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Summary

In this thesis we present novel deep learning methods to tackle two inverse prob-
lems in imaging i.e., super-resolution and denoising. These enhancement tasks
are often used as a pre-processing step by many pattern recognition and analy-
sis algorithms as they can leverage an image reconstruction with enriched spatial
information and details that eases image understanding, thereby improving their
performance.

Recently, convolutional neural networks (CNN) have been successfully applied
to many remote sensing problems. However, deep learning techniques for multi-
image super-resolution from multitemporal unregistered imagery have received lit-
tle attention so far. In the first part of this thesis we propose a novel CNN-based
technique that exploits both spatial and temporal correlations to combine multiple
images. This novel framework integrates the spatial registration task directly in-
side the CNN, and allows to exploit the representation learning capabilities of the
network to enhance registration accuracy. The entire super-resolution process relies
on a single CNN with three main stages: shared 2D convolutions to extract high-
dimensional features from the input images; a subnetwork proposing registration
filters derived from the high-dimensional feature representations; 3D convolutions
for slow fusion of the features from multiple images. The whole network is trained
end-to-end to recover a single high resolution image from multiple unregistered low
resolution images. As opposed to the vast majority of the work in literature that
use synthetic datasets, the training procedure is carried out through a set of real-
world low resolution observations and the corresponding high resolution image for
the same scene, captured from the same platform. This method is the winner of
the PROBA-V super-resolution challenge issued by the European Space Agency.

The second contribution of this thesis is a deep learning method to tackle a
denoising task in the field of synthetic aperture radar (SAR) remote sensing. In-
formation extraction from SAR images is heavily impaired by speckle noise, hence
despeckling is a crucial preliminary step in scene analysis algorithms. The recent
success of deep learning envisions a new generation of despeckling techniques that
could outperform classical model-based methods. However, current deep learning
approaches to despeckling require supervision for training, whereas clean SAR im-
ages are impossible to obtain. In the literature, this issue is tackled by resorting to
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either synthetically speckled optical images, which exhibit different properties with
respect to true SAR images, or multi-temporal SAR images, which are difficult to
acquire or fuse accurately. In this paper, inspired by recent works on blind-spot de-
noising networks, we propose a self-supervised Bayesian despeckling method. The
proposed method is trained employing only noisy SAR images and can therefore
learn features of real SAR images rather than synthetic data. Experiments show
that the performance of the proposed approach is very close to the supervised train-
ing approach on synthetic data and superior on real data in both quantitative and
visual assessments.
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Chapter 1

Introduction

Inverse problems are very popular in mathematics and widely present in a large
number of applications in engineering. When imaging/sensing technologies are in-
volved we talk about inverse imaging problems such as denoising, deconvolution, de-
blurring, inpainting, superresolution, and medical image reconstruction. In certain
applications this enhancement process is needed because of the low quality observa-
tions delivered by the imaging systems during image formation. In computational
imaging, solving an inverse problem means exploiting observations produced by
a forward process to reconstruct the desirable continuous image xc. However, in
practice, what we are looking for is a discrete sampled approximation of xc which
is denoted by x. The forward model that generates the observations has typically
the following forms:

y = A(x) + n (1.1)

where y ∈ RW×H is the observed signal (image), x ∈ RW ′×H′ represents the un-
known input image, A is a possibly non linear forward operator and n models the
noise in the observed data. Depending on the problem at hand the forward mapping
A can take different form. More in general, in case the noise is not additive:

y = N (A(x)) (1.2)

where N is the noise operator, sampling from a noisy distribution.
Among the analytical methods, the adopted approach is to solve an optimization

problem to recover the original image x from the observations y as follows:

arg min
x
E(A(x), y)

where E is the energy function which measures how well the reconstructed im-
age matches the observations. In almost all practically relevant applications there
are many possible solutions given the observations, and the underlying continuous
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Introduction

problem is ill-posed. Due to the ill-posedness of these problems a regularized formu-
lation is used to exploit prior knowledge about images in order to promote solutions
that match the prior knowledge of x to obtain stable and faithful reconstructions:

arg min
x
E(A(x), y) +R(x)

Usually the forward model is explicitly handcrafted through domain knowledge,
so E, R and the minimization algorithm need to be designed for each different ap-
plication. Recently, the computer vision research community has had great success
in replacing the explicit modeling of energy function E(A(x), y) with a parameter-
ized function that directly maps the measurements y to a solution x̂ = f(θ, y). In
situations in which A is not exactly known and/or it cannot be precisely modeled
mathematically and/or it consists of the concatenation of multiple operators, there
is room for deep-learning techniques to learn from training data the parameter
vector θ corresponding to models of Aand R; this typically outperforms analytical
approaches in terms of reconstruction accuracy. On the other hand, even when the
forward model is exactly known, selecting a regularizing function can be difficult
when we do not have prior knowledge about the distribution of the original signal
x. In imaging literature many priors have been proposed, and they typically corre-
spond to some type of high-pass regularizerR(x) to impose a smoothness constraint,
suggesting that most images are naturally smooth with limited high-frequency ac-
tivity, and therefore it is appropriate to minimize the amount of high-pass energy
in the restored image.

1.1 Deep learning in inverse problems
Recent work in deep learning has demonstrated that deep neural networks can

leverage large collections of training data to directly compute regularized recon-
structions, by performing a supervised inversion of the forward model.

arg min
θ

N∑︂
i=1

E(x(i), f(θ, y(i))) +R(θ)

where E is the energy/loss function E : W ′ ×H ′ −→ R+, f(θ, y) is a parameterized
mapping function, θ is the set of all possible parameters, R(θ) is a regularizer
R : θ −→ R+ on the parameters to avoid overfitting the often limited amount of
training data. An additional term representing the regularization on f(θ, y(i)) can
be used to further promote regularized reconstructions.

Deep networks parameterize f(θ, y) using several layers of linear operations fol-
lowed by non-linearities. The free parameters of f(θ, y) are learned by using large
amounts of training data and fitting the parameters to the ground truth data via
a large-scale optimization problem.
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1.1 – Deep learning in inverse problems

While data-driven based methods yield powerful representations, they require a
training dataset and the training procedure is often difficult. The amount of data
to acquire in order to achieve generalization to test data is huge.

In many cases generating training data is straightforward because the forward
model we aim to invert is known exactly and easily computable. In denoising, the
forward model is the identity and training data are generated by corrupting images
with noise; the noisy image then serves as training input and the clean image as
the training output. Super-resolution (SR) follows the same pattern, where training
pairs are easily generated by downsampling and degrading the high resolution image
to generate a low resolution version. The same happens for deblurring.

Often, knowing exactly the sensor imaging model is not feasible and an approxi-
mation is used to artificially generate the data set. Many of the works found in the
SR literature are based on simulated data, where low-resolution (LR) observations
for a specific scene are obtained through a degradation and down-sampling process
of the high-resolution (HR) images by assuming a specific sensor imaging model.
This is a simplified scenario and a too simple degradation model may not accu-
rately match the real one. The deep network reconstruction ability will be highly
dependent on the choice of A used to create the dataset, since the network may
end up learning the inversion of a forward model that does not match the real one.

In this thesis we avoid assuming a specific sensor imaging model by solving a
SR problem that employs real images of the same scene for both the low and high
resolutions. This enables data-driven methods to learn the inversion of possibly
complex degradation models. We will focus on a class of SR problems called multi-
image SR (MISR) problems on satellite images. When multiple LR images for a
same scene are involved, the forward model gets more complicated embedding also a
geometric registration operator. Little work has been done on deep learning MISR
methods in the context of remote sensing, which poses specific challenges such as
environmental conditions and the complex statistics of remote sensing imagery.

In the last years, deep learning based methods have been proposed to solve MISR
problems in context of video super-resolution [75, 20]. Most of these works are
composed of two steps: a motion estimation and compensation procedure followed
by an upsampling process, heavily relying on the initial motion estimation. In
order to reduce the effect of registration errors, we came up with a method to
simultaneously estimate the motion parameters and reconstruct the SR image, all
within an end-to-end trainable CNN, where the two tasks are optimized jointly. The
forward model is entirely learnt during training without relying on any knowledge
of the motion parameters.

The second objective of this thesis is again strictly related to the lack of a com-
plete and real training dataset where the observed image y and the ground truth
image x are both available. There are some applications that focus on reconstruct-
ing from real measurements, while the corresponding ground truth is not known and
practically impossible to acquire. Synthetic Aperture Radar (SAR) is a coherent
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Introduction

imaging system and as such it strongly suffers from the presence of speckle, a signal
dependent granular noise. Speckle noise makes SAR images difficult to interpret,
preventing the effectiveness of scene analysis algorithms for, e.g., image segmenta-
tion, detection and recognition. Despeckling aims to remove the speckle noise from
the observed noisy images. Current deep learning approaches to despeckling require
supervision for training, whereas clean SAR images are impossible to obtain. In
the literature, this issue is tackled by resorting to either synthetically speckled op-
tical images, which exhibit different properties with respect to unknown underlying
clean SAR images. There is an emerging paradigm in deep learning that consists
of learning directly from noisy images in a self-supervised fashion. In the second
part of this thesis we present a self-supervised Bayesian despeckling framework that
enables direct training on real SAR images. Our method bypasses the problem of
training a CNN on synthetically-speckled optical images, thus avoiding any domain
gap and enabling learning of features from real SAR images.

1.2 Thesis organization
The reminder of this thesis is organized as follows.
In Chapter 2 we give a background about deep neural networks and present an

overview of the main deep learning methods for inverse problems in imaging. We
introduce in more details the two inverse problems we will focus throughout the
thesis and the main motivations.

Chapter 3 describes a novel CNN architecture to solve a MISR problem with
real multitemporal and unregistered images called DeepSUM [120].

In Chapter 4, we propose an improvement over DeepSUM [15], by exploiting
non locality in the CNN architecture. We improve the feature extraction process
of DeepSUM with graph convolutional layers to take into account spatially distant
pixels in the computation.

We then move to despeckling in Chapter 5. In this chapter we present a self-
supervised Bayesian despeckling method, called Speckle2Void [121], using a new
class of convolutional networks for denoising, called blind-spot denoising networks,
that does not require ground truth data to train. In Chapter ?? we draw some
conclusions and outline open issues.

1.3 Publications
In this section we gather a list of publications representing the outcome of the

research carried out during the PhD program.

1. A. B. Molini, D. Valsesia, G. Fracastoro, and E. Magli. “Deep Learning For
Super-Resolution Of Unregistered Multi-Temporal Satellite Images.” 2019

18



1.3 – Publications

10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution
in Remote Sensing (WHISPERS). Sept. 2019, pp. 1–5.

2. A. B. Molini, D. Valsesia, G. Fracastoro, and E. Magli, “DeepSUM: Deep
Neural Network for Super-Resolution of Unregistered Multitemporal Images.”
IEEE Transactions on Geoscience and Remote Sensing, pp. 1–13, 2019.

3. A. B. Molini, D. Valsesia, G. Fracastoro, and E. Magli, “Towards Deep Un-
supervised SAR Despeckling with Blind-Spot Convolutional Neural Networks.”
in 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
Oct 2020.

4. A. B. Molini, D. Valsesia, G. Fracastoro, and E. Magli, “DeepSUM++: Non-
local Deep Neural Network for Super-Resolution of Unregistered Multitem-
poral Images.” in 2020 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Oct 2020.
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Self-Supervised SAR Despeckling with Blind-Spot Convolutional Neural Net-
works.” submitted to IEEE Transactions on Geoscience and Remote Sensing.
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Chapter 2

Background

2.1 Deep learning background
The impact of machine learning in remote sensing image analysis has been of

paramount importance, since the first application of such methods in the late 1990s.
Conventional machine learning approaches performed the extraction of appropriate
hand-crafted features and then applied shallow classification/regression techniques.
This went on until a few years ago when deep neural networks started to be em-
ployed in the remote sensing domain.

2.1.1 Neural networks
A neural network is composed of a set of neurons with different sets of weights

that are used to process an input. Each neuron computes the cross correlation
between an input vector and a vector of weights. Multiple neurons constitute the
so-called layer of a fully-connected neural network and a series of stacked layers is
referred as multilayer perceptron. Fig. 2.1 depicts an example of a fully-connected
neural network.

Each layer takes the output of the previous layer and applies an affine transfor-
mation followed by a non-linear element-wise function, generating a new represen-
tation of the input.

hl+1 = fnl(W T
l+1h

l + b)

where hl+1 ∈ Rn is the new representation at the output of the layer l+ 1, hl ∈ Rm

is the input to layer l + 1, W ∈ Rm×n is the weight matrix, b is the bias vector
and fnl is the non-linear function. A series of affine transformations interleaved by
non-linearities allows the network to find neat representations for complex, highly
folded data manifolds.

The choice of the neural network architecture determines the generic set of pos-
sible functions f(θ, y) parametrized by the values of the weights, and these weights
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Figure 2.1: Fully-connected neural network.

are the parameters over which the minimization occurs.

2.1.2 Convolutional neural networks
A fully-connected neural network can have a lot of weights, especially when the

input is high dimensional, and hence be very computational expensive. Moreover,
these networks do not make any assumptions on the properties of the input. How-
ever, when dealing with highly structured modalities such as 2D or 3D imagery,
some properties of the natural signals can be exploited:

• locality: short-range dependencies capture most of the information;

• stationarity: statistical properties do not change over time/space;

• compositionality: complex features can be created by hierarchically assembling
simple and local features.

If data exhibits locality, each neuron needs to be connected to only few local neurons
of the previous layer, by dropping connections between far away neurons. When
dropping connections, each layer does not work the whole input at once, but the
overall architecture will be able to account for the whole input, by stacking more
layers allows to exploit compositionality. If data exhibits stationarity, a small set of
parameters can be used multiple times across the input by performing a convolution
with the weights. After applying sparsity and stationarity the weights of a neural
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2.1 – Deep learning background

networks represent a convolution kernel and the architecture takes the name of
convolutional neural network (CNN). Each convolutional layer is composed by a
set of convolution kernels. Each convolution kernel slides across the input signal
by a specific step size, called stride, that is often set to 1.

Convolution operation

The dot product operation between the matrix Wl at layer l and the input
h(l) ∈ Rm in a fully-connected neural network has the following form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wl11 wl12 wl13 wl14 . . . wl1k . . . wl1n
wl21 wl22 wl23 wl24 . . . wl2k . . . wl2n
wl31 wl32 wl33 wl34 . . . wl3k . . . wl3n
wl41 wl42 wl43 wl44 . . . wl4k . . . wl4n

... ... ... ... ... ... ... ...
wlm1 wlm2 wlm3 wlm4 . . . wlmk . . . wlmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hl1
hl2
hl3
hl4
...
hlj
...
hln

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hl+1
1
hl+1

2
hl+1

3
hl+1

4
...

hl+1
j
...

hl+1
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In a convolution neural network this dot product can be represented with a

Toeplitz matrix as follows:

⎡⎢⎢⎢⎢⎢⎣
wl,k1 wl,k2 wl,k3 0 . . . 0 . . . 0
0 wl,k1 wl,k2 wl,k3 . . . 0 . . . 0
0 0 wl,k1 wl,k2 wl,k3 0 . . . 0
... ... ... ... ... ... ... ...

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hl1
hl2
hl3
hl4
...
hlj
...
hln

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hl+1,k
1
hl+1,k

2
hl+1,k

3
hl+1,k

4
...

hl+1,k
j
...

hl+1,k
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In this representation of the convolution operation, the kernel size is 3 × 1 × fin,

the stride is 1 and hl ∈ R1×n×fin is the 1D input at layer l, where n is the length
of the input signal and fin is the number of input features. As we can observe,
lots of weights are dropped and the few remaining parameters are re-applied across
the entire signal. For this reason, a certain number of weight matrices are applied
to the same input signal hl. In the depicted operation, the kth weight matrix
represents the sliding kernel across the input al that produces the kth output vector
hl+1,k ∈ R1×n. Each output vector captures a particular characteristic of the input
and all together they form the output feature map hl+1 ∈ R1×n×fout , where fout is
the number of output features. The output feature map hl+1 ∈ R1×n×fout in the
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example, has the same length n as the input hl ∈ R1×n×fin since we considered an
implicit padding applied to the input signal that depends on the size of the kernel.

For 2D image data, the convolution kernels are 2-dimensional and are typically
of spatial size 3 × 3, 5 × 5 and 7 × 7. These kernels cover a small portion of
the input at each layer, but as multiple layers are stacked, the spatial extent the
network can sense becomes larger. This is called receptive field and it increases
layer by layer allowing the network to consider increasingly larger portions of the
input. When dealing with imaging inverse problems, the most used kernel is the
3 × 3 one as each layer needs only to focus on local correlations of the immediate
neighboring pixels.

Non local convolution operation

The classic convolution operation exploits only local correlations. In some appli-
cations involving inverse imaging problems, novel works were proposed to leverage
self-similarity among structures in the signal beyond the local neighborhood. A
number of non local convolution layers have been proposed in the last years, in
order to gather information from similar but spatially distant data patches. The
general idea can be formulated through a Toeplitz matrix with 1D signal as follows:

⎡⎢⎢⎣
ϕl,k1 (hl1, hl1) ϕl,k2 (hl1, hl2) . . . ϕl,kL (hl1, hlL) 0 . . . 0

0 ϕl,k1 (hl2, hl2) ϕl,k2 (hl2, hl3) . . . ϕl,kL (hl2, alL+1) . . . 0
... ... ... ... ... ... ...

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hl1
hl2
hl3
hl4
...
hlj
...
hln

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hl+1,k
1
hl+1,k

2
hl+1,k

3
hl+1,k

4
...

hl+1,k
j
...

hl+1,k
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where ϕl,k(hli, hlj) is a function that depends on learnable weights, measuring the

correlation between the features at location i and the features at location j, and
L is the length of the kernel. In this way, close and distant components in the
input signal are combined through weights that are dynamically computed based
on the distance between the features. There are two main definitions of non-local
convolutional layer: NLRN [105] and graph convolution [165]. In the first definition,
ϕl,k1 (hli, hli) depends on a set of weights and all the other ϕl,kz (hli, hlj) on another set
of weights, with z = 2, . . . , L. In the second definition, the kernel of length L can
dynamically extend across the input signal as it is based on the construction of a
graph of neighbors. This implies that some of the ϕl,kz (hli, hlj) can be set to zero.

In Chapter 4 we employ the definition of a non-local convolutional layer based
on a K-nearest neighbor graph [165] to collect non-local information while solving a
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super-resolution task. In Chapter 5 NLRN [105] non-local layer is briefly described
and used in a despeckling task.

Activation function

The feature map, produced by the convolution operation and the bias, is the
result of an affine transformation of the input. A non-linear function is applied
to the feature map at each convolutional layer to access a richer hypothesis space.
The most popular activations are:

• Sigmoid or logistic function with output ranging from 0 to 1: 1
1+e−x ;

• ReLU function, defined as the positive part of its argument: max(0, x);

• Leaky ReLU function, allowing a small gradient even when the neuron is not
active: max(0.1x, x).

Batch normalization

A very important component in CNN is the batch normalization layer [67],
usually placed between the convolution operation and activation function. It works
similarly to the initial normalization operated per channel on the dataset before
training. Since the transformation performed by each layer does not guarantee the
output to have still zero mean and unit variance, this layer adaptively normalize
data by internally maintaining an exponential moving average of the batch-wise
mean and variance of the data seen during training. This mitigate the so called
Internal Covariate Shift, preventing the activations of intermediate layers to diverge
from desirable values and avoiding saturation. The main advantage is to allow a
better gradient propagation during optimization, affording deeper networks.

Pooling layers

Pooling layer is another component that makes the receptive field increase. This
layer is used to reduce the spatial size of the feature maps and ensure invariance
to translation. Two examples are the max pooling and the average pooling layers
that are employed to propagate to subsequent layers local non-learned aggregations
across the whole feature map. This dimensionality reduction is typically performed
in discriminative tasks, where the final output represents a low-dimensional label.
When a task involves image generation for reconstruction, like in inverse imaging
problems, a spatial reduction of the feature map may be detrimental.
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2.1.3 Training and optimization
Cost function

Once we choose a suitable CNN architecture, the training takes place by mini-
mizing an objective function to fit the dataset (x(i), y(i))Ni=1 in order to identify the
optimal values for the weights θ, where N is the dataset size. Taking this from
a statistical viewpoint, training a supervised CNN corresponds to maximizing the
conditional likelihood of each training target x(i) given the corresponding input y(i):

max
θ

N∏︂
i=1

p(x(i)|y(i), θ),

Usually all the y(i) are considered independent and identically distributed and the
CNN is trained by minimizing the negative log likelihood as follows:

min
θ

N∑︂
i=1

− log(p(x(i)|y(i), θ),

The approach most commonly employed when using CNN for solving inverse prob-
lems in imaging is to consider x(i)|y(i) to be distributed as a multivariate Gaussian
N (f(y(i), θ),Σ) where f(y(i), θ) represents the CNN and Σ represents the covariance
matrix of form σ2I. The final cost function is the Euclidian distance between the
target x(i) and its estimated mean f(y(i), θ):

min
θ

N∑︂
i=1

∥ x(i) − f(y(i), θ) ∥2, (2.1)

The maximum likelihood formulation does not take into account prior information
about the desired CNN parameters θ. Maximum a posteriori formulation consists
in maximizing the unnormalized posterior:

max
θ

N∏︂
i=1

p(x(i), θ|y(i)),

Considering the negative log of the unnormalized posterior we obtain:

min
θ

−
N∑︂
i=1

log(p(x(i)|y(i), θ)) + log(p(θ)),

Depending on the assumption on the probability distribution used to model the
parameters, we get a different kind of regularization. Regularization is very im-
portant to prevent the CNN to overly specialize to the training examples and to
increase its generalization ability on new data. Another method for regularization
is dropout [149], where individual neurons of the network are randomly deleted
during training. This forces the network to learn alternative paths for predicting
the correct output, leading to greater flexibility.
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Optimization algorithms

Once designed the right loss function for the dataset at hand, this function is
minimized updating the CNN parameters through an optimization algorithm. The
most common optimizer is called stochastic gradient descent (SGD). At each step
of the training procedure, the gradient of the loss function with respect all the
weights is computed on a random batch of the dataset and used to update the
model parameters θ. The gradient computation is approximated on a subset of
the full dataset because otherwise this process would create speed and memory
problems. Amongst the most common variations on gradient descent there are
Adam [84], AdaDelta [187] and RMSProp, accounting for gradients from previous
iterations.

2.2 Deep learning for inverse problems in imag-
ing

Early deep learning based works to solve inverse problems in imaging made use
of fully connected neural networks to learn a mapping from an observation y to
its reconstruction x̂. Despite the fact that these models were simple, they showed
competing performance with respect to the state-of-the-art analytical methods.

Burger et al. [19] solved a denoising inverse problem using a fully connected
neural network to map noisy images to their cleaned versions, while the authors in
[199] learned an end-to-end mapping in the wavelet domain. A specific architecture,
called auto-encoder, has been used in denoising and inpainting problems in [175]
and in [3] with sparsity. A fully connected neural network was trained on a large
dataset of artificially blurred images by Schuler et al. [138] to solve a non-blind
deconvolution problem.

2.2.1 CNN-based methods
CNNs are particularly suitable for processing images as they can easily extract

the statistics of their input and make use of them to solve inverse problems. There
are two major types of CNN-based architectures used for solving inverse problems
in imaging. The first type is composed of multiple convolutional layers that produce
feature maps of same spatial size as the input image. The other type of CNNs are
called encoding-decoding architecture, where the spatial size of the feature maps
first decreases and then increases again to match the output image size. When
solving a regression inverse problem it is desirable avoid reducing the spatial size
as it can have a destructive effect. Some spatial details can be lost during encoder
compression and this may lead to a significant loss of detail in the output image.
However there are some inverse problems that can use a larger receptive field in
order to extract semantic information regarding the input such as optical flow
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inpainting problem. Most of the works in inverse problem literature make use of
the first approach. A five-layer CNN is used in [70] to denoise an image injected with
Gaussian noise. The method in [87] solves a compressed sensing inverse problem
with a six-layer CNN to map the compressed measurements of an image to its full
reconstruction. An off-the-shelf denoiser is employed to remove blocky artifacts
and obtain the final reconstructed image. One of the first work in SR task using
deep learning was conducted by Dong et al. [34] who used a three-layer CNN
that takes an interpolated LR patch as input to produce the corresponding HR
version. This network has been used and extended in many subsequent works such
as in [75] where the authors applied SR to video. In this case, multiple frames are
combined to reconstruct a HR image. These frames are first motion-compensated
as a pre-processing step, and then fed to separate CNNs. The individual extracted
features corresponding to the input frames are fused together by another CNN
acting to gather high frequency information from the different frames in feature
space. Hradis et al. [61] trained a deep CNN with up to 15 layers to solve a blind
deconvolution and denoising task. They employed a large set of text documents
injected with a combination of realistic de-focus and camera shake blur kernels,
outperforming the state-of-the-art analytical methods.

The introduction of new learning strategies such as more effective activation
functions, batch normalization, weight initialization, architectural choices, allowed
for training deeper networks. In [57] a novel architectural design choice was in-
troduced, redefining the convolutional layers as learning residual functions. The
residual blocks were crucial to train very deep neural networks. A representation
of the traditional residual block is depicted in Fig. 2.2. Residual blocks learn a
residual between two or more layers by adding a skip connection from the input
of the residual block to its output. The task of learning the full mapping between
input and output is much harder than learning the residual. For this reason, resid-
ual networks are more stable and easier to train as they are great at countering the
vanishing gradient problem.

Ledig et al. [93] proposed a super-resolution generative adversarial network (SR-
GAN) composed by a deep residual network (ResNet) with skip-connection and
residual blocks. They were the first to couple a residual architecture with adver-
sarial training to form a perceptual loss that combines mean squared error (MSE)
loss both at pixel and feature space level. Some works addressing inverse problems
started proposing a different type of connection skipping the whole network up to
the output layer, instead of skipping some layers. Using this trick turned out to be
very successful as it exploits the fact that for many inverse problems in imaging,
input and output images share very similar content, making the input an optimal
starting point solution.

In the context of image denoising, Zhang et al. [28] proposed to train a residual
17-layer CNN which directly predicts the noise in the observed image. As the noisy
input image is connected to the output layer, the network needs only to estimate
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Figure 2.2: Residual block.

the noise to be subtracted to the noisy input image. This prevents the network
from having to learn the reconstruction of the image content. The authors in [134]
and [81] use this approach to train very deep CNN architectures for SR which learn
to predict the missing high-frequency components from the LR patch instead of an
entire new mapping function from the LR to the HR patch.

The previously described works use architectures where the spatial dimensions
are fixed throughout the whole network. The encoder-decoder CNN is composed of
a first network with convolution operations interleaved by downsampling operations
and a second network upsampling feature maps back to the input spatial original
size. The encoder learns an abstract representation of the input image, which is
then used by the upsampling network to produce an output image. As already
mentioned, the downsampling operations applied to solve an inverse problem are
inappropriate as they could lead to a loss of information, but bring some advantages
such as fewer operations performed by the network and a larger receptive field.
Pathak et al. [128] showed that their encoder-decoder CNN can learn to reconstruct
large missing regions from an input image. Other encoder-decoder CNN based
methods solved the loss of information brought by the downsampling operations
by inserting symmetric skip connections in the neural network between the lower
downsampling convolutional layers of the network and the corresponding upper
upsampling convolutional layer, which preserves the relevant details in the input
image. This network is called U-Net and was first proposed for biomedical image
segmentation in [133]. U-Net architecture became very popular in multiple imaging
inverse problems such as denoising [113, 85, 89], super-resolution [62], computed
tomography reconstruction [72], image inpainting [178] and optical flow [36] to
directly predict optical flow from two input images. Most of the imaging inverse
problems, are trained with MSE loss (2.1) as they are formulated as regression
problems. MSE loss leads the network to predict the mean of the distribution,
resulting in an averaged reconstruction among the multiple similar solutions an
ill-posed inverse problem admits. MSE loss is used to achieve higher peak signal
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noise to the ratio (PSNR), one of the most used metric to assess quantitatively the
quality of the estimated image:

PSNR = 20 log MAX(x)
∥ x̂− x ∥2

where x is the ground truth image, x̂ is the estimate reconstruction and MAX(x)
is maximum possible value of x. Although PSNR is reliable from the content
reconstruction fidelity side, it correlates poorly with the human perception of image
quality.

Beyond MSE loss

Recent developments in the field of generative models paved the way for a new
class of CNN-based generative approaches to inverse problems in imaging, able to
approximate the complex density associated with natural image distributions. A
generative adversarial network (GAN) [48] is a generative model that consists of two
networks trained in competition. The generator tries to learn a mapping between
training samples and random noise vectors z, while the discriminator attempts
to distinguish between the output of the generator and real data. The generator
aims to produce images x̂ = g(z, θgen) that the discriminator cannot distinguish
from the real images x. The classical approach used to learn a distribution of
data p(x) is MLE. This requires coming up with a parametrized model and fit
its parameters. Moreover the chosen model might be too simple to describe the
data as sophisticated model are too difficult to optimize or do not have a closed
form expression. The GAN essentially replaces the parametric model, with another
neural network that plays the role of a discriminator network that indirectly models
the probability density of the real data. Many works in literature used the GAN
architecture to regularize inverse problems through the adversarial loss, promoting
the generated reconstructions to be close to the manifold of the real images. Unlike
basic GAN, conditional GAN (cGAN) learns a mapping from the observed image
y to the original image x. The generator is conditioned on the observed images
instead of the noise, producing a reconstruction x̂ = g(y, θgen). The role of the
discriminator does not change in cGAN. In the context of SR, [134] and [93] used
cGAN to couple the adversarial loss with the MSE loss. The adversarial loss has
the effect of picking a particular mode from the distribution, resulting in much
sharper reconstruction and more realistic details. The adversarial loss is not the
only addition to the MSE loss. They both complemented it with a perceptual
loss. This loss is used to measure the perceptual similarity between the estimated
image and the original image, by computing the distance between two images in
feature space. The perceptual loss lV GG is usually defined as the Euclidean distance
between the higher level feature map F , extracted from the well-known ImageNet
pre-trained VGG19 network [146], of the estimated image x̂ and the ground truth
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x:

lV GG =∥ FV GG(x) − FV GG(y) ∥2, (2.2)

This loss enforces the output images to be semantically and structurally compatible
with respect to the original image.

In deblurring context, DeblurGAN method [88] solves a blind motion deblurring
problem, using the more stable Wasserstein GAN (WGAN)[7] with the gradient
penalty [50], instead of vanilla cGAN, and the perceptual loss in (2.2). In [137] a
cGAN was used to solve deblurring on astrophysical images. Similar losses were
adopted in the field of inpainting [128], super-resolution [200, 171, 73], denoising
[183] and compressed sensing [14].

While the approches based on the adversarial and perceptual losses produce
visually pleasing results, they tend to hallucinate information, resulting in lower
PSNR scores and less reliable products in the context of remote sensing. The works
dealing with remote sensing imagery tends to stick with pixel-level losses.

2.2.2 CNN-based methods in remote sensing
In this section we report briefly the most representative CNN-based inverse

problems in remote sensing field.
The deep learning paradigm gained attention due to its natural capability of

extracting high-quality features from images. This is particularly important in
remote sensing scenarios where images are highly detailed and their statistics can
be very complex. Moreover remote sensing imagery presents specific challenges such
as the environmental conditions, high-altitude imaging and imaging systems trade-
offs that may lead to low-quality observation. The most studied inverse problems
in remote sensing are pan-sharpening, super-resolution, deblurring, denoising and
fusion. These tasks are very important for remote sensing scene interpretation, and
they are used as pre-processing step for several image processing tasks, like feature
extraction, detection, segmentation and classification.

Pan-sharpening

Remote sensing imaging systems cannot acquire high resolution both in the
spatial and in the spectral domains. The majority of spaceborne remote sensing
imaging systems acquire two types of observations, a panchromatic (PAN) com-
ponent with high spatial and low spectral resolution, and a multispectral (MS)
component having low spatial resolution and high spectral resolution. These two
sources can be combined to produce HR spatial-spectral observations. The CNN
architecture is ideal to capture intra-correlation across different bands of the MS
images and the PAN image.

The pan-sharpening approaches exploit mainly two kinds of neural network ar-
chitectures: encoder-decoder CNNs and CNNs without spatial compression/expansion.
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The early CNN-based approaches are inspired by CNN architectures borrowed from
the SR context on natural images.

In [117] the authors extended the SRCNN super-resolution architecture [34] to
tackle the pan-sharpening. SRCNN is a three-layer CNN working at the target
resolution from the beginning. They upsampled the low-resolution spectral bands
to match the high-resolution panchromatic band and then stacked all the bands to
form the pansharpened input. The SRCNN network is trained by minimizing the
MSE loss between the pan-sharpened input and the original high-resolution spectral
bands. As the real high-resolution multispectral image, acquired by a multispectral
sensor operating at the same spatial resolution of the PAN, is impossible to acquire,
the Wald protocol [188] is used to make training possible. The network is trained
with downsampled MS image and PAN image as input and the original MS image
as ground truth. They used 3 different datasets from the IKONOS, GeoEye-1, and
WorldView-2 satellites.

The works [101, 173, 172] proposed residual CNN architectures inspired by the
VDSR architecture devised by Kim et al. [81] in SR context. They employed resid-
ual connections and skip connections to overcome the vanishing gradient problem
when training very deep CNN. These methods achieved promising results, outper-
forming the CNN-based method in [117]. The authors in [182] trained the well-
known ResNet architecture to learn the missing high frequency details directly in
the high-pass domain to generalize well to new satellites. A residual connection,
acting as a spectral preservation, adds to the upsampled MS bands the high fre-
quency details produced by ResNet. The ℓ2 loss is used to train the ResNet network.
Experimental results demonstrate the superiority of the method proposed in [182]
compared to conventional pan-sharpening methods as well as CNN-based method
in [117] in the WorldView-3 dataset.

Scarpa et al. [136] extended the baseline proposed in [117] to take into account
different changes such as using ℓ1 loss instead of ℓ2, using a residual connection
and a much deeper CNN network architecture. They performed an ablation study
combining these changes in different ways. Moreover they introduced the target-
adaptive pansharpening training procedure, where they first trained a network on
the available dataset, fine-tuned on a target image until convergence and then
fed this image to the fine-tuned model to obtain a pansharpened output. The
authors tested this approach on four different datasets, namely IKONOS, GeoEye-1,
WorldView-2 and WorldView-3, and compared it with their initial approach [117] as
well as with conventional pan-sharpening techniques, obtaining good performance.

Another CNN-based approach for pansharpening is proposed in [140], where the
MS bands and the pansharpening band are processed separately. The extracted
features, coming from the two streams, are fused to produce the high resolution
MS bands. The authors considered PAN and MS (4 bands) observations from
QuickBird and Gaofen-1 satellites.

An encoder-decoder network with skip connections is used in [184] to achieve a

32



2.2 – Deep learning for inverse problems in imaging

wider range of spatial information to ensure better extraction of semantic features.
They adapted the U-Net architecture [133] to be used in a regression sharpening
problem.

In [106] the authors proposed a cGAN based method called PSGAN, composed
of a two-stream CNN based generator to first separately process MS bands and the
PAN band and then fuse them at feature level, rather than in pixel-level, reducing
the spectral distortion. The aforementioned approach has been tested on QuickBird
and GaoFen-1, outperforming deep learning based methods [117] and a number of
traditional pansharpening methods.

Denoising

The studies on the remote sensing image denoising model and algorithm are
very prosperous, especially for multi-spectral, hyper-spectral (HS) and synthetic
aperture radar (SAR) data. These three types of data are inevitably corrupted by
noise during acquisition and processing.

For HS data due to the sensor instability and atmospheric interference, HS
images often suffer from multiple types of noise such as Gaussian noise, stripe
noise, impulse noise, dead lines, and mixed noise. Most of the works in HS denoising
assume the presence of the Gaussian noise only.

The aim of the method proposed in [176] is to perform denoising while preserving
the spectral information. They trained a residual network with batch normalization
to learn mapping between the spectral differences of the noisy and the clean HS
observations. In the denoising stage, the learned residual network is employed
to produce the clean spectral differences. In the meantime, a reference band is
selected based on a principal component transformation matrix and fed to the
famous pre-trained denoising network (DnCNN) [194] to generate a noise-free single
band image. The latter is used as starting point to retrieve the other bands, by
combining the clean reference band with the clean spectral differences.

In [185] the authors used a spatial–spectral residual CNN network where 2D
convolutional filters enhance the feature extraction ability of the single band, and
3D convolutional filters simultaneously employ spatial–spectral information. Dif-
ferent convolutional kernel sizes are employed to produce multiscale features with
different receptive field sizes. The training is carried out on simulated data patches
from the Washington DC Mall image obtained by the Hyperspectral Digital Im-
agery Collection Experiment (HYDICE) airborne sensor. This method outperforms
many of traditional non-CNN methods for HS denoising on the Indian Pines and
Pavia University datasets.

Zhang et al. [197] addresses the removal of multiple types of noise in HS im-
agery other than the only Gaussian noise. They employ a multi-scale spatial-
spectral CNN to simultaneously collect spatial and spectral information from the
spatial and spectral gradients. Both the University of Pavia image obtained by the
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airborne Reflective Optics System Imaging Spectrometer (ROSIS) sensor and the
Washington DC Mall image (HYDICE) were used to train the proposed model.

HSI-DeNet proposed in [23] addresses mixed type noise removal, devising a
GAN-based approach with residual learning and dilated convolutions, which di-
rectly operates on the 3D data.

The remote sensors capturing HS data are passive acquisition systems. Another
class of remote sensing imagery is the one captured by the Synthetic Aperture
Radar (SAR) technology. Since SAR images are affected by an intense granular
noise, called speckle noise, denoising is of primary importance for subsequent tasks
involving image understanding. A more in-depth explanation on SAR image de-
speckling and its related works is given in Sec. 2.3.2.

Super-resolution

While most of the deep learning SR works are related to traditional natural
images, lately CNNs have been exploited for remote sensing imagery. The aim of
SR is to increase the spatial and/or spectral resolution of low resolution observa-
tions. This can be seen as an intermediate task before solving some downstream
tasks. The most widespread CNN architectures are plain multi-layer networks
without any downsampling or encoding as reducing spatial accuracy could lead to
a loss of information, especially in the context of an upsampling task. Many works
dealing with super-resolution in remote sensing field borrowed established network
architectures initially devised for natural images such as SRCNN [34], Very Deep
Super-Resolution (VDSR) [81] and the Enhanced Deep Super-Resolution (EDSR)
[104].

In the first work [103] in SISR for remote sensing the authors re-trained a CNN
network drawing from the paradigm of SRCNN, to increase the spatial resolution of
MS satellite images from Sentinel-2 satellite, but actually focusing on a single band.
In [159], VDSR [81] and the SRCNN [34] architectures are compared on different
scale factors using images from SPOT and Pleiades satellites. Being the VDSR a
deeper network with residual connection, it shows a significant improvement with
respect to SRCNN. Lei et al. [96] proposed LGCNet, a residual network specifically
designed to learn multiscale representations of remote sensing data including both
local and global priors. Their network is an extension of VDSR, composed of a series
of layers for feature extraction and “local-global” concatenation layer to combine
multiple feature maps from different layers. LGCNet architecture was evaluated on
RGB imagery from the UC Merced dataset, comparing to SRCNN, VDSR and the
bicubic baseline.

Another work exploiting multiscale feature extraction is [170]. The authors per-
form a wavelet decomposition on aerial images to obtain multiple frequency bands
and then trained a dedicated SRCNN-like network for each band, to match the
wavelet multiscale representations obtain from the high resolution aerial image. For
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inference, each CNN is responsible for estimating the corresponding representation
at the specific scale and the high-resolution image is obtained through wavelet syn-
thesis. This method has been evaluated on the aerial images from RSSCN7 dataset
obtaining better results with respect to VDSR architecture [81].

In [111] a CNN takes as input discrete wavelet transformed images and adopts
recursive block and residual learning in global and local manners to reconstruct
HR wavelet coefficients. The outputs of the network are combined by an inverse
discrete wavelet transform to generate the final high spatial resolution image. The
evaluation of the method is performed on the airplane images from the NWPU-
RESISC45 dataset.

In [55] the authors proposed a generative network with an encoder-decoder ar-
chitecture to recover a HR estimate in an unsupervised manner. This is an iterative
approach where the generator is fed with random noise to produce a HR estimate.
The HR estimate is downsampled and used to match the original LR image by
minimizing a MSE loss. The HR estimate is progressively refined by iteratively
using it as new input.

The GAN framework has recently gained attention for super-resolution of remote
sensing images. In [71], a GAN architecture is proposed to jointly recover high
frequency details and remove noises and artifacts affecting the edges. The generator
network is composed of two sub-networks, aiming to reconstruct an intermediate
HR result and to replace its noisy edges with the purified ones. The method uses
imagery from Kaggle Open Source Dataset1 and Jilin-1 video satellite.

We presented an overview on common inverse problems tackled through deep
learning methods. In the following section we deliver a background on the two
inverse problems we focus on in this thesis.

2.3 Inverse problems of this thesis
In this section we report a more thorough explanation of the two inverse problems

we deal with in the subsequent chapters of this thesis. Background and motivations
are presented for multi-image SR and SAR despeckling problems.

2.3.1 Multi-image SR
SR techniques reconstruct a HR image from one or more LR images. Despite the

continuous development of ever more advanced optical devices, for some imaging
applications acquiring HR images can be cumbersome or impossible due to the-
oretical and practical limitations. Super-resolution methods are thus required to
improve image resolution beyond the sensor capability. The approaches to image
super-resolution can be broadly framed into two main categories: single-image SR
(SISR) and MISR. SISR exploits spatial correlation in a single image to recover the
HR version. However, the amount of information available in a single image is quite
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limited as some information has inevitably been lost in the LR image formation
process. Certain applications provide multiple LR versions of the same scene from
slightly different perspective to be combined by means of MISR techniques, where
the reconstruction of high spatial-frequency details leverages the complementary
information coming from different observations of the same scene. It is assumed
that each input image is a degraded version of an underlying HR scene spoiled by
blurring, down-sampling and affine transforms. The multiple LR images for a spe-
cific scene must have sub-pixel misalignments with each other. This means that the
LR images cannot be obtained from each other by a transformation or resampling
process. If the relative shifts between the LR images are integral, the images after
motion registration will contain almost the same information. One possible way of
obtaining multiple images of a specific scene is through hardware control such as in
SPOT-5 satellite system [91]. The imaging mechanism is designed to have sensors
able to acquire observations with known sub-pixel displacements like half pixel or
multiple “looks” from different angles for the same scene. In this case the sub-pixel
displacements are known a priori. For remote sensing problems, multiple images of
the same scene can typically be acquired by a spacecraft during multiple orbits, by
multiple satellites imaging the same scene at different times, or may be obtained
at the same time with different sensors. In these cases the sub-pixel displacements
need to be estimated in order to perform the reconstruction.

Historically, the most common methods to solve MISR problems are the regular-
ized ones. To apply a regularized framework, an imaging model has to be defined
to describe the various degrading factors of an image acquisition process. In MISR
the forward model usually comprises motion, blurring, down-sampling, and noise
degradations and it is simulated as follows:

yk = DkBkMkx+ nk (2.3)

where x represents the HR unobserved image. Mk, Bk and Dk represent the motion
process, the blur matrix and the down-sampling matrix of the kth LR image yk
respectively.

Regularized methods are some of the most effective multi-frame SR reconstruc-
tion approaches. Based on the acquisition model stated in (2.3), a minimization
problem is solved to reconstruct the HR estimate from a set of warped, blurred,
noisy, and downsampled observed images:

arg min
x
E(DkBkMkx, yk) +R(x)

In the past decades, many kinds of regularizers R(x) have been proposed to
preserve edge information while removing image noise, such as Tikhonov regularizer
[54, 126], Markov random field regularizer [24], total variation (TV) [21, 114, 192]
and bilateral total variation (BTV) [40]. In particular, a few works have been
proposed for remote sensing applications. Shen et al. [142] proposed a maximum-
a-posteriori (MAP) SR method with Huber prior for MODIS images captured in
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different dates. Another multi-temporal SR method was proposed by Li et al.[99]
for Landsat-7 PAN images. Instead, other works [110, 192] proposed SR methods
for multi-angle remote sensing captures.

Most of the above SR methods assume a priori knowledge of the motion model,
blur kernel and noise level, where both blur identification and image registration
are performed as a preprocessing stage before reconstruction. However, there are
many applications where knowing the motion parameters and the image degrada-
tion process or reliably estimating them can be challenging. For this reason, many
studies have been carried out blind SR image reconstruction [125, 56]. These blind
methods usually work in two stages, namely (1) image registration from LR im-
ages, followed by (2) simultaneous estimation of both the HR image and blurring
function. Along the same lines, Zhang et al. [191] also integrated the joint esti-
mation of the blurring function. Moreover, Kato et al. [77] recently proposed a
sparse coding method where image registration and sparse coding are performed in
a unified framework reducing the image registration error.

Recent work in deep learning has demonstrated that deep neural networks can
leverage large collections of training data to directly compute regularized recon-
structions, by performing a supervised inversion of the forward model.

The main drawback of supervised deep learning method for solving inverse prob-
lems is the need of a large training dataset. Pansharpening, super-resolution, de-
noising and deblurring methods discussed previously follow a common protocol
to generate synthetic training pairs. Focusing on MISR, existing methods create
the dataset by assuming a known forward model with known parameters. The
LR images are obtained by applying motions, degrading through a blur filter and
downsampling the HR images. The model in (2.3) is a simplified version of a real
acquisition model that applies much more complex transformations. Generating
the training pairs through (2.3) means limiting the deep learning method to learn
an inversion function of a overly simplified and non realistic forward model that
may lead to an unrepresentative training phase. In the context of remote sensing,
one way to solve this is to obtain the LR images and the corresponding HR image of
the same scene from different spacecrafts capturing images at different resolutions.
This leads to a model that is suboptimal when performing inference on images
captures from both spacecrafts.

The Advanced Concepts Team of the European Space Agency has issued a com-
petition [115] to perform MISR for the images acquired by the PROBA-V satellite.
The unique feature of this dataset is that both LR and HR images have been ac-
quired by the same spacecraft at multiple times, as opposed to the majority of
the previous works where LR images are artificially down-scaled, degraded and
shifted versions of an HR image. In this context, developing a successful MISR
model hinges on solving important problems such as image registration, invari-
ance to absolute brightness variability, time-varying scene content (e.g., due to the
time elapsed between multiple acquisitions), and unreliable data (e.g., due to cloud
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Figure 2.3: CNN coupled with a bicubic upsampling as the approximate inverse of
the forward model in a SISR inverse problem.

Figure 2.4: CNN coupled with a bicubic upsampling and a registration process as
the approximate inverse of the forward model in a MISR inverse problem.

coverage).
When solving an inverse problem with a deep learning method it is common to

use the partial knowledge of the forward model and use an approximate inverse
Ã−1, to first map the observations back to image domain and then train a neural
network to refine the resulting images.

x̂ = f(y, θ) = g(Ã−1(y), θ),

where g is the network mapping the new input Ã−1(y) onto the ground truth x.
In super-resolution for instance it is very common to inject domain knowledge

of the forward model into the training process and dramatically reducing the com-
plexity of the image reconstruction, by coarsely upsampling the LR images. Most
of the deep learning methods in SR problems feed to the network a bicubic interpo-
lation of the LR images as shown in in Fig. 2.3. The task of the network is simply
to adjust the higher frequency details and remove artifacts.

In the case of MISR, the registration is also performed as a pre-processing step
by fixed filters.

In the deep learning MISR literature most of the methods perform the registra-
tion step as a pre-processing step and the reconstruction is learned from the dataset
by a deep network as depicted in Fig. 2.4. This causes the registration error to
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be propagated through the learning procedure without never being corrected. In
the last years, deep learning based methods have been proposed to solve MISR
problems in context of video super-resolution [75, 20]. Most of these works are
composed of two steps: a motion estimation and compensation procedure followed
by an upsampling process, heavily relying on the prior motion estimation. Recently,
Jo et al. [74] presented a novel end-to-end residual CNN to produce a SR image
without explicit motion compensation. A CNN is trained to simultaneously solve
motion estimation and HR image reconstruction tasks by producing a set of pixel-
dependent filters and a residual correction. A similar idea was developed by Tian
et al. [154]. However, little work has been done on deep learning MISR methods in
the context of remote sensing, which poses specific challenges. Kawulok et al. [78]
propose a MISR method that does not fully exploit the benefit of deep learning,
restraining their CNN to solve a SISR problem. The fusion of the upsampled LR
images is performed by the median shift-and-add method, generating a SR image
that is used as initial guess for a classic regularized method. Their method is not
end-to-end trainable in a supervised manner and their CNN is trained against LR
images obtained by artificially degrading HR images. Inspired by the recent video
super-resolution works, we aim to tackle the MISR problem on satellite images by
jointly registering the input LR images and reconstructing the SR image, all within
an end-to-end trainable CNN, where the two tasks are optimized jointly. In gen-
eral, incorporating knowledge of the forward model into the reconstruction network
makes the learning process easier as long as it is simple enough for the training to
compensate for the errors introduced by the approximation of the forward model.
In our method we leave as initial reconstruction only the bicubic upsampling, in-
stilling minimal pre-processing in the approximate inverse Ã−1. Incorporating also
the registration approximation of our forward model would lead to errors that the
network is not able to correct by construction.

2.3.2 Despeckling
SAR is a coherent imaging system and as such it strongly suffers from the pres-

ence of speckle, a signal dependent granular noise. Information extraction from
SAR images is heavily impaired by speckle noise, hence despeckling is a crucial
preliminary step in scene analysis algorithms.

The most employed imaging forward model in literature is the following:

y = A(x) · n (2.4)

where y ∈ RW×H is the observed image, x ∈ RW×H represents the unknown
input image, A is the identity operator and n ∈ RW×H is the spatially multiplicative
speckle noise. The model in (2.4) can deal with either intensity or amplitude as
well as with single-look or multi-look images. The noise n is usually considered
to be an uncorrelated random process and most of the methods in literature make
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this assumption. Speckle noise in SAR images can actually be considered spatially
correlated as the SAR acquisition model tends to correlate it.

Tackling a despeckling task based on this non linear model is hard and in lit-
erature researchers introduced some simple manipulations to simplify the forward
model in (2.4):

• recasting the multiplicative noise model into a signal-dependent additive noise
model:

y = x · n = x+ (n− 1)x

where (n− 1)x represents the signal-dependent noise speckle process;

• applying a homomorphic transformation to the model, by taking the logarithm
of the observed image y and obtaining a signal-independent additive noise
model:

log(y) = log(x) + log(n)

The homomorphic model introduces a bias in the despeckled image as E[n] /=
exp{E[log(n)]} and moreover, it changes radically the data dynamics leading
to distortions.

The last decades have seen a multitude of SAR image despeckling methods, that
can be broadly categorized into four main approaches: spatial-domain methods,
wavelet-domain methods, non-local methods and deep learning methods. Filtering-
based techniques such as Lee filter [94], Frost filter [44], Kuan filter [86] represent
the early attempts to solve SAR despeckling and they operate in spatial domain.
Subsequent works in spatial domain aimed to reduce speckle under a non-stationary
multiplicative speckle assumption. A popular example is represented by the MAP
approaches aiming to give a statistical description to the SAR image. A few MAP-
based works have been proposed and the most representative is the Γ-MAP filter
[108] that solves the MAP equation modeling both the radar reflectivity and the
speckle noise with a Gamma distribution.

Wavelet-based methods proved to be more effective than spatial domain ones,
enabling multi-resolution analysis and boosting analysis under non-stationary char-
acteristics. They despeckle SAR images in the transform domain by estimating
despeckled coefficients and then by applying the inverse transform to obtain the
cleaned SAR image. A first subclass of wavelet based methods solve the despeck-
ling problem with a homomorphic approach, consisting in applying a logarithmic
transform of the data to convert the multiplicative noise into an additive one. The
works in [51, 45] applied the traditional wavelet shrinkage based on hard- and soft-
thresholding with an empirical selection of the threshold. Further wavelet-based
methods [2, 148, 12, 1] introduce prior knowledge about the log-transformed re-
flectance in the wavelet domain, employing a MAP estimator. Most of the wavelet-
based homomorphic approaches do not compensate for the bias in the reconstructed
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images resulting from the mean of the log-transform speckle. To cope with this
problem, a non-homomorphic approach has been considered by some works [63,
118, 41, 5] in the wavelet domain, dealing with a signal-dependent speckle whose
distribution parameters are harder to be estimated.

In general, both spatial domain and wavelet domain techniques yield limited
detail preservation with the introduction of severe artifacts. The amount of infor-
mation provided by a local window is quite limited and the need of incorporating
more information from the neighborhood led to the proliferation of non-local meth-
ods. The pioneering work in this field is represented by the non-local means (NLM)
filter [26] that performs a weighted average of all pixels in the image and the weights
depend on their similarity with respect to the target pixel. The weights are de-
fined by computing the Euclidean distance between a surrounding patch centered
at a neighboring pixel and a local patch centered at the target pixel. In [30], the
Probabilistic Patch-Based (PPB) algorithm has been proposed to adapt the non-
local means approach to SAR despeckling. The authors devised a patch similarity
measure that generalizes to the case of multiplicative, non-Gaussian speckle.

In [31], the authors proposed another extension of NLM for despeckling, called
NL-SAR, to deal with arbitrary SAR modalities (SAR, polarimetric SAR, inter-
ferometric SAR) and any number of looks. They proposed a unified non local
framework where several non local estimations are performed and the best one is
locally selected to ensure adaptivity to local structures. Moreover, in order to en-
sure robustness to noise correlation, similarities are weighted using kernels learned
from a homogeneous region.

NLM inspired a number of extensions in the Gaussian noise context such as the
Block-Matching 3D (BM3D) algorithm [29], a combination of non-local approach,
wavelet domain shrinkage and Wiener filtering in a two-step process.

One of the most popular SAR despeckling algorithm is the SAR version of BM3D
[29] (SAR-BM3D) that follows the same BM3D phases with an adaptation to the
SAR statistics in the grouping phase where the same PPB similarity measure is
used. Moreover the hard-thresholding and Wiener filtering, suitable in the Gaussian
noise context, are replaced with an LMMSE estimator (based on an additive signal-
dependent noise model).

The success of deep learning on many tasks involving image processing has sug-
gested that the powerful learning capabilities of CNNs could be exploited for SAR
despeckling and a few works have started addressing the problem. Such methods
use a supervised training approach where the network weights are optimized by
minimizing a distance metric between noisy inputs and clean targets. As for most
of imaging inverse problems tackled with a supervised deep learning approach, the
retrieval of training pairs is difficult. For pansharpening and super-resolution in-
verse problems the training pairs are generated by treating the original data as
ground truth and their downsampled version as low resolution obtained through a
simplified forward model. In denoising and deblurring the approach is the same.
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Optical clean images are considered as ground truth and synthetically degraded, in
this case, through a fully known forward model to create the noisy versions.

In SAR context the clean underlying image is impossible to collect. One might
be able to gather multi-temporal SAR images of the same scene and average them
to get an approximated ground truth, but this would pose other challenges as ac-
quisition of multi-temporal data, scene registration and robustness to temporal
variations can be challenging, leading to a sub-optimal rejection of speckle. Sim-
ilarly to the aforementioned inverse problems, the researchers solve despeckling
by resorting to synthetic datasets where optical images are used as ground truth
and their artificially speckled version as noisy inputs. This creates a domain gap
between the features of synthetic training data and those of real SAR images, possi-
bly leading to the presence of artifacts or poor preservation of radiometric features
when despeckling real SAR images.

Chierchia et al. [25] proposed SAR-CNN, which applies a DnCNN-like [194] su-
pervised denoising approach to SAR data. They exploit the homomorphic approach
to deal with multiplicative noise model and use a new similarity measure for speckle
noise distribution as loss function rather than the usual Euclidean distance. Clean
data for training are obtained by averaging multitemporal SAR images. Wang et
al. [169] proposed a residual CNN (ID-CNN) trained on synthetic SAR images, to
directly estimate the noise in the original domain, and, hence, the despeckled image
is obtained by dividing the noisy image by the estimated noise. Training is once
again supervised using synthetically speckled optical images and carried out with
the Euclidean distance and a total variation regularization as loss function. Several
subsequent deep learning works [168, 198, 49, 100, 193, 92] proposed slight varia-
tions on the topic by introducing different architectures and losses, but all under
the supervised training umbrella using synthetically speckled SAR images. In [168]
the authors proposed IDGAN, a deep learning SAR despeckling method based on
a generative adversarial network (GAN) and trained using a weighted combination
of Euclidean loss, perceptual loss and adversarial loss. In [49], a dilated densely
connected network (SAR-DDCN) trained with Euclidian distance, was proposed
to enlarge the receptive field and to improve feature propagation and reuse. A
combination of hybrid dilated convolutions and both spatial and channel attention
modules through a residual architecture called HDRANet was proposed in [100],
to further improve the feature extraction capability. More recently, Cozzolino et
al. [27] proposed a method that combines the classical non-local means method
with the power of CNN, where NLM weights are assigned by a CNN with non local
layers.

Until now, the power of CNN has not been fully exploited yet, since most of
the works in literature make use of synthetic SAR images. Inspired by the recent
blind-spot CNN denoising works, we tackle SAR despeckling with a self-supervised
Bayesian framework relying on blind-spot CNN. This is a modified version of the
classical CNN, which reconstructs each clean pixel exclusively from its neighboring
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Spatial decorrelation

Figure 2.5: The CNN is trained to learn the inversion of the SAR acquisition
system. A spatial decorrelator [90] is employed to whiten the speckle noise.

pixels. However, the blind-spot CNN requires to assume spatially uncorrelated
noise in order to be properly trained and it uses a training dataset composed by
the only noisy SAR image per scene (y(i))Ni=1 where N is the number of scene in the
dataset. The noisy SAR image is used both as noisy input and ground truth. To
this end, we preprocess the noisy SAR images with a decorrelation procedure [90].
Fig. 2.5 shows the general architecture of our method, where we do not incorporate
any domain knowledge of the forward model into the training process. The network
is responsible for the inversion of the full forward model.
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Chapter 3

DeepSUM: Deep neural
network for Super-resolution
of Unregistered
Multitemporal images

Deep learning methods have been proved highly successful in the SISR problem
but little work has been done for the MISR problem with remote sensing data. In
particular, we aim to develop a deep learning technique to solve a MISR problem
with multitemporal unregistered imagery, that requires to handle some important
problems such as image registration, invariance to absolute brightness variability,
time-varying scene content (e.g., due to the time elapsed between multiple acquisi-
tions), and unreliable data (e.g., due to cloud coverage).

In this chapter we present a deep learning architecture addressing MISR applied
to a novel dataset provided by the European Space Agency’s Advanced Concepts
Team in the context of a challenge [80]. The goal of the challenge is to super-
resolve images from the PROBA-V satellite. The method presented in this chapter
won the challenge by achieving the highest fidelity on the reconstructed images.
The unique feature of this dataset is that both LR and HR images have been
acquired by the same spacecraft, as opposed to previous works where LR images
are artificially down-scaled, degraded and shifted versions of an HR image. In this
case, the forward model becomes much more complicated than in (2.3) as it should
describe complicated factors found in real scenarios. In this work we do not need to
approximate the sensor imaging model as a CNN is exploited to invert it by relying
on a large dataset.

Our main contribution is DeepSUM, a novel CNN-based architecture to com-
bine multiple unregistered images from the same scene exploiting both spatial and
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temporal correlations. Our method includes image registration inside the CNN ar-
chitecture, as a subnetwork named RegNet, which dynamically computes custom
filters and applies them to higher dimensional image representations. This is in
contrast with the vast majority of deep-learning MISR methods in literature [79]
that compensate for the motion as a preprocessing step. This approach allows the
registration task to leverage the feature learning capabilities of the network in or-
der to be more accurate and resilient to scene variations, and it also optimizes it in
an end-to-end fashion for the final goal of reconstructing a single HR image. The
proposed method is blind to the image degradation model as it does not require to
explicitly model the blur kernel or the noise statistics, and it is robust to tempo-
ral variations in the scene as well as occlusions due to cloud coverage. The only
assumption of our model is the translational nature of the shift among LR images.

The remainder of this chapter is organized as follows. Section 3.1 provides
details on the novel PROBA-V dataset. Sections 3.2 and 3.3 detail the proposed
framework and the training procedure. Section 3.4 contains results and performance
evaluation.

3.1 The PROBA-V SR dataset
At present, it is difficult to find a dataset collecting both a set of real-world LR

observations and the corresponding HR image for the same scene, as captured from
the same platform. Many of the works found in the SR literature are based on
simulated data, where LR observations for a specific scene are obtained through
a degradation and down-sampling process of the HR images by assuming a sensor
imaging model. This is a simplified scenario as it either assumes a non-blind prob-
lem, i.e., the degradation model can be characterized to some extent, or has the
limitation that a too simple degradation model may not accurately match the real
one, especially when in presence of temporal variations in the scene content.

The Advanced Concepts Team of the European Space Agency has issued a com-
petition [115] to perform MISR for the images acquired by the PROBA-V satellite.
PROBA-V is an Earth observation satellite designed to map land cover and vegeta-
tion growth across the entire globe. It was launched in 2013 into a Sun-synchronous
orbit at an altitude of 820km. Its payload provides an almost global coverage with
300m LR images and 100m HR images. However, the HR images are acquired with
a higher revisit time, roughly one every 5 days, instead of one per day. The dataset
gathers satellite data from 74 regions located around the world from the PROBA-V
mission. Images are provided as level 2A products composed of radiometrically and
geometrically corrected Top-of-Atmosphere reflectance in Plate Carrée projection
for the RED and NIR spectral bands. The size of the collected images is 128 × 128
and 384 × 384 for the LR and HR data respectively. The images have a single
channel with a bit-depth of 14 bits. Each data point consists of one HR image and
several LR images (ranging from a minimum of 9 to a maximum of 30) from the
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Figure 3.1: DeepSUM network. The N input bicubic-upsampled and registered
images are independently processed by a SISRNet subnetwork, and their features
used by the RegNet to compute registration filters to register the feature maps of
the N images to each other. The FusionNet subnetwork merges the features of the
images to produce a residual image. The residual image is then added element-wise
to the average of the registered input to obtain the SR image.

same scene. In total, the dataset contains 1160 scenes, 566 are from NIR spectral
band and 594 are from RED band. The images of a specific scene are captured
at multiple times over a maximum period of 30 days. Weather and changes in the
landscape pose a limitation in the similarity of the images. Clouds, cloud shadows,
ice, water, missing regions, presence of agricultural activities and, in general, hu-
man activity are the main sources of inconsistency across these images, thus posing
a major challenge for any image fusion method. Moreover, each image comes with
a mask, indicating which pixels in the image can be reliably used for reconstruction
(e.g., they are not covered by clouds). The geometric disparity among the images
can be considered as translational only. Subpixel shifts in the content of the LR
images do occur and are indeed important for the MISR task.

The unique nature of this dataset (with real LR and HR images captured by
the same platform at multiple times) makes for an interesting case study for SR
techniques, enabling data-driven methods such as CNNs to learn the inversion of
possibly complex degradation models and the best feature fusion strategy to handle
temporal variations.

3.2 Proposed architecture
Even though the LR images roughly represent the same scene as the HR image,

the described PROBA-V dataset makes the SR task quite complicated, by posing
a bunch of additional challenges:

• the LR images are not registered with each other;

• the LR images and the HR image are not registered;
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• the brightness of the HR image may be different from that of any LR image;

• the scene changes over multiple acquisitions;

• LR and HR images may be covered by different clouds and cloud shadows
patterns or affected by corrupted pixels.

To tackle this problem we propose to employ a supervised deep learning approach
to learn a mapping function f from y[0,N−1], representing the N LR images, to the
HR image x, aiming to invert the unknown degradation model A defined in Eq.
(1.1):

x̂ = f(y[0,N−1], θ),

where θ represents the model parameters, f represents the mapping function from
LR to HR and x̂ the super-resolved image. y[0,N−1] and x are represented as real-
valued tensors with shape N × H × W × C and 1 × rH × rW × C respectively,
where H and W are the height and the width of the input LR frames, C is the
number of channels and r is the scale factor. The proposed CNN learns a mapping
between bicubic interpolation and the ground truth using a residual connection. By
using bicubic interpolation we incorporate knowledge of A into the reconstruction
network. As approximate inverse of A, bicubic interpolation is the most used as it
helps the learning process and it is simple enough to allow the training to recover
from the errors introduced by the approximation of the forward model Ã−1. Our
actual CNN is represented by g(θ, y):

x̂ = g(Ã−1(y[0,N−1]), θ) + h(Ã−1(y[0,N−1])),

where Ã−1 represents the preprocessing step where the LR images are bicubically
interpolated to the desired size and then fed into a CNN g(θ, y) composed of three
main building blocks, while h(y) represents the registration and fusion applied to
the residual connection. An overview of the network is shown in Fig. 3.1.

The first block, called SISRNet, is a feature extractor that can be seen as a
SISR network without the output projection to a single channel. Each of the N
input images is processed independently by a sequence of 2D convolutional layers.
The convolutional filters are shared along the temporal dimension, i.e., all the N
interpolated LR (ILR) images I ILR

[0,N−1] = Ã−1(y[0,N−1]) go through the same set of
filters.

The second network block, called RegNet, aims at estimating a set of filters to
register the N higher dimensional image representations produced by the SISRNet
block to each other at integer-pixel precision (notice that the network is working
at the same spatial resolution as the HR image, so integer shifts correspond to
sub-pixel shifts in the LR data). RegNet has been devised to align N − 1 instances
with respect to the first, taken as reference, by operating purely translational shifts.

48



3.2 – Proposed architecture

Therefore, the output is a set of N − 1 2D filters to be applied spatially to each
feature map of the N − 1 inputs.

Finally, the third block, called FusionNet, merges the registered image represen-
tations in the feature space in a “slow” fashion, i.e., by exploiting a sequence of 3D
convolutional operations with small kernels. The output is a single super-resolved
image.

In the following, we are going to describe each individual block more in detail.

3.2.1 SISRNet Architecture
The goal of SISRNet is to exploit spatial correlations to improve upon the initial

bicubic interpolation. In doing so, the network learns to extract visual features
that can be conveniently exploited by the subsequent network blocks. SISRNet
has multiple 2D convolutional layers whose weights are shared among the N input
images, effectively processing each of them independently. Each convolutional layer
is followed by Instance Normalization [160]. Instance normalization is used in place
of Batch normalization [67] to make the network training as independent as possible
of the contrast and brightness differences among the input images.

3.2.2 RegNet Architecture
RegNet is composed of two sub-blocks: a CNN, and a global dynamic convo-

lutional layer (GDC). The CNN processes the higher dimensional image represen-
tations ZILR

[0,N−1] generated by SISRNet block and outputs a set of N − 1 filters
G[1,N−1]. Each filter Gi is subsequently applied in the spatial dimensions to each
of the channels of ZILR

i by the GDC layer by means of a 2D convolution in or-
der to register each feature map of ZILR

i with respect to the reference one ZILR
0 .

The filters G[1,N−1] have a fixed support equal to K × K that upper bounds the
maximum possible translational shift correction to ⌊K/2⌋. Notice that there is an
implicit assumption that all feature maps of an image require the same shift to be
registered with the reference, so that the computed filter is shared channel-wise.
The registered feature maps ZIRLR

[0,N−1] of the N images are thus obtained as:

Gi = fRegNet(ZILR
[0,N−1], θRegNet), i = 1, . . . , N − 1

ZIRLR
i =

⎧⎨⎩ZILR
i , i = 0

Gi ∗ ZILR
i , i = 1, . . . , N − 1

,

being ∗ the 2D convolution operator. The same filters are also applied to the input
ILR images to register them in the residual connection:

I IRLR
i =

⎧⎨⎩I ILR
i , i = 0
Gi ∗ I ILR

i , i = 1, . . . , N − 1
,
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The novelty of this network is twofold: firstly the filters are dynamically com-
puted for each input image, and secondly it makes use of the features to compute
the per-image optimal registration instead of performing it in image space, like most
of motion estimation algorithms do. This allows to leverage the powerful feature
space of the network to boost the registration performance by making it robust to
scene variations. In addition, it is fully differentiable so that the whole architecture
can be trained end-to-end.

More in detail, the operations performed by RegNet are depicted in Fig. 3.2.
SISRNet outputs a tensor ZILR with shape N×rH×rW ×F , where F is the number
of features, that is reshaped before being fed to RegNet. The features of the first
image ZILR

0 are chosen as a reference and a new tensor of size 2(N−1)×rH×rW ×F
is built by replicating the reference ZILR

0 N − 1 times and interleaving each replica
with the other (N − 1) image representations ZILR

[1,N−1]. This sequence of paired
reference/unregistered features is then processed by convolutional layers to produce
the filters. RegNet has a first 3D convolutional layer and a series of shared 2D
convolutional layers. The first layer is the key component of registration and it
processes the 2(N − 1) image representations in pairs by using a stride equal to 2
along the temporal dimension and filters of shape 2 × 3 × 3. This operation allows
to correlate the features of each ZILR

i with respect to the ones of the reference ZILR
0

and compute the shift. Notice that this processing in pairs is necessary to avoid
any ordering ambiguity and let the network understand that the output is relative
to the reference. After this 3D convolutional layer the output tensor has shape
(N − 1) × rH × rW × F .

This tensor passes through a series of 2D convolutional layers with shared weights
along the temporal dimension. The last RegNet 2D convolutional layer applies a
number of kernels corresponding to the spatial size of the dynamic filters K × K,
obtaining a tensor with shape (N−1)×rH×rW ×K2. Each value over the spatial
dimensions can be seen as a local estimate of the desired shift based on the local
image representation. Since there is a global translational shift by assumption,
the values are averaged over the spatial dimensions to obtain a tensor with shape
(N − 1) × 1 × 1 ×K2.

Finally, this tensor is passed through a softmax layer, so that the values over the
last dimension (K2) add up to 1. The softmax layer promotes a spiked filter with
most elements set to zero [17]. The final tensor represents the (N − 1) dynamic
filters with shape K ×K to be used to register the (N − 1) image representations
with the GDC operation, as in Fig. 3.3.

3.2.3 Mutual Inpainting
The registered and interpolated feature maps ZIRLR

[0,N−1] have regions with unreli-
able values due to cloud coverage, shadows, corrupted pixels and so on. A per-pixel
boolean mask is assumed to be available as side information, with the purpose of
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Figure 3.2: Visual depiction of the RegNet operations to generate the dynamic
registration filters from the image features produced by SISRnet.
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Figure 3.3: GDC: convolution between the dynamic filters and the image represen-
tations to align them with respect to the reference.

mapping pixels that can be reliably used for the fusion task. An example on how
to obtain such mask is to run a cloud detection algorithm on the image to segment
areas with clouds. This is very important because areas occluded by clouds do not
provide any useful information. In order to prevent FusionNet from combining fea-
ture maps from multiple images where some have unreliable intensities, we fill the
masked areas with values from the feature maps of other images. The regions with
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missing or unreliable values in each feature map of each image are filled with values
taken from the corresponding feature map of other images having reliable values
in those regions, if any are available. In the case none of the images has feature
maps with reliable values, we keep those unreliable regions as they are. Since after
RegNet the masks are not aligned with the corresponding image representations,
we shift the masks by an integral shift as close as possible to subpixel shift com-
puted and operated by RegNet. This procedure is performed on both the residual
image representations ZIRLR

[0,N−1] and the registered input images I IRLR
[0,N−1] right before

averaging them.

3.2.4 FusionNet Architecture
The N registered outputs ZIRLR

[0,N−1] are progressively fused by the FusionNet sub-
network. FusionNet is composed of ⌊N/2⌋ 3D convolutional layers where convo-
lution is performed without any padding in the temporal dimension, so that the
temporal depth eventually reduces to 1. This architecture implements a “slow” fu-
sion process in the feature space, which allows the network to learn the best space
to decouple image features that are relevant to the fusion from irrelevant variations
and to construct the best function to exploit spatio-temporal correlations [20]. Fi-
nally, the proposed architecture employs a global input-output residual connection.
The network estimates only the high frequency details necessary to correct the
bicubically-upsampled input. This is an established technique for image restora-
tion problems using deep learning [194], including SISR. However, with respect to
SISR, our proposed network is a many to one mapping, so the residual is actually
added element-wise to a basic merge of I IRLR

[0,N−1] in the form of their average. Notice
that registration of the input images is performed before averaging by means of the
same filters produced by RegNet. Hence, the output is computed as follows:

Ī
IRLR = 1

N

∑︂
i∈[0,N−1]

I IRLR
i ,

x̂ = Ī
IRLR +R.

being R the residual estimated by the CNN.

3.2.5 Loss Function
Model parameters are optimized by minimizing a loss function computed as a

modified version of the Euclidean distance between the SR image and the HR target.
Minimizing the Euclidean distance is optimal in terms of the mean-squared error
metric. Some deep learning works on SISR attempted to use an adversarial loss
[93]. While this approach produces visually pleasing results, it tends to hallucinate
information, resulting in lower MSE scores and less reliable products in the context
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of remote sensing; hence, the adversarial approach has not been followed in the
present work. As we mentioned in Sec. 3.1, since the PROBA-V satellite does
not capture LR images and HR images of a specific ground scene simultaneously,
there are discrepancies coming from different weather conditions, changes in the
landscape and variable absolute brightness due to the large interval between scene
acquisitions. The LR images could be quite different from one another and from
the corresponding HR image as well. For this reason, we must make the training
objective as invariant as possible to such conditions. In particular, in order to
build invariance to absolute brightness differences between x̂ and x, the modified
loss function equalizes the intensities of the SR and HR images so that the average
pixel brightness is the same on both images. Moreover, since x̂ and x could be
shifted, the loss embeds a shift correction. x̂ is cropped at the center by d pixels,
i.e., as many pixels as the maximum expected shift. Then all possible patches xu,v
of size (rH−d)× (rW −d) for vertical and horizontal shifts u, v are extracted from
the target x. All possible Euclidean distances are computed and the minimum one
is taken as loss to optimize. In summary, our loss is as follows:

L = min
u,v∈[0,2d]

∥xu,v − (x̂crop + b)∥2, (3.1)

where x̂crop is the cropped version of x̂ and b represents the brightness correction:

b = 1
(rW − d)(rH − d)

∑︂
X,Y

(xu,v − x̂crop) .

The loss is computed by utilizing only the HR image pixels that are marked as
reliable by the mask provided with the dataset and the SR image pixels for which
at least one out of N LR images were clear. The reason for this is that a cloud in
the HR image can never be predicted from terrain data in the IRLR images, so its
pixels should not contribute to the loss function. Viceversa, it is also impossible to
predict HR terrain if all the IRLR images have concealed regions.

3.3 Training process

3.3.1 Pre-training
Training the whole network end-to-end from scratch is hard due to several local

minima that do not make SISRNet, RegNet and FusionNet work as expected. For
example, the gradients computed during training do not sharply discriminate the
RegNet task to generate registration filters from the high-resolution feature learning
of SISRNet.

In order to solve this issue, it is possible to pretrain each block to handle its
specific subtask, and then combine all the blocks to be fine-tuned in an end-to-end
fashion.
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SISRNet pre-training

As mentioned in Sec. 3.2, SISRNet aims to independently super-resolve each
of the N input images, while providing useful higher dimensional image represen-
tations. SISRNet is pretrained by setting up a pure SISR problem (i.e., a single
input image) where an additional projection layer is added at the end, in order
to turn the high-dimensional feature space into a single-channel image. SISRNet
with the final projection layer is trained with the same objective function of the
final training, where the single image reconstruction is compared with the only HR
image available for the scene. The rationale behind this is to make SISRNet exploit
spatial correlations as much as possible to generate the best image features for the
SISR task. Once the pretraining procedure is completed, the final layer is removed
and a dataset of feature maps of the input training images is generated to pretrain
RegNet.

RegNet pre-training

The purpose of pre-training RegNet is learning to generate registration filters,
i.e., filters that shift the feature maps of the N − 1 input images with respect
to the reference input. This operation would be quite challenging to learn if the
whole network was trained end-to-end, so its pretraining is crucial for the overall
network performance. RegNet is pre-trained by casting registration as a multi-class
classification problem. Each dynamic registration filter generated by the network
is viewed as a probability distribution over the possible shifts with the objective
of estimating the correct shift. The number of classes is K2 since the filter size is
K ×K. In case of an ideal shift of an integer number of pixels, the predicted filter
should be a delta function centered at the desired shift.

The input data to be used for the pretraining of RegNet are the feature maps
produced by the pretrained SISRNet for the images in the training set. As described
in Sec. 3.2.2, the input to RegNet are N feature maps from images of the same
scene. These feature maps are then synthetically shifted with respect to the first
one by a random integer amount of pixels. The purpose is to create a balanced
dataset where all possible K2 classes (shifts) are seen by the network. The desired
output is a filter with all zeros except for a one in the position corresponding to the
chosen shift. A cross-entropy loss between the softmax output and the true filter
is used to learn the RegNet weights.

3.3.2 Final training
The proposed network is finally trained as a whole, end-to-end for the MISR

task. FusionNet is trained from scratch while SISRNet and RegNet weights are
initialized from the pretraining procedures. The concurrent optimization of all the
network blocks allows SISRNet to finetune the image representations to facilitate
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the RegNet task that in turn finds the best registration to boost the efficiency of
FusionNet.

3.3.3 Testing phase
The network architecture presented in the previous sections has been designed

to deal with a fixed number N of LR images for a given scene. However, it might
happen that more than N images are available and exploiting them could further
boost the SR reconstruction performance. Therefore, during testing, one can per-
form multiple forward passes by using multiple subsets of the available images.
Each subset will produce a different SR estimate and, in the end, all SR estimates
are averaged. Notice that the estimates should be registered to each other so it is
advisable to always use the same LR image as the reference in the network (e.g., one
could choose the image with fewer masked pixels). One method to produce useful
subsets when more than N LR images are available is to sort them by increasing
number of masked pixels and then use a sliding window over N images to compute
SR estimates. It must be remarked that the SR estimate quality degrades with in-
creasing number of masked pixels. Also, the estimates are clearly not independent
if some images are reused multiple times, but we found consistent gains on our test
set, nevertheless.

Defining the optimal function to merge SR estimates or making the network
independent of the number of input images could be studied in future research.

3.4 Experimental results and discussions
In this section we perform an experimental evaluation of DeepSUM, comparing

it with several alternative approaches. Code and pretrained models are available
online1. We first perform an ablation study to highlight the contribution given by
RegNet to the overall network performance. Then, we assess the performance of
alternative approaches.

3.4.1 Experimental setting
In the following experiments, we employ both the NIR and RED band datasets

described in Sec. 3.1. We use 396 scenes for training and 170 for testing from
the NIR band dataset and 415 for training and 176 for testing from the RED
band dataset. Expanding the training set with more scenes should further improve
performance as more variability can be captured by our model. Since DeepSUM is
devised to work with a fixed size temporal dimension, we train the network using

1https://github.com/diegovalsesia/deepsum
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the minimum number of images available for each scene, i.e., N = 9 images. When
more images are available we select the 9 clearest images according to the masks.
As a preprocessing step, all LR images are clipped to 214 − 1 since corrupted pixels
with large values occur in the LR images throughout the PROBA-V dataset.

After the bicubic interpolation, each scene is a data-cube of size 9 × 384 × 384,
from which we extract a dataset with patches of size 9 × 96 × 96. 100 random
patches are extracted from each scene, resulting in a total of 38400 samples. The
patches are extracted considering the available pixel masks: a patch is accepted
only if at least 9 scene images are at least 70% clear and the HR image in the
same coordinates is at least 85% clear. The amount of unreliable pixels is relaxed
to keep as much information as possible from the original images at the cost of
training with sub-optimal patches. Separate networks are trained for RED and
NIR. The proposed network is trained for around 3000 epochs with a batch size of
8 for both RED and NIR.

The Adam optimization algorithm [84] is employed for training, with momentum
parameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The learning rate λ is initialized
to 5 × 10−6 for the whole network. We employ the Tensorflow framework to train
the proposed network on a PC with 64-GB RAM, an Intel Xeon E5-2609 v3 CPU,
and an Nvidia 1080Ti GPU. The exact number of network layers is shown in Fig.
3.1 and the number of filters is 64 everywhere except for the RegNet’s first layer,
which has 128 filters. In order to mitigate border effects, we use reflection padding
in all 2D convolutions. Each layer in the network is followed by Leaky ReLU non-
linearity, except for the last layer. Each layer in SISRnet and FusionNet is followed
by an Instance Norm layer. Instance normalization [160] is used in place of Batch
normalization layer to make the network training as independent as possible of
the contrast and brightness differences among the input images. Finally, since the
network produces a residual estimate R, we normalize Ī IRLR and x so that their
difference gives a unit variance residual R, thus avoiding any scaling to be performed
by the last layer of the network and improving convergence speed.

3.4.2 Quantitative results
The evaluation metric that we consider is a modified version of the PSNR (mP-

SNR), from which we derived the loss function described in Sec. 3.2.5

mPSNR = max
u,v∈[0,6]

20 log 216 − 1
∥ xu,v − (xcrop + b) ∥2 . (3.2)

The mPSNR computation is meant only for pixels that are not concealed both in
the target HR image and in the reconstructed image. Similarly to the loss function
during training, this metric has been devised to cope with the high sensitivity
of the PSNR to biases in brightness and with the relative translation that the
reconstructed image might have with respect to the target HR image. In this case
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the maximum mPSNR over all possible shifts is considered for evaluation. Note
that, by design of the dataset, the maximum shift in the horizontal and vertical
directions is equal to 6 pixels.

We remark that this metric was also used to evaluate submissions to the ESA
challenge, where the score was computed as a ratio between the mPSNR of the
submission and that of the baseline approach, average over all the held-out test set.

Ablation study

First, we want to assess the effectiveness of the sliding window procedure de-
scribed in Sec.3.3.3 to account for more than 9 images for a given scene. Fig. 3.4
shows the mPSNR as function of the number of SR estimates used for computing
the average. Notice that the mPSNR quickly saturates due to the lower quality of
the images in the dataset (e.g., too many masked pixels). Nevertheless, averaging
allow to achieve an mPSNR gain up to 0.3 dB over a single SR estimate on the
NIR data and up to 0.2 dB on the RED data. All the following results have been
obtained with a sliding factor equal to 5.

Then, we want to verify the effectiveness of the RegNet component of DeepSUM
with respect to external registration of the images by means of cross correlation.
This test should highlight the advantage of exploiting the feature space of the end-
to-end trained network for the registration task. Hence, we compare two versions
of our network:

• full network (SISRNet+RegNet+FusionNet);

• network without the RegNet block (SISRNet+FusionNet). We keep the reg-
istration filters but they are fixed to be a delta centered at the integer shift
determined by maximum cross correlation on the ILR input images.

The full network outperforms the one without RegNet by 0.16 dB and 0.13 dB for
the NIR and RED test sets, respectively, as shown in Table 3.1. This is a significant
margin and it is due to the fact that an inaccurate registration can be an important
source of error for the SR reconstruction.

On the other hand, the full network, being trainable end-to-end, is able to exploit
the feature space produced by SISRNet to provide a more accurate registration
and help FusionNet to perform the feature merging task. We remark that the full
network and the reduced network have been trained independently.

Comparison to State-of-the-Art

We compare the proposed MISR technique to a number of alternatives based on
deep learning and model-based methods:

1. single image bicubic interpolation with least masked image (Bicubic);
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Figure 3.4: Effect of testing sliding window to deal with more than 9 LR images.

Table 3.1: Average mPSNR (dB) and SSIM - RegNet Performance.

Proposed without RegNet Proposed with RegNet
NIR 47.68 / 0.98519 47.84 / 0.98578
RED 49.87 / 0.99038 50.00 / 0.99075

2. averaged bicubic interpolated and registered images (Bicubic+Mean);

3. CNN-based SISR with least masked image;

4. CNN-based SISR method shared across multiple images followed by registra-
tion and averaging (SISR+Mean);

5. IBP [68];

6. BTV [40];

7. deep learning method based on simultaneous motion compensation and in-
terpolation developed for video (dynamic upsampling filters (DUF) network)
[74].

Table 3.2 reports the results of the comparison. It can be noticed that the proposed
method outperforms all the other methods.

For all these methods, we followed the same procedure for the data preparation:
bicubic interpolation and registration by phase correlation algorithm, except for
DUF that computes its own registration. For MISR methods we averaged the 5
SR estimates produced by the sliding window method to ensure a fair comparison
with the proposed technique.

Our IBP implementation takes as input an initial guess corresponding to our
Bicubic+Mean baseline and the precomputed shifts related to the LR images using
phase correlation algorithm. At each step, the LR images are estimated through
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Table 3.2: Average mPSNR (db) and SSIM.
Bicubic Bicubic+Mean IBP [68] BTV [40] SISR SISR+Mean DUF [74] DeepSUM

NIR 45.05/0.97654 45.69/0.97782 45.96/0.97960 45.93/0.97942 45.56/0.97938 46.41/0.98166 47.06/0.98417 47.84/0.98578
RED 47.61/0.98474 47.91/0.98507 48.21/0.98648 48.12/0.98606 48.20/0.98704 48.71/0.98787 49.36/0.98948 50.00/0.99075

the forward (HR to LR) imaging model and the error with respect to the actual
LR images is back projected to the current SR image. We can observe that IBP
improves over the Bicubic+Mean baseline but its performance is ultimately limited
by its inability to deal with a complex and unknown degradation model. BTV
implementation takes the same initial guess and precomputed shifts as in IBP with
the difference that at each iteration the cost function to minimize is a L1 norm
plus the bilateral regularization term. BTV shows comparable performance with
respect to IBP. BTV is slightly worse due to the L1 norm data fidelity that tends to
be more robust to outliers but suboptimal with respect to the mPSNR metric. The
deep learning models show marked improvements over the Bicubic+Mean baseline.
We consider two deep learning baselines (SISR only and SISR+Mean) that use
the SISRNet architecture with the addition of a final layer projecting from the
feature space to the image space, a residual connection from the (IRLR) bicubic
image(s) and an increased number of parameters to roughly match the number of
parameters of the full proposed architecture in order to ensure a fair comparison.
The SISR+Mean result has been obtained by averaging 9 SISR images. Notice
that SISR+Mean does not train the network by showing the averaged image to
the loss function; it just uses the pretrained SISR network on multiple images and
averages its outputs. The reason behind this choice is to provide a reference result
to reader who might be interested in taking a state-of-the-art off-the-shelf SISR
model, apply it to multiple images and then avserage the results. The comparison
between SISR+Mean and the SISR only method is meant to highlight the large gain
brought by exploiting both the spatial and temporal correlations, even if the LR
images of a specific scene are taken under different conditions and might be wildly
different from one another in terms of contrast, brightness and landscape due to
temporal variations. Also, notice that SISR only is unable to improve over the
simple Bicubic+Mean MISR on the NIR data. Instead, the comparison between
DeepSUM and the SISR+Mean method shows the improvement brought by the
introduction of FusionNet, which can exploit the slow fusion via 3D convolutions
to find the best way to merge the image representations.

Another method chosen for comparison is the recent DUF network [74]. This
is one of the current state-of-the-art methods for video super-resolution. DUF
network processes N frames in order to compute local pixel-dependent dynamic
filters that are later applied on the central frame to increase its resolution and
compensate motion. The network has a residual branch estimating a residual image
to increase sharpness of the final SR image. The DUF network has been trained
from scratch, maintaining the original structure and roughly the same number of
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learnable parameters with respect to our method for fair comparison. The only
difference lies in using the loss function stated in Sec. 3.2.5 instead of the one
used in the original paper (Huber loss). Moreover, we always considered the first
one among the 9 input LR images as central frame. The performance is worse
than our proposed method and we can deduce that it highly depends on the LR
input image taken to apply the dynamic local filters. We cannot know in advance
which is the LR image that is closer to the HR image due to change in brightness,
landscape, weather, and clouds. Involving all the LR images for HR estimation is
crucial to somehow average the differences across them and try to include as much
information as possible in the final SR estimate.

PROBA-V challenge winning score

For completeness, we report the score achieved by DeepSUM on the unre-
leased test set of the PROBA-V challenge. DeepSUM achieved a score equal to
0.9474466476281652, computed as the average ratio between the mPSNR of ESA’s
baseline and the mPSNR of the submitted images, over both RED and NIR data
in the held-out test set.

3.4.3 Qualitative results
We present a set of qualitative comparisons on the RED and NIR images of our

PROBA-V test set.
First of all, Figs. 3.5 and 3.8 show the multitemporal variability among the LR

images and between the LR set and the HR target for the NIR and RED bands,
respectively.

Figs. 3.6 and 3.9 show a visual comparison between the SR images reconstructed
by the various methods for the NIR and RED bands, respectively. It can be noticed
that our proposed method produces visually more detailed images, recovering finer
texture and sharper edges. In order to help visualization, Figs. 3.7 and 3.10
report the absolute difference between the HR target and the SR reconstructions
for the various methods after registration and compensation for absolute brightness
variations (as in the mPSNR computation).

3.5 Importance of the feature extractor
It is important to notice that SISRNet component is built with fully convolu-

tional local layers and improving the feature extraction ability would reflect into
the registration and fusion performance. In the following chapter, we investigate
the possibility of integrating non-local features in the network, e.g., by using graph-
convolutional architectures [164], a kind of convolution that draws from ideas in
graph signal processing [144, 165].
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Figure 3.5: NIR band images (imgset0708). Left to right: 4 LR images, SR image
reconstructed by DeepSUM and HR image.

Figure 3.6: NIR band images (imgset0792). Top-Left to bottom-right: one among
the LR images, Bicubic+Mean (47.71 dB / 0.98736), IBP (48.46 dB / 0.98919),
BTV(48.12 dB / 0.98866), DUF (48.93 dB / 0.99028), proposed method without
RegNet (50.71 dB / 0.99303), DeepSUM (50.82 dB / 0.99331), HR image.

Figure 3.7: Absolute difference between SR image and HR image (NIR band).
Left to right: Bicubic+Mean, IBP, BTV, DUF, proposed method without RegNet,
DeepSUM.
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Figure 3.8: RED band images (imgset0103). Left to right: 4 LR images, SR image
reconstructed by DeepSUM and HR image.

Figure 3.9: RED band images (imgset0184). Top-Left to bottom-right: one among
the LR images, Bicubic+Mean (46.32 dB / 0.97897), IBP (46.52 dB / 0.97965),
BTV (46.53 dB / 0.97983), DUF (47.64 dB / 0.98468), proposed method without
RegNet (49.55 dB / 0.98886), DeepSUM (49.89 dB / 0.99041), HR image.

Figure 3.10: Absolute difference between SR image and HR image (RED band).
Left to right: Bicubic+Mean, IBP, BTV, DUF, proposed method without RegNet,
DeepSUM.
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Chapter 4

DeepSUM++: Non-local
Deep neural network for
Super-resolution of
Unregistered Multitemporal
images

As winning method of the PROBA-V SR challenge [80], DeepSUM has proven
to be very effective to enhance and combine satellite multitemporal images. One
of the main flaw of the SR method described in the previous chapter is the feature
extraction network. DeepSUM basically inverts blindly the whole forward model,
solving both registration and enhancement of multiple unregistered images from the
same scene through an end-to-end trainable CNN in a way that is robust to content
variations. The registration and fusion tasks rely on the ability of feature extraction
network (SISRNet) to generate meaningful features. The feature extraction network
can be seen as a bottleneck for the subsequent tasks.

In this chapter we present an evolution of DeepSUM, showing how incorporating
non-local information in a CNN allows to exploit self-similar patterns that provide
enhanced regularization of the super-resolution problem.

In MISR literature, non-local techniques have also been introduced by Protter
et al. in [132, 131], based on the non-local means filter [18] to improve the effective-
ness of MISR methods. The idea of these methods is to exploit non-local structural
similarity across spatially distant patches within an image. Other non local MISR
techniques focus on improving regularization of the HR image reconstruction di-
rectly using non local priors.

Recently, non local-based deep learning techniques have spread in various fields
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Figure 4.1: DeepSUM++ architecture. Graph-convolutional layers are used in
SISRNet-NL.

of research, due to their ability to make use of more information taking into ac-
count the peculiar characteristics of the image to be recovered. Some works in the
denoising literature [105, 163] attempt various approaches to define CNNs able to
combine both spatially-neighboring as well as distant pixels. The graph convolu-
tion in [163] adopts a non-local convolution operator where a similarity graph is
constructed connecting pixels whose feature vectors are close to each other.

In this following section, we introduce graph-convolutional layers in the Deep-
SUM architecture, in order to improve its learning capability and generate non-local
feature maps in the hidden layers to solve a MISR problem on remote sensing im-
agery. The resulting DeepSUM++ architecture shows that the performance of
DeepSUM is greatly enhanced by the non-local operations, improving upon the
state of the art.

4.1 Proposed method
As in the previous chapter, we want to solve a MISR problem in a setting with

multitemporal LR image acquisitions. This is characterized by variations in scene
content over multiple acquisitions due to weather or human activities. Moreover,
the absolute image brightness may vary among LR images as well as between the
reference HR image and the LR set. Finally, the LR images are not registered with
each other, and we assume that the geometric disparity is only translational.

DeepSUM addressed this problem with a CNN composed of three main building
blocks: feature extraction (SISRNet), registration in feature space (RegNet) and
fusion to obtain a single HR reconstruction (FusionNet). All blocks are based on
classical 2D or 3D convolutions, so only local information is exploited to obtain the
final HR reconstruction. DeepSUM is optimized in an end-to-end fashion allow-
ing the registration and fusion task to leverage the feature learning capabilities of
SISRNet that is in fact a crucial component.

DeepSUM++ builds upon the DeepSUM architecture and introduces non-local
operations in the SISRNet block, which allows SISRNet to compute more powerful
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high-dimensional image representations that considerably improve the quality of
the subsequent tasks by relying on more informative features. An overview of the
network is shown in Fig. 4.1.

The first block, called SISRNet-NL (non local), is a simple SISR network with-
out the output projection to a single channel, where N bicubically interpolated
LR (ILR) images are processed independently. The weights are shared along the
temporal dimension, i.e., all the N ILR images go through the same operators.
Overall, it acts as a feature extractor exploiting both local and non-local spatial
correlations to improve upon the initial bicubic interpolation. In order to exploit
non-local spatial correlation, traditional convolution is augmented with a graph
convolution operator, which adds to the receptive field of a pixel a predefined num-
ber of non-local pixels whose feature vectors are close to the feature vector of the
current pixel.

More formally, the graph-convolutional layer takes as input the feature vectors
Hl ∈ RF l×rHrW , i.e., the high-dimensional representations of the image pixels at
layer l, and the adjacency matrix of a graph connecting image pixels. The graph
structure is constructed as aK-nearest neighbor graph where each pixel is connected
to the K pixels whose feature vectors are closest in terms of Euclidean distance,
within a search window. The 8 local neighbors are excluded from this search as
they already contribute to the local convolution. The graph-convolutional layer
is composed of two components both taking as input the feature vectors Hl. A
classic 2D convolution aggregates the local neighbors through 3 × 3 filters and an
edge-conditioned convolution (ECC) [145, 163] aggregates the feature vectors of
the non-local pixels. For each pixel i, the ECC computes the output feature vector
Hl+1,NL
i ∈ RF l+1 as follows:

Hl+1,NL
i =

∑︂
j∈N l

i

γl,j−→iF
l
wl(dl,j−→i)Hl

j

|N l
i |

=
∑︂
j∈N l

i

γl,j−→iΘl,j−→iHl
j

|N l
i |

where F l
wl : RF l −→ RF l+1×F l is a fully-connected network, parameterized by wl,

that takes as input the differences between feature vectors dl,j−→i = Hl
j − Hl

i and
outputs a weight matrix, and N l

i is the set of non-local neighbors of pixel i. γl,j−→i is
a non-learnable scalar edge-attention term to underweight the edges between pixels
with distant feature vectors for training stabilization. This term is computed as:

γl,j−→i = exp(−∥dl,j−→i∥2
2/δ)

where δ is a hyperparameter.
Finally, the local and the non-local contributions are averaged to estimate the

output feature vector:

Hl+1
i = Hl+1,NL

i + Hl+1,L
i

2 + bl
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where Hl+1,L
i is the 2D convolution output and bl is a bias. We refer the reader

to [163] for more details on the advantages of this definition of graph convolution.
Depending on the desired computational complexity one may want to use graph
convolution for all the layers in SISRNet or just for a subset.

The second network block, called RegNet, dynamically estimates a set of 2D
filters using the N higher dimensional image representations produced by the
SISRNet-NL block to register them to each other. Handling registration within
an end-to-end trainable network enables the generation of adaptive filters for dis-
parity compensation.

The third block, called FusionNet, merges the registered image representations
in the feature space in a “slow” fashion, i.e., by exploiting a sequence of 3D convo-
lutional operations with small kernels. This block allows the network to learn the
best space to decouple image features that are relevant to the fusion from irrelevant
features and to construct the best function to exploit spatio-temporal correlations.
The output of this block is a single super-resolved image.

Finally, DeepSUM++ employs the same global input-output residual connection
handled as in DeepSUM, as well as the same modified Euclidean loss function in
Eq. (3.1).

Table 4.1: Average mPSNR (dB) and SSIM.

Bicubic+Mean IBP [68] BTV [40] SISR+Mean DUF [74] DeepSUM [120] DeepSUM++
NIR 45.69/0.97782 45.96/0.97960 45.93/0.97942 46.41/0.98166 47.06/0.98417 47.84/0.98578 47.93/0.98620
RED 47.91/0.98507 48.21/0.98648 48.12/0.98606 48.71/0.98787 49.36/0.98948 50.00/0.99075 50.08/0.99118

4.2 Experimental results and discussions
To validate DeepSUM++ we compare its performance with that of DeepSUM

[120] and the same set of MISR methods used in the previous chapter to assess
DeepSUM performance: averaged bicubic interpolated and registered images (Bicu-
bic+Mean), CNN-based SISR method shared across multiple images followed by
registration and averaging (SISR+Mean), IBP [68], BTV [40] and dynamic up-
sampling filters (DUF) network [74]. For all these methods, we followed the same
procedure for the data preparation explained in section 3.4.2: bicubic interpolation
and registration by phase correlation algorithm, except for DUF and DeepSUM
that compute their own registration.

4.2.1 Experimental setting and training process
In the following experiments, we performed the same pre-processing and data

preparation steps as for DeepSUM for both NIR and RED band images. The images
used to construct the two datasets have been captured by the PROBA-V satellite
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Figure 4.2: NIR band images (imgset1144). Top-left to bottom-right: one among
the LR images, BTV(47.37 dB / 0.98284), DUF (48.02 dB / 0.98620), DeepSUM
(48.74 dB / 0.98844), DeepSUM++ (49.46 dB / 0.98943), HR image.

and are part the ESA challenge dataset [80]. The size of the collected images is
128 × 128 and 384 × 384 for the LR and HR data respectively.

Before training DeepSUM++ as a whole, SISRNet-NL is pretrained by setting
up a pure SISR problem (single input image) where an additional projection layer
is added at the end, in order to turn the high-dimensional feature space into a
single-channel image. SISRNet-NL with the final projection layer is trained with
the same loss function in Eq. (3.1). DeepSUM++ is trained for 300 epochs with a
batch size of 4, with separate models for NIR and RED. SISRNet-NL is initialized
from the pretraining while FusionNet and RegNet weights are initialized from the
final DeepSUM model.

We train DeepSUM++ using the minimum number of images available for each
scene, i.e., N = 9 images.

The exact number of network layers is shown in Fig. 4.1 and the number of
features is 64 everywhere except for the RegNet’s first layer, which has 128 filters.
Three graph convolutional layers are used in SISRNet-NL.
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4.2.2 Quantitative and qualitative results
The evaluation metric that we consider is the mPSNR metric (3.2) described in

Sec. 3.4.2. The validation has been performed over the same NIR and RED test
sets used for DeepSUM [120], using the sliding window procedure to use 13 images
per scene in the testing process. Table 4.1 reports the results of the comparison.
It can be noticed that the proposed method outperforms all the other methods. In
particular, DeepSUM++ outperforms DeepSUM by 0.09 dB for NIR and 0.08 dB
for RED band. To ensure a fair comparison we have retrained DeepSUM following
the same procedure used for DeepSUM++ for the same number of iterations.

These quantitative results are accompanied by a qualitative comparison in Fig.
4.2. It can be noticed that our proposed method produces visually more detailed
images, recovering finer texture and sharper edges.
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Chapter 5

Speckle2Void: Deep
Self-Supervised SAR
Despeckling with Blind-Spot
Convolutional Neural
Networks

In the second part of this thesis we present a work dealing with remote sensing
images captured by radar technology satellites instead of optical satellites. We
continue to focus on the dataset availability issue as in the previous works, noting
that in SAR remote sensing applications the clean images are impossible to acquire.
We will solve a denoising inverse problem known as SAR despeckling. Much like
super-resolution is performed as a pre-processing step to enhance the outcome of
downstream tasks such as classification or object detection, also despeckling is a
crucial preliminary step in scene analysis algorithms as information extraction from
SAR images is heavily impaired by speckle noise.

The recent success of deep learning envisions a new generation of despeckling
techniques that could outperform classical model-based methods.

As mentioned in chapter 2, current deep learning approaches to despeckling
require supervision for training, whereas clean SAR images are impossible to obtain.
In the literature, this issue is tackled by resorting to either synthetically speckled
optical images, which exhibit different properties with respect to true SAR images,
or multi-temporal SAR images, which are difficult to acquire or fuse accurately.

During the last year, significant advances have been made on deep learning ap-
proaches to denoising proving, under certain assumptions, to be a valid alternative
when it is not possible to have access to clean images. Despite these methods do
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not require ground-truth, they show that it is possible to reach performance close
to that of fully-supervised methods. These new self-supervised denoising methods
have been developed on natural images, but it is quite clear that extending them
to the SAR context is appealing, as significant speckle noise is always present in
SAR acquisitions. Noise2Noise [95] proposed to use pairs of images with the same
content but independent noise realizations. The main drawback of this method is
the difficulty of accessing multiple versions of the same scene with independently
drawn noise realizations. Yuan et al. [186] presented a despeckling method based
on the idea of Noise2Noise [95], but still simulating speckle on a dataset based on
ImageNet. Ma et al. [112] devised a method based on the Noise2Noise scheme,
requiring multi-temporal SAR images to train the network. They coped with the
possible temporal variations by introducing a similarity measure in order to weight
the contribution of each pixel pair in the loss.

Noise2Void [85] and Noise2Self [10] further relax the constraints on the dataset,
requiring only a single noisy version of the training images, by introducing the
concept of blind-spot networks. Assuming spatially uncorrelated noise, and ex-
cluding the center pixel from the receptive field of the network, the network learns
to predict the value of the center pixel from its receptive field by minimizing the
ℓ2 distance between the prediction and the noisy value. The network is prevented
from learning the identity mapping because the pixel to be predicted is removed
from the receptive field. Notice that this is also the reason for the uncorrelated
noise assumption. The blind-spot scheme used in Noise2Void [85] is carried out
by a simple masking method that hides a small subset of noisy pixels at a time,
processing the entire image to learn to reconstruct a small amount of pixels. Laine
et al. [89] devised a novel blind-spot CNN architecture capable of processing the
entire image at once, increasing the efficiency. They also introduced a Bayesian
framework to include noise models and priors on the conditional distribution of the
blind spot given the receptive field.

Inspired by these works, in this chapter we present Speckle2Void (S2V), a self-
supervised Bayesian despeckling framework that enables direct training on real SAR
images. Our method bypasses the problem of training a CNN on synthetically-
speckled optical images, thus avoiding any domain gap and enabling learning of
features from real SAR images. It also avoids the inherent difficulty in constructing
multitemporal datasets, as done in [25]. Our main contributions can be summarized
as follows:

• we formulate a Bayesian model to characterize the speckle and the prior distri-
bution of pixels in the clean SAR image, conditioned on their neighborhoods;

• we propose an improved version of the blind-spot CNN architecture in [89]
and a regularized training procedure with a variable blind-spot shape in order
to account for the autocorrelation of the speckle process;
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• we present two versions of Speckle2Void: a local version with classical convo-
lutional layers and a non local version to incorporate information from both
spatially-neighboring as well as distant pixels to exploit self-similarity, albeit
at higher computational complexity;

• we achieve remarkable despeckling performance, showing how our self-supervised
approach is better than model-based techniques, close to the deep learning
methods requiring supervised training on synthetic images and superior to
them on real SAR data.

A preliminary version of this work appeared in [16], showing the basic prin-
ciples of the proposed approach. This work significantly expands the treatment
with improvements on network modeling, on the loss function and on the training
procedure. In particular, it solves the problem of the residual granularity in the
despeckled images in [16], by showing the importance of properly decorrelating the
speckle process and carefully designing the blind-spot shape.

5.1 Self-supervised denoising CNN: background
from a probabilistic perspective

CNN denoising methods estimate the clean image by learning a function that
takes each noisy pixel and combines its value with the local neighboring pixel values
(receptive field) by means of multiple convolutional layers interleaved with non-
linearities. Taking this from a statistical inference perspective, a CNN is a point
estimator of p(xi|yi,Ωyi

), where xi is the ith clean pixel, yi is the ith noisy pixel
and Ωyi

represents the receptive field composed of the noisy neighboring pixels,
excluding yi itself. Noise2Void and Noise2Self predict the clean pixel xi by relying
solely on the neighboring pixels and using yi as a noisy target. By doing so, the
CNN learns to produce an estimate of Exi

[xi|Ωyi
], using the ℓ2 loss when in presence

of Gaussian noise. The drawback of these methods is that the value of the noisy
pixel yi is never used to compute the clean estimate.

The Bayesian framework devised by Laine et al. [89] explicitly introduces the
noise model p(yi|xi) and conditional pixel prior given the receptive field p(xi|Ωyi

)
as follows:

p(xi|yi,Ωyi
) ∝ p(yi|xi)p(xi|Ωyi

).

The role of the CNN is to predict the parameters of the chosen prior p(xi|Ωyi
).

The denoised pixel is then obtained as the posterior mean (MMSE estimate), i.e.,
it seeks to find Exi

[xi|yi,Ωyi
]. Under the assumption that the noise is pixel-wise

i.i.d., the CNN is trained so that the data likelihood p(yi|Ωyi
) for each pixel is

maximized. The main difficulty involved with this technique is the definition of a
suitable prior distribution that, when combined with the noise model, allows for

71



Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot Convolutional Neural Networks

Conv2D 3x3 kernel

LeakyRelu

R
0

R
18

0
R

-9
0

R
+9

0

co
nc

at

H

W

F

H

W

F

H

W

F

H

W

F

H

W

4F

shared weights
shaping the blind-spot structure 

shared weights

Conv2D 1x1 kernel
Batchnorm

Padding
Shift
Back rotation 
Shift to create the blind-spot

H

W

Figure 5.1: Speckle2Void takes as input four rotated versions of an image. Each
branch processes a specific rotation to compute the receptive field in a specific
direction. Subsequently, the four half-plane receptive fields are shifted to achieve
the desired blind-spot shape, rotated back and concatenated. As last, a series of 2D
convolutions with kernel 1x1 are used to fuse the four receptive fields and generate
the parameters of the inverse gamma for each pixel.

closed-form posterior and likelihood distributions. We also remark that while im-
posing a handcrafted distribution as p(xi|Ωyi

) may seem very limiting, it is actually
not since i) that is the conditional distribution given the receptive field rather than
the raw pixel distribution, and ii) its parameters are predicted by a powerful CNN
on a pixel-by-pixel basis.

5.2 Proposed method
Following the notation in Sec. 5.1, this section presents the Bayesian model we

adopt for SAR despeckling, the training procedure and the blind-spot architecture.
A summary is shown in Figs. 5.1 and 5.2.

5.2.1 Model
We consider the multiplicative SAR speckle noise model: yi = nixi, where x rep-

resents the unobserved clean image in intensity format and n the spatially uncorre-
lated multiplicative speckle. Concerning noise modeling, one common assumption
is that it follows a Gamma distribution with unit mean and variance 1/L for an
L-look image and has the following probability density function:

p(n) = 1
Γ(L)L

LnL−1e−Ln
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Figure 5.2: Scheme depicting the training and the testing phases. During training
phase the blind-spot network is trained to minimize the negative log of the noisy
data likelihood to estimate αxi

and βxi
for each pixel. In testing phase, the MMSE

estimator generates the final clean image, combining together the parameters of
the pixel prior, the noisy pixel and the parameter of noise distribution.

where Γ(.) denotes the Gamma function and n ≥ 0, L ≥ 1. The aim of despeckling
is to estimate intensity backscatter x from the observed intensity return y.

We model the conditional prior distribution given the receptive field as an inverse
Gamma distribution with shape αxi

and scale βxi
:

p(xi|Ωyi
) = invΓ(αxi

, βxi
),

where αxi
and βxi

depend on Ωyi
, since they are the outputs of the CNN at pixel

i. Assuming the noise to be Gamma-distributed, i.e., ni ∼ Γ(L,L) being both the
scale and rate parameters equal to L, then by the scaling property of the Gamma
distribution, we obtain that yi|xi ∼ Γ(L, L

xi
). We can now write the unnormalized

posterior distribution as:

p(xi|yi,Ωyi
) ∝ p(yi|xi)p(xi|Ωyi

),

p(xi|yi,Ωyi
) ∝ 1

Γ(L)

(︃
L

xi

)︃L
yL−1
i e

− L
xi
yi
β
αxi
xi

Γ(αxi
)
e

−
βxi
xi

xαxi +1 ,

∝ e
−

Lyi+βxi
xi

xαxi +L+1

For the chosen prior and noise models, the posterior distribution has still the
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form of an inverse Gamma with shape L+ αxi
and scale βxi

+ Lyi:

p(xi|yi,Ωyi
) = invΓ(L+ αxi

, βxi
+ Lyi). (5.1)

The chosen prior distribution and noise model allow to conveniently obtain the
marginal distribution of the noisy training data p(yi|Ωyi

) in close form by solving
the following integral:

p(yi|Ωyi
) =

∫︂
p(yi|xi)p(xi|Ωyi

)dxi (5.2)

The probability density obtained by solving this integral is known as G0
I , and has

the following expression:

p(yi|Ωyi
) = G0

I = LLyL−1
i

β
−αxi
xi Beta(L, αxi

)(βxi
+ Lyi)L+αxi

, (5.3)

According to [43], the G0
I distribution is a very general model, that is particularly

suitable to model the observed intensity return y of SAR images and able to ac-
commodate different types of areas: from extremely heterogeneous scenes such as
urban areas, to extremely homogeneous scenes such as deforested area as αxi

and
βxi

become larger.

5.2.2 Training
The training procedure learns the weights of the blind-spot CNN. The blind-

spot CNN processes the noisy image to produce the estimates for parameters αxi

and βxi
of the inverse gamma distribution p(xi|Ωyi

) used as prior. It is trained to
minimize the negative log likelihood p(yi|Ωyi

) for each pixel, so that the estimates
of αxi

and βxi
fit the noisy observations.

As stated at the beginning of this chapter, training a blind-spot network requires
noise to be spatially uncorrelated, so that the CNN is prevented from exploiting
the latent correlation to reproduce the noise in the blind spot. While many works
assume that SAR speckle is uncorrelated, the SAR acquisition and focusing sys-
tem has a point spread function (PSF) that correlates the data. To cope with
this, we apply a pre-processing whitening procedure, such as the one proposed by
Lapini et al. [90] to decorrelate the speckle. In [90], the authors use the complex
SAR data after focusing to estimate the PSF of the system and approximately in-
vert it, achieving the desired decorrelation and showing that this step boosts the
performance of any despeckling algorithm relying on the uncorrelated speckle as-
sumption. The point targets present in the SAR image, due to man-made features
or edges, are detected and filtered before the decorrelation procedure and subse-
quently placed back, in order to preserve them. This whitening step is especially
critical in the proposed approach due to the high capacity of neural networks to
overfit even random patterns.

74



5.2 – Proposed method

However, perfect decorrelation is in practice impossible and the residual cor-
relation could limit the performance of the blind-spot CNN. For this reason, we
modify the basic design of the blind-spot CNN by Laine et al. [89], and introduce
a variable-sized blind spot. If noise correlation cannot be removed by other means,
one could consider the width of the autocorrelation function of the noise and set
a blind spot that is wide enough to cover the peak of the autocorrelation. This
ensures that the receptive field contains a negligible amount of information for the
reproduction of the noise component of the pixel to be estimated. However, this
inevitably reduces the amount of information that can be exploited by the CNN, as
the content of the immediate neighbors of a pixel is the most similar to that of the
pixel itself. Therefore, a larger blind spot trades off more effective noise suppression
with a less accurate (appearing as blurry) prediction.

To achieve a finer control about this trade-off, we devise a regularized training
procedure that allows to tune the degree of reliance of the CNN on the immediate
neighbors, leading to an improvement of the high frequency details in the denoised
image, while still suppressing most of the noise correlation. During training, we
randomly alternate, with predefinied probabilities, a 1 × 1 blind spot and a larger
blind spot that can have arbitrary shape to match the noise autocorrelation. This
mechanism allows the network weights to learn how to partially exploit the neigh-
boring pixels belonging to the larger blind-spot but at the same time not to rely
too much on them, in order to prevent from overfitting the noise components. Dur-
ing testing, a 1 × 1 blind spot is used, thus only excluding the center pixel, and
exploiting the closest neighbors. Due to their weak training, these neighbors allow
to recover some high frequency image content, which is the stronger signal present,
while not being able to exploit the weaker correlations in the noise. We refer the
reader to Sec. 5.3.4 for the details on the chosen parameter settings and the specific
SAR dataset used for training.

5.2.3 Testing
In testing, the blind-spot CNN processes the noisy SAR image to estimate αxi

and βxi
for each pixel. The despeckled image is then obtained through the MMSE

estimator, i.e., the expected value of the posterior distribution in Eq. (5.1), as:

x̂i = E[xi|yi,Ωyi
] = βxi

+ Lyi
L+ αxi

− 1 .

Notice that this estimator combines both the per-pixel prior estimated by the CNN
and the noisy observation.
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5.2.4 Loss function
As mentioned in Sec. 5.2.2, the blind-spot CNN is trained by minimizing the

negative log likelihood of the noisy observations, based on the estimated param-
eters αxi

and βxi
of the prior. Moreover, we incorporate a total variation (TV)

component, computed over the posterior image, to further promote smoothness.
Our final loss function is as follows:

l = −
∑︂
i

log p(yi|Ωyi
) + λTV TV (x̂)

where p(yi|Ωyi
) is defined in Eq. (5.3), the TV term is the anisotropic version

of the total variation TV (x̂) = ∑︁
i,j |x̂i+1,j − x̂i,j| + |x̂i,j+1 − x̂i,j| and λTV is a

hyperparameter to tune the desired degree of smoothness.

5.2.5 Blind-spot architecture
The rationale behind the blind-spot network is to introduce a pixel-sized hole

in the receptive field, in order to prevent the network from learning the identity
mapping. Our model is built upon the architecture by Laine et al.[89], who designed
a CNN architecture to naturally account for the blind spot in the receptive field,
thus increasing training efficiency. They cleverly implemented shift and padding
operations on the feature maps at each layer, in order to limit the receptive field
to grow in a specific direction, excluding the center pixel from the computation.
Their architecture is composed of four different CNNs, each responsible of limiting
the receptive field to extend in a single direction by means of shift and padding
operations on the feature maps at each layer. The four subnetworks produce four
limited receptive fields that extend strictly above, below, leftward and rightward of
the target pixel. In order to reduce the number of trainable parameters, they feed
four rotated versions of each input image to a single network that computes the
receptive field in a specific direction. The four limited receptive fields are finally
combined through a series of 2D convolutions with 1 × 1 filters, ensuring no further
expansion of the receptive field. To perform this particular computation, classical
2D convolutional layers are used but their receptive field is limited to grow in a
direction by shifting the feature map in the opposite direction by an offset of ⌊k/2⌋
pixels, where k × k is the kernel size, before performing the convolution operation.
At the end of the network, each of the four limited receptive fields still contains the
center row/column, so the center pixel as well. To exclude it, the feature maps are
shifted by one pixel before combining them.

An overview of the blind-spot network used by Speckle2Void is shown in Fig.
5.1. Speckle2Void modifies the basic architecture by Laine et al.[89] described
above to allow more flexibility in shaping the blind-spot. In principle, if the final
shift applied to each of the four directional receptive fields was different from one
another, we would be able to control the size of the blind spot in each direction.
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shifting feature maps

combining 4 half-plane receptive fields

Figure 5.3: Visual depiction of the operations performed by the blind-spot network
to constrain the receptive field related to the center pixel to exclude the center pixel
itself and two pixels in the vertical direction. The first row represents, in pink color,
the four limited receptive fields extending in four directions. As the center pixel
is still included in the receptive fields, each feature map is shifted in the opposite
direction with respect to the growing direction of the receptive field. This shifting
operation allows the pink pixels in the second row to be the new receptive fields
associated to the center pixel. The shift is 1 in azimuth direction and 2 in the range
one. The last row represents the final receptive field, related to the center pixel, as
the result of a combination of the four receptive fields depicted in the second row.

In SAR images, the azimuth and range directions may exhibit different statistical
properties, including the residual noise autocorrelation. We therefore account for
that by only sharing weights between the two branches processing the receptive
field oriented as the azimuth or range directions, instead of sharing them for all
four branches as in [89]. Furthermore, as shown in Fig. 5.3, Speckle2Void can apply
one shift in the azimuth direction and a different shift in the range one.

5.2.6 Non local convolutional layer and its adaptation to
blind-spot networks

The blind-spot CNN used by Speckle2Void also comes in two versions. The
“local” version of Speckle2Void is composed by a series of classic 2D convolutional
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layers, each followed by Batch normalization [67] and a Leaky-ReLU non-linearity.
The “non local” version adds several non local layers, as defined in [105]. Such
layers introduce a dynamic weighted function of the feature vectors that help re-
trieving more information from a wider image context. While the “local” version
of Speckle2Void employs classical 2D convolutions, so only local information is
exploited at each layer, non local layers leverage non local structural similarity
across spatially distant patches within an image, enabling the CNN to combine
both spatially-neighboring as well as distant pixels. In particular, non local self-
similarity can be effective in recovering the information hidden by the blind spot,
without encountering the problem of noise correlation as it is drawn from spatially-
distant areas. However, exploiting non-locality incurs a significant penalty in terms
of computational cost.

The non local module proposed by NLRN [105] uses a soft block matching ap-
proach and applies the Euclidean distance with linearly embedded Gaussian kernel
as distance metric. The rational behind this module is to perform a weighted com-
bination of all the feature vectors in a patch (search window) to compute the new
feature vector at its center, where the used weights dynamically depend on the
similarity between the center feature vector and all the others within the patch,
and repeat it for each feature vector in the feature map. This non local layer is
designed to work in a traditional CNN architecture, and requires introducing a
masking technique to adapt it to the blind-spot architecture used by Speckle2Void.
In [105], the linear embeddings are defined as follows:

Φ(Hl
ij) = ϕ(Hl

ij,Hl
pij

) = exp{θ(Hl
ij)ψ(Hl

pij
))},∀i, j,

θ(Hl
ij) = Hl

ijWθ, ψ(Hl
pij

) = Hl
pij
Wψ, G(Hl

ij) = Hl
pij
Wg, ∀i, j.

Φ(Hl
ij) represents the distance metric to encode the non local correlation between

the feature vector in position i, j and each neighbours in the patch Hl
pij

at layer l.
Φ(Hl

ij) has shape 1×q×q where q×q denotes the spatial size of the neighbour patch
centered at pixel i, j. θ(Hij) represents the embedding associated to the feature
vector in position i, j with shape 1 × l where l is the number of features. ψ(Hpij

)
represents the embeddings associated to each feature vector in the neighbour patch
p centered at i, j with shape q × q × m where m is the number of features. The
transformation weights Wθ,Wψ,Wg used to compute the embeddings have shape
m × l, m × l, m × m respectively, and are trainable weights. We add a masking
operation to the non local layer proposed in [105] and the final formulation is
obtained as:

Hl+1
ij = 1

δ′(Hl
ij)

(Mi ⊙ exp{Hl
ijWθW

T
ψ HlT

pij
)})Hl

pij
Wg,∀i, j,

where δ
′(Hl

ij) = ∑︁
pij
Mi ⊙ ϕ(Hl

ij,Hl
pij

) is the normalization factor, Hl+1
ij is the

output feature vector at spatial location i, j and Mi is a mask, associated to row i,
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Figure 5.4: Synthetic images: Noisy, Clean, PPB (21.13 dB), SAR-BM3D (22.71
dB), NL-SAR (21.89 dB), CNN-based baseline (23.37 dB), ID-CNN (23.42 dB),
synthetic Speckle2Void (23.32 dB).

aiming to get rid of the contribution of specific feature vectors in the computation
of the new feature vector Hl+1

ij at layer l + 1. Considering the receptive field
extending upwards, all the pixels in a specific row i are associated with a mask
Mi which has weight 1 in row i and all the rows above, and 0 everywhere else. This
allows to disregard all Euclidian distances with respect to feature vectors that are
not contained in the receptive field extending upwards. The construction of the
mask Mi is not influenced by the shape of the blind-spot structure. The blind-
spot shaping always happens right after the four receptive fields are computed, by
shifting each of the four feature maps according to the desired final shape, as in
the “local” version.

Table 5.1: Synthetic images - PSNR (dB).
Image PPB [30] SAR-BM3D [127] NL-SAR [31] Baseline CNN ID-CNN [169] S2V S2V+TV S2V+NL
Cameraman 23.02 24.76 24.37 26.26 25.83 25.90 25.90 25.85
House 25.51 27.55 25.75 28.17 28.32 27.96 27.94 28.08
Peppers 23.85 24.92 23.62 26.30 26.26 25.99 26.02 26.09
Starfish 21.13 22.71 21.84 23.39 23.42 23.32 23.31 23.50
Butterfly 22.76 24.48 23.82 25.96 26.09 25.82 25.80 25.98
Airplane 21.22 22.71 21.83 23.78 23.90 23.67 23.65 23.61
Parrot 21.88 24.17 24.13 25.91 25.85 25.44 25.45 25.46
Lena 26.64 27.85 26.80 28.66 28.71 28.54 28.58 28.44
Barbara 24.08 25.37 23.13 24.30 24.38 24.36 24.31 24.74
Boat 24.22 25.43 24.55 26.06 26.00 26.02 25.57 25.88
Average 23.43 24.99 23.98 25.88 25.88 25.70 25.69 25.76
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5.3 Experimental results and discussions
In this section, we evaluate the performance of Speckle2Void, both quantitatively

and qualitatively. First, we compare our method with several state-of-the-art meth-
ods on a synthetic dataset, where the availability of ground truth images allows to
compute objective performance metrics, and then on a real-world SAR dataset,
relying on several established no-reference performance metrics and visual results.
We also test the proposed method against a benchmarking dataset, composed of a
set of simulated canonical images, to highlight its behavior in all the major types
of regions found in SAR images. Moreover, we perform an ablation study to show
the impact of various design choices on the despeckling performance.

5.3.1 Quality assessment criteria
The evaluation reference metric used to assess quantitative results on synthetic

SAR images corrupted by simulated speckle is the PSNR. This allows to understand
the denoising capability of our self-supervised method when compared with tradi-
tional methods and CNN-based ones with supervised training. In the second set of
experiments, conducted on real SAR images, we compare the various despeckling
methods by relying on some no-reference performance metrics such as equivalent
number of looks (ENL), moments of the ratio image (µr, σr), quality index M [32]
and the ratio image structuredness RIS [166]. The ENL is estimated over appar-
ently homogeneous areas in the image and is defined as the ratio of the squared
average intensity to the variance. Computing the ENL on the noisy SAR image
provides an approximate estimate of its nominal number of looks. Moments of the
ratio image µr and σr measure how close the obtained ratio image is to the statistics
of pure speckle (µr = 1, σr = 1 are desirable for a single-look image). The previous
metrics lack in conveying information about the detail preservation capability of
a filter and the visual inspection of the ratio image would provide an indication
of the remaining structure of what ideally should be pure speckle with no visible
pattern. To avoid the subjectiveness of the visual interpretation of ratio images,
Gomez et al. [32] designed the quality index M. This index evaluates the goodness
of a filter by integrating two measures together: a first-order component measuring
the deviation from ideal ENL and from ideal speckle mean over n automatically
selected textureless areas and a second-order component measuring the remaining
geometrical content within the ratio image through the homogeneity textural de-
scriptor proposed by Haralick et al. [52]. Ideally, M should tend to zero. RIS
[166] is a metric closely related to the second-order component of M, allowing to
evaluate solely the remaining geometrical content within the ratio image. Similarly
to Gomez et al. [32], it employes the homogeneity textural descriptor proposed by
Haralick et al. [52] to measure the similarity among neighbouring pixels. RIS is
zero when the ratio image consists of independent identically distributed speckle
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samples.

5.3.2 Reference methods
The following state-of-the-art references are compared with our method on both

optical and SAR datasets:

1. PPB [30];

2. SAR-BM3D [127];

3. NL-SAR [31];

4. CNN baseline with the improved loss defined in [25];

5. ID-CNN [169].

These methods have been chosen for their popularity and diffusion in the SAR
community. For PPB [30], SAR-BM3D [127] and NL-SAR [31] methods, we se-
lected parameters as suggested in the original papers. As a CNN baseline we used
the well-known network architecture proposed in [194], employing a homomorphic
approach and the loss proposed in [25] that better adapts to deal with the speckle
noise distribution. ID-CNN has been implemented from scratch following the in-
dications in the original paper for what concerns the CNN architecture and the
hyperparameters. Notice that both CNNs follow a supervised training approach
with synthetically speckled natural images. We remark that we do not directly
compare with the results in SAR-CNN [25] or the more recent work in [27] as they
use multitemporal data, which would make the setting unfair with respect to the
single observation of a scene in our case. In addition, the dataset used in those
works is not publicly available.

As described in Sec. 5.2, Speckle2Void employs four branches where the hori-
zontal and the vertical directions are processed separately with a different set of
parameters, as shown in Fig. 5.1. The first part of the architecture consists of 17
blocks composed of 2D convolution with 3 × 3 kernels with 64 filters each, batch
normalization and Leaky ReLU nonlinearity. After that, the branches are merged
with a series of three 1 × 1 convolutions. The non local version of our method
maintains the same general structure with an addition of 5 non local layers, one
every 3 local layers. The same architecture is used in both the experiments with
the only difference that in the case of synthetic images the blind-spot shape is 1×1,
since the injected speckle is pixel-wise i.i.d and therefore there is no need to use an
enlarged blind-spot. Instead, in the real SAR case the blind-spot shape is variable
across training.

For both experiments, the Adam optimization algorithm [84] is employed, with
momentum parameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8. We use the Tensorflow
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framework to train the proposed network on a PC with 64 GB RAM, an AMD
Threadripper 1920X, and an Nvidia 1080Ti GPU.

Table 5.2: Performance metrics on 5 real TerraSAR-X test images.
Metric Image PPB [30] SAR-BM3D [127] NL-SAR [31] CNN baseline ID-CNN [169] S2V S2V NL

ENL ↑

1 82 46.2 77.3 52.9 76.5 88.5 86.5
2 78.6 49.1 60.6 48.7 69.9 89.9 81.8
3 76.9 58.1 59.4 52.5 73.1 84.0 86.0
4 54.2 40.4 45.0 37.6 46.2 54.7 53.1
5 22.9 16.2 16.8 14.6 16.6 18.9 17.5

µr ↑

1 0.887 0.919 0.921 0.963 0.943 0.966 0.970
2 0.925 0.938 0.933 0.969 0.964 0.966 0.967
3 0.926 0.941 0.936 0.974 0.969 0.968 0.968
4 0.933 0.942 0.936 0.974 0.976 0.962 0.977
5 0.853 0.894 0.902 0.950 0.918 0.947 0.946

σr ↑

1 0.847 0.627 0.692 0.726 0.745 0.803 0.800
2 0.886 0.674 0.734 0.740 0.803 0.829 0.817
3 0.874 0.684 0.739 0.756 0.817 0.816 0.814
4 0.876 0.688 0.746 0.755 0.846 0.823 0.837
5 0.891 0.549 0.621 0.683 0.664 0.748 0.736

M [32] ↓

1 24.4 16.5 13.8 11.9 14.6 7.72 6.71
2 10.1 11.6 15.4 11.6 9.12 9.11 8.04
3 9.82 11.3 13.0 11.3 6.93 6.24 5.44
4 10.6 10.5 16.9 12.3 9.7 8.07 7.74
5 14.4 14.3 11.7 9.76 10.4 8.91 7.9

RIS [166] ↓

1 0.402 0.186 0.098 0.145 0.242 0.0929 0.0817
2 0.114 0.0765 0.111 0.0925 0.112 0.0918 0.075
3 0.114 0.0782 0.076 0.113 0.0643 0.0396 0.0257
4 0.0962 0.0392 0.129 0.127 0.106 0.0873 0.0804
5 0.159 0.114 0.0643 0.0566 0.130 0.0708 0.0547

5.3.3 Synthetic dataset
In this experiment we use natural images to construct a synthetic SAR-like

dataset. Pairs of noisy and clean images are built by generating i.i.d. speckle to
simulate a single-look intensity image (L = 1).

During training, patches are extracted from 450 different images of the Berkeley
Segmentation Dataset (BSD) [116]. The network has been trained for about 400
epochs with a batch size of 16 and learning rate equal to 10−5. All the CNN-based
methods have been trained with the same synthetic dataset. Table 5.1 shows per-
formance results on a set of well-known testing images in terms of PSNR. It can be
seen that all the CNN-based methods outperform the non local traditional meth-
ods by a significant margin. Despite ID-CNN employs the suboptimal ℓ2 loss, the
TV regularizer helps smoothing out the artifacts, showing approximately the same
result as the CNN baseline. It can be noticed that our self-supervised method out-
performs PPB, SAR-BM3D and NL-SAR. Moreover, it is interesting to notice that
while the proposed approach does not use the clean data for training, it achieves
comparable results with respect to the supervised ID-CNN and CNN-based baseline
methods. This happens for the non local version and TV version as well. We can
observe a slight improvement when non-locality is employed. Even if we analyze
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the performance from a qualitative perspective, as done in Fig. 5.4, we observe the
same behaviour. Despite the absence of the true clean images during training, our
method produces images as visually pleasing as those produced by the CNN-based
reference approaches with comparable edge-preservation capabilities. This is a sig-
nificant result because it shows that, in theory, we do not need supervised training
to achieve the outstanding despeckling results obtained by CNN-based methods.

Figure 5.5: TerraSAR-X image 1. Top-Left to bottom-right: Noisy, PPB, SAR-
BM3D, NL-SAR, CNN-based baseline, ID-CNN, Speckle2Void, Speckle2Void+NL.

Figure 5.6: TerraSAR-X image 1 detail. From left to right: Noisy, PPB, SAR-
BM3D, NL-SAR, CNN-based baseline, ID-CNN, Speckle2Void, Speckle2Void+NL.
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Figure 5.7: TerraSAR-X image 2 detail. From left to right: Noisy, PPB, SAR-
BM3D, NL-SAR, CNN-based baseline, ID-CNN, Speckle2Void, Speckle2Void+NL.

Figure 5.8: TerraSAR-X image 4 detail. From left to right: Noisy and ratio im-
ages (PPB, SAR-BM3D, NL-SAR, CNN-based baseline, ID-CNN, Speckle2Void,
Speckle2Void+NL).

5.3.4 TerraSAR-X dataset
In this experiment we employ single-look TerraSAR-X images1. Notice that

optimal results are obtained by training a model that is specific to a given SAR
platform (e.g., TerraSAR-X in our example). We suggest retraining from random
initialization to optimize the model for a different platform. This should not be an
issue since we only require a modest number of noisy images and we also do not
need careful curation of multitemporal data.

As mentioned in Sec. 5.2.2, both training and testing images are pre-processed
through the blind speckle decorrelator in [90] to whiten them. To ensure fairness,
the whitening procedure is applied to the images for all the tested methods.

1https://tpm-ds.eo.esa.int/oads/access/collection/TerraSAR-X/tree
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During training, 64×64 patches are extracted from 30000 whitened SAR images
of size 256 × 256. The network has been trained for 300000 iterations with a batch
size of 16 and an initial learning rate of 10−4 multiplied by 0.1 at 150000 iterations.
In this case, in addition to two versions (L/NL) of the proposed method used for the
synthetic images, we add the TV regularizer to the loss with a λTV of 5×10−5 and we
apply the regularized training procedure described in Sec. 5.2.2, carefully choosing
the blind-spot shape. By empirical observation we found non-negligible residual
noise correlation in the vertical direction after the whitening stage, so we adapted
the structure of the blind spot accordingly. The regularized training alternates
between a 3 × 1 and 1 × 1 shape with probabilities 0.9 and 0.1, respectively. This
allows us to take into account the wider vertical autocorrelation of the speckle. In
the ablation study presented in Sec. 5.3.6 we also show the results obtained when
only a 1 × 1 blind spot is used.

Table 5.2 and Figs. 5.5,5.6,5.7 show the results obtained on a set of 1000 × 1000
test images2, that were not included in the training set. Speckle2Void outper-
forms all other methods for almost all testing images in terms of ENL, showing a
better speckle suppression capability on smooth areas. The non local version of
Speckle2Void scores a slightly lower ENL with respect to the local version as it
recovers finer details, generating an additional texture over the apparently homo-
geneous areas as shown in Fig. 5.6. The metric µr is very close to the desired
statistic of the ratio image for all the considered methods, in particular for the
CNN-based ones. The reference method PPB [30] provides the best result in terms
of σr showing a strong speckle suppression, but a very poor detail preservation
capability as confirmed by the qualitative comparison in Figs. 5.6 and 5.7. Despite
SAR-BM3D [127] provides worse results in terms of σr with respect to PPB[30],
it produces images with higher fidelity and finer details, as can be observed both
visually in Fig. 5.5 and quantitatively with the RIS [166]. However, several areas in
the SAR-BM3D image still present artifacts like streaks or unrealistic texture. NL-
SAR [31] shows a stronger speckle suppression than SAR-BM3D [127], providing
better results in terms of ENL and σr.

Overall, the CNN-based methods show a greater speckle suppression than SAR-
BM3D [127] and PPB [30]. However, both the CNN baseline and ID-CNN [169] tend
to oversmooth and produce cartoon-like edges. The test image in Fig. 5.5 presents
strong artifacts, making the recovered details look quite unrealistic. This is due to
the domain gap between natural images and real SAR images and it represents a
strong argument against supervised training with synthetically speckled images. On
the contrary, Speckle2Void does not hallucinate artifacts over homogeneous regions
and produces higher quality images with respect to any other reference method,
with much more realistic details in regions with man-made structures and sharp

2High-resolution visualization: https://diegovalsesia.github.io/speckle2void
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edges. This is confirmed qualitatively by a visual inspection of the cleaned image in
Fig. 5.5, 5.6, 5.7. Instead, Fig. 5.8 shows the image obtained as the ratio between
the noisy and despeckled images. Ideally, no structure should be evident in the ratio
image. Also in this case, we can observe the capability of Speckle2Void to remove
the speckle effectively, with a minimal amount of visible patterns. The outstanding
visual quality of Speckle2Void demonstrates the effectiveness of both direct training
on real SAR images and of the adopted regularized training procedure to tackle the
residual local noise correlation structure.

Moreover, if we compare the two versions of the proposed method, we can notice
that adding the non local layers provides a marginal improvement in the preserva-
tion of the details, yielding lower values for M [32] and RIS [166]. The drawback of
the non local version of Speckle2Void is its higher computational overhead, leading
to a much longer training and inference time.

5.3.5 Benchmarking dataset
The presented quantitative assessment relies on no-reference metrics as the lack

of clean images prevents from using full-reference measures. In [33] the authors
introduce a standard benchmark for the objective assessment of SAR despeckling
techniques. The use of this framework enriches our quantitative assessment on no-
reference metrics by evaluating the behaviour of the compared methods on a set of
canonical scenes, generated through physical SAR simulation. Five different scenes
have been simulated to assess specific features of the despeckling methods:

• homogeneous scene (water, bare soils, and vegetated areas) to focus on speckle
suppression ability;

• texture scene to specifically evaluate the scene feature preservation on a nonflat
terrain;

• scene with edges (roads, rivers, and region boundaries) to evaluate the preser-
vation of contours;

• scene with isolated point target to assess the amount of radiometric distortion;

• scene with urban areas to assess the preservation of man-made structures.

In [33] the authors also propose to use a set of reference and no-reference mea-
sures associated to each test image. Table 5.3 shows that the proposed methods
achieve comparable results for most of the test images and in some cases outper-
form the other methods. We remark that Speckle2Void is optimized on the real
TerraSAR-X dataset, which present different statistics with respect to the simu-
lated SAR images considered in the benchmark, such as a different residual noise
correlation.This leads us to believe that the despeckling action of the proposed
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method is actually slightly sub-optimal when evaluated on the simulated SAR test
images rather than on TerraSAR-X images.

Table 5.3: Measures for simulated SAR test images.
Image Metric PPB [30] SAR-BM3D [127] NL-SAR [31] CNN baseline ID-CNN [169] S2V S2V NL

Homogeneous

MoI ↑ 0.997 0.978 1.000 0.991 0.978 0.987 0.988
MoR ↑ 0.960 0.979 0.972 0.979 0.995 1.01 0.989
VoR ↑ 0.820 0.814 0.837 0.844 0.903 0.898 0.88
ENL ↑ 127.68 102.44 104.52 125.69 122.94 120.48 112.96
DG ↑ 20.29 19.40 19.46 20.2 20.04 20.03 19.8

Texture

MoI ↑ 0.998 0.968 0.915 0.931 0.836 0.867 0.846
MoR ↑ 0.911 0.833 0.857 0.807 0.893 0.847 0.808
VoR ↑ 0.560 0.415 0.485 0.475 0.766 0.848 0.822

Cx (2.40) 2.71 2.43 2.31 2.25 2.29 2.24 2.21
DG ↑ 3.68 5.32 4.83 4.25 3.77 3.5 3.45

Squares

ES (up) ↓ 0.07 0.036 0.07 0.026 0.033 0.057 0.058
ES (down) ↓ 0.209 0.113 0.198 0.0825 0.0873 0.138 0.158

FOM ↑ 0.837 0.847 0.799 0.818 0.82 0.825 0.834

Corner CNN ↑ 3.75 7.39 5.67 7.8 7.77 7.79 7.79
CBG ↑ 32.69 35.45 33.75 36.53 36.51 36.55 36.54

Building CDR ↑ 64.90 65.91 64.44 65.92 65.98 65.91 65.9
BS ↓ 3.13 1.46 6.827 0.3082 0.2612 0.272 0.4031

Homogeneous case

This test case represents a flat surface. The performance is evaluated using the
following metrics: the mean value of the filtered image (MoI), that should be pre-
served after despeckling; the mean and the variance of the ratio image (MoR and
VoR) that should match the pure speckle statistics; the ENL and the despeckling
gain (DG), which measure the speckle reduction factor on a logarithmic scale by ex-
ploiting the available clean reference. All the compared methods do not introduce
any notable distortion on the mean. However, the two version of Speckle2Void
present the mean indicators that are overall the closest to 1. In addition, the
VoR indicates that the proposed methods are the ones that more strongly suppress
speckle. The DG metric shows comparable performance for all the compared meth-
ods. The latter measure is slightly biased by the fact that the reference image is
not really clean.

Texture case (Digital Elevation Model)

The texture image represents an artificial canonical fractal DEM. The perfor-
mance is evaluated measuring MoI, MoR, VoR, DG and the coefficient of variation
Cx̂, i.e., the ratio between the estimated standard deviation and the mean of the
image. The latter metric measures the texture preservation. The two means show
slightly worse performance for the proposed methods with respect to the refer-
ences, denoting a slight radiometric distortion. All the reference techniques present
a small value of VoR, showing the challenge of speckle removal in case of a highly
textured image. The VoR values of the two proposed methods are the closest to 1.
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The coefficient of variation Cx should match the theoretical one computed on the
clean image, which corresponds to 2.40. The two versions of Speckle2Void present
a comparable Cx̂ with respect to the other CNN-based methods. DG shows similar
results for all the compared methods, showing a good speckle suppression even for
this challenging image.

Edges (Squares)

This test case represents a flat surface divided in 4 regions with different intensity
levels, creating straight contours aligned to the range and azimuth coordinates as
shown in Fig. 5.9. The performance is evaluated through the measure of edge
smearing (ES), which gives an indication of the edge degradation and the smoothing
action applied by the despeckling methods, and an indirect measure called Pratt’s
FOM, which quantifies the ability of an automatic edge detection algorithm to
recognize the edges in the clean estimate. Table 5.3 reports the ES measures for the
two vertical edges, characterized by lower (up) and higher (down) contrast, along
with the FOM for the detected edges. Lower ES values indicate less smearing. The
worst results comes from the methods producing the blurriest edges such as PPB
[30] and NL-SAR [31]. However, this metric does not give a complete insight about
the edge preservation and it is quite unreliable. FOM represents the best measure
to evaluate edge preservation by quantifying their recognition through a detector
algorithm. The FOM values in Table 5.3 should be higher than the FOM resulting
from the noisy image (0.792) and as close as possible to the one resulting from
the clean reference image (0.993). The two proposed methods present FOM values
that are higher than the ones produced by the supervised CNN-based methods and
consistent with the best results, provided by PPB [30] and SAR-BM3D [127].

Isolated point target case (Corner)

The corner image represents a point target produced by a corner reflector at the
center of a flat scene. The performance is evaluated through two intensity contrast
measures in logarithmic scale, quantifying the preservation of the point target with
respect to the average intensity in the surrounding region (CNN) and the average
intensity of the whole background (CBG). All the CNN-based methods in Table 5.3
perform prior classification as they have been trained without the point targets. In
testing, a thresholding procedure is performed to remove the point targets prior to
filtering and to copy them back right after. Overall, CNN-based techniques tend
to present the highest values for these two metrics.

Urban area case (Building)

The building image represents an isolated building over a homogeneous flat
surface. The intense double reflection line resulting from the multiple scattering
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mechanisms should be preserved by the despeckling technique. The performance
is evaluated employing a building smearing measure BS and an intensity contrast
measure CDR in logarithmic scale. CDR quantifies the preservation of the double
reflection segment with respect to the average intensity of the background. This
is another case where the CNN-based methods better preserve the radiometric
features of the building, presenting a BS closer to zero and a higher CDR.

Figure 5.9: Squares benchmark image. Top-Left to bottom-right: Clean,
Noisy, SAR-BM3D, NL-SAR, CNN-based baseline, ID-CNN, Speckle2Void,
Speckle2Void+NL.

5.3.6 Ablation study
In the following study, we want to assess the benefits of some of the features

proposed for Speckle2Void.

Original vs whitened

First, we show the importance of the pixel-wise noise independence condition
when training a blind-spot network. To assess it, we train Spleckle2Void with two
different datasets. One dataset is composed of real single-look complex images as
they are provided by the focusing algorithm for the TerraSAR-X satellite, while
the other dataset is composed of the same real SAR images but pre-processed by
the decorrelator defined in [90]. For both datasets we use a 1 × 1 blind-spot shape,
including solely the center pixel during the entire training. To better highlight
the effect of the whitening procedure, we do not add the TV regularization in
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Figure 5.10: From left to right: cleaned image resulting from the training with the
original TerraSAR-X dataset (ENL 1.28), cleaned image resulting from the training
with the whitened TerraSAR-X dataset (ENL 14.5) and Speckle2Void (ENL 88.5).

the loss. Fig. 5.10 shows the two resulting cleaned images together with the one
obtained by the full Speckle2Void method (whitening+variable blind spot). The
visual difference between the left image and the middle one shows that the decorre-
lator improves drastically the qualitative performance, since barely any denoising
is performed in the first image.

Enlarging the blind-spot

In our regularized training procedure we vary the shape of the blind-spot to
account for the residual noise correlation that persists even after the whitening
procedure. To better understand the effect of enlarging the size of the blind-spot
structure, we compare Speckle2Void trained with the canonical 1 × 1 blind-spot
shape against a 3 × 3 shape. Notice that, in this experiment, the latter uses the
3 × 3 blind-spot in testing as well, differently from the regularization procedure
explained in 5.2.2 which always uses a 1 × 1 blind spot in testing. Moreover, to
better highlight the effect of the shape of the blind-spot, we do not add the TV
regularization in the loss. Fig. 5.11 shows a visual comparison between the two
methods. The left image is the result produced by the network with blind-spot of
shape 1 × 1. We can notice sharper edges and more details with respect to the
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Figure 5.11: From left to right: network with 1 × 1 blind-spot, network with 3 × 3
blind-spot, Speckle2Void.

middle image produced by the network with blind-spot of shape 3 × 3, which looks
more blurry. However, we also see more residual noise in the image on the left.
Enlarging the shape of blind-spot structure leads to a more effective speckle noise
reduction as the network uses surrounding pixels that are less correlated with center
pixel. A downside of expanding the blind-spot is to reduce the amount of relevant
information for the network to estimate the center pixel, resulting in a smoother
image with a loss of high frequency details, failing to preserve the original edges.
In the image on the right we report the result of Speckle2Void, showing that the
proposed method is able to achieve stronger speckle suppression with an impressive
preservation of details.

Table 5.4 provides a quantitative comparison using the benchmark dataset pro-
posed in [33]. For the homogeneous case, Speckle2Void provides a stronger speckle
suppression than the network with a blind-spot of shape 1 × 1 or with shape
3 × 3. The latter method presents a despeckling gain (DG) very close to the one of
Speckle2Void and much higher than the one produced by the network with blind-
spot of shape 1 × 1. This suggests the ability of the 3 × 3 blind-spot to disregard
the strong noise correlation of the immediate neighboring pixels with respect to the
center pixel, when producing the clean estimate. For the same reason, the network
with blind-spot of shape 3 × 3 provides the best despeckling suppression ability
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Table 5.4: Blind-spot size. Measures for simulated SAR test images.

Image Metric 1x1 3x3 Speckle2Void

Homogeneous

MoI ↑ 0.977 1.000 0.988
MoR ↑ 1.000 0.976 0.989
VoR ↑ 0.874 0.861 0.88
ENL ↑ 20.05 103.09 112.96
DG ↑ 13.00 19.43 19.8

Texture

MoI ↑ 1.020 0.987 0.846
MoR ↑ 0.834 0.838 0.808
VoR ↑ 0.963 0.719 0.822

Cx (2.40) 2.45 2.43 2.21
DG ↑ 3.34 4.03 3.45

Squares

ES (up) ↓ 0.064 0.074 0.058
ES (down) ↓ 0.145 0.171 0.158

FOM ↑ 0.783 0.795 0.834

Corner CNN ↑ 7.77 7.77 7.79
CBG ↑ 36.61 35.51 36.54

Building CDR ↑ 65.92 65.86 65.9
BS ↓ 0.4394 0.4159 0.4031

in the DEM test case. The FOM metric for the squares case shows that a bigger
blind-spot allows a better edge detection even in the presence of blurrier contours.
Speckle2Void adds to the filtered image the necessary high frequency details to
help the downstream detector algorithm. For the corner and building cases, the
results of the three methods are comparable, since the radiometric preservation of
the point targets strongly depends on the prior classification step that is the same
in all the three methods.

Effect of the TV regularizer

Speckle2Void employs TV in the loss as an additional spatial regularizer. We aim
to understand its impact by comparing Speckle2Void with a version trained without
TV. Fig. 5.12 shows the resulting cleaned images, revealing the reduced amount of
artifacts and smoother flat areas when the TV regularization is employed.

Prior vs posterior

The Bayesian framework, exploited in our method, makes use of the noisy SAR
image to obtain the despeckled version by computing the expected value of the
posterior distribution. The blind-spot CNN produces the parameters of the prior
distribution. If we compute its expected value we obtain the prior despeckled image.
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Figure 5.12: From left to right: Noisy, Speckle2Void w/o TV and Speckle2Void.

In Fig. 5.13, the prior and the posterior images highlight the great qualitative
improvement brought by the use of the noisy observations in the estimation of the
cleaned image with the posterior mean. The prior image shows fuzzy edges and a
disturbing granular pattern that makes the posterior image visually preferable.

Table 5.5: Training time and Runtime comparisons.
Image PPB [30] SAR-BM3D [127] NL-SAR [31] Baseline CNN ID-CNN [169] S2V S2V+NL
Training - - 0.8645 s (100x100) 3 days 2 h 7 h 1 day 3 h 6 days 19h
Inference (1000x1000) 27.54 s 223.51 s 23.39 s 0.587 s 0.1627 s 1.26 s 432.41 s
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Figure 5.13: From left to right: Noisy, Speckle2Void (Prior mean image),
Speckle2Void (Posterior mean image).

5.3.7 Transferability to Sentinel-1
In this section we present a result to show the performance of the Speckle2Void

model trained on TerraSAR-X data when applied to Sentinel-1 single look images.
Fig. 5.14 shows a qualitative result while the caption reports quantitative met-
rics. It is interesting to notice that Speckle2Void provides excellent performance,
both qualitatively by showing strong speckle suppression while maintaining several
details of the scene, and quantitatively according to the metrics presented in the
previous sections. A more detailed study on how to train optimally on Sentinel-1,
either by finetuning a pretrained model or from scratch, is out of the scope of this
thesis, but it would be an interesting future developement, especially in the context
of studying how well self-supervised representations transfer across platforms.

5.3.8 Training time and runtime comparisons
The training and inference run-times for all the methods considered in the exper-

imental evaluation are shown in Table 5.5. The experiments have been performed
on a PC with 64-GB RAM, an AMD Threadripper 1920X CPU, and an Nvidia
1080Ti GPU. All the CNN-based methods have been trained using the Tensorflow
framework. The CNN-based methods have the lowest inference times except for
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Figure 5.14: Sentinel-1 image detail. From left to right: Noisy, PPB (ENL = 141,
µr = 0.926, σr = 0.89, M = 9.17, RIS = 0.1032), SARBM3D (ENL = 245, µr =
0.954, σr = 0.787, M = 4.8, RIS = 0.0227), NL-SAR (ENL = 150, µr = 0.944,
σr = 0.778, M = 9.7, RIS = 0.0080), CNN baseline (ENL = 384, µr = 0.979, σr =
0.900, M = 3.27, RIS = 0.0128), ID-CNN (ENL = 259, µr = 0.968, σr = 0.867,
M = 3.22, RIS = 0.0102), Speckle2Void (ENL = 299, µr = 0.981, σr = 0.939,
M = 2.70, RIS = 0.0016)

the nonlocal version of Speckle2Void. This version is more expensive due to the
non local layers, which have to compute dynamic aggregation weights for all the
pixels in a search window. Moreover, due to GPU memory constraints, the non-
local version of Speckle2Void processes SAR images in multiple smaller patches,
resulting in a longer inference time to reconstruct the entire clean image. The local
version of Speckle2Void takes, on average, 1.26 seconds to process a 1000 × 1000
image, which is slightly higher than the inference times of the baseline CNN and
ID-CNN models because it has to process the same image four times to compute
the four half-plane receptive fields. However, it is significantly lower than the infer-
ence times of model-based methods. The training times affect only the CNN-based
methods and span from some hours to several days.
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Chapter 6

Conclusions

In this thesis we explored the application of deep learning paradigm to two
imaging inverse problems with a particular attention to data availability. More
specifically, we avoided the use of synthetic datasets when training the networks.

Firstly, we have introduced DeepSUM, one of the first CNN architectures to deal
with super-resolution from multitemporal remote sensing images. We showed that
the proposed deep learning framework can successfully deal with complex degra-
dation and temporal variation models and provide state-of-the-art performance,
resulting as the best method in the PROBA-V SR challenge. We also demon-
strated that non local information can be successfully exploited by neural networks
to enhance the reconstruction quality of multitemporal remote sensing images in a
MISR problem.

The second inverse imaging problem we addressed is despeckling. In Chapter
5 we have presented Speckle2Void, a self-supervised Bayesian denoising framework
for despeckling. The main obstacle in applying classical supervised deep learning
methods to despeckling is represented by the vast content disparity between speckle
injected natural images and real SAR images, often resulting in unfaithful cleaned
images. Speckle2Void exploits a customized version of the blind-spot convolutional
networks where the receptive field is constrained to exclude a variable amount of
pixels throughout training to account for the correlation structure of the noise,
introducing one of the first deep learning despeckling method purely based on real
single-look complex SAR images. Speckle2Void is able to learn to produce excellent
images with faithful details and no visible residual speckle noise.

6.1 Open problems
In this thesis, we have described a new blind super-resolution method trained

on a dataset with real LR and HR images, a non local extension and a novel self-
supervised despeckling method requiring no ground truth. However, there are some
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research directions worth to be investigated that may lead to interesting research
problems. In the following we state some future works which may be interesting to
develop to improve the current methods.

• DeepSUM architecture: in Chapter 3 we presented a novel method for super-
resolution coupling the reconstruction and the registration problems solved
with an end-to-end trainable CNN. Chapter 4 proposes an improvement in
the feature extraction network. The assumption on the registration in both
works is that the misalignment among the LR images is of translational nature.
The RegNet architecture is specifically devised to handle this type of geometric
disparity. A possible advancement could be designing a different architecture
to account for non-rigid transformations in order to generalize to multiple
datasets where more complex misalignments are present among LR images.

• Number of LR images: DeepSUM architecture was designed to take a fixed
number of LR images. In order to handle a variable number of LR images, the
method could be extended to be independent of the number of input images.

• Speckle noise decorrelation procedure: in Chapter 5 the presented method copes
with the spatially correlated speckle using a decorrelation procedure [90] as a
preprocessing and a regularized training procedure. In the ideal setting the
correlated speckle noise would be handled by the network together with the
actual denoising task. A method based on the current definition of blind-spot
networks, needs to be trained on SAR images with decorrelated noise as it is
performed in a self-supervised fashion. During training, the network is pushed
to use noise correlations between the neighboring pixels and the center pixel
to generate the noisy SAR image in output. Moreover enlarging the blind-spot
is a sub-optimal solution as it reduces the amount of information the network
can exploit to clean the center pixel. Plugging a decorrelation mechanism into
the network to naturally taking care of the pixel-wise noise correlation would
require an extra term in the loss working in a contrastive way with respect
to the reconstruction term or or directly redefining the reconstruction term.
When working on our method (Speckle2Void), we tried to add a regularization
term to the loss to impose a flat spectrum of the noise ratio image, achieving
unsatisfactory results. Probably the regularization term should have a direct
effect on the way the network uses the noise samples from neighboring pixels.
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