
28 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fast and Accurate Inference on Microcontrollers with Boosted Cooperative Convolutional Neural Networks (BC-Net) /
Mocerino, L.; Calimera, A.. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS. - ISSN
1549-8328. - 68:1(2021), pp. 77-88. [10.1109/TCSI.2020.3039116]

Original

Fast and Accurate Inference on Microcontrollers with Boosted Cooperative Convolutional Neural
Networks (BC-Net)

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCSI.2020.3039116

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2903752 since: 2021-06-01T18:32:57Z

Institute of Electrical and Electronics Engineers Inc.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, MMM 202X 2

Fast and Accurate Inference on Microcontrollers With
Boosted Cooperative Convolutional Neural Networks

(BC-Net)
Luca Mocerino, Student Member, IEEE and Andrea Calimera, Member, IEEE

Abstract—Arithmetic precision scaling is mandatory to deploy
Convolutional Neural Networks (CNNs) on resource-constrained
devices such as microcontrollers (MCUs), and quantization via
fixed-point or binarization are the most adopted techniques today.
Despite being born by the same concept of bit-width lowering,
these two strategies differ substantially each other, and hence
are often conceived and implemented separately. However, their
joint integration is feasible and, if properly implemented, can
bring to large savings and high processing efficiency. This work
elaborates on this aspect introducing a boosted collaborative
mechanism that pushes CNNs towards higher performance and
more predictive capability. Referred as BC-Net, the proposed
solution consists of a self-adaptive conditional scheme where a
lightweight binary net and an 8-bit quantized net are trained to
cooperate dynamically. Experiments conducted on four different
CNN benchmarks deployed on off-the-shelf boards powered with
the MCUs of the Cortex-M family by ARM show that BC-
Nets outperform classical quantization and binarization when
applied as separate techniques (up to 81.49% speed-up and up to
3.8% of accuracy improvement). The comparative analysis with
a previously proposed cooperative method also demonstrates BC-
Nets achieve substantial savings in terms of both performance
(+19%) and accuracy (+3.45%).

Index Terms—Edge AI, Deep Learning, Convolutional Neural
Networks, Low-power, Microcontroller, Binary.

I. INTRODUCTION

W ITH the record-breaking results achieved in the last
decade, Deep Neural Networks (DNNs) won the

challenge against other machine learning tools in tasks
of human-level complexity. Convolutional Neural Networks
(CNNs), in particular, reached the highest accuracy in several
visual computing applications, such as object classification
[1], and also proved to be effective and attainable for other
data-analytics tasks [2]. Motivated by those findings, a wide
class of Internet-of-Things (IoT) services began to use CNNs
as tool for making sense of the raw data sampled with in-
field sensors. In many real-life applications today, the data-
cycle is cloud-centric, namely, data are ceaselessly transmitted
to servers hosting CNNs trained to infer decisions that
are then sent back to the end-nodes. Despite the ease of
implementation, this IT solution shows several weaknesses [3].
First, a centralized infrastructure represents a single-point-of-
failure. Second, the communication chain is inefficient due
to latency uncertainty and energy consumption. Third, the
lack of data locality feeds user’s concerns about privacy. A

Luca Mocerino and Andrea Calimera are with the Department of Control
and Computer Engineering, Politecnico di Torino, Italy, 10129 (e-mail:
andrea.calimera@polito.it)

smarter, yet challenging alternative is offered by the emerging
edge computing paradigm: CNNs can be pushed closer to the
source of data, onto the end-nodes, breaking the dependence
from external resources. Unfortunately, the processing cores
deployed on the edge are designed for tight power budgets,
therefore too small and too slow for complex CNNs with
millions of parameters and heavy workloads. With no lack of
generality, in this work we tackle the case of edge devices
with off-the-shelf microcontroller units (MCUs) running on a
few hundred-mW power envelope, like those belonging to the
Cortex-M family designed by ARM for the IoT segment1. Such
cores count on small on-chip RAM (1 < MB), an instruction
set with few integer options (16- or 8-bit), and limited vector
extensions for parallel processing (a 2-lane Single Instruction
Multiple Data unit — SIMD — is available for some high-
end core of the family). The only option here is to shrink
down the size of the CNN model thus to meet the resource
constraints. A large body of literature reported several reduction
techniques based on algorithmic optimizations that leverage
the statistical nature of deep learning. The most of them are
static, namely operated at design time through time-invariant
knobs. For instance, a common practice is to use compact data
representations, like mini-float [4], [5] or fixed-point integers
[6], reducing the bit-width for both weights and activations.
Several works demonstrated that the quantization of a CNN,
from 32-bit floating-point to 8-bit fixed-point, has a negligible
effects on accuracy [7], [8], but enables a better usage of the
memory bandwidth since multiple data can be packed and
retrieved with a single instruction. The choice of the bitwidth is
strictly related to the parallelism of the underlying Instruction
Set Architecture (ISA). For the MCUs targeted in this work, 8-
bit is the standard [9], while uneven bit-widths not supported by
native instructions, e.g. 7-, 6-, 5-bit, may introduce an overhead
due to extra operations for packing/unpacking data in a regular
manner [8].
An extreme case of quantization is the so called binarization,
where operands, weights and/or activations, are reduced to a
single bit, leading to Binary Neural Networks (BNNs) [10],
[11]. This setting reaches the smallest memory footprint and
enables the replacement of integer multiply-and-accumulate
(MACs) with simple Boolean operators, i.e. bit-wise XNOR
and pop-count, ensuring more parallelism and high energy
efficiency. Despite the benefits on these extra-functional
metrics, BNNs are known to suffer large accuracy drop

1https://os.mbed.com/platforms

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, MMM 202X 3

compared to 8-bit fixed-point counterparts, from 2%, up to
10% and 20%, and even more depending on the CNN topology
and the training dataset [10], [11], [12].
Due to their different training methodology, quantization to
8-bit and binarization have been often applied separately.
However, they have complementary features that can be
combined for the sake of efficiency, for instance, by means
of dynamic mechanisms that exploit the functional redundancy
brought by a time-scheduled cooperation of multiple predictors.
Seminal works in this area, e.g. [13], introduced the concept of
conditional flows, where a simpler/weaker net (e.g. trained
with less parameters and less filters) is aided by a more
complex/expressive net only when its prediction is considered
unreliable, namely below a certain confidence threshold. A
more recent proposal described in [14] and referred as CoopNet
enabled for the first time a conditional fixed-point/binary flow
for CNNs on general-purpose cores. However, CoopNet, just
like its predecessors, shows an intrinsic limitation: the strong
and weak nets deployed for inference still work as separate
entities, unaware of each other. This aspect is a major source of
overhead this work aims to address.
Elaborating on the CoopNet idea, we hereby introduce Boosted
Cooperative Convolutional Neural Network (BC-Net), a novel
software-tunable CNN template based on a boosted reuse
mechanism that enables highly efficient conditional inference
with 8-bit and binary CNNs on low-power MCUs. As main
technical contributions, the paper introduces:
• a two-step training procedure for the inter-operability of

8-bit and binary models within the same architecture;
• a framework for fast deployment on MCUs that integrates

an off-line tool for centering the BC-Nets on a desired
accuracy/latency operating point.

Pre-trained CNNs mapped onto the BC-Net template reach
better performance, both in terms of accuracy and latency. The
experiments conducted on two commercial boards provided by
STMicroelectronics and powered with the ARM Cortex-M7
reveal that for three applications, i.e. image classification (IC)
on two data sets (CIFAR-10 and CIFAR-100), keyword spotting
(KW) and facial emotion recognition (FER), BC-Nets achieve
a speed-up of 81.49% and a gain of accuracy up to 3.8% w.r.t
the 8-bit model. Moreover, BC-Net improves over the earlier
CoopNet concept with a best-case speed-up of 19% and 3.45%
more accuracy.

II. BACKGROUND

A. Convolutional Neural Networks (CNNs)

CNNs are a class of deep learning inference models suited for
multi-dimensional inputs, like images and spectrograms. The
input pattern is processed by a chain of layers designed to extract
and classify the hierarchical features learned from annotated
samples during the training stages. Fig. 1-a graphically depicts
the common structure of a feed-forward CNN. The first
cell in the chain is in charge of the Features Extraction,
then the Classification cell separates the features previously
extracted delivering the actual prediction in the form of output
probability over the available classes C. Within the first cell,
there is a number of sequenced layers, the most of which

In
pu

t

Features
Extraction

Conv
Pool
Norm

Classification

FC
Softmax 1,

2
...

 C

(a) Standard block

Po
ol

A
ct

C
on

v

N
or

m

(b) BNN block

Po
ol

B
in

A
ct

B
N

or
m

B
in

C
on

v

Figure 1: Architecture of a CNN and a typical organization of
the hidden layers, full-precision (a) and binarized (b)

are convolutional layers (Conv). A Conv layer implements
the multi-dimensional convolution between the feature maps
generated by the previous layer and its own inner filters.
The Conv layers are often interleaved by other kinds of
operators, whose number and order may differ. Among the
most used, there are Normalization layers (Norm), which
normalize the intermediate features with mean and standard
deviation enabling layer-independent training, or dropout layers
(Drop), which temporally remove some units in order to avoid
overfitting during training. The activation layers (Act) introduce
non-linearity by means of point-wise functions, like Rectified
Linear Unit (ReLU) or hyperbolic tangent (tanh), whereas the
pooling layers (Pool) operate the re-scaling of the intermediate
map via max or average down-sampling. The classification cell
is typically made by fully connected layers (FC), often one or
two, that implement the linear separation in the feature space
and produce the logits. The latter are finally processed through
a Softmax operator that calculates the probability that the given
input does belong to a certain class.

B. Quantization

While the training stage of a CNN model is usually run with
single-precision floating-point arithmetic (FP32), several works
[6], [15] demonstrated that an inference stage using integer
representations with a reduced bit-width (FX) can retain the
same accuracy of FP32.
As stated in the introduction, fixed-point quantization is a must
do stage to deploy CNNs into low-power MCUs. Squeezing
the parameters to a lower parallelism ensures a theoretic
reduction of the memory footprint proportional to the number
of dropped bits. Even more important, it enables an efficient
use of parallel instructions for reading/writing and processing
the convolutional layers. Considering general-purpose cores, a
reduction below the 8-bit mark, e.g. in the range [2, 7], not
only introduces additional quality loss [7], but also complicates
the resource management due to irregular memory layouts. An
efficient management of sub-types claims for custom operators
and memory architecture indeed, which are not available on
low-end cores due to area/power constraints. For such reason,
8-bit is taken as standard.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, MMM 202X 4

Many previous works presented several quantization schemes.
Even if a detailed review is out of the scope of this work, we
provide a compact taxonomy to frame our solution. A uniform
FP32-to-FX conversion makes use of a fixed quantization step
for all the parameters [16]. The quantization range is said to
be symmetric or asymmetric if centered or shifted with respect
to zero. On the other hand, non-uniform schemes split the
range into uneven quantization intervals using a non-linear
function (e.g logarithm) [17] or a hash function [18]. As a
rule of thumb, non-uniform and uniform/asymmetric schemes
achieve higher accuracy as they ensure a better fitting of the
original data, however they call for heavy run-time software
routines or custom hardware [17]. Instead, uniform/symmetric
schemes are simpler as they can be implemented using add-
shift integer operators; for this reason, they are more suited for
resource-bounded cores with a limited instruction set. To notice
that all these quantization schemes can be applied at different
granularity, e.g. on the whole network, layer-wise, or filter-by-
filter; the finer the granularity, the higher the quality of result, yet
with performance overhead.
In this work we resorted to the q-bit (q = 8) fixed-point
quantization proposed in [6], which is a uniform/symmetric
scheme with a power-of-two per-layer radix-point scaling.
This choice is compliant with the optimized kernels included
in CMSIS-NN [9] library developed by ARM and used for
code porting. From an arithmetic viewpoint, the quantization
function σ(p), with p as the floating-point value to be quantized,
is formally defined as follows:

σ(p) = clip[−1,1)

(
round(p · 2q−1)

2q−1

)
(1)

where clip[x,y)(p) = max(x,min(y, p)).
The resulting convolution between the input feature map x ∈
Rch×win×hin and the local weights w ∈ Rch×kw×kh is as
follows:

x ∗ w = 2−2(q−1)
∑
i∈Ch

Xi ·Wi (2)

with Ch as the number of channels, W and X the quantized
version of the full precision weights and activations.

C. Binarized Neural Networks

Several works proposed extreme quantization to 1-bit for
weights and/or feature maps. Courbariaux et. al presented a
CNN with binary weights −1 and 1, without altering the
precision of the feature maps which are kept to full precision
[19]. Later, the same authors extended the binarization to
feature maps adopting the sign as activation function [10];
this is the first example of Binarized Neural Network (BNNs)
where all the floating-point operators are replaced by Boolean
XNOR and pop-count (i.e. 1’s counting). Such aggressive
approximation comes at the cost of severe accuracy loss
(∼ 29% on ImageNet [20]). Nonetheless, the request for high
processing efficiency and compact memory footprint motivated
the research of new training algorithms exploiting mixed
representations. Among the most effective approaches, there
are those with extended feature maps representation (≥ 2 bit)
and/or full-precision scaling factors for weights and/or feature

maps. Zhou et al. [21] proposed a generalization enabling
multi-bits representation for weights, feature maps and gradient
propagation. Finally, the XNOR-Net shown in [11] achieved
the state-of-the-art introducing a full-precision scaling factor
for weights and activations. In the same paper, the authors
describes a normalization layer to regularize the activations and
stabilize the training. These features contributed to enhancing
the representational capability of the earliest binary nets: 16.3%
and 21.4% more accuracy w.r.t [19] and [10] on the ImageNet
dataset.

D. BNN processing

In this work we borrowed from [11] the binary XNOR-Net
template (BNN hereafter). Fig. 1-b depicts its basic structure,
where the suffix Bin denotes the binarized layers. A comparison
to classical fixed-point CNNs (Fig 1-a) highlights the layer
re-ordering adopted in BNN. The feature maps normalization
(BNorm) done before binarization (BinAct) and convolution
(BinConv) has proven to have beneficial effects for the accuracy.
As a further optimization, the normalization and binarization
layers can be fused for computational efficiency.
From a mathematical viewpoint, a generic feature map x ∈
Rch×win×hin is binarized to X as follows:

X = BinAct0,1(x) =

1x ≥ c

0x < c
(3)

where the parameter c = µ − β/γ
√
σ2 + ε includes all batch

normalization parameters: variance σ2, mean µ, scale γ,
shift factor β, and ε for numerical stability. Moreover, c is
constant at inference time and is represented with 16-bit in our
implementation. The weights w ∈ Rch×kw×kh are binarized
off-line with the sign function (W = sign(x)). Given the input
feature X and the weights W in binary form, their convolution is
approximated as follows:

x ∗ w ≈ popcount (X xnor W) · α (4)

whereα = 1
n ‖w‖l1 is the scaling factor for weights represented

with 16-bit. The original paper [11] introduced an additional
re-scaling factor K for the feature maps which is computed
on-line as the average value for each feature map channel,
namely, adding a special average pooling layer. However, we
empirically found that such layer can be dropped achieving
substantial speed-up during inference and training at the cost of
minimal accuracy loss (< 0.5%).
From a hardware perspective, the processing of BNNs may
take advantage from custom accelerators, e.g. [22], [23],
that implement special functions, such as parallel XNOR,
pop-count and fast conversions for storage and mixed-
precision arithmetic. The authors of [24] demonstrated that
the performance gap between hardware accelerated and pure
software implementations is huge. A custom FPGA-based
inference engine gets 8.5× faster and 20× more energy
efficient than a general-purpose Intel core. However, these
accelerators are currently not available for off-the-shelf, low-
power general-purpose cores, which, instead, can only rely on
specialized software macros. For instance, the pop-count can

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, MMM 202X 5

be implemented with a sequence of mask-&-shift instructions.
It is expected that the next generations of cores will come
with an extended ISA to serve this purpose. Unlike CNNs with
arbitrary-precision fixed-point, BNNs have the advantage of a
regular memory layout, where binary weights can be easily
grouped in single word. Therefore, even if their processing on
general purpose cores gets slower than it could be on custom
accelerators, BNNs get faster than CNNs quantized to 8-bit and
are good candidates to implement conditional networks.

III. RELATED WORKS

A. Conditional CNNs

Inputs are not created equal. Recognizing a certain object from
a clear and pale background is easier than distinguishing
it in a crowded scenario. Despite that, classical CNNs are
designed to spend the same maximal effort on all inputs with
a large resource waste on average. To mitigate this effect,
pioneering works like [13] proposed the use of two predictors of
increasing complexity that are activated in sequence depending
on a confidence score, or score margin. More in details, a
weaker inference model is used for easy inputs, and a more
complex model for hard inputs; the latter is activated when
the confidence of the weak model is below a given safety
threshold. The main result is that, on average, the strong
model works sporadically, with average savings in terms
of latency. Similarly, the authors of [25] implemented the
same principle using multiple fixed-point nets of increasing
arithmetic precision. Handling dynamic bit-width at run-time
requires custom hardware, such as scalable-precision MAC
units and custom memory operations. On the same line,
Amiri et al. in [26] leveraged the heterogeneity of a custom
architecture to host models with different arithmetic: a single-
precision floating-point model running on a high-performance
ARM core and a binary model implemented by means of a
custom FPGA accelerator. Besides needing custom hardware
units, the technique requires an on-line training phase that
introduces a substantial overhead. Among other solutions
thought for general-purpose cores, we found a conditional
execution mechanism in [27], where a number of inference
models packed as an inference ensemble are executed according
to a confidence metric. The target here are cloud platforms with
countless resources, namely, large memory pools to store the
ensemble and lots of computational resources to execute many
full-precision models (more than eight as the best case reported
in [27]). The shortage of memory space and computing power
on the edge devices makes those approaches less appealing.
A more recent solution introduced in [14] is tailored to these
needs instead. Named CoopNet, from cooperative nets, it
promotes a simplified, yet efficient dynamic scheduling between
a fixed-point and a binary CNN made possible thanks to a
new design template. Such lightweight conditional mechanism,
together with a stable training procedure and the low hardware
requirements, led CoopNet to outperform prior arts. However,
there are still optimization margins for improvement, and the
BC-Net proposed in this work is proof.

B. Hybrid Precision

A very recent trend in CNNs quantization is the adoption
of hybrid solutions where higher precision (from 2- to 8-
bit fixed-point or 32-bit floating-point) and binary arithmetic
operate within the same network with the aim of reducing
the accuracy loss introduced by binarization. Pioneering works
like [28] proposed to replace some of the binary layers with
single-precision floating-point FP32. More precisely, the most
error-resilient layers are taken in a binary format, whereas
the remaining ones are kept to full-precision. A finer hybrid
quantization mechanism is also described in [29], where authors
introduced the intra-layer, filter-level hybrid precision, enabling
the coexistence of binary and high precision weights with
the same layer. The idea was extended to more sophisticated
CNNs (e.g. ResNet) and also combined with other compression
strategies, like the width-multiplier expansion. Even further,
[30] elaborated on the optimal per-layer precision assignment
problem, introducing a more sophisticated dynamic activation
functions. To notice that all these methods are conceived
as static, time-invariant techniques not able to adapt to the
complexity of data. Moreover, they offer a practical solution
to compress the model size, but can reach speed-up only when
ported to custom hardware units. In fact, for the same reasons
discussed in the previous sections, arbitrary bitwidth scaling get
slower than 8-bit [31], [32]. It is not a coincidence that most of
the those prior works make use of other proxies (e.g. FLOPs) to
assess performance [28], [29].

IV. BC-NET

A. Concept and Architecture

We introduce BC-Net using as reference the cooperative
template proposed in [14]. The latter is built starting from a
8-bit (INT8 for short) and a binary model (BNN) obtained from
the original floating-point (FP32) via fixed-point quantization
and binarization respectively. INT8 is more accurate but large
and slow, BNN is faster and compact but less accurate. The input
is processed by the BNN at first, then, if the result satisfies a
certain confidence score it is forwarded to the output, otherwise,
the prediction is discarded and the INT8 model is called in order
to improve the quality of the result. In the worst case, the same
input is processed twice, which means the resources consumed
by BNN are wasted without making any contribution. In other
words, the BNN inference represents a computational overhead
as the valid prediction is taken from INT8.
Elaborating on this key aspect, BC-Net implements a more
efficient management of the BNN model promoting an
information recycling mechanism that gives a boost to the
final accuracy. Fig. 2 provides an abstract view of the BC-Net
architecture. It consists of the BNN and the INT8 nets controlled
by the confidence score and interfaced with a few glue layers.
There are two operating modes: the Light Mode (LM) when the
BNN prediction is evaluated as reliable and therefore used as
main output; the Full Mode (FM) when the INT8 is activated
and the resulting prediction is smartly obtained by taking into
account the result of BNN previously computed. The integration
is obtained concatenating the logits of BNN and INT8 into a
single tensor which is then fed as input to a fully-connected

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, MMM 202X 6

BNN

Lo
gi
ts

C
onfidence
Score

1,2 ... C

INT8

Lo
gi
ts

FC

1,
2

...
 C

F

T

Input
FC

So
ftm

ax B
N
N

Logits

1, 2 ... C

FC

IN
T8

FC

Logits

1, 2 ... C

CONCAT

Logits

BN
N

Figure 2: BC-Net Architecture (left). On the right two processing cases: Light Mode (LM) (left), Full Mode (FM) (right)

layer in charge of the final classification over the C classes.
Intuitively, the information extracted by BNN does not get lost
as in CoopNet, but served to raise the accuracy of INT8.
The criterion adopted to balance the computing effort is
accuracy driven, namely, based on the uncertainty of the BNN
prediction. The recent literature counts a plenty of methods
to evaluate such metric, the most of which rely on Monte
Carlo sampling [33] and Bayesian methods [34] that however
require multiple inference executions, drastic topological
changes and/or unconventional training mechanisms [35].
These characteristics do contrast with the requirements of low-
power applications. This motivates our choice of a simpler,
yet reliable proxy signal, which is the Confidence Score (CS)
defined as follows:

CS = PBNN (yi|x)− PBNN (yj |x) (5)

PBNN (yc|x) is the conditional probability estimated by the
softmax layer of the BNN that a given input x belongs to a given
class c ∈ {1, 2 . . . C}; i and j refer to the indexes of the first and
second highest scored classes. A high CS means the BNN was
able to classify the given input with enough confidence, whereas
a low CS means that the two topmost scored classes get very
close to each other, which reveals high uncertainty. In this latter
case, the BC-Net switches from LM to FM mode.
A key variable to consider for a safe control policy is the
Confidence Threshold (CT), that is the value below which the
FM mode is activated. To notice that the CT can be used as a
dynamic knob to reach different accuracy-latency trade-off.

B. Training

Training a BC-Net model requires a two-step procedure: (i) the
training of the BNN model, (ii) the training of the INT8 model
in FM mode, namely, considering the BNN results as part of the
input domain. During the first step, the BNN is trained stand-
alone using a standard binarization method. In this work we
opted for that presented in [11] as introduced in Section II-C. To
be noted that the first and last layers of the BNN model are kept
full-precision, i.e. 8-bit, as also suggested by references in the
literature [19], [10], [11]. Concerning the second step, the BNN
weights previously learned at step one are frozen, while the

remaining parts of the BC-Net architecture, namely the INT8
model and the glue layers, are first trained using a standard
back-propagation algorithm with floating-point arithmetic, and
then projected in the integer domain (8-bit) via quantization; for
such purpose we used the method proposed in [6] as introduced
in Section II-B.

C. Confidence Threshold Estimation

Once BC-Net is trained, a key aspect is the setting of the
threshold CT as it affects the accuracy-latency trade-off: the
higher the CT , the higher the activation frequency of the
FM mode, which in turn leads to higher accuracy but slower
inference. Providing users with a simulation-free model for both
accuracy and latency as function of the CT is of paramount
importance to accelerate the deployment of BC-Nets, and
thus to reach the desired trade-off according to the design
specifications. To this end, we developed a characterization
framework, named Static Threshold Estimation (STE) tool and
shown in Fig. 3. Before proceeding with the description of the
tool, it is important to specify the formalism we adopted to
distinguish the dataset used for the training of the BC-Net and
that used to train/test the two regressors: the prefix Model (M) is
for BC-Net model, while Regression (R) is for the regressors.
The STE pipeline takes as input the BC-Net and the model test
set (MTS) which is made up of samples not used during the
training stages of BC-Net. This choice guarantees an unbiased
evaluation of BC-Net, hence a better accuracy of the regressors2.
As main outcomes, the STE produces two predictors function
of the parameter CT : (i) the accuracy of BC-Net, (ii) the
activation frequency of the FM model (NFM), as a good proxy
for latency. From such two regressors, it is possible to get
a hardware-agnostic estimation of both functional and extra-
functional metrics and hence to calibrate off-line the BC-Net.
Internally, the pipeline is organized as follows. The MTS is
split into a model calibration set (MCS) (10%) and a model
validation set (MVS) (90%) with samples equally distributed
over the available classes. Then, the BC-Net is run over the MCS

2An alternative approach would consist of collecting and labeling samples
directly from the final application and then using them to train off-line the two
regressors.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, MMM 202X 7

RTS
(CT, Y)

Tuning &
Validation

Regression model

Polynomial Grade Update

90%

MSE

RVS
(CT, Y)

10%

Model
Test set

Model
Validation

Set

Model
Calibration

Set

Regressor

Regressor

CT -> Latency

CT -> Accuracy

90%

10%

CT Y
(Acc/NFM)

0.1 72/1500
0.2 74/2500
--- ---

CT Y
(Acc/NFM)

0.1 70/1000
0.2 75/2000
--- ---

CT = {0.1, 0.2, ... 0.99}

BC-Net

Figure 3: Static Threshold Estimation (STE) Pipeline

for different value ofCT ∈ [0, 1[; we empirically found that 100
different CT values guarantee a favorable prediction accuracy
avoiding overfitting. The resulting performance metrics (i.e.
accuracy and number of times FM is activated) are collected
and stored in the vector Y . The union between CT and
Y results into the data-set to fit and validate the regression
models, in particular, the regression training set (RTS) (10%)
and the regression validation set (RVS) (90%). We opted for
a polynomial regressor trained using as objective function the
squared errorE as reported in the following equation:

E =

D∑
i=0

|p(CTi)− yi|2 (6)

where p(CTi) is the i-th prediction and yi the true label
(Accuray/NFM). The grade of the polynomials is increased
progressively, until the mean square error (MSE) gets below a
user defined threshold ε. The two predictors are made available
as main output, providing an effective tool for assessing the
control policy of the BC-Net.

D. Modeling of Extra-Functional Metrics

This section introduces the models for the assessment of the
extra-functional properties of BC-Net, latency and memory
footprint. Although our experiments have been collected on
board, a description of the different contributions that impact
the figures-of-merit can help the overall understanding, also
providing further analysis tools for the end-users.
1) Inference Latency: Given a generic BC-Net, its latency is
modeled through the following equation:

LBCNet(CT) =

LLM + LCS CS ≥ CT

LFM + LCS CS < CT
(7)

LLM = LBNN is the latency in LM mode, under which only
the BNN is run;LFM = LBNN + LINT8 + LFC is the latency
in LF mode, with LINT8 the latency spent by INT8 and LFC

the latency of the glue layers (i.e. the CONCAT+FC as can be

inferred by Fig.2); LCS is the contribution due to the evaluation
of the confidence score CS and the comparison with CT .
To notice that LCS is the time consumed for a single integer
subtraction and comparison, hence negligible. The two terms
LLM and LFM can be retrieved from on-board characterization
as they are affected by the type of the processing core. For batch
inference, Equation 7 can be generalized as follows:

LBCNet(BS,CT) =

BS∑
i=1

LBCNeti(CT) (8)

where BS is the cardinality of the batch and Li(CT) is the
latency of the i-th batch sample.
2) On-chip RAM Footprint: The processing cores targeted
by this work are those of the Cortex-M family by ARM.
Therefore, the memory footprint can be computed according
to the memory layout implemented with the neural kernels of
the CMSIS-NN library [9]. More in details, the overall RAM
occupied by a feed-forward CNN is given by the sum of three
main contributions: (i) buffer to store the model parameters,
i.e. the weights of all the layers, (ii) buffer for intermediate
input and output activations, (iii) buffer required for the im2col
routine. For BC-Net, the total memory space is the sum of the
RAM taken by the BNN model, that for the INT8 model, and
that of the fully-connected layer. TheCT parameter is one Byte,
hence negligible. It is worth noticing that both binary and 8-bit
fixed-point arithmetic are hosted on a single board with static
memory allocation. During inference they are block-loaded in
the RAM and made ready to use, therefore there is no run-time
overhead for task/context switching.

V. EXPERIMENTAL RESULTS

A. Benchmarks and Datasets

We tested and evaluated the performance of BC-Nets on three
classification tasks; Table I provides a complete overview, with
details about the topology of the CNNs deployed for each data-
set.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, MMM 202X 8

Task IC KS FER
Dataset CIFAR-10/100 [36] GSC [37] FER2013 [38]
Model CaffeNet VGG-6 GscNet FerNet

Input 3× 32× 32 1× 32× 32 1× 44× 44

M
od

el
To

po
lo

gy

Conv 32× 5× 5 Conv 32× 3× 3 Conv 32× 5× 5 Conv 32× 3× 3
MaxPool (3, 3, 2) Conv 32× 3× 3 MaxPool (3, 3, 2) Conv 32× 3× 3
Conv 32× 5× 5 MaxPool (2, 2, 2) Conv 32× 5× 5 Conv 32× 3× 3
MaxPool (3, 3, 2) Conv 64× 3× 3 MaxPool (3, 3, 2) MaxPool (2, 2, 2)
Conv 64× 5× 5 Conv 64× 3× 3 Conv 64× 5× 5 Conv 64× 3× 3
MaxPool (3, 3, 2) MaxPool (2, 2, 2) Conv 64× 5× 5 Conv 64× 3× 3
FC 1024× 10 Conv 128× 3× 3 MaxPool (3, 3, 2) Conv 64× 3× 3

Conv 128× 3× 3 FC 1024× 31 MaxPool (2, 2, 2)
MaxPool (2, 2, 2) Conv 128× 3× 3
FC 512× 100 Conv 128× 3× 3

Conv 128× 3× 3
MaxPool (2, 2, 2)
FC 128× 7

Table I: Benchmark overview. Convolutional layers with shape (cho × kh × kw), fully-connected layers with shape (chi × cho)
and pooling layers with shape (kh, kw, s); kh and kw are the kernel height and width and s the stride, while chi and cho refer
respectively to the number of input and output channels.

1) Image Classification (IC): the classical image recognition
task on the popular CIFAR dataset [36]. We evaluated the
two versions available, i.e. ten classes (CIFAR-10) and hundred
classes (CIFAR-100). In both cases, there are overall 60k 32×32
RBG images with labels representing animals (e.g. cat, dog) and
vehicles (car, truck, etc.). The CNN benchmark adopted for the
10-class problem (IC-10) is that belonging to the open-source
framework Caffe [39], whereas the CNN for the 100-class
problem (IC-100) is a modified version of the popular VGG net
(VGG-6) [40].
2) Keyword Spotting (KS): a speech recognition task aimed at
detecting keywords or commands. The dataset, named Google
Speech Commands (GSC), comes for Google research 3. It
consists of 65k one-second-long audio samples collected during
the repetition of 30 different words by thousands of different
people. The goal is to recognize 30 specific keywords, i.e.
“Yes”, “No”, “Up”, “Down”, “Left”, “Right”, “On”, “Off”,
“Stop”, “Go”, out of the 30 available words. Samples that do
not belong to the 30 categories are labeled as “unknown”.
The training set and the test set collect 56196 and 7518 items
respectively, which are stored in the form of audio spectrograms
of the recorded speech. As the CNN benchmark (GSCNet) we
deployed a modified version of the neural net presented in [37].
3) Facial Expression Recognition (FER): another visual
reasoning task where the purpose is to recognize different
emotions from facial images. The Fer2013 dataset we used
for training and testing was first introduced during a Kaggle
competition [38]. It contains 48 × 48 samples: 28709 for
training, 7178 for testing. The CNN benchmark (FerNet) is
inspired by an open-source implementation 4.

The selection of the above benchmark suite was done
considering the amount of resources available on the targeted
MCUs. Although BC-Net can even work on more complex
scenarios (e.g. CNNs to classify high definition images over
thousands of classes like ImageNet), those are out of reach for
the mobile segment considered in this work and perhaps not

3https://ai.googleblog.com/2017/08/launching-speech-commands-
dataset.html

4https://github.com/JostineHo/mememoji

even useful, or of interest, when considering edge devices with
tiny cameras and small on-chip memory.

B. Experimental/Hardware set-up

The objective is to provide a comparison between BC-Net
and (i) standard fixed-point quantization and binarization,
and (ii) a state-of-the-art cooperative mechanism. All the
CNN benchmarks have been quantized and binarized with
the methods presented in Section II-B and II-C respectively,
while for BC-Net we used the training flow introduced in
Section IV-B. For what concerns BC-Net, the additional layers
implementing the cooperative mechanism were trained through
the Adam optimizer [41] with an adaptive learning rate (lr)
scheduler set as follows: lr updated with step 0.1 every 15
consecutive epochs in which the validation loss does not change.
No form of data augmentation was applied on the original
dataset.
The trained models are parsed and translated to .C by means of
header files .h containing weights in a format compliant with
the CMSIS-NN kernel library by ARM [9]. More precisely,
the inference engine deployed on board is built with an
extended version of the CMSIS-NN that gives support for binary
convolutions [31].
As evaluation platforms we adopted two off-the-shelf boards
provided by STMicroelectronics and powered with the Cortex-
M7 core by ARM: the NUCLEO-F767ZI5, with 512kB of
RAM, 2MB of Flash memory and 216MHz of clock frequency;
the STM32H7436, with 1MB of RAM, 2MB of Flash memory,
and 480MHz of clock frequency. For a fair performance
assessment, the frequency of this second board is rescaled to
216MHz.

C. Static Analysis: Accuracy, Memory and Latency

Table II summarizes the functional and non-functional prop-
erties collected on-board: Top-1 accuracy (%), RAM footprint
(kB), and inference latency (ms). For each benchmark, we thus
provide a comparison among the available implementations: the

5https://www.st.com/en/evaluation-tools/nucleo-f767zi.html
6https://www.st.com/en/microcontrollers-microprocessors/stm32h743-

753.html

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, MMM 202X 9

Benchmark Precision Top-1 Acc. (%) Mem. Size (kB) Latency (ms)

IC-10

FP32 80.25 523 -
INT8 80.20 131 98.96
BNN 76.52 94 65.29

BC-Net LM 76.52 94 65.29
FM 84.00 235 164.26

IC-100

FP32 65.13 1583 -
INT8 64.68 396 147.39
BNN 54.06 123 54.46

BC-Net LM 54.06 123 54.46
FM 66.48 569 202,35

KS

FP32 90.30 1060 -
INT8 89.50 265 66.30
BNN 87.60 90 32.56

BC-Net LM 87.60 90 32.56
FM 92.55 386 99.06

FER

FP32 65.16 2345 -
INT8 64.70 587 353.93
BNN 62.86 118 174.33

BC-Net LM 62.86 118 174.33
FM 66.48 705 528.27

Table II: Main Functional and Extra-Functional proprieties for
each benchmark using different implementation options (BC-
Net in static mode, i.e. thresholding off).

original 32-bit floating-point (FP32), the 8-bit fixed point model
(INT8), the binary weight model (BNN), and our proposal (BC-
Net). For BC-Net, the two operating modes, i.e. light-mode
(LM) and full-mode (FM), are taken separately, namely, they
are compiled disabling the dynamic control mechanism, but still
leaving the glue layers for overhead assessment. The latency
for FP32 is not reported due to the lack of a support for that
format in the adopted neural library CMSIS-NN. One should
also consider that such floating-point models are too large to
fit the available memory, especially if other applications are
running in background.
A first consideration concerns the effect of quantization and
binarization as stand-alone techniques. In line with previous
works, it emerged that while the accuracy drop from the FP32
to INT8 model is almost negligible, the binarization process
introduces a substantial accuracy degradation, which is quite
evident in a complex task as the IC-100 (-11.07% w.r.t FP32).
Looking at BC-Net, the LM mode shows the same quality of
BNN, which is intuitive, given the architecture of our template.
More interestingly, the FM mode gives a substantial accuracy
boost. It outperforms INT8 (+3.80% for IC-10, +1.8% for
IC-100, +3.05% for KS, +1.78% for FER), and, even more
surprisingly, it gets more accurate than the original FP32 model
(+3.75% for IC-10, 1.35% for IC-100, +2.25% for KS, +1.32%
for FER). Such results are even more impressive if compared
to binary net. For instance, looking at the IC-100 task, BC-Net
improves on BNN by +12.42%. This is mainly due to the joint
training procedure adopted for the FM mode, by which the
INT8 is enriched with the prediction outcome of the BNN. As a
result, the learned features are more rich and hence able to bring
more expressive power and better classification to the resulting
networks. In other words, while a post-training quantization to
8-bit cannot go beyond the original model used as seed, BC-Net
leverages a larger feature space reaching better generalization.
For the other extra-functional metrics, INT8 achieves a linear
memory reduction w.r.t FP32 (4× as expected), while BNN
goes much more far with an impressive compression ratio (from

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
Confidence Threshold (CT)

10

8

6

4

2

0

2

4

 A
cc

ur
ac

y
(%

) w
.r.

t b
as

el
in

e
(IN

T8
=0

)

IC-10
IC-100
KS
FER

Figure 4: ∆ Accuracy (%) w.r.t baseline model (INT8) vs
Confidence Threshold

5.56× for IC-10 to 19.87× for FER) which in turn ensures a
substantial speed-up w.r.t. INT8 (from 1.52× for IC-10 to 2.7×
for IC-100). As a side note, the latency reduction reached by
BNN is bounded by the presence of the first and last layers that
are kept to 8-bit. BC-Net inherits the same static behavior of
its baseline models. Under the LM mode, it is just like BNN,
both in terms of memory footprint and latency. In FM mode, the
total memory is the sum of INT8, BNN, and the glue layers, the
latter with an impact of less than 10% (4.4% for IC-10, 9.6%
for IC-100, 8.7% for KW, 0.13% for FER). Similarly, the overall
latency is the time taken by BNN and INT8 to run in sequence,
plus the contribution due to the processing of the glue layers,
which is negligible (from 0.05 ms for FER to 0.5 ms for IC-100).
Memory and latency overhead becomes even more marginal
when considering the savings brought by the dynamic control
mechanism discussed in the next sub-section.

D. Dynamic Analysis: Accuracy-Latency Trade-off

The objective here is to assess the control mechanism governing
the dynamics of BC-Nets. To this aim, we present a set of
parametric analyses using the confidence threshold CT as the
main control variable.
The first plot in Fig. 4 shows the accuracy gain reached by the
BC-Nets using the INT8 model as ground. As a general rule,
the BC-Net gets more accurate (∆ > 0) as CT increases. In
fact, to ask for a higher confidence score implies a more frequent
activation of the FM mode, which has been proven to be more
accurate as reported in the static analysis. Looking at the peak
accuracy (CT = 99%), BC-Net improves INT8 by far: 3.80%
for IC-10, 2.00% for IC-100, 3.16% for KS and 2.12% for
FER. The break-even point CTbe (i.e. CT s.t.∆ = 0) may shift
depending on the complexity of the dataset and the predictive
ability of the CNN adopted. For our CNN benchmarks we found
the following:CTbe = 0.24 for IC-10,CTbe = 0.38 for IC-100,
CTbe = 0.16 for KS,CTbe = 0.12 for FER.
A more interesting study focuses on the existing relationship
between accuracy and latency. The line plots in Fig. 6 show
the boost of accuracy brought by BC-Net as function of the
speed-up measured on-board. As in the previous analysis, INT8
is taken as the reference baseline. To notice that the speed-up is
an indirect, yet more meaningful metric controlled by the CT

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, MMM 202X 10

0.00 0.40 0.60 0.80 1.000.24
Confidence Threshold (CT)

0

20

40

60

80

100

Ex
ec

ut
io

n
tim

e
(%

)
IC-10

FM
LM

0.00 0.20 0.60 0.80 1.000.38
Confidence Threshold (CT)

0

20

40

60

80

100
IC-100

FM
LM

0.00 0.40 0.60 0.80 1.000.16
Confidence Threshold (CT)

0

20

40

60

80

100
KS

FM
LM

0.00 0.40 0.60 0.80 1.000.12
Confidence Threshold (CT)

0

20

40

60

80

100
FER

FM
LM

Figure 5: The fraction of Execution Time (%) spent in light mode (LM) and full mode (FM) during the inference stage, varying the
CT, for all four benchmarks (IC-10/100, KS, FER). The dot line representsCT = CTbe.

10 20 30 40 50 60 70 80 90
Speed-up (%)

5.0

2.5

0.0

2.5

5.0

7.5

10.0

 A
cc

ur
ac

y
(%

) w
.r.

t b
as

el
in

e
(IN

T8
=0

)

IC-10

0.00.20.40.60.8
Confidence Threshold (CT)

10 20 30 40 50 60 70 80 90
Speed-up (%)

5.0

2.5

0.0

2.5

5.0

7.5

10.0

IC-100

0.00.20.40.60.8
Confidence Threshold (CT)

10 20 30 40 50 60 70 80 90
Speed-up (%)

5.0

2.5

0.0

2.5

5.0

7.5

10.0

KS

0.00.20.40.60.8
Confidence Threshold (CT)

10 20 30 40 50 60 70 80 90
Speed-up (%)

5.0

2.5

0.0

2.5

5.0

7.5

10.0

FER

0.00.20.40.60.8
Confidence Threshold (CT)

Figure 6: ∆ accuracy (%) w.r.t. baseline model vs runtime average speed-up (%) for the four benchmarks (IC-10/100, KS, FER).

knob (that is shown as the second x-axis on the top). A low
CT (right side of the plots) accelerates the inference, letting the
LM mode be considered highly reliable even if the prediction
of the binary net might be far from truth. This emerges from
Fig. 5 which shows the impact of CT on the execution time
spent in LM and FM. Under this condition, BC-Net can be made
run at a much higher speed compared to classical INT8 nets,
still keeping reasonable accuracy levels; only IC-100 suffers a
sudden drop. On the opposite corner (left side of the plots), with
a high CT , the speed-up decreases and accuracy gets back to
higher scores. Interestingly, at the break-even (∆ = 0) BC-Net
ensures the same predictive quality of INT8 with a remarkable
speed-up: 67.71% for IC-10, 19.70% for IC-100, 81.49% for
KS, 66.95% for FER. It is worth noticing that the dynamic
mechanism at the basis of BC-Net allows to reach the same
accuracy of the INT8 reference, yet saving the majority of calls
to the slower networks. For instance, at the break-even, for IC-
10 FM is activated just 19.36% of the time, 54.75% for IC-100,
11.7% for KS and 15.43% on FER. This is the key feature that
makes the proposed BC-Net suitable for resource constrained
applications: same quality in less time, hence higher energy
efficiency.

E. BC-Net vs. CoopNet

In this section, we reported a comparative analysis between BC-
Net and CoopNet [14]. The analysis does focus on the dynamic
behavior of the two nets in terms of accuracy-latency trade-off.
Table III shows the speed-up achieved by CoopNet and BC-Net
when they are set to work under the same level of accuracy
(column Accuracy Level). As test case we considered the
accuracy achieved by the full precision model FP32 and that
of the 8-bit fixed-point model INT8. The percentage of speed-
up (BC-Net vs. CoopNet) is reported in brackets. For instance,
on the IC-10 task, BC-Net is 15.33% and 16.13% faster than

CoopNet. The speed-up gets even higher for FER, 17.99% and
19.05%, while for IC-100 it is worth noticing that CoopNet was
not able to reach the FP32 accuracy (marked with a dash).
A further and more detailed analysis reported in Fig. 7 reveals
once again the intrinsic efficiency of BC-Net. Indeed, the
available optimization slack of BC-Net can be consumed to
improve the accuracy prediction rather than to speed up the
inference, and that can be achieved by just setting the CT to
the proper value. In particular, the barcharts show BC-Net (blue
bars) gets more accurate than CoopNet (gray bars) under the
same speed constraint. At the best case, i.e. speed-up 10%,
BC-Net outperforms CoopNet by far: +3.45% for IC-10, +1.6%
for IC-100, +1.4% for FER, +3.04% for KS; for points where
CoopNet performs best, BC-Net brings good savings: +3.1%
for IC-10 and +1.15% for FER (at 20% speed-up), +1.6% for
IC-100 (at 10% speed-up), +1.5% for KS (at 50% speed-up).
On IC-100 we observed some negative trend when the speed-up
gets greater than 30% (more negative ∆), which is however
negligible (0.47% as the worst case). We can thereby state BC-
Net is a win-win solution that designers might exploit to meet
different constraints of accuracy and/or performance.

F. Validation of the STE Tool

A proper setting for BC-Net encompasses the choice of the
confidence threshold CT that guarantees a certain level of
accuracy or speed-up. In order to enable this at design-time, we
introduced in Section IV-C the static threshold estimation (STE)
framework, a pipeline to build the predictors for both accuracy
and latency depending on CT , simply using the available data.
Fig. 8 shows how the models generated by the STE (dashed
line) fit some random test (dots) obtained by feeding the BC-Net
with unseen data. In the top row of the plots, we reported the
accuracy, again in the form of distance (∆) from INT8, while
on the bottom row of the figure there is the activation frequency

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, MMM 202X 11

10 20 30 40 50 60 70 80 90
Speed-up (%)

5.0
2.5
0.0
2.5
5.0
7.5

10.0

 A
cc

. (
%

) w
.r.

t b
as

el
in

e
(IN

T8
=0

)
IC-10 - BC-Net vs CoopNet

CoopNet
BC-Net

10 20 30 40 50 60 70 80 90
Speed-up (%)

5.0
2.5
0.0
2.5
5.0
7.5

10.0

IC-100 - BC-Net vs CoopNet
CoopNet
BC-Net

10 20 30 40 50 60 70 80 90
Speed-up (%)

5.0
2.5
0.0
2.5
5.0
7.5

10.0

KS - BC-Net vs CoopNet

CoopNet
BC-Net

10 20 30 40 50 60 70 80 90
Speed-up (%)

5.0
2.5
0.0
2.5
5.0
7.5

10.0

FER - BC-Net vs CoopNet

CoopNet
BC-Net

Figure 7: Comparative Analysis. ∆ accuracy (%) w.r.t. baseline model vs runtime average speed-up (%) for the three benchmarks
(IC, KS, FER). Blue bars refer to BC-Net while grey to CoopNet results.

Application Model Accuracy Level Speed-up (%)

IC-10
CoopNet [14] FP32 51.20

INT8 51.58

BC-Net FP32 66.53 (+15.33)
INT8 67.71 (+16.13)

IC-100
CoopNet [14] FP32 -

INT8 11.49

BC-Net FP32 16.27
INT8 19.70 (+8.21)

KS
CoopNet [14] FP32 69.53

INT8 80.16

BC-Net FP32 74.92 (+5.39)
INT8 81.49 (+1.33)

FER
CoopNet [14] FP32 36.20

INT8 47.90

BC-Net FP32 54.09 (+17.99)
INT8 66.95 (+19.05)

Table III: Comparative Analysis. Speed-up (%) for CoopNet
[14] and BC-Net (our) for two accuracy levels.

of the FM mode (NFM). Over each plot we also annotated the
mean square error (MSE) and the maximum error (ME) of the
models. The relationship between CT and accuracy is quadratic,
with a MSE almost negligible for the four benchmarks, and a
maximum error ranging from 0.23 (KS) to 0.43 (IC-100). On
the other hand, one can notice a cubic trend for the NFM , with
the largest errors for KS: MSE= 0.0009, ME= 0.11. Those
findings prove the predictors are highly precise, and hence a
valuable tool for setting BC-Nets up. We do not propose any
mechanism to find an optimal CT because the operating-point
in the accuracy-latency space must be defined by the final user,
according to application and domain-specific constraints.

VI. CONCLUSIONS

Enabling fast and efficient processing of DNN models on
ultra-low-power platforms is challenging. BC-Net shows how
a dynamic processing mechanism represents a suitable solution
when the hardware support is scarce and the resources bounded.
In this complex scenario, BC-Net outperforms existing methods
in terms of run-time latency and accuracy. The achieved results
revealed: (i) up to 81.49% of speed-up and up to 3.8% of
accuracy improvement w.r.t. standard fixed-point quantization,
(ii) up to 19% of speed-up and up to 3.45% of accuracy
improvement w.r.t CoopNet, a state-of-the-art binary-integer
cooperative mechanism.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.
7553, pp. 436–444, 2015.

[2] Z. Jianqiang et al., “Deep convolution neural networks for twitter
sentiment analysis,” IEEE Access, vol. 6, pp. 23 253–23 260, 2018.

[3] W. Shi et al., “Edge computing: Vision and challenges,” IEEE internet of
things journal, vol. 3, no. 5, pp. 637–646, 2016.

[4] X. Sun et al., “Hybrid 8-bit floating point (hfp8) training and inference
for deep neural networks,” in Proceedings of the Advances in Neural
Information Processing Systems, 2019, pp. 4901–4910.

[5] L. Mocerino et al., “Energy-efficient convolutional neural networks via
recurrent data reuse,” in Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 848–853.

[6] I. Hubara et al., “Quantized neural networks: Training neural networks
with low precision weights and activations,” The Journal of Machine
Learning Research, vol. 18, pp. 6869–6898, 2017.

[7] F. Tung and G. Mori, “Clip-q: Deep network compression learning by
in-parallel pruning-quantization,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 7873–7882.

[8] M. Grimaldi et al., “Optimality assessment of memory-bounded convnets
deployed on resource-constrained risc cores,” IEEE Access, vol. 7, pp.
152 599–152 611, 2019.

[9] L. Lai et al., “CMSIS-NN: efficient neural network kernels for arm cortex-
m cpus,” CoRR, vol. abs/1801.06601, 2018.

[10] M. Courbariaux et al., “Binarized neural networks: Training deep neural
networks with weights and activations constrained to+ 1 or-1,” arXiv
preprint arXiv:1602.02830, 2016.

[11] M. a. Rastegari, “Xnor-net: Imagenet classification using binary convolu-
tional neural networks,” in Proceedings of the European Conference on
Computer Vision. Springer, 2016, pp. 525–542.

[12] L. Mocerino and A. Calimera, “Tentaclenet: A pseudo-ensemble template
for accurate binary convolutional neural networks,” in Proceedings of
the IEEE International Conference on Artificial Intelligence Circuits and
Systems (AICAS). IEEE, 2020, pp. 261–265.

[13] E. Park et al., “Big/little deep neural network for ultra low power
inference,” in Proceedings of the International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), Oct 2015,
pp. 124–132.

[14] L. Mocerino and A. Calimera, “Coopnet: Cooperative convolutional
neural network for low-power mcus,” in Proceedings of the IEEE
International Conference on Electronics, Circuits and Systems (ICECS),
Nov 2019, pp. 414–417.

[15] D. Lin et al., “Fixed point quantization of deep convolutional networks,” in
Proceedings of the International Conference on Machine Learning, 2016,
pp. 2849–2858.

[16] J. Qiu et al., “Going deeper with embedded fpga platform for
convolutional neural network,” in Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2016,
pp. 26–35.

[17] S. Vogel et al., “Efficient hardware acceleration of cnns using logarithmic
data representation with arbitrary log-base,” in Proceedings of the
International Conference on Computer-Aided Design, 2018, pp. 1–8.

[18] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[19] M. Courbariaux et al., “Binaryconnect: Training deep neural networks
with binary weights during propagations,” in Proceedings of the Advances
in neural information processing systems, 2015, pp. 3123–3131.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. XX, NO. XX, MMM 202X 12

0.2 0.4 0.6 0.8 1.0
Confidence Threshold (CT)

10

8

6

4

2

0

2

4

 A
cc

 (%
) w

.r.
t b

as
el

in
e

(IN
T8

=0
) IC-10 - MSE=0.01 ME=0.24

STE
Test samples

0.2 0.4 0.6 0.8 1.0
Confidence Threshold (CT)

10

8

6

4

2

0

2

4 IC-100 - MSE=0.29 ME=0.43

STE
Test samples

0.2 0.4 0.6 0.8 1.0
Confidence Threshold (CT)

10

8

6

4

2

0

2

4
KS - MSE=0.01 ME=0.23

STE
Test samples

0.2 0.4 0.6 0.8 1.0
Confidence Threshold (CT)

10

8

6

4

2

0

2

4
FER - MSE=0.03 ME=0.38

STE
Test samples

0.2 0.4 0.6 0.8 1.0
Confidence Threshold (CT)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

. N
FM

 c
al

ls
(%

)

IC-10 - MSE=0.0006 ME=0.09

STE
Test samples

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Threshold (CT)

0.0

0.2

0.4

0.6

0.8

1.0 IC-100 - MSE=0.0001 ME=0.03

STE
Test samples

0.2 0.4 0.6 0.8 1.0
Confidence Threshold (CT)

0.0

0.2

0.4

0.6

0.8

1.0 KS - MSE=0.0009 ME=0.11

STE
Test samples

0.2 0.4 0.6 0.8 1.0
Confidence Threshold (CT)

0.0

0.2

0.4

0.6

0.8

1.0 FER - MSE=0.0001 ME=0.04

STE
Test samples

Figure 8: (Top) ∆ Accuracy (%) w.r.t baseline predicted via STE vs CT. (Below) The predictedNFM calls normalize w.r.t validation
set size varying CT. The dots represent the real measurement on whole validation set (accuracy and theNFM calls)

[20] J. Deng et al., “ImageNet: A Large-Scale Hierarchical Image Database,”
in CVPR09, 2009.

[21] S. Zhou et al., “Dorefa-net: Training low bitwidth convolutional neural
networks with low bitwidth gradients,” arXiv preprint arXiv:1606.06160,
2016.

[22] A. Al Bahou et al., “Xnorbin: A 95 top/s/w hardware accelerator for binary
convolutional neural networks,” in Proceedings of the IEEE Symposium
in Low-Power and High-Speed Chips (COOL CHIPS). IEEE, 2018, pp.
1–3.

[23] A. Agrawal et al., “Xcel-ram: Accelerating binary neural networks in
high-throughput sram compute arrays,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 66, no. 8, pp. 3064–3076, 2019.

[24] D. J. Moss et al., “High performance binary neural networks on the xeon+
fpga™ platform,” in Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 2017, pp. 1–4.

[25] D. J. Pagliari et al., “Dynamic bit-width reconfiguration for energy-
efficient deep learning hardware,” in Proceedings of the International
Symposium on Low Power Electronics and Design, ser. ISLPED ’18.
New York, NY, USA: ACM, 2018, pp. 47:1–47:6.

[26] S. Amiri et al., “Multi-precision convolutional neural networks on
heterogeneous hardware,” in Proceedings of the Design, Automation Test
in Europe Conference Exhibition (DATE), 2018, pp. 419–424.

[27] H. Tann et al., “Flexible deep neural network processing,” arXiv preprint
arXiv:1801.07353, 2018.

[28] A. Prabhu et al., “Hybrid binary networks: optimizing for accuracy,
efficiency and memory,” in Proceedings of the IEEE Winter Conference on
Applications of Computer Vision (WACV). IEEE, 2018, pp. 821–829.

[29] I. Chakraborty et al., “Efficient hybrid network architectures for extremely
quantized neural networks enabling intelligence at the edge,” arXiv
preprint arXiv:1902.00460, 2019.

[30] K. Huang et al., “Efficient quantization for neural networks with binary
weights and low bitwidth activations,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 3854–3861.

[31] M. Rusci et al., “Work-in-progress: Quantized nns as the definitive
solution for inference on low-power arm mcus?” in Proceedings of the
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ ISSS). IEEE, 2018, pp. 1–2.

[32] G. Ottavi et al., “A mixed-precision risc-v processor for extreme-edge
dnn inference,” in Proceedings of the IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2020, pp. 512–517.

[33] B. Lakshminarayanan et al., “Simple and scalable predictive uncertainty
estimation using deep ensembles,” in Proceedings of the Advances in
neural information processing systems, 2017, pp. 6402–6413.

[34] J. Gast and S. Roth, “Lightweight probabilistic deep networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 3369–3378.

[35] J. M. Hernández-Lobato and R. Adams, “Probabilistic backpropagation
for scalable learning of bayesian neural networks,” in Proceedings of the
International Conference on Machine Learning, 2015, pp. 1861–1869.

[36] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009.

[37] T. N. Sainath et al., “Convolutional neural networks for small-footprint
keyword spotting,” in Interspeech, 2015.

[38] I. Goodfellow et al., “Challenges in representation learning: A report on
three machine learning contests,” 2013.

[39] Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding,” in Proceedings of the ACM International Conference on
Multimedia, ser. MM ’14. New York, NY, USA: ACM, 2014, pp. 675–
678.

[40] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” CoRR, vol. abs/1409.1556, 2014.

[41] D. P. Kingma et al., “Adam: A method for stochastic optimization,” in
Proceedings of the International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

Luca Mocerino received M.Sc. in Computer Science
at Politecnico in Turin in 2017. There, since January
2018, he has been a Research Assistant and Ph.D.
Candidate in Computer and Control Engineering with
the EDA group. His research interests focus mainly
on Machine/Deep learning, smart embedded systems
and low-power/energy design techniques for digital
ICs.

Andrea Calimera took the M.Sc. degree in Elec-
tronic Engineering and the Ph.D. degree in Computer
Engineering both from Politecnico di Torino. He
is currently an Associate Professor of Computer
Engineering at Politecnico di Torino. His research
interests cover the areas of design automation of dig-
ital circuits and embedded systems with emphasis on
optimization techniques for low-power and reliability,
energy/quality management, logic synthesis, design
flows for emerging computing paradigms.

