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Energy-Quality Scalable Monocular Depth
Estimation on Low-Power CPUs

Antonio Cipolletta, Student Member, IEEE, Valentino Peluso, Member, IEEE, Andrea Calimera, Member, IEEE,
Matteo Poggi, Member, IEEE, Fabio Tosi, Student Member, IEEE, Filippo Aleotti, Student Member, IEEE,

Stefano Mattoccia Member, IEEE

Abstract—The recent advancements in deep learning have
demonstrated that inferring high-quality depth maps from a
single image has become feasible and accurate thanks to Con-
volutional Neural Networks (CNNs), but how to process such
compute- and memory-intensive models on portable and low-
power devices remains a concern. Dynamic energy-quality scal-
ing is an interesting yet less explored option in this field. It
can improve efficiency through opportunistic computing policies
where performances are boosted only when needed, achieving
on average substantial energy savings. Implementing such a
computing paradigm encompasses the availability of a scalable
inference model, which is the target of this work. Specifically,
we describe and characterize the design of an Energy-Quality
scalable Pyramidal Network (EQPyD-Net), a lightweight CNN
capable of modulating at run time the computational effort
with minimal memory resources. We describe the architecture
of the network and the optimization flow, covering the im-
portant aspects that enable the dynamic scaling, namely, the
optimized training procedures, the compression stage via fixed-
point quantization, and the code optimization for the deployment
on commercial low-power CPUs adopted in the edge segment.
To assess the effect of the proposed design knobs, we evaluated
the prediction quality on the standard KITTI dataset and the
energy and memory resources on the ARM Cortex-A53 CPU.
The collected results demonstrate the flexibility of the proposed
network and its energy efficiency. EQPyD-Net can be shifted
across five operating points, ranging from a maximum accuracy
of 82.2% with 0.4Frame/J and up to 92.6% of energy savings
with 6.1% of accuracy loss, still keeping a compact memory
footprint of 5.2MB for the weights and 38.3MB (in the worst-
case) for the processing.

Index Terms—Monocular Depth Estimation, Energy-Quality
Scaling, Embedded Systems, Low-Power CPUs, Convolutional
Neural Networks, Deep Learning.

I. INTRODUCTION

Inferring depth cues plays a crucial role in many computer
vision tasks powering real-world applications like autonomous
and assisted driving, self-navigation, virtual and augmented
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di Bologma, 40136, Italy (e-mail: m.poggi@unibo.it, fabio.tosi5@unibo.it,
filippo.aleotti2@unibo.it, stefano.mattoccia@unibo.it)

reality. Active sensors, e.g., Time-of-Flight (ToF) and Light
Detection and Ranging (LiDaR), represent viable solutions, but
they are expensive, significantly sized, and they also perturb
the surrounding environment. A much more appealing method
consists of inferring depth from images acquired with conven-
tional passive image sensors, i.e., integrated cameras, already
available in many smart devices. In this context, estimating
depth from a stereo acquisition pipeline has recently achieved
compelling advancements thanks to deep learning [1], [2],
[3], [4]. However, there is a strong interest in adopting a
more ubiquitous and cheaper monocular setup, where dense
depth predictions are inferred from a still image. Methods
and tools for monocular depth estimation are a promising
solution for the Internet-of-Things (IoT), as they can cut the
implementation cost, improve portability, and minimize en-
ergy consumption. For these reasons, monocular methods can
benefit a broad spectrum of applications, such as augmented
reality and virtual reality (AR/VR) on portable IoT devices
adopted in smart automation systems [5], [6], [7], [8].

Pushing depth perception through the end-nodes could re-
duce the network congestion and increase the energy efficiency
during machine-to-machine (M2M) communication processes,
as it lowers the volume of data exchanged. Moreover, it
also represents a practical way to guarantee users’ privacy
as data stay local, and it is complementary to other methods
aiming to improve the reliability and the security of the whole
IoT infrastructure [9], [10]. However, how to meet the tight
resource constraints of the end-nodes while preserving quality-
of-service still represents a considerable concern. Despite the
recent improvements in monocular techniques introduced with
deep Convolutional Neural Networks (CNNs), the problem of
estimating depth from a single image is ill-posed and hence
usually requires huge computational power to bridge the gap
with the accuracy of geometry-aware methods, like stereo
[11]. Prior works, e.g., [12], have relied on high-performance
GPUs/CPUs indeed, which are expensive and too power-
hungry for mobile/IoT applications, whereas algorithmic level
optimizations offer a viable path to squeeze the requirements.

The optimization of CNNs for low-power embedded de-
vices is a well-established problem in many application con-
texts [13], [14], [15], [16], [17]. The recent literature has
proposed several solutions, from the designing of hardware-
friendly neural architectures tailored for a specific task, depth
sensing in this case [18], to model-agnostic compression strate-
gies, like weight pruning [19], or novel resource management
policies for efficient computing [20]. Obviously, a combination
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of them helps to reach higher efficiency. For instance, in our
previous work [21], we demonstrated that the adoption of
the small architecture named Pyramidal Depth Convolutional
Neural Network (PyD-Net) [18], together with algorithmic
and code optimizations, do enable an efficient processing of
monocular depth estimation on low-cost, off-the-shelf, and
low-power CPUs. Thanks to its compact topology and the
adoption of reduced arithmetic precision to 8-bit, the weights
of PyD-Net can fit into 1.9MB, achieving ×66.5 memory
reduction compared to other state-of-the-art monocular tech-
niques [12]. Still, there is room for improvements as static
methods, like those aforementioned, have intrinsic limitations
impeding the additional savings needed to enable monocular
depth perception on tiny IoT devices.

With this work, we aim to explore the margins offered by
dynamic strategies. Leveraging the adaptive error resilience
of many applications, the accuracy of depth maps can be
gracefully degraded for the sake of energy efficiency, de-
pending on the specific task, the external context, or the
amount of resources available at that time, still preserving
high quality-of-service. A less accurate depth estimate could
be sufficient when performing simple tasks, such as object
and people counting, coarse-grain pose estimation, action
recognition, vehicle detection, and, more in general, when
the scene analyzed is “easy” and requires less effort to be
understood. For instance, a robot in a free environment with
few obstacles could exploit less accurate depth estimation to
achieve a faster response, not least a longer battery lifetime
and a longer mission time. However, a more accurate depth
estimate could still be required for a more precise 3D scene
reconstruction or when the scene is cluttered and more “com-
plex”. Beyond these context-driven speculations, one should
consider other applications running in the background may
reduce the resources available, forcing the depth estimation to
be run under more stringent latency and energy constraints in
certain intervals of time. This strategy, referred to as ”energy-
quality scaling” in the field of approximate-computing, has
been already adopted for image classification tasks based on
CNNs [22], but not, or very marginally, for monocular depth
estimation.

As the main contribution, we introduce the design and
characterization of an efficient dynamic option for energy-
quality scalable depth sensing. The implementation encom-
passes the choice of the underlying CNN model that has to be
enhanced with dynamic features. The adoption of PyD-Net as
the backbone is a natural option here. As will be presented in
the following sections, its modular structure can be re-scaled
at run time to infer depth maps at different resolutions, hence
different quality, skipping the most demanding computations
when running at lower output scales. Moreover, its tiny mem-
ory footprint enables the storage of multiple instances, that
is, weight-sets at different arithmetic precision, which can be
dynamically selected at run time to further extend the energy-
accuracy trade-off. Therefore, borrowing the solution proposed
in our previous work [21], we hereby elaborate on an energy-
quality scalable system named EQPyD-Net.

The dynamic energy-quality trade-off attainable with
EQPyD-Net is the result of several optimizations orchestrated

across the design and deployment stack, which contribute to
the novelty of our proposal compared with [21] and can be
summarized as follows:
• at training-time, the integration of a multi-scale self-

supervised training procedure that enables to infer high-
quality depth maps at five different resolutions without
any architectural modification;

• at optimization-time, the use of a hardware-friendly
model conversion to fixed-point arithmetic at different
precision options, i.e., 16- and 8-bit;

• at compilation-time, the adoption of energy-quality pro-
portional neural kernels for multi-precision fixed-point
matrix multiplication.

All these features lead to an adaptive solution that ensures
high accuracy with minimal memory footprint. A thorough
assessment conducted on the ARM Cortex-A53 CPU using
the KITTI dataset as benchmark demonstrates EQPyD-Net can
meet the specifications of a wider spectrum of applications.
Specifically, it extends the Pareto front in the energy-quality
space enabling five operating points, from a maximum ac-
curacy of 82.2% with 0.4Frame/J, up to 92.6% of energy
savings with 6.1% of accuracy loss. With just 5.2MB for the
weights and 38.3MB (worst-case) for the processing, EQPyD-
Net represents a promising solution for the IoT.

The rest of the paper is organized as follows. Section II sum-
marizes the main advancements in training CNNs for monoc-
ular depth estimation, the standard optimization practices to
deploy depth estimation networks on embedded systems, and
the existing approaches to implement energy-quality scaling
in CNNs. Section III describes the PyD-Net architecture and
the training pipeline integrating a multi-scale loss function.
Section IV focuses on post-training optimization to translate
the network into efficient code tailored for the target device,
presenting the implementation of the adopted multi-precision
neural kernels. Section V presents the collected results, with
an extensive evaluation of the different design knobs on both
functional and extra-functional metrics. Section VI outlines
the scope of the proposed approach, recalling the inherent
limitations of monocular depth perception. Finally, Section VII
closes this paper, discussing the main findings of our study.

II. RELATED WORKS

A. Self-Supervised Monocular Depth Estimation

Early approaches for depth estimation relying on deep learn-
ing make use of supervision [23], [24], [25] achieving unpaired
accuracy compared to previous works in the field [26], [27],
[28]. Nonetheless, collecting large amounts of labeled images
is extremely costly and often requires additional sensors and
hand-made post-processing.

To overcome the need for ground truth data, CNNs can be
trained by casting depth estimation as an image reconstruction
problem, thus in a self-supervised manner. Two (not mutu-
ally exclusive) categories of approaches follow this direction,
respectively using monocular sequences or stereo pairs. We
followed the second approach, namely supervision from stereo
pairs, as pioneered by [29] and [12] and improved by many
other methods, simulating a trinocular setup [30], jointly



3

Table I: Overview of the state-of-the-art CNNs for monocular
depth estimation on embedded systems.

CNN Training Loss EQ-Scaling

FastDepth [19] Supervised 7
EDA [41] Supervised 7
PyD-Net Self-supervised 3

learning for semantic [31], using higher resolution [32], GANs
[33], sparse inputs from visual odometry [34] or uncertainty
estimation [35]. Stronger supervision can be obtained through
noisy annotations from the raw output of a LiDAR sensor [36]
or traditional stereo algorithms [37], [38], [39].

The most recent work focusing on self-supervision from
stereo images is MonoDepth2 [40], introducing loss compu-
tation of multi-scale predictions brought at full-resolution and
allowing for higher accuracy. The novel training procedure we
propose for EQPyD-Net in this paper is inspired by this strat-
egy. However, Monodepth2 uses low-resolution predictions
only during training and not during inference. In this work, we
demonstrate that EQPyD-Net can infer low-resolution maps
(up to 1/32 of the input) while keeping accuracy high.

B. Monocular Depth Estimation on Embedded Systems

Extensive research was conducted to develop deep learning
techniques for depth estimation on GPUs, but only a few
works dealt with the implementation and porting of such
techniques onto embedded platforms. The shift from power-
hungry to resource-limited computing systems poses several
concerns, calling for new solutions where hardware-related
metrics play as concurrent variables to optimize together with
the accuracy. A comprehensive overview of state-of-the-art
solutions designed for low-power applications is reported in
Table I.

To meet the stringent requirements of embedded systems,
FastDepth [19] and EDA [41] propose novel compact archi-
tectures tailored for mobile GPUs, like the NVIDIA Jetson
TX2 board powered by a mobile version of the Pascal archi-
tecture. These methods rely on a standard supervised training
procedure that requires a full annotated dataset, often not
available in many real-life applications. The targets of this
work are CPU-based devices with much lower power budgets.
Compared to the aforementioned works, PyD-Net combines
two unique advantages. First, it makes use of a self-supervised
training procedure, which enables to cut the implementation
costs. Second, its multi-scale architecture can be easily adapted
to different resource budgets, offering the opportunity to reach
a better energy-quality trade-off at run time without further
modifications of the network topology. To show how to effi-
ciently implement these features leveraging a self-supervised
training procedure is one of the main contributions of this
work.

C. Energy-Quality Scaling for ConvNets

Dynamic energy-quality scaling is enabled by tunable knobs
deployed at the many levels of the computing stack, from

circuit [42] to architecture [43] and algorithm [44], and in all
system components, such as processing [42], memory [45],
and I/O sub-systems [46]. Additional orthogonal knobs could
arise from the specific application domain, as in the case of
CNNs, where tasks show high resilience to approximation.
The resilience of a CNN is the underlying principle upon
which standard compression techniques are built up [47], e.g.
pruning and quantization. The extension of this principle to
dynamic strategies for run-time scaling has been investigated
in several studies, although mainly applied to simple tasks like
image classification. This section reviews the most common
approaches.

Resolution scaling. It plays with the spatial resolution of
the intermediate features processed by the network layers.
High-resolution features may contain fine-grain details, which
enrich the expressive power of the CNN, improving its pre-
diction accuracy. However, higher resolution features need
more operations to be processed; therefore, it is paramount
to properly tune the resolution depending on the actual con-
straints. This can be achieved by scaling the resolution of
the input images fed to the network [48] or producing multi-
scale features that are processed by independent branches [49].
PyD-Net follows the latter strategy, in which the selective
processing of the proper branches enables balancing energy
and quality.

Width Modulation. These methods cut entire convolutional
filters, whose number is scaled across all the layers according
to a predefined ratio, called the width-multiplier [48]. More
advanced solutions share the weights across the different
configurations (i.e., at different values of the width-multiplier),
avoiding the overhead of storing multiple weight-sets to im-
plement a dynamic scaling [50].

Layer Skipping. It is similar to width modulation, but it
operates at a coarser granularity, skipping entire convolutional
layers. Pre-trained agents drive the layer selection according to
contextual information extracted from the input features [51],
[52]. Multi-scale networks like EQPyD-Net combine resolu-
tion scaling with layer skipping. In this case, the selection of
the layers is coupled with the adopted output resolution.

Arithmetic precision. Precision scaling leverages an arith-
metic relaxation of the operations to reduce the computational
effort and to alleviate the memory bandwidth requirements.
The scaling can be performed at different granularities, e.g.,
per-layer or per-network. The former assigns a different arith-
metic precision to each layer [21], [53], [54], the latter operates
the same scaling on the whole network. The second option is
preferred for general-purpose cores, such as those targeted in
this work, thanks to its simple implementation.

Besides resolution scaling, our optimization flow also in-
cludes a precision reduction strategy tailored to the multi-
precision parallel arithmetic units available in the Cortex-A
CPU. An in-depth analysis conducted in Section V validates
our choices, showing that precision scaling further extends the
achievable savings.

III. DESIGN AND TRAINING FLOW FOR EQPYD-NET

The proposed implementation of energy-quality scalable
depth estimation encompasses the use of a pyramidal CNN and
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a self-supervised multi-scale training that enables the dynamic
scaling mechanism. The next two subsections aim to describe
these two ingredients.

A. The Underlying Pyramidal Network Architecture

Figure 1 depicts an abstract view of the underlying pyra-
midal CNN architecture adopted in this work. Inspired by
the most popular networks for vision applications, it presents
an encoder-decoder architecture. Such design comes from the
need to extract high-level low-resolution features (encoder)
and then to refine those features to generate high-resolution
and dense disparity maps (decoder). The key differentiating
factors from other solutions are the extremely lightweight
pyramidal encoder and the modular architecture of the de-
coder composed of multiple branches. The pyramidal encoder,
halving the resolution of the feature maps at each level,
allows each decoder branch to operate at a different spatial
resolution. Therefore, the decoders on the top operate on fine-
grain details, while the decoders on the bottom capture the
general context of the input image. Moreover, a deconvolution
layer acts as a bridge between the different decoder branches
by upsampling the disparity map obtained at a lower level
before feeding it as input to the higher branch.

The encoder has a lightweight architecture that enables
a reduction of the number of weights (hence memory) and
the number of MACs operations (hence latency). Specifically,
two 3 × 3 convolutional kernels compose each level of the
encoder (from H to Sf), the former having a stride 2 for
down-sampling, the latter a stride 1 for feature extraction. The
number of filters increases when moving from the top to the
bottom: 16, 32, 64, 96, 128, 192. For comparison with the
proposed encoder, Table II reports the MACs and the number
of parameters of other common encoder architectures: VGG16,
ResNet-18, and MobileNet v2. PyD-Net is at least 3.4x less
space-hungry and 1.93x more time-efficient.

The decoder is composed of six branches, therefore pro-
ducing depth maps at six different resolutions, from 1

2 (H)
to 1

64 (Sf) of the input resolution. Results from decoder
branches at half H, quarter Q, eighth E, sixteenth S, thirty-
second T resolution constitute the five possible outputs of
the network. All decoder branches show the same number
of filters and preserve the spatial resolution of the input
maps. In particular, a decoder branch consists of four 3 × 3
convolutional layers having 96, 64, 32, and 8 filters, with a
leaky ReLU as the activation function. Each decoder branch
processes the concatenation of the upsampled depth map
from the previous level with the pyramidal features of the
same level. Since each branch consumes feature maps at a
different resolution, the bottom ones require fewer operations
and a smaller RAM footprint than the top ones. However, this
peculiar combination of a lightweight encoder with decoder
branches that require a computational effort proportional to
the quality demand makes PyD-Net an excellent candidate for
a scalable Energy-Quality system. Indeed, the computational
burden of the high-resolution decoders is paid only in case
of high output resolution. On the other hand, the encoder is
always executed regardless of the final resolution; therefore, it
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3x3 Conv
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Transposed
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Q-Decoder
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Figure 1: Schematic view of the PyD-Net architecture. Its
multi-scale architecture enables to infer depth maps at different
resolutions: H stands for 1

2 of the input resolution, Q for 1
4 , E

for 1
8 , S for 1

16 , T for 1
32 .

Table II: Number of parameters (# Params) and multi-
ply&accumulate operations (# MACs) of the most common
encoders and PyD-net encoder.

Network # Params (M) # MACs (G)

VGG16 138.36 40.37
ResNet-18 11.69 4.76
MobileNet v2 3.50 0.85
PyD-net Encoder 1.02 0.44

has been designed to be extremely fast and small. Furthermore,
even in the most energy-hungry configuration, PyD-Net is still
more efficient than other traditional multi-resolution networks
like Monodepth [12], which also shows poor scalability [18].

B. The Training Procedure

We follow state-of-the-art methodologies to train our net-
work in a self-supervised manner assuming that stereo data is
available during training. In particular, we train our model to
minimize different losses consisting of appearance, smooth-
ness, and a consistency term as done in [12].

Single-scale loss. For a depth map dl estimated from an
input image I l, the loss function is obtained as a weighted
sum of three main terms:

Ld
l

= αapLd
l

ap + αdsLd
l

ds + αlrLd
l

lr (1)

where Ldlap is an image appearence term, Ldlds is a smooth-
ness term, and Ldllr represents a left-right consistency term.
Here, αap, αds, and αlr represent the hyper-parameters used
for controlling the importance of the each optimization term.
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Original

H Q E S T

This Work

Figure 2: Depth estimated at different output resolutions for an input taken from the KITTI dataset. On top [18], on the bottom
this work.

Appearance term. The first term measures the photometric
difference between the input image I l and the reprojected
one Ĩ l obtained by warping the corresponding right image
Ir, available during training, according to the estimated dl:

Ld
l

ap = α
1− SSIM(I l, Ĩ l)

2
+ (1− α)||I l − Ĩ l|| (2)

where SSIM represents the Structural Similarity Index
Measure [55] adopted to measure the similarity between the
two images in combination with a standard `1 loss.

Smoothness term. To discourage large discontinuities in
the estimated depth map, this term penalizes the difference
between neighboring pixels in dl, except where strong edges
occurs in I l:

Ld
l

ds = |δxdl|e−||δxI
l|| + |δydl|e−||δyI

l|| (3)

where δx(.) and δy(.) are gradients in horizontal and vertical
direction, respectively.

Left-right consistency term. As in [12], we train our
network to estimate a second output dr aligned with Ir and
enforce consistency between dl and reconstructed d̃l obtained
by warping dr according to dl:

Ld
l

lr = |dl − d̃l| (4)

The three loss term can be computed over dr as well, by
replacing dl, I l, Ĩ l with dr, Ir, Ĩr. Accordingly, the single-
scale loss is obtained by summing the three terms computed
over both dl and dr.

Multi-scale loss. To provide supervision to each decoder
directly, a multi-scale loss function is obtained by summing up
the loss signals computed at each scale s. This is traditionally
achieved by downsampling I l, Ir at each scale to compute
Lds [12], [18]. Unfortunately, this produces sub-optimal re-
sults in terms of final accuracy as well as poor energy-quality
scalability, in particular limiting to 1

8 of the original resolution
the lowest scale at which meaningful results can be predicted
by PyD-Net, as we will see next in our experiments. For this
reason, we follow the multi-scale approach revised in [40]
and compute each single-scale loss signal at full resolution
by upsampling each estimated depth ds at scale s to the full
resolution map d ↑s. Then, the final loss signal L is obtained
as the sum of each single-scale loss Ld↑s

L =
∑

s∈[ 12 ,...,
1
32 ]

Ld↑s (5)

Fig. 2 gives a preliminary comparison between results ob-
tained respectively by the original training adopted in [18]

for PyD-Net and the new one deployed in this work for
EQPyD-Net, highlighting that the former can only provide
meaningful estimations down to 1

8 of the input resolution while
EQPyD-Net reaches down to 1

32 while still allowing for scene
understanding.

IV. OPTIMIZATION

The efficient deployment of CNNs on low-power embedded
systems requires careful model optimization to deal with the
limited available resources. In this regard, quantization to
fixed-point arithmetic is a de-facto standard since it brings
several advantages: (i) reduces the memory footprint of the
model; (ii) accelerates performance thanks to better utilization
of caches and memory bandwidth. Lower precision could
potentially bring larger savings at the cost of lower quality.
However, quantization alone is not enough as actual savings
can be achieved only through a proper implementation of
fixed-point convolutions in the hosting hardware [56], [57],
[58]. This implementation requires a smart orchestration of
the processing units to efficiently exploit the higher throughput
brought by bit-width scaling.

To achieve this goal, we developed a new set of integer
kernels (Q.Neural-Kernels) optimized for 16- and 8-bit infer-
ence. These kernels are tailored to the Cortex-A architecture
to maximize the utilization of the single-instruction multiple-
data (SIMD) unit embedded in modern ARM CPUs. Thanks to
dedicated code optimization, the proposed kernels guarantee
that the energy needed for inference is proportional to the
bit-width adopted, allowing energy-quality scaling through
precision reduction.

The Q.Neural Kernels were integrated into the optimization
flow illustrated in Fig. 3. The flow involves two main stages:
(i) the front-end, which takes as input the PyD-Net trained
with 32-floating-point (FP32 in the figure) and returns the
fixed-point models (16- and 8-bit); (ii) the back-end, which
translates the high-level description of network in low-level
code that can efficiently run on the target hardware.

A. Model Optimization: Fixed-Point Quantization

Quantization to fixed-point arithmetic encompasses the def-
inition of an affine mapping of integers q (represented with 16
or 8 bits) to floating-point numbers r:

r = K · (q − q0) (6)

where K is the scale factor, and q0 is the quantized value
corresponding to the floating-point value 0.
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Figure 3: Optimization flow for EQPyD-Net quantization and
deployment on ARM Cortex-A.

In this work, we resorted to a linear quantization based
on symmetric binary scaling: q0 is fixed to 0 (symmetric
scaling); the scale factor K is constrained to a power of 2,
i.e., K = 2−p, where p is the position of the radix-point
in q (binary scaling). In the adopted scheme, all the layers
share the same bit-width (16-bit or 8-bit), while the radix-
point is assigned layer by layer to match the different value
distributions across the network. This design choice allows
for a proper organization of the low-level code and efficient
management of the hardware resources. A greedy heuristic
procedure identifies for each layer the radix-point position
that minimizes the mean squared error between the original
floating-point values and the quantized ones.

Although other quantization strategies, e.g., asymmetric
scaling [59], may achieve higher accuracy at the cost of
additional computational stages, in the case of EQPyD-Net,
a linear symmetric binary scaling quantization reaches the
same accuracy of floating-point, making other more complex
schemes irrelevant.

Working with fixed-point CNNs needs proper tools that
emulate integer arithmetic units during the training and vali-
dation stages. To this purpose, we built an in-house emulation
engine that leverages the acceleration of GP-GPUs. The engine
integrates the fake-quantization method introduced in [59].
During inference, a software wrapper converts activations
and weights (stored in fixed-point) to the 32-bit floating-
point. Once processed, data are converted back in fixed-point
and adjusted with auxiliary transformations (e.g., saturation,
truncation, binary-shift) that replicate the behavior of the
fixed-point units of the ARMv7 core (e.g., saturation of the
accumulator register, set-up of the radix-point position).

A fine-tuning stage is operated to recover the loss introduced
by quantization. This procedure works as follows: (i) the
forward-propagation is run with fake-quantization; (ii) the
gradients are back-propagated using the straight-through es-
timator method [60] (iii) weights are kept in a floating-
point format to allow small weight updates; (iv) weights are
quantized at the end of each epoch using stochastic rounding.
Compared to standard floating-point training, the execution
time increases by 20% (from 10 to 12 min. per epoch). The
learning flow leverages knowledge distillation; the quantized
model, set as the student, is re-trained to mimic the original
floating-point network, the teacher. The training loop is driven
by a multi-scale loss function that minimizes the mean squared
error between the disparity maps inferred by the two actors
(teacher dF and student dQ) at the different output resolutions:

L =
∑

s∈[ 12 ,...,
1
32 ]

||dQ
s − dF

s||2 (7)

B. Multi-precision Neural Kernels for Energy-proportional
Inference

The common belief that fixed-point representations re-
duce energy consumption due to less complex arithmetic
is not exactly true. Indeed, the correct execution of multi-
ply&accumulate operations in fixed-point asks for additional
instructions not needed in floating-point, such as data exten-
sion and arithmetic shifts. Moreover, proper dispatching of the
operations involved is paramount to avoid under-utilization of
the local memories (register file and caches) and the execution
lanes.

The Cortex-A CPU targeted in this work hosts the NEON
Media Processing Engine, a programmable Single-Instruction
Multiple Data (SIMD) architecture that relies on multiple
arithmetic units to accelerate parallel workloads, like CNN
inference. With one single instruction, the same operation
is simultaneously executed over multiple data to obtain a
performance boost. The NEON architecture supports both
parallel floating-point and integer instructions. The register
file can be configured to host 8-, 16-, 32-, 64-, or 128-bit
data, while the integer data-path supports 8-, 16-, 32- or 64-
bit operations.

The proposed Q.Neural Kernels leverage a custom im-
plementation of the GEneral Matrix-Multiplication (GEMM)
algorithm [61], tailored to the NEON unit. In its general em-
bodiment, the GEMM-based implementation of a 2D convolu-
tion encompasses the transformation of the multi-dimensional
input tensors (activations and weights) into two-dimensional
matrices. These matrices are iteratively split into regular tiles
to maximize data-reuse across the memory hierarchy. Among
all possible tiling choices, we resorted to an output stationary
dataflow [62] (Fig. 4a), where the output matrix is divided in
tiles of shape Nx×Ny and each output pixel keeps stationary
in a dedicated register of the register file till the end of
the computations. The adopted dataflow is the most efficient
choice in fixed-point convolutions, as explained later in the
text.

The processing of each output pixel involves a sequence of
multiply&accumulate instructions. Multiple output pixels can
be computed in parallel depending on the precision adopted,
2 for 16-bit and 4 for 8-bit. A detailed example is depicted
in the schematic representation of Fig. 4b. It illustrates the
parallel calculation of two outputs C00 and C01. In general,
Cij =

∑
k Aik · Bkj , with i ∈ [0, Nx), j ∈ [0, Ny). The

example is for 16-bit fixed-point (the same holds for 8-bit,
yet with doubled parallelism). The flow is as follows:
(1) the 16-bit (8-bit) input operands, Aik and Bkj are extended
to 32-bit (16-bit) obtaining A′ik and B′kj (Fig. 4b refers to Bkj
only);
(2) the input operand A′ik is broadcasted to all arithmetic units
to exploit data-reuse, while the other input B′kj is streamed
across the units; two (four) fused multiply&accumulate (MAC)
operations are executed in parallel; the result is stored into a
64-bit (32-bit) register C ′ij ;
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Figure 4: Q.Neural-Kernel: execution flow for 16-bit fixed-point.

(3) at the end of the loop, the two (four) results are ready to be
packed and then stored in the main memory; an output process-
ing stage (highlighted in green) is in charge of the radix-point
shifting according to the desired radix-point position;
(4) the result is shrunk to the original bit-width, i.e., 16-bit
(8-bit), and eventually saturated.

The bit-extension of step (1) guarantees 32- (16-) guard-
bits for the accumulation. This operation is crucial as it avoids
overflow/underflow during accumulation. Bypassing this stage
may achieve twice the parallelism, but results are highly
inaccurate. Considering the larger bit-width of the partial
sums, the adoption of an output stationary flow is of paramount
importance, as it reduces the number of bytes moved across
the memory hierarchy.

Concerning the shape of the output tiles, we empirically
found that (Nx = 6, Ny = 4) for 16-bit and (Nx = 6, Ny =
8) for 8-bit achieve a good balance between computing and
memory intensity.

Thanks to the adopted implementation choices, the benefit
of precision scaling is twofold. First, at lower precision the
number of elements in the output tile doubles, halving the data
movement across the memory hierarchy, therefore reducing
memory energy. Second, the number of multiply&accumulate
operations processed by a single instruction doubles from 2
(16-bit) to 4 (8-bit), enabling faster processing hence improved
energy efficiency.

As a side note, we point out that the parallelism of floating-
point is 4. Contrary to what is thought, floating-point requires
fewer operations since the additional output stage (steps (3)
and (4) in Fig. 4b) is not needed. Despite that, the performance
of fixed-point CNNs improves over floating-point. This gain
is due to the following factors: (i) enhanced utilization of
memory bandwidth; (ii) smaller memory footprint for storing
weights and partial results, hence less RAM usage; (iii) higher
hit-rate in caches. This analysis is confirmed by experimental
evidence discussed next.

V. EXPERIMENTAL RESULTS

In this section, we describe the set-up for the functional
evaluation and for the experiments run on-board. The collected
results aim at assessing the performance of EQPyD-Net, ac-
cording to several figures-of-merit, both functional (i.e., error
and accuracy metrics) and extra-functional, namely, energy
consumption and memory footprint. An extensive analysis is
reported at the end of the section with the intent of dissecting
the energy-quality scalability of EQPyD-Net enabled by the
two knobs: precision and network scaling.

A. Training set-up

We extensively evaluate the energy-quality scalability of
EQPyD-Net on the KITTI raw dataset [63], a widely adopted
dataset for depth estimation using real images. It contains
about 42K rectified stereo pairs depicting driving scenarios
(i.e., cars, roads, buildings), for a total of 61 video sequences
collected by a driving car. Besides stereo pairs, the dataset also
provides metric depth measurements obtained using a LiDAR
device mounted on top of the car. Following previous works
[23], [12], we split the dataset into two subsets, with 29 and
32 sequences respectively, sampling 697 frames from the first
split and 22600 from the second group for test and training
purposes.

We trained the network in a self-supervised manner follow-
ing the schedule described in [18] for a fair comparison with
the original PyD-Net models [18], [21]. This protocol consists
of 50 epochs of pre-training on the CityScapes dataset [64],
followed by 200 epochs on the Eigen training split. In both
cases, at each step, we processed batches of 8 images resized
to 512×256. We used Adam optimizer [65] with β1 = 0.9,
β2 = 0.999, and ε = 10−8, a learning rate of 10−4 for
the first 60% epochs, halved every 20% epochs until the
end of the training process. During training, we performed
random horizontal image flipping, random color augmentation
in terms of gamma correction, brightness modification, and
color shifting. Each augmentation has a 50 percent chance to
be applied. The values of gamma, brightness, and color shift
are sampled from a uniform distribution in [0.8,1.2], [0.5,2.0],
and [0.8,1.2] ranges respectively.

For what concerns the knowledge-distillation applied after
quantization, we fine-tuned the network for five epochs with
Adam optimizer and learning rate 1.0e−5 on the Eigen train-
ing split.

B. Evaluation

To evaluate the accuracy of depth estimation, we followed
the standard methodology [23] in computing the error metrics
(the lower the better) between the predicted and ground-truth
depth, namely, the Absolute Relative Error (Abs Rel), the
Squared Relative Error (Sq Rel), the Root Mean Squared
Error (RMSE), and the Logarithmic Root Mean Squared
Error (RMSE log). Additionally, we computed the accuracy
scores (the higher the better) αn defined as the percentage of
predicted depth values whose ratio and inverse ratio with the
ground truth is below a given threshold 1.25n. For the sake of
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Table III: Evaluation metrics. y denotes the predicted depth, y∗ the ground-truth depth. In the evaluation, only labelled pixels
are considered. Here, N represents the amount of valid pixels in the ground-truth depth map.

Notation Definition Equation

Abs Rel Absolute Relative Error 1
N

∑N
i=1

|yi−y∗i |
y∗i

Sq Rel Squared Relative Error 1
N

∑N
i=1

‖yi−y∗i ‖
2

y∗i

RMSE Root Mean Squared Error
√

1
N

∑N
i=1 ‖yi − y∗i ‖

2

RMSE log Logarithmic Root Mean Squared Error
√

1
N

∑N
i=1 ‖log yi − log y∗i ‖

2

an Prediction Accuracy % of yi s.t. max
(
yi
y∗i
,
y∗i
yi

)
< 1.25n, n ∈ {1, 2, 3}

clarity, we summarized the detailed definition of each metric
in Table III.

C. Hardware and tools

We adopted the Raspberry Pi 3B (RPI3B) as test-bench
platform to evaluate the energy efficiency of the different
configurations of EQPyD-Net. The RPI3B is a commercial
off-the-shelf embedded board equipped with the BCM2837
System-on-Chip, integrating a quad-core ARM Cortex-A53
CPU [66] SoC by Broadcom. The system can run at a
maximum clock frequency of 1.2GHz and embeds 1GB
of DRAM. The Q.Neural Kernels (see Section IV-B) were
integrated into the ARM Compute Library (ACL) [67] version
18.05, which collects optimized floating-point kernels used
as baselines in our analysis. The code was cross-compiled
with gcc-linaro toolchain version 6.4.0-2018.05. We adopted
Ubuntu Mate 16.04 (32-bit) as the operating system. We
collected the performance statistics of the inference stages at
the maximum operating frequency with the Google benchmark
suite, version 1.5.0 [68].

D. Functional Metrics

Table IV reports a quantitative assessment of EQPyD-Net
under the different error measures (Abs Rel, Sq Rel, RMSE,
RMSE log) and accuracy scores (a1, a2, a3), assuming a 80m
cap distance [12]. The table is organized in five sections, one
for each resolution (H, Q, E, S, T); each of them includes
different data types (32-bit floating-point, 16- or 8-bit fixed-
point, referred to as FP32, FX16, and FX8) with optional fine-
tuning (-ft) carried out after quantization. At each resolution
we also report the metrics measured on the original version
of PyD-Net [21] (first row of each section), which is trained
with a single-scale loss.

The assessment highlights the improvement brought by the
proposed multi-scale loss. Scaling down to S, EQPyD-Net
outperforms the original version at H resolution in all metrics,
obtaining better results with much fewer resources. Moving to
T, it still achieves competitive accuracy (a1 = 77.8%) with
only 4.3% loss related to H, whereas, in the original version,
the accuracy falls down to 45.6%, which is an unpractical
value for most applications. The benefits can be perceived also
from the qualitative comparison reported in Fig. 2. Moreover,
we observed that the Q configuration yields better results
than H for all metrics. It is, therefore, possible to remove
the H-decoder from the network at deployment time, bringing
substantial energy and memory savings, as will be detailed
later in the text.

Table IV: Error metrics and accuracy scores measured on the
KITTI raw data using the Eigen split [23] at different scales
and precision options. For each resolution, the first row refers
to PyD-Net trained with the single-scale loss [21]. The best
results at each resolution are highlighted in bold, while the
absolute bests in red.

Lower is better Higher is better
Config. Abs Rel Sq Rel RMSE RMSE log a1 a2 a3
H@FP32 [21] 0.146 1.298 5.859 0.241 80.2% 92.7% 96.8%
H@FP32 0.135 1.154 5.550 0.234 82.1% 93.2% 96.9%
H@FX16 0.136 1.157 5.556 0.235 82.1% 93.2% 96.9%
H@FX8 0.200 1.820 6.797 0.329 69.8% 86.9% 93.2%
H@FX8-ft 0.141 1.152 5.634 0.239 80.9% 92.9% 96.9%
Q@FP32 [21] 0.149 1.350 6.128 0.246 79.5% 92.3% 96.6%
Q@FP32 0.135 1.134 5.505 0.233 82.1% 93.3% 97.0%
Q@FX16 0.135 1.136 5.506 0.233 82.2% 93.3% 97.0%
Q@FX8 0.196 1.918 6.735 0.297 72.9% 88.8% 94.6%
Q@FX8-ft 0.146 1.164 5.608 0.241 80.5% 93.0% 96.9%
E@FP32 [21] 0.162 1.699 7.141 0.266 76.8% 90.7% 95.9%
E@FP32 0.137 1.151 5.546 0.233 81.7% 93.1% 97.0%
E@FX16 0.137 1.153 5.546 0.233 81.7% 93.1% 97.0%
E@FX8 0.264 2.964 8.252 0.324 61.1% 86.8% 94.4%
E@FX8-ft 0.145 1.157 5.675 0.241 80.1% 92.8% 96.9%
S@FP32 [21] 0.221 2.768 8.960 0.347 64.3% 84.5% 92.5%
S@FP32 0.143 1.235 5.679 0.235 80.4% 92.8% 97.0%
S@FX16 0.143 1.238 5.680 0.235 80.4% 92.8% 97.0%
S@FX8 0.215 2.176 7.062 0.291 70.6% 89.0% 95.2%
S@FX8-ft 0.155 1.335 5.843 0.240 79.6% 92.7% 97.0%
T@FP32 [21] 0.416 9.184 12.384 0.502 45.6% 71.8% 84.7%
T@FP32 0.165 1.514 5.990 0.243 77.8% 92.2% 97.0%
T@FX16 0.165 1.517 5.993 0.243 77.8% 92.2% 97.0%
T@FX8 0.199 1.982 6.816 0.285 70.6% 89.1% 95.5%
T@FX8-ft 0.178 1.667 6.161 0.249 76.1% 92.1% 97.0%

Looking at the fixed-point configurations, FX16 keeps all
the metrics very close to FP32, making unnecessary further
training iterations. The picture changes at FX8, where the
accuracy drop gets substantial (the worst case is -20.6% for
a1 in E@FX8). However, fine-tuning the network helps to fill
the gap with FX16 and FP32. This can also be perceived by
observing Fig. 5 in which the 3D structure of the scene is well
preserved even at the lowest scales independently from the
adopted data type, with a slight deterioration at T resolution
only. Moreover, it can be noticed how the FX8 data after
fine-tuning achieves similar outcomes obtained using standard
FP32.

Overall, these findings demonstrate the efficiency of the
multi-scale loss at different resolutions. Together with pre-
cision reduction, the obtained configurations make EQPyD-
Net extremely appealing for energy-quality scaling in portable
devices.
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Figure 5: Depth images obtained for each value of precision and output resolution for an input taken from the KITTI dataset.
The last row illustrates depth images inferred after fine-tuning (-ft).

Table V: Quantitative evaluation of KITTI test set [63] using the split of Eigen et al. [23] with maximum depth set to 80m.

Lower is better Higher is better
Method SGM Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

DepthHints [38] X 0.096 0.710 4.393 0.185 0.890 0.962 0.981
MonoResMatch [37] X 0.096 0.673 4.351 0.184 0.890 0.961 0.981
MonoDepth [12] - 0.114 0.898 4.935 0.206 0.861 0.949 0.976
3Net [30] - 0.111 0.849 4.822 0.202 0.865 0.952 0.978
MonoDepth2 [40] - 0.109 0.873 4.960 0.209 0.864 0.948 0.975
PyD-Net [21] - 0.146 1.298 5.859 0.241 0.802 0.927 0.968
EQPyD-Net (Q@FP32) - 0.135 1.134 5.505 0.233 0.821 0.933 0.970

E. Comparison to state-of-the-art techniques

In Table V, we compare our best model Q@FP32 of
Table IV to several monocular depth strategies existing in the
literature on the Eigen’s split of the KITTI dataset. As can be
observed, the proposed training procedure applied to the orig-
inal PyD-Net further improves the depth estimation accuracy
and, thus, reduces the gap with respect to more complex self-
supervised architectures with a larger number of parameters
such as MonoDepth [12], MonoDepth2 [40], and 3Net [30].
Despite this, state-of-the-art methods leveraging other forms
of supervision based on the SGM stereo algorithm during
training, such as DepthHints [38] and MonoResMatch [37],
still achieve better depth outcomes. However, while achiev-
ing higher accuracy, these other networks are characterized
by huge computational and memory intensity, consequently
requiring to be processed on high-performance CPUs or GPUs.
On the other hand, EQPyD-Net, being extremely compact
and offering dynamic energy-quality scaling, represents an
excellent candidate for several IoT applications.

F. Energy-Quality Scaling

This section presents an extensive characterization of
EQPyD-Net in the energy-quality space, aiming to understand
and quantify the benefits of the adopted scaling knobs, namely
resolution and precision. As quality metric we selected the
a1 score, which is commonly adopted to assess the pre-
diction accuracy in the case of CNNs for monocular depth
estimation [19]. To evaluate the energy consumed during
inference, we measured the average Frame/J over 100 runs,
assuming a constant power consumption of 3.5W along the
forward pass of the inference engine. Although this is a worst-
case assumption, as the adopted scaling knobs could slightly
lower the average power consumption, the latency variations

represent the main factor in determining the energy efficiency
of a CNN on a general-purpose processor.

The first analysis deals with resolution scaling. Fig. 6
shows the energy breakdown of the different modules com-
posing EQPyD-Net. Although the pie-chart refers to the FX16
configuration, similar percentages hold for all the precision
options. The key advantage of EQPyD-Net lies in the limited
contribution (only 10.8%) of the modules that are always
executed regardless of the selected resolution (orange area).
Thanks to its lightweight pyramidal encoder, EQPyD-Net
pushes the computational efforts to those decoder branches
processed only when high quality is needed. Moreover, the
improved training procedure allows removing the H-decoder,
which is by far the most consuming block with 62.8% of
energy.

The cooperation with precision scaling further extends the
achievable savings, as depicted in Fig. 7. At each scale, the
bar-plot illustrates the energy gains (normalized to H@FP32)
achieved through fixed-point quantization. The observed trends
validate the proposed Q.Neural Kernels (see Section IV-B),
since the energy efficiency lowers with the precision. Most
importantly, FX16 always outperforms FP32 while keeping
the same level of quality. A more in-depth analysis re-
veals interesting aspects of the nature of the two knobs.
The savings achieved by resolution scaling gets lower at
smaller scales, ranging from 2.69× (H→Q at FX16) to 1.09×
(S→T at FX16), whereas the savings brought by reduced bit-
width keeps almost constant, around 1.38× (FX16→FX8-ft
at constant resolution). Indeed, precision scaling operates as
a coarse-grain knob and improves the efficiency by reducing
the complexity of all the network layers.

A more intelligible representation of this concept is reported
in the Pareto analysis of Fig. 8. The plot places each config-
uration of EQPyD-Net in the energy vs. accuracy space. The
five non-dominated points are connected by the Pareto curve
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Figure 6: Energy breakdown of different modules of EQPyD-
Net at FX16. Similar values have been observed also for FX8.
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Figure 7: Energy efficiency at different output scales and
precision configurations. Annotations indicate the relative im-
provement with respect to H@FP32 (0.141Frame/J).

(orange line). This analysis reveals that switching across high-
resolution configurations (Q, E, S) ensures significant energy
savings with limited accuracy loss. Instead, when moving
towards the lowest resolution (S→T), the accuracy degradation
gets substantial (-2.6%) with limited energy savings (-9.38%).
Conversely, precision scaling (S@FX16→S@FX8-ft) achieves
31.2% savings, yet with negligible accuracy drop (only 0.8%).

G. Memory

This subsection aims to evaluate the cost of storing the
Pareto optimal configurations of EQPyD-Net (those of Fig. 8),
enabling energy-quality scaling at run time. The overall mem-
ory footprint is the sum of two main contributions: the network
weights, stored on the flash memory and block-loaded into
RAM just before the execution, and the partial activations pro-
duced by the intermediate layers during inference. The latter
are stored on the RAM through a time-shared buffer to reduce
peak memory usage. At a given arithmetic precision, different
resolution options share the same network weights since
resolution scaling implies layer skipping (see Section III-A).
By contrast, configurations centered on different arithmetic
precisions need the availability of two separate weight-sets,
i.e., 16-bit and 8-bit. However, as depicted in the barplot of
Fig. 9a, the weights of the original PyD-Net (H@FP32) takes
7.6MB (red bar), whereas the sum of the two configurations
Q@FX16 and S@FX8-ft takes only 5.2MB (yellow and gray
bars), ensuring 44% less memory occupation.

Concerning the RAM requirements, the peak usage is
dictated by the decoder branches due to their large number
of channels (up to 96). Therefore, the RAM depends on the
selected scale, as can be inferred from Fig. 9b. Besides that,
precision scaling allows further savings with a linear reduction
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of RAM resources. Indeed, the transition S@FX16→S@FX8-
ft halves the memory utilization. In all cases, the resources
needed are limited to few tens of MBs, from 38.3MB
to 13.3MB, instead of 206.0MB required by the original
PyD-Net (H@FP32), making EQPyD-Net extremely suitable
for several embedded platforms.

VI. CURRENT LIMITATIONS

Our approach enables flexible depth estimation, effectively
allowing to trade accuracy for efficiency when deployed on
platforms with low memory and energy budget. Although the
single-camera setup required by our framework is cheap and
thus a perfect candidate for IoT applications, single-image
depth estimation remains an ill-posed problem [26], whose
limitations are intrinsically inherited by our proposal. A future
development aimed at overcoming these latter could aim to
implement a similar, flexible solution for a binocular [11] or
multi-view stereo setup.

VII. CONCLUSION

This work presented a thorough assessment of the energy-
quality trade-off achievable by EQPyD-Net for the implemen-
tation of monocular depth estimation on low-power embedded
systems. We studied the intersection of two knobs acting at
different optimization levels: (i) resolution scaling through
the design and training of a CNN for multi-scale inference;
(ii) precision scaling through network quantization and code
optimization. Experimental results collected on the Cortex-
A53 CPU validate the efficiency of the adopted strategy.
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Thanks to the design and optimization flow adopted, EQPyD-
Net offers five working points that can be selected at run
time to match different energy/quality constraints. On the
KITTI dataset, EQPyD-Net reaches an 82.2% accuracy at
0.4Frame/J or achieves 92.6% of energy reduction at the cost
of limited accuracy degradation (-6.1%). Despite its dynamic
structure, EQPyD-Net is still compact requiring only 5.2MB
for storing weights and 38.3MB (in the worst case) for
execution.
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