
16 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Metric Framework for the Gamification of Web and Mobile GUI Testing / Cacciotto, Filippo; Fulcini, Tommaso;
Coppola, Riccardo; Ardito, Luca. - ELETTRONICO. - (2021), pp. 126-129. (Intervento presentato al convegno
INTUITESTBEDS (International Workshop on User Interface Test Automation and Testing Techniques for Event Based
Software) tenutosi a Porto de Galinhas, Brazil nel 12-16 April 2021) [10.1109/ICSTW52544.2021.00032].

Original

A Metric Framework for the Gamification of Web and Mobile GUI Testing

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICSTW52544.2021.00032

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2904324 since: 2021-06-04T13:01:29Z

IEEE

A Metric Framework for the Gamification of Web
and Mobile GUI Testing

Filippo Cacciotto, Tommaso Fulcini, Riccardo Coppola, and Luca Ardito
Department of Control and Computer Engineering

Politecnico di Torino
Turin, Italy

first.last@polito.it

Abstract—System testing through the Graphical User Interface
(GUI) is a valuable form of Verification & Validation for
modern applications, especially in graphically-intensive domains
like web and mobile applications. However, the practice is often
overlooked by developers mostly because of its costly nature
and the absence of immediate feedback about the quality of test
sequence. This paper describes a proposal for the Gamification
of exploratory GUI testing. We define – in a tool and domain-
agnostic way – the basic concepts, a set of metrics, a scoring
scheme and visual feedbacks to enable a gamified approach to
the practice; we finally discuss the potential implications and
envision a roadmap for the evaluation of the approach.

Index Terms—Gamification, Software Testing, GUI Testing

I. INTRODUCTION

Evidences from Software Engineering literature suggest that
the testing phase is often underestimated by programmers as
it is considered a boring, costly and repetitive task, as well
as neglected in terms of time and resources [1]. Despite that,
testing is a fundamental phase of software development, to
avoid error-prone code and application misbehavior, and to
reveal defects before release to the final users.

There are many levels and methodologies to conduct soft-
ware testing, each one with peculiar features, advantages and
drawbacks. A crucial testing facet for modern domains is
System testing conducted through the Graphical User Interface
(i.e., GUI testing), focusing on the visual interaction with
the tested apps. In GUI testing, the tester has to interact
with the system only via its Graphical User Interface. This
allows the tester to perceive the platform in the same way
the final user does with the final product. Testing with this
approach is important especially when the product to develop
is a website or a smartphone app, in which the visual aspect
is in continue evolution and most of the interaction with the
users is conducted through the GUI itself [2].

Forcing the testers to a visual interaction with the AUT
(Application Under Test) allows them to think in a different
way compared to what they do when they deal with the code
(e.g., in the development of unit tests), and to closely mimic
the final user’s perception. Despite these benefits, a structured
application of this type of testing is often neglected in favor
of manual execution of common use cases of the AUT. For
these reasons, we envision that Gamification, which consists
in the use of elements, philosophies and mechanics that are
typical of game design in non-playful contexts [3], can help

testers to perceive the testing process in a more entertaining
and engaging way, whilst enhancing their performance.

Our idea is to set up a framework useful for building
Gamification plugins for GUI testing tools, exploiting gam-
ing concepts that can make the experience of testing more
attractive for developers and aid increasing the usage of proper
tooling to create, record and execute test sequences and the
fun, in order to improve the experience of the tester in place
of manual GUI testing.

In this paper we provide: a brief analysis of the Gamification
concepts applied to Software Engineering and testing research
(section II), the details of the framework we propose (section
III), a discussion of the potential impact of our work (section
IV) and a roadmap of the prosecutions that we envision for
this research (section V).

II. BACKGROUND AND RELATED WORK

In recent years, several attempts have been made to improve
the grade of involvement and enjoyment of testers by applying
Gamification concepts to the subject.

The main focus up to now has been the application of game
elements in the learning process of the subject, applying these
new method mainly in academic courses. Evidences of the
effectiveness of this method have been reported, especially
on the short term, by many researches that applied innovative
tools to support the teaching of software testing. [4, 5]

Code Defenders is a tool focused on mutation testing
and meant to improve the tester’s satisfaction by introducing
challenges in the process. Testers take on a challenge by
dividing in two teams: the attacker team has to inject bugs
and the defenders have to enforce the test suite, trying to
predict the newly added bugs. The tool has been applied for
an experimentation in an academic course, and the results
showed that not only testers were more involved using Code
Defenders, but also that the resulting test suite was stronger
than both automatically generated one and the one produced
without the Gamification tool [5].

Clean Game applies Gamification aspects to the refactoring
activity, that is the process of locating and transforming code
smells [4]. Code smells are poor design or implementation
choices in the source code, that should be rewritten and
rethought in favor of more readable and maintainable code.
In this game, the tester has to take a multiple choice quiz

about each code smell and to recognize them in the code.
The experimental usage of this tool using Computer Science
students has led them to locate twice as many code smells
than without the Gamification concepts.

Other Gamification aspects have been applied to the dis-
cipline of Software Engineering in general: FormalZ [6]
transforms the formal specification phase into a tower defense
game, in which the user has to protect a hypothetical CPU
from an hacker attack by submitting the specification given in
the correct way. This tool has been subjected to students of a
bachelor course of Software Testing that positively perceived
the impact of the tool as a help to learn theoretical concepts.

To the best of our knowledge, however, none of the studies
about the application of Gamification in the software testing
field has had a predominant focus on exploratory GUI testing.
The lack of studies about these aspects is the main reason
behind our analysis of the context, to highlight the most impor-
tant aspects to be considered when implementing Gamification
in this field.

III. THE PROPOSED FRAMEWORK

In this section we describe the main concepts on which
our metric framework is based, the computed and the adopted
Gamification concepts (scoring and visual feedback).

We have developed our first proof-of-concept as an add-on
for Scout, a tool for augmented exploratory testing for Web-
based applications [7]. We have developed plug-ins to cover
all the following aspects also for Android apps, leveraging
emulated devices and the Appium tool to obtain details of the
shown GUIs.

A. Basic concepts

The main concept on which our set of GUI testing Gam-
ification metrics is based is the Testing Session, i.e., the
sequence of interactions with the GUI performed by a human
tester, emulating a user interaction with the AUT (and thereby,
typically starting from the home/main screen).

We represent a testing session with a tree structure, where
every node represents a web page and includes some data
related to the interactions performed by the tester in that par-
ticular page. Each session is uniquely identified by the tester
ID and the instant in which it’s terminated. This mechanism
allows the tool to save each session in a database and to
compute both point and aggregate raw data, such as:
• the total number of interactions and widgets encountered

by the tester during the session, as well as the amount of
the actually interacted ones;

• the total number of pages visited during the session;
• the amount of milliseconds spent on each page and the

duration of the entire testing session.
In addition to the quantitative data representing the sessions,

we also take into consideration the number of Issues and
Easter Eggs encountered.

Issues represent problems encountered during the explo-
ration of the GUI, either reported manually by the testers with
features of the testing tool or errors that are specific of the

domain and that can’t be recognized automatically (such as
broken links, 404 errors, freezes).

Furthermore, we envision the possibility of injecting Easter
Eggs in the AUT’s GUI, i.e. superimposed oval-shaped visual
elements, generated after interacting with randomly chose
elements. Their purpose is to encourage the tester to explore
the domain by opening as many links as possible.

B. Session Metrics

Starting from the raw data described in subsection A,
it’s possible to compute different metrics that underlie the
introduced Gamification elements:
• Page coverage, computed as the percentage of interacted

widgets inside a specific page.
• Session coverage, computed as the average page cover-

age. It represents the total coverage achieved by the tester
during the session.

• Total number of interactions per page and average time
spent per each interaction.

• Number of widgets and pages encountered for the first
time. These numbers can be computed by using a
database entry that keeps track of every page (and cor-
responding interacted widgets) already visited by one or
more testers previously.

• Number of reported/encountered bugs during the session.
• Number of easter eggs found during the session.

C. Gamification Elements

1) Final score: The main Gamification element of the
proposed framework is a mechanism that assigns a score to
each testing session, based on the metrics previously described.

This score allows to evaluate the tester’s performance,
taking into account different factors, besides introducing a
competitive aspect that may encourage testers to put more
effort in the testing activity.

The score is composed of two parts: a base score, which
takes into account the main factors used to evaluate the tester’s
performance, and a bonus one, that allows users to increase
their total score and improve their position in the leaderboard.

S = Sbase + Sbonus

The base score is computed using this formula:

Sbase = a · C + b · EX + c · EF

The base score adds up to 100 points and is composed of 3
components weighted by configurable parameters:
• C represents the coverage component and it’s computed

as the average page coverage reached by the tester during
the testing session, according to the formula:

C =

∑
∀i∈P

covi

|P |

where covi is the coverage of the i-th page and P is the
set of pages visited during the session.

This component is multiplied by default for a coefficient
equal to 60%. This is due to the fact that C can be useful
to determine how deeply the tester inspected the pages
visited during the session.

• EX represents the explorative component of the score
and it depends on the percentage of pages visited and
widgets interacted for the first time by the current tester,
among the other users who have already completed a
session before. This component is computed as:

EX =
k

b
· pnew
ptot

+
h

b
· wnew

wtot
, k + h = b;

where pnew and ptot are the newly discovered and the to-
tal pages respectively, while wnew and wtot are the newly
discovered and the total interacted widgets respectively.
By default, this component is worth 30% of the total base
score; h and k represent the total base score percentages
of each sub-component.

• EF represents the efficiency component and its aim is to
determine whether a tester tried to exploit the framework
scoring system by clicking on already explored widgets.
This component is computed as the ratio between the
number of interacted widgets and the total number of
interactions registered on the page (including those per-
formed on widgets that had been already clicked by the
tester), according to the formula:

EF =
whl

wint

By default, this component is worth 10% of the base
score.

Testers have the possibility to increase their base score by
earning a bonus score, that may allow them to reach a higher
amount of points. These additional points are computed using
the formula:

Sbonus = d · T + e · P

This score is composed of two components and is capped to
a maximum of 50% of the base score. The components of
the bonus score are kept separated because they depend on
aleatory events encountered during the test sequence execu-
tion. In particular, the two addends are:
• T , which represents the time component and it’s based

on the duration of the testing session. Its purpose is
to reward longer sessions, in which testers should have
explored the GUI more thoroughly (theoretically) than
in shorter ones. To avoid any possible exploitation, the
metric takes into account the average time spent per each
interaction, excluding the sessions where the average time
is excessively high (that can be symptom of random
clicking) or low (i.e., too much idle time).
As a consequence, the final formula of the time compo-
nent is:

T =


0 sint ≤ 2 ∨ sint > 30

1.5 · t 2 < sint ≤ 5

t 5 < sint ≤ 15

0.5 · t 15 < sint ≤ 30

TABLE I
GRADES BASED ON FINAL SCORE

Minimum Maximum Grade

100 - S
80 99 A
70 79 B
50 69 C
0 49 D

where t is the duration of the session (measured in min-
utes) while sint is the average time spent per interaction
(measured in seconds). By default, this component is
multiplied by 0.3.

• P is the component related to the problems affecting the
AUT that the testers may have encountered during their
testing session and it’s computed as:

P = ni + nee

where ni and nee are the number of reported issues and
the number of the easter eggs found during the session
respectively. The default coefficient of this component is
equal to 0.2.

Depending on the score obtained, a tester receives an
evaluation of its performance, in terms of a grade from D
(lowest) to S (highest), according to the ranges in table I.

The usage of these grades is a typical gaming aspect and
here we use it as a Gamification element in order to provide
the tester with a clear feedback to understand the quality of
its testing sequence.

At the end of a session, a tester can visualize a leaderboard
where all the testers who performed at least one sequence
before are displayed and ordered by the total score they
accumulated during the various sessions.

2) Live graphical feedback: To avoid having testers to wait
until the end of their session to assess their performance,
we have added graphical feedback during the exploration of
the GUI (see figure 1). Our proof-of-concept plug-in shows a
progress bar on top of each page, representing the percentage
of page coverage achieved in real time. Furthermore, if the
current page under test has already been visited before by
(at least) another tester, the progress bar shows an indicator
of the coverage reached before, in order to inform the current
tester about the highest score achieved previously on the page.
The rationale behind this design choice is to encourage the
current tester to achieve higher coverages than those obtained
in previous testing sessions.

The tool allows to identify how many widgets have already
been interacted, by surrounding them with a proper contour.

Finally, we also envision a live feedback when a page that
was never visited previously is discovered, in the form of a star
in the corner of the screen. This form of graphical feedback
resembles the typical gaming feature of achievements, which
are used to keep the player always aware of his progress
through the completion of challenges [8].

Fig. 1. Graphical feedback of our proof-of-concept: (a) progress bar showing
the coverage on the current page; (b) star to indicate a previously undiscovered
page; (c) green boxing of interacted widgets.

Fig. 2. Results screen in our proof-of-concept, showing metrics, score and
grade of the session

IV. POTENTIAL IMPACT

Several studies have highlighted the benefits of the ap-
plication of Gamification to a given technique, especially
regarding a better involvement, a higher grade of satisfaction
and enjoyment and also better performance when applying the
concepts learnt [4, 5, 6].

We expect that the described Gamification can be an useful
mean to enhance both tester performance and satisfaction,
stimulating a deeper exploration and a more accurate selection
of the inputs with the AUT by making the tester challenge his
previous efforts and those from other developers. A higher
degree of exploration can translate to higher efficiency of test
sequences and higher probability of bug and issue discovery,
thereby impacting the quality of the AUT.

We envision applications of our proof-of-concept Gamifica-
tion layer in two different contexts:
• In academic contexts, to enable more engaging teaching

of GUI testing in Software Engineering courses, to stu-
dents that may be more accustomed to gaming aspects;

• In industrial contexts, to take advantage of the higher
efficiency and productivity of testers that can be enabled
by the challenges introduced by Gamification aspects.

V. CONCLUSION AND FUTURE WORK

In this paper we defined a framework to integrate Gam-
ification concepts in GUI testing tools; we implemented a
proof-of-concept of the framework as a plugin for an existing
exploratory testing tool, named Scout, to apply the concepts
to web and mobile applications.

Our immediate future work involves the evaluation of the
application of the framework to the creation of test sequences,
first in an academic environment (e.g., in a Software Engi-
neering course) and then in an industrial environment. These
preliminary evaluations will involve measuring the enjoyment
and the engagement of testers (e.g., through surveys) and an
inspection of the quality of the proposed framework. This way,
it will be possible to gain a preliminary evaluation of human
and technical aspects involved in the testing procedures.

We also plan to conduct controlled experiments with a larger
and more heterogeneous sample, to evaluate in a quantitative
way the efficacy and the quality of the test sequences defined
with the gamified approach with respect to test sequences
obtained without Gamification.

Finally, other features are also being theorized, such as on-
line competition between testers and an achievement system,
the implementation and evaluation of which will follow.

REFERENCES

[1] M. Beller, G. Gousios, A. Panichella, and A. Zaidman,
“When, how, and why developers (do not) test in their
ides,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, 2015, pp. 179–190.

[2] D. Amalfitano, A. R. Fasolino, P. Tramontana,
S. De Carmine, and G. Imparato, “A toolset for gui
testing of android applications,” in 2012 28th IEEE
International Conference on Software Maintenance
(ICSM). IEEE, 2012, pp. 650–653.

[3] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From
game design elements to gamefulness: defining” gamifica-
tion”,” in Proceedings of the 15th international academic
MindTrek conference: Envisioning future media environ-
ments, 2011, pp. 9–15.

[4] H. M. dos Santos, V. H. Durelli, M. Souza, E. Figueiredo,
L. T. da Silva, and R. S. Durelli, “Cleangame: Gamifying
the identification of code smells,” in Proceedings of the
XXXIII Brazilian Symposium on Software Engineering,
2019, pp. 437–446.

[5] G. Fraser, A. Gambi, M. Kreis, and J. M. Rojas, “Gam-
ifying a software testing course with code defenders,” in
Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, 2019, pp. 571–577.

[6] W. Prasetya, C. Leek, M. Melkonian, W. Zon et al.,
“Having fun in learning formal specifications,” in 2019
IEEE/ACM 41st International Conference on Software En-
gineering: Software Engineering Education and Training
(ICSE-SEET). IEEE, 2019, pp. 192–196.

[7] M. Nass, E. Alégroth, and R. Feldt, “On the industrial
applicability of augmented testing: An empirical study,” in
2020 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE,
2020, pp. 364–371.

[8] E. B. Passos, D. B. Medeiros, P. A. Neto, and E. W. Clua,
“Turning real-world software development into a game,”
in 2011 Brazilian Symposium on Games and Digital
Entertainment. IEEE, 2011, pp. 260–269.

