angular) qA by:

{
uA
i

uA
b

}
=

[
I 0

0 RA
u

]

︸ ︷︷ ︸
RA

{
uA
i

qA

}
(11)

where RA
u contains the positions and orientations of the DoF in uA

b with respect to the virtual point(s). The
right hand side vector is obtained as:

{
uA
i

qA

}
=
(
(RA)TRA

)−1
(RA)T︸ ︷︷ ︸

TA
u

{
uA
i

uA
b

}
(12)

A similar transformation TA
f applies for the virtual forces and moments mA. If the DoF are collocated,

as obtained by the hybrid models, TA
u = TA

f = TA. The new hybrid FRF matrix ȲS,A with the virtual
interface is calculated by

ȲS,A = TA YS,A (TA)T (13)

For the virtual interface, we again consider two cases with two different configurations in which all the 27
expanded translational DoF are transformed to the VP(s) shown in Figure 3d and 3e, respectively. Note that
the VP position can be defined even outside the structure, as long as the condition of rigid transformation
holds.

Case 3: One virtual point (3 translations and 3 rotations per substructure). The joint is characterized by a
12× 12 system, unlike Case 1 and Case 2.

Case 4: Two virtual points (6 translations and 6 rotations per substructure). The joint is characterized by a
24× 24 system.

The respective reconstructed FRFs are plotted in Figure 5. In the FRFs of Case 3 (Figure 5a), not a good
agreement is observed between the reconstructed and reference FRFs. This shows that an interface with 6
virtual DoF despite a least squares contribution from all the translational FRFs is not sufficient to capture the
coupled system dynamics accurately. This dove-tail type joint needs a minimum set of interface DoF, also
discussed numerically in [21]. This experimental investigation validates those findings.

The FRF obtained for Case 4 (two VPs) is shown in Figure 5b. The reconstructed FRF has certainly better
agreement than that of Case 3. It is of more interest to compare this reconstructed FRF with that of Case
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2 with translational DoF (Figure 4b). With the two VP interface, the identification resulted in i) a signifi-
cantly reduced spurious effect up to 1100 Hz, ii) a better amplitude estimation on the resonances, iii) a good
approach on the two anti-resonances around 150 and 600 Hz, and iv) slightly increased spurious effects be-
tween 1300 to 2000 Hz. The prediction beyond 2000 Hz is poor for both the cases. For practical purposes of
low to medium frequency range, the two VP interface is considered to be a good choice and will be used in
the following analyses.

5 Singular Value Filtering

In this section, the effect of singular values (SV) truncation (called SV filtering) while computing the pseudo-
inverses is investigated in connection with the joint identification. In SEMM, the first use of SV filtering was
made in [16] and applied to a numerical benchmark structure i.e. only a single uncoupled structure was
considered. Here, it is applied to the two blade and the disk substructures and their direct effect on the joint
identification is discussed. Let P denote one of the pseudo-inverses in Eq. (6). It can be decomposed into:

P = USVT (14)

where S is a diagonal matrix containing singular values and U and V are unitary matrices of left and right
singular vectors, respectively. The pseudo inverse can be computed by

P+ = VS−1UT (15)

If uj and vj represent jth vectors in U and V, respectively, then Eq. (15) is written in the summation form:

P+ =

N∑

j

vjσju
T
j ≈

k<N∑

j

vjσju
T
j (16)

where σj is the jth singular value in S−1 andN is the smallest dimension of P. In this form, the contribution
of each jth singular value is being computed. Thus, the smallest N − k SVs can be filtered out without
significantly affecting the inverse computation. Since P, in general, is a frequency dependent matrix, the
decomposition needs to be done at every frequency.

The use of SV filtering is motivated by looking at the blade’s condition number of its experimental Yov,A,
numerical YN,A and hybrid models YS,A in Figure 6a. Condition number is defined as the ratio of the
largest to the lowest singular value. In the figure, the peaks in the respective plots refer to the resonances.
It is seen that the blade hybrid model has higher condition number (by 1-2 orders of magnitude) compared
to the numerical and the experimental models throughout the frequency band. More importantly, the noise
or measurement errors have propagated in the hybrid model from the experimental model in the range of
400-800 Hz. Since the hybrid model has a relatively larger set of DoF than the experimental model, the
lowest singular values (supposedly corresponding to noise and insignificant dynamics) become even smaller,
thereby, making the condition number high. So the SV filtering is justified in this case. By removing the two
smallest SVs in the blade hybrid model, the new condition is lower and shows that the noise was attributed
to the filtered SVs.

In the following, the SV filtered hybrid models of the blade and disk are used to identify the joint with
the two VP interface. To see a significant effect, two SVs are filtered in each hybrid sub-model at a time
i.e. if the SVs are filtered in the blade, the disk model is kept as such and vice versa. The corresponding
validation FRFs are shown in Figure 7a and Figure 7b. They should be compared with the reconstructed
FRFs of Figure 5b obtained by the unfiltered hybrid models. Since a good agreement up to 1100 Hz was
observed with the unfiltered models, the attention is given to the frequency range greater than 1100 Hz. In
the reconstructed FRF of Figure 7a, the identification by filtering in the blade has improved remarkably.
The region between 1500–2000 Hz overlaps well with the reference FRF. The resonances around 2550 and
2700 Hz are also better estimated. The identification after the anti-resonance of 2100 Hz is also improved in
comparison with that of Figure 5b, however, it still has some spurious effect. The low amplitude regions like
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Figure 6: The condition number of the experimental, numerical and hybrid FRF matrices of (a) the blade and
(b) the disk. In each hybrid model, the condition number by truncating two singular values is also plotted.
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(b) SV filtering in the disk

Figure 7: Effect of singular value filters on the recoupled system after joint identification. The filters are
applied separately to the blade and disk. The reference FRF is measured at the locations shown in Figure 1b.

these are likely to get affected by the measurement errors. Despite this, it can be confidently said that the
removal of the two lowest SVs in the blade hybrid model has appreciably improved the joint identification.

The SV filtering in the disk hybrid model has instead degraded the identification in the high frequency range,
as evident in the FRF of Figure 7b. In order to understand the reasons, the condition number plots of the
disk models are seen in Figure 6b. The disk’s hybrid model’s condition number is nearly of the same order
as that of the numerical model and it is not as high as in the case of the blade (Figure 6a). By looking at
the 2 SV truncated condition number (green plot) of the disk, there is a considerable change in the condition
number pattern from its unfiltered hybrid model. This implies that the lowest filtered SVs are not very small
and insignificant to be truncated. That is why, their filtration altered the disk hybrid dynamics.

From the above analysis, it is proposed that the SV filters should be deployed in the hybrid sub-models based
on their condition number before and after filtering. If the condition number pattern of the filtered hybrid
models is significantly different, the filtering may not affect positively on the joint identification.

Remark 4. The SV filter is applied only to the substructures here i.e. while computing the hybrid FRF models
of the blade and disk. One might consider to apply the same filter to the assembly’s hybrid model in Eq. (8).
If the SV filters are applied to the assembly, then recalling the iterative nature of the decoupling method from
Eq. (7)–(9), the assembled system’s dynamics in the hybrid model are updated at each iteration due to two
factors: the updated joint and the modified paths [16, 22] for the measured dynamics in the assembly (due
to filtered SVs). As a result, the convergence is not guaranteed for the joint identification. From another
perspective, the system which we aim to identify is being modified at every iteration of the identification.
This makes the filtration unwarranted on the assembled systems.
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6 Conclusions

In this paper, the joint dynamics are identified for a blade-root joint. The interface between the blade and disk
is inaccessible for measurements. Thus, dynamics on the interface DoF have to be expanded. The authors
had attempted to identify the joint dynamics in [11] using the SEMM expansion based decoupling method.
However, the identified dynamics had restrictive accuracy. In this paper, we have investigated some of the
key factors that affect the joint identification method by conducting a new set of measurement campaign in
the free boundary conditions. This resulted in much better expanded FRFs on the disk.

The substructure coupling or decoupling has much to do with the way the interface is defined. An interface
with only translational DoF (in a non-collinear fashion) was very selective and various combinations have to
be tried until the best one is found. Even though the blade-root joint under consideration is three-faced, the
significant dynamic contribution comes from the bottom side DoF where the bolts are mounted. However,
it was not sufficient to consider only the translational interface at these DoF. All the expanded boundary
dynamics were then transformed in a least-squares fashion to one or two virtual point type interface (transla-
tions and rotations), respectively. The one VP interface failed to identify the joint at all. However, the two VP
interface could identify very well the dynamics up to 1100 Hz range as well as most of the resonances. This
suggests that the minimum identification rank or joint size must be equivalent to two VP per substructure
due to the number of independent measurements on the assembly. The two VP interface was then adopted
so as to improve the prediction beyond 1100 Hz range by other factors.

The substructure hybrid models (blade and disk) are computed by a formulation of SEMM that allows for
filtration based on the singular values (SV). The effect of SV filter on the substructure or joint identification
is investigated for the first time. By filtering the two lowest SVs in the blade hybrid model, the joint iden-
tification improved significantly beyond 1100 Hz. On the other hand, the same filtering in the disk did not
produce much anticipated result. To know whether the SV filtering would positively impact the joint identifi-
cation, the pre- and post-filtering condition number can be computed. In the case of the disk, the pre-filtering
condition number was not high unlike the blade. The filtering resulted in the change in condition number
pattern over the entire frequency band.

In short, the joint identification in this study has been shown to improve by taking the following actions:

1. reducing the expansion error by removing the constraint modelling,

2. defining the two VP interface on the bottom side near the bolts

3. filtering two singular values in the blade hybrid model (none in the disk)

The challenge remains to more accurately predict the low amplitude regions which are easily influenced by
errors and should be further investigated in the future.
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