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Summary

Low-cost, low-maintenance, and accurate indoor localization of persons is impor-
tant for several applications, such as health care, safety monitoring, and resource
usage optimization. For example, assisted living applications can lower assistance
costs and improve quality of life, which are increasingly important as the projected
ratio between working-age and elderly people keeps on increasing.

Several smart home application can also benefit from indoor localization. For
instance, room occupancy information, alongside other factors, can help reducing
energy consumption by controlling the ambient temperature, lighting, and water
consumption. Health care applications, such as those monitoring the human activity
for extended periods, can detect behavioral changes (e.g., gait changes), which can
help recognizing the early onset of diseases, e.g., Parkinson’s. Moreover, presence
monitoring systems can also detect unauthorized intrusions, e.g., through the house
windows, which can be a sign of burglary attempt.

Many localization techniques have been researched over the years. However, no
silver bullet solution emerged mainly because of the complexity of person localization
in indoor environments. A large variety of solutions, such as ultra-wide band or
Wi-Fi techniques, assume that the person carries a device to be visible to the
localization system. However, always wearing or carrying a device is not realistic
for all indoor conditions and activities, reducing the acceptance of such systems.
Other solutions are privacy-invasive, such as image-based systems, or may require
significant infrastructure changes, such as changing floors. Systems based on infrared
(IR) radiation, e.g., using passive infrared detectors (PIRs) or thermopiles, can be
significantly affected by various environmental heat sources.

Capacitive sensors provide unique advantages, such as simple installation, privacy,
and low cost. The capacitive sensors can be used in transmit mode, shunt mode,
or load mode. The transmit and shunt modes use two electrodes: the oscillator
electrode and the ground electrode. The capacitive sensors operating in load mode
use a single oscillator electrode, while the human body and the environment act as
ground. While two-plate capacitive sensors operating in transmit and shunt modes
can be more accurate, single-plate sensors working in load mode are more attractive
because of their simpler installation.

Capacitive sensors in load mode have been used to localize and identify persons
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indoors, but their sensitivity decreases steeply with the distance. Long-range sensing,
at distances of 10 to 15 times the plate diagonal, is highly susceptible to several
environmental factors, such as electromagnetic and electrostatic noise, humidity, or
temperature. Hence, the whole sensor data processing chain is crucial to achieving
good localization accuracy and stability in variable environmental conditions. In this
work, we investigate how machine learning techniques can help mitigating the effects
of environmental electromagnetic noise and provide accurate person localization.

Human tracking in indoor environments can be divided in two main groups.
The first one classifies the position of a person in a set of predefined locations.
Such information can be useful particularly in smart homes to control energy
consumption, to analyze the time spent at various locations, and so on. The second
one, more complex, continuously tracks the position of a person inside a home. Such
information can be useful for assisted living applications, for example, to analyze
the gait and behavior deviations which can indicate possible health deterioration.

To determine the suitability of load-mode capacitive sensors for person localiza-
tion, we designed a 3 m × 3 m virtual room divided in 16 equidistant locations on a
60 cm grid. In the middle of each wall of the room, we installed a long-range capaci-
tive sensor, at a height of 115 cm from the floor, four sensors in total. We collected
the experimental data through an extensive campaign of experiments, labeled them
with the person’s position within the room, and then used them to train and test a
large set of machine learning (ML) classifiers to infer the location of the person in
the room as follows:

1. Collection of time-stamped measurements from the four capacitive sensors in
the room labeled with the actual position of the person;

2. Processing the sensor data, both for conditioning and for person localization
using different ML classification algorithms from the Weka collection [1];

3. Analyzing the performance of the ML classification algorithms in terms of
localization accuracy, average distance error, precision, and recall;

4. Analyzing the effect of the training data size on the localization performance
of the algorithms.

We analyze the performance of most ML classification algorithms from the Weka
collection for testing machine learning algorithms, with a particular focus on the
best performing: k-NN, Bayes Net, Support Vector Machine (SVM), Random Forest,
as well as boosting techniques, such as LogitBoost and AdaBoostM1. The best
algorithms can provide good localization results even with limited sensor data
preprocessing for noise filtering, and we also analyze the effects of the size of the
training data on the localization results for different algorithms.
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The ML classifiers achieved 93 % accuracy. Random Forest performed the best
overall, while AdaBoostM1 used on top of the C4.5 required much less time for
inference at the cost of a small accuracy loss.

After exploring the effectiveness of capacitive sensors for classifying the location
of a person indoors, we addressed the more complex problem of the inference of the
trajectory of a person moving freely inside the same experimental room, using a
time- and location X/Y-labeled sequence of continuous data instead of unordered
sets of discrete locations. For this, we increased the sampling rate of the capacitive
sensors to 3 Hz to better capture the free movement of a person. To record the
ground truth of the person’s movements and label the data from four capacitive
sensors, we used an accurate ultrasound reference system from Marvelmind, which
required the person to carry a tag during the experiments.

With the collected data, we explored how advanced data processing can improve
the capacitive sensor accuracy and reconstruct the trajectory of a person’s movements.
As before, we used relatively simple capacitive sensors, which are known to be very
susceptible to environmental noise, to better compare the effectiveness of the various
data processing chains on the overall accuracy.

We used several signal filtering combinations for preprocessing and then we
optimized different neural network (NN) types e.g., (1) autoregressive feedforward,
(2) 1D convolutional NN (CNN), and (3) long short-term memory (LSTM), through
design space exploration (DSE). For NN training, validation, and testing, we used
capacitive sensor data collected while a person moved freely in the 3 m × 3 m
experimental room, and we compared the inferred position and trajectory with the
reference location acquired using the reference Marvelmind ultrasound localization
system.

we report in the thesis the main results on trajectory reconstruction based on
data collected from capacitive sensors, which are:

• neural network-based signal processing techniques for indoor person localiza-
tion and tracking using small capacitive sensors operating in load mode at
long ranges (10 to 15 times their plate diagonal);

• noise attenuation using various kinds of digital filters and neural networks for
location and trajectory inference;

• comparative analysis of NN-based location and movement dynamics inference
accuracy from noisy sensor data.

We achieved a 25.1 cm localization root-mean-square error (RMSE) using the capac-
itive sensors, which is very good for such small, noisy, low-power, low-cost, privacy-
aware sensors.

We also evaluated the effectiveness of proposed methods to reconstruct human
trajectory using similar NNs but based on experimental data from 4 pixels × 4 pixels
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thermopile infrared sensor. This analysis has two main goals: first to see the effec-
tiveness of the ML methods developed in this thesis for other types of sensors, and
second because the capacitive and thermopile sensors have several complementary
advantages. In this case, we achieved a much lower localization RMSE of 9.6 cm.
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Chapter 1

Introduction

Low-cost, low-maintenance, accurate indoor detection and localization of persons
is an important enabler for several applications, such as health care and resource
usage optimization and security. For instance, room occupancy information, alongside
other factors, can help reducing energy consumption by controlling the ambient
temperature, lighting and water consumption [2]. For health care, by 2050, the
number of elderly persons is estimated to be nearly 2.1 billion worldwide, more
than doubled from 2015. Assisted living systems can play an increasingly important
role in improving their quality of life, since the ratio between working-age persons
and elderly is expected to drop to 3.5 by 2050 [3]. Also, monitoring human activity
for extended periods can detect behavioral changes (e.g., gait changes), which can
help recognizing the early onset of diseases like Parkinson disease [4]. Moreover,
presence monitoring systems can also be used to detect unauthorized intrusions
(e.g., through house windows, a sign of burglary attempt [5]).

Indoor person localization can rely on wearable or portable devices [6], such as the
IEEE 802.11 (Wi-Fi) [7, 8] or the Bluetooth [9] standards, low power communications
using the ZigBee protocol [10], radio frequency identification (RFID) [11], ultra
wideband radio (UWB) [12], visible light communication [13], or audible [14] and
ultrasound [15] acoustic signals.

Many localization techniques have been proposed over the years [16], such as
pressure and load cells [17], sensing mats [18], thermal infrared [19], sound source
[20], ultrasound reflections [21, 22], air pressure [23], residential power lines [24],
water usage [25], optical [26], carbon dioxide [27], vital functions [28], and data
fusion from various sensor types [29]. Many of these methods typically require the
person to wear an active tag or require significant infrastructure changes. The tag
can often be an important reliability and usability drawback, because the person
may forget or be reluctant to wear it [2], leading to missing or incomplete traces.
Tag-less indoor localization [2, 30] is necessary whenever the persons may not carry
or wear a device to be sensed by the localization system, such as in some smart
home applications or assisted living for elderly people. Furthermore, to improve the
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localization system acceptance and added value, it should ensure personal privacy,
be affordable, unobtrusive, easy to install, and require little or no maintenance (e.g.,
long battery life or use wireless power).

Video or imaging cameras can be used for human presence detection and local-
ization [31, 32]. However, cameras often require high computational, networking
and energy resources, a direct line of sight, and adequate lightning, which increase
the installation complexity and system cost. Cameras also raise significant privacy
concerns, since the residents are often rejecting constant video monitoring even with
blurred images [2]. Other solutions are based on Ultra-Wide Band (UWB) radios
or on the measurement of received signal strength variations on narrow channels
[33–36]. They typically require the person to wear an active tag or the installation
of many mains-powered sensors. Ultrasonic systems have also been used for indoor
person localization [37]. However, they also require the user to carry a tag and long-
term exposure to ultrasonic noise can cause harmful health effects [38]. Wi-Fi-based
systems have been studied for indoor localization [39–41]. They rely on the presence,
by now common, of many Wi-Fi-enabled devices in the monitored area to calculate
the Time of Arrival (TOA), Angle of Arrival (AOA) and Received Signal Strength
(RSS). However, for an adequate accuracy these systems require a large number of
Wi-Fi-enabled devices, which have high power consumption. Another limitation is
signal attenuation by walls and furniture [41].

Other systems attach tags to the objects that are routinely used by the person,
such as the pill box, fridge door or house keys, to monitor when the person uses
these items [42]. However, if the person does not interact with the monitored objects,
the system will fail to provide any information.

Systems based on passive infrared sensors (PIR) can also be used for tagless
localization [43–46]. For effective localization, these solutions require a large number
of sensors which increase the installation cost and reduce the user acceptance,
because they visually remind them that they are being monitored [2]. Thermopiles
are based on several thermocouples joined in series and can measure temperature
of different sections of its field of view. A major advantage over PIR sensors is the
ability of thermopiles to measure temperature of stationary persons or objects. Thus
they can be good candidate for device less indoor localization. However, IR based
sensors can give false readings if they are exposed to common infrared (IR) sources,
such as sunlight [47], good heat conductors, IR radiation reflectors, incandescence
light bulbs [2].

Electric field sensors [48] used for localization include capacitive tiles [5], electric
resonance coupling [49], and capacitive coupling [50]. They use the conductive
properties of the human body and do not require the person to carry any specific
device. Capacitive sensing has been used for human detection, localization and
identification [51, 52]. Capacitive coupling has various uses, from musical instruments
(Theremin) to precision instruments (e.g., to measure the mechanical vibration of
motors and generators) and for user interaction with the touch screens of mobile
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phones. The measurements are passive and are not affected by materials with relative
permittivity close to that of the air, hence they can operate behind objects made of
such materials [47].

Capacitive sensors have various modes of operation. Zimmerman et al. [53]
described the human shunt mode and the human transmitter mode. In the shunt
mode a voltage is created between two electrodes, where one electrode is an oscillator
and the other is a virtual ground. When a hand or any other body comes between the
field created between the electrodes, the amount of displacement current reaching
the virtual node decreases. In the transmitter mode the human body acts as an
electric field emitter when a low frequency energy is coupled into human body.
But in this case human body needs to be touching or very close to the oscillating
electrode. The displacement current increases in the ground (receiving) electrode
when the person moves closer to it. Smith et al. [47] described another mode, named
Loading mode, which uses only one plate. In loading mode the current displaced by
human body from the transmitter plate is measured. The distance of human body
from the transmitter can affect the displaced current, which can be a measure of
the distance between transmitter electrode and human body.

Load-mode single-plate capacitive sensors can be self-contained, easy to install,
inconspicuous, inexpensive, and do not raise significant privacy concerns. They
can sense [54, 55], identify [56, 57], and localize [51, 58] persons indoor, but their
sensitivity decreases steeply with the distance. Long range sensing, at distances of
10 to 15 times the plate diagonal, are highly susceptible to several environmental
factors, such as electromagnetic and electrostatic noise, humidity, or temperature
[59]. Hence, the whole sensor data processing chain is very important to achieve
good localization accuracy and stability in variable environmental conditions.

As mentioned earlier, several types of noise can adversely affect sensor data accu-
racy, from offsets due to changes of indoor objects (e.g., presence, position) or chang-
ing environmental conditions (e.g., temperature, humidity, lighting), to noise in-
duced by environmental electromagnetic radiations (e.g., radio, light switches, home
appliances). Hence, raw sensor data very often require significant post-processing
in order to achieve the localization accuracy needed by applications. Among data
processing techniques, the machine learning (ML) algorithms are among the most
promising, but their performance (e.g., inference performance, required training,
computation complexity) can vary significantly.

Machine Learning (ML) is the branch of Artificial Intelligence (AI) to develop
learning techniques [60] to make machines learn and improve to carry out a task.
In recent years ML has grown exponentially and is being used in vast number of
fields such as image processing, sensor data processing, medicine and many more.
Covering the theory of Machine Learning is beyond the scope of this thesis, but a
brief overview is presented for the topics that were involved in this work. We will
discuss in detail the structure of the algorithms and their interaction with data in
the following chapters. Machine Learning can be of various types e.g. Supervised
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Learning, Unsupervised Learning or Reinforcement Learning.
Supervised learning involves learning a function that maps an input to an output

based on example pairs that are provided as the training data. Each pair comprises
an input and a desired output (label). [61]. The example pairs, also referred to as
labeled training data set, are fed to the learning algorithm. Training data set is
analyzed to infer a function that can be used for mapping new data previously unseen
in training data. If the function is learnt well it should be able to assign unseen
data to the expected output labels. The supervised can be used for classification,
where the number of classes is predefined and task of the learnt function is to map
the input to one of the classes. Supervised learning can also be used in regression
analysis, where contrary to the classification, the output variable is a continuous
output variable. A typical example of regression analysis is predicting house price
where the predicted output can take any value e.g. between 100000 e to 200000 e.

In unsupervised learning, contrary to supervised learning, example inputs are
not labeled. The learning algorithms look for intrinsic structure or some common
attributes of the input data. For example, clustering is type of unsupervised learning.
Reinforcement learning algorithms are based on learning a policy (mapping from
states to actions) that maximize the reward received over time [62]. It does not have
labeled training data as is the case with supervised learning and unlike unsupervised
learning, it is characterized by a reward measure which must be maximized with
trial and error. Common applications of reinforcement learning include strategy
planning, robotics for industrial automation etc.

For the purpose of indoor localization we considered supervised learning. We
used both classification to classify among pre-defined locations and regression to
extract the trajectory of a person’s movement. For classification, we used most of the
ML classifiers from Weka collection. Prominent among those were Random Forest,
Support Vector Machine (SVM), k-NN and Naive Bayes. For extracting trajectory
we used Neural Networks in various forms such as Feed-forward, 1D Convolutional
Neural Networks (1D-CNN), Long Short Term Memory (LSTM).

Although algorithms and techniques described are for Capacitive sensing and
Infrared sensors, we believe these techniques can be applied to other types for sensors
as well, particularly those involving time series data.
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Chapter 2

Human Indoor Localization and
Tracking

Indoor localization is a combination of various steps. They include selecting the
sensor technology, and processing data through various algorithms to obtain the
localization information. In this chapter we give a brief overview on various popular
localization methods, and machine learning algorithms.

2.1 Main Indoor Localization Techniques
A growing number of smart space applications rely on indoor person localization

and activity recognition for safety monitoring, providing added value services, or
continuous assistance. For instance, assisted living applications can lower assistance
costs, improve safety and quality of life, which are increasingly important with a
projected ratio between working-age and elderly people of 3.5 by 2050 [3].

The Global Navigation Satellite Systems (GNSSs) such as Global Positioning Sys-
tem (GPS) from United States and Global Navigation Satellite System (GLONASS)
allow mobile devices to position themselves in outdoor environments [63]. However,
satellite positioning systems perform poorly in indoor environments. Tracking GPS
signals in indoor environments typically require a receiver capable of tracking sig-
nals with power levels ranging from -160 dBW to -200 dBW, while a typical mobile
receiver has a noise floor of approximately -131 dBW in indoor environments [64].
Even if the receiver can track the signal from a sufficient number of satellites, the
indoor multi-path propagation can significantly reduce the correct tracking ability.
In outdoor environments, receivers experience multi-path effect only in benign form
while in indoor environments the reflected signal can exceed the direct signal [64].
This makes it difficult to achieve the sub-meter accuracy that is usually required in
indoor positioning systems. A wide range of indoor technologies have been developed
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over the years, but the lack of the single perfect method means that indoor localiza-
tion is still an active area of research. Indoor localization can be broadly classified
into two main categories, device based localization (DBL) and device free localiza-
tion (DFL). Device based localization needs the subject under observation to carry a
device with him to get recognized by the localization system. Contrary to DBL, the
device free localization methods can track the subject without requiring the subject
to carry any device. Many techniques have been proposed on each of these methods
involving various types of sensors and methods. Some of them are discussed below.

2.1.1 Wi-Fi
The IEEE 802.11 commonly know as Wi-Fi, works in Industrial, Scientific,

and Medical (ISM) band and is commonly used these days in all mobile devices,
e.g., cell phones and laptops. Because of the existing Wi-Fi infrastructure in many
homes and offices, it is an attractive option for use in indoor localization systems.
Liu et al. in [65], surveyed Wi-Fi based localization systems. They categorized the
Wi-Fi based systems in active positioning (device based) and passive positioning
(device-less) systems. Active positioning relies on users carrying specific devices
while Passive Wi-Fi systems can work without requiring the user to carry any
device. They can use fingerprinting methods which involve mapping of the area by
storing the received signal strength (RSS) values and the corresponding location
information in an offline phase. In the online phase the user location and trajectory
are estimated by comparing the RSS value of user’s device with earlier stored mapping
information during offline phase. Many studies have fused Wi-Fi with other sensors
commonly present in mobile phones to improve localization accuracy. Examples of
such fusion include combining Wi-Fi based localization with camera, inertial sensors
(accelerometers and gyroscopes), bluetooth or geomagnetism. Other Wi-Fi based
techniques include range-based methods. Common range-based methods include, time
of arrival (TOA), angle of arrival (AOA) and frequency difference of arrival (FDOA).
While the device based localization with Wi-Fi has been widely researched over
the years, the device free localization has been relatively less popular. Wi-Fi based
DFL utilizes RSSI or channel state information (CSI) combined with trilateration
or fingerprinting methods. However, for adequate accuracy, these systems require a
large number of Wi-Fi-enabled devices, which have high power consumption. Another
limitation is the signal attenuation by walls and furniture [41] and phenomena such
as multi-path propagation, which can drastically affect the localization accuracy.
Additionally radio mapping of the area under observation is a very time consuming
process and it need to be re-done if an access point is added or even removed. Adib
et al. [66] proposed device-less system WiTrack2.0 which operates in multipath-rich
indoor environments and can track multiple persons. They use five transmit antennas
and five receive antennas which are used for transmitting RF signals and capturing
their reflections in a 5 m × 7 m room. Although one of the reasons for interest in W-Fi

6



2.1 – Main Indoor Localization Techniques

systems was the preexisting infrastructure, but as it can be noted that the number of
access points required in most of the studies are higher than what is required for Wi-Fi
communication, for example even in small home at least three access points would be
required for positioning while a single access point is enough for Wi-Fi communication
to work. Vasisht et al. [7] demonstrated a decimeter-level localization with a single
Wi-Fi access point by measuring TOF between user’s device and the access point.
The median positioning error was 65 cm in line-of-sight and 98 cm non-line-of-sight.

2.1.2 Ultra-Wide Band (UWB)
Ultra-wide band uses ultra short-pulses with time period of <1 nanosecond,

which are transmitted over a large bandwidth (>500 MHz), in the frequency range
from 3.1 GHz to 10.6 GHz, using a very low duty cycle [67] resulting in lower power
consumption. The UWB has been studied widely for indoor localization [12, 33].
Due to its significantly different signal type and radio spectrum it is immune to
interference from other signals, which makes it an attractive technology for indoor
localization. UWB signal, particularly of low frequency spectrum, can penetrate
various materials, e.g., walls, equipment and clothing (metals and liquids can still
cause interference in UWB signals) [6].

UWB can be based on time of flight (TOF), angle of arrival (AOA) or time
difference of arrival (TDOA). As mentioned earlier UWB has short duration pulses
which are easy to filter so that the correct signals can be separated from the
signals generated from multi-path [68]. Short duration pulses also help to accurately
determine the precise TOA, which in turn can provide more accurate localization.
Moreover, the very short duration of the UWB pulses make them less sensitive
to multipath effects, allowing the identification of the main path in the presence
of multipath signals and providing accurate estimation of the ToF. Commercially
available systems using UWB claim localization accuracy of up to 10 cm [69].

2.1.3 Acoustic Localization
Acoustic localization utilizes the microphones in the mobile phones or other

devices to capture acoustic signal emitted by reference nodes acting as the sources of
sound [6]. Liu et al. in [70] surveyed various research methods employed for acoustic
localization. Acoustic localization share many characteristics of radio frequency
based localization, hence many techniques that are used for RF based localization
can be used for acoustic localization. These techniques include time of flight (ToF),
time difference of arrival (TDOA), Doppler effect and phase shift, etc. Yet, the
acoustic signals have the advantage that their speed is much lower than the speed
of RF signals, thus providing potentially higher accuracy [71].

Acoustic-based localization can be achieved by transmitting modulated acoustic
signals, containing time stamps or other time related information, which are captured
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by microphone sensors to estimate ToF [72]. Other methods involve small phase and
frequency shift experienced by the acoustic signal due to the Doppler effect caused
by a moving object, which can used to estimate its relative position and velocity [73].
Acoustic based systems have been shown to attain high localization accuracy, but can
be limited by the sampling rate/anti-aliasing filter of commonly used microphones,
made for audible band acoustic signals (<20 kHz). The transmission power should
be low, so that the acoustic signals should not be perceived by the human ear and
advanced signal processing algorithms are needed to detect the low power signal [6].
Furthermore, the need of infrastructure such as acoustic sources/reference nodes
and the high sampling rate which causes battery drain, make the acoustic signal-
based localization not a very popular choice.

2.1.4 Visible Light
Visible light communication is high-speed data transfer technology that uses

visible light between 400 THz to 800 THz, primarily using light emitting diodes
(LEDs) [74]. Localization with visible light is achieved using light sensors (receiver)
to estimate the position and direction of the LED emitters which transmit the
signal. The angle of arrival (AOA) has been accurately used for localization using
visible light [74, 75]. A critical limitation of the visible light-based localization is
the requirement of direct line of sight between the LED and the sensors (receivers)
for accurate localization [6].

Visible light was used for localization using RFID (which have photo-diodes)
sensors placed on the floor by detecting the decrease in the light intensity because
of a person [76]. By using the parameters such as the height of the LEDs, the
radius of the light zone and height of individuals, localization accuracy of 50 cm was
achieved. Hu et al. [26] designed proprietary system with changes in existing LED
which must be attached to the user’s device. They used the RSSI from the LEDs,
to estimate person’s location with average accuracy of 30 cm. Similarly, visible light
from smart LEDs was used for localization where user must carry a device embedded
with custom light sensors which receive the energy transmitted by LEDs [77]. The
system used frequency higher than 200 Hz to avoid flicker to human eye. However
as is common with visible light based systems that the system needs line of sight,
moreover at least three LEDs are required to estimate user’s location. Zhang et
al. [78] use fluorescent lights as the reference nodes and user’s device camera as
sampling device for image processing algorithms. They use difference in fluorescent
light’s characteristic frequency (>80 kHz) to determine user’s proximity to certain
reference node. TDOA was used for LED based localization by Jung et al. [79],
where line of sight is required between transmitter and receiver. They also used the
difference of frequency among LEDs to differentiate among transmitting LEDs.
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2.1.5 Ultrasound
The ultrasound based localization uses ultrasound signals (>20 kHz) to calculate

the distance between a transmitter and a receiver node using ToF and sound velocity.
It has shown cm level accuracy as claimed by commercially available Marvelmind
[80]. RF pulse can be added to ultrasound system to provide synchronization. The
sound velocity can change with changes in humidity and temperature; to compensate
these changes temperature sensor is usually added to the ultrasound sensor systems
[81]. Even though signal processing techniques can filter environmental noise, still a
consistent noise source may still reduce the localization performance [6]. Kalman
filters have been widely used for robot localization with ultrasound sensing, however
the data association step of these methods is very complex and usually requires
linearization [6]. The BAT indoor localization is based on ultrasonic signals for indoor
localization [82, 83]. It uses lower speed of the sounds waves in the air (330 m/s)
which improves it accuracy. The devices are fitted with the transmitter in order
to be tracked, and fixed receivers with known positions are used for localization.
A combination of RF and ultrasonic signals was used for indoor localization in
the Cricket indoor localization system [84]. However, localization of ultrasound
systems is very sensitive to the placement of sensors. Moreover, long-term exposure
to ultrasonic noise can cause harmful health effects [38].

2.1.6 Bluetooth Low Energy (BLE)
BLE is a Bluetooth standard optimized for low-energy consumption. BLE archi-

tecture consists of the Physical layer (PHY), Link Layer (LL), Logical Link Control
and Adaptation Protocol (L2CAP), and Generic Attribute Protocol (GATT), and
Generic Access Profile (GAP). Lower layers PHY and LL, are for bit transceiving
and providing medium access, connection establishment, error, and flow control, re-
spectively. L2GAP is for multiplexing and providing fragmentation and reassembly
of large data packets.GATT and GAP are the top layers of BLE. Like Bluetooth,
BLE uses adaptive frequency hopping spread spectrum to access the shared channel,
but in contrast to classic Bluetooth which has 79 hops and 1 MHz channel width,
BLE has 43 hops and the channel width is 2 MHz [85]. A BLE device can operate
either as a master or slave. BLE network topology is a star, where a master can
operate multiple simultaneous connections with several slave devices, but a slave
device can only have a single master.

The low energy feature of BLE makes it an attractive option for portable
and battery-operated devices. However, just like other device-based localization
techniques, BLE localizes other (BLE) devices, not persons directly. BLE-based
protocols have been proposed by Apple, iBeacons, and Google, Eddystone. iBeacons
is based on RSSI and was primarily designed for proximity-based services. However, it
has also been used for localization with accuracy up to 0.95 m [6]. Ayyalasomayajula
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et al. [86] proposed a CSI-based localization system using BLE-compatible algorithms
with an accuracy of 86 cm. Islam et al. [87] proposed a multipath profiling algorithm
to track any BLE tag in an indoor environment. They used the RSSI information at
different hopping channels to obtain the ToF of the direct path signal from an IoT
device (peripheral) to an access point (central), with a ranging accuracy of 2.4 m.

2.1.7 Electric Field Sensing
Electric field sensors [48] have been used for localization. Localization methods

with electric field sensing include capacitive tiles [5], residential power lines [24],
electric resonance coupling [49], and capacitive coupling [50]. They use the conductive
properties of the human body and do not require the person to carry any specific
device. In Section 2.3 we will discuss capacitive sensing in detail.

2.1.8 Other Methods
Various other have been used for localizing indoors, for example attaching tags

to the objects that are routinely used by the person, such as the pill box, fridge
door or house keys, to monitor when the person uses these items [42]. However,
if the person does not interact with the monitored objects, the system will fail to
provide any information. Other methods include pressure and load cells [17], sensing
mats [18], air pressure [23], water usage [25], optical [26], carbon dioxide [27], vital
functions [28], the Bluetooth [9] standards, low power communications using the
ZigBee protocol [10], and radio frequency identification (RFID) [11].

One major factor to look for indoor positioning is the fact that person inside the
home may not be carrying a device, e.g., mobile phone, or may not feel comfortable
wearing a device all the time. Similarly, a person can simply forget to wear a device
[88]. Thus, tagless indoor localization is necessary whenever the persons may not
carry or wear a device to be sensed by the localization system, such as in some smart
home applications or assisted living for elderly people. Furthermore, to improve the
localization system acceptance and the added value, the localization system should
ensure personal privacy, be affordable, unobtrusive, easy to install, and require little
or no maintenance (e.g., long battery life or use wireless power). Table 2.1 gives a
non-exhaustive summary of indoor localization systems.

2.2 Machine Learning Techniques for Indoor Lo-
calization

Sensor data can be further filtered and processed by the classification algorithms,
which ultimately output the approximate location of the person. Before being ready
for localization, ML classifiers need to be trained with sensor data sets labelled
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Table 2.1: A summary of indoor localization systems.

Accuracy User
Technique Study Technique (cm) device Comments

Wi-Fi

RADAR [89] RSSI 294 ✓ Requires building radio maps. Accuracy
degrades as radio environment changes.[90] RSSI 240 ✓

Horus [91] RSSI 39 ✓
Ubicarse [92] AOA 39 ✓ User device must have two antennas, re-

quires user to rotate device
ArrayTrack
[93]

AOA 23 ✓ Requires large number of antennas in APs

Phaser [94] AOA 100–200 ✓
WiTrack2.0
[66]

TOF 11.7 Requires large number of antennas to cre-
ated multipath-rich environment

UWB

[12] ToA 19–54 ✓ Errors can increase w.r.t. deployment
conditions e.g., [95] observes the 0.49 m,
0.71 m, 1.93 m, 1.10 m with DecaWave,
BeSpoon, Ubisense, and Ubisense(with
AOA), respectively.

Ubisense [96] AOA/
TDOA

15 ✓

BeSpoon [97] N/A 10 ✓
DecaWave [98] TOF 10 ✓

Acoustic
Localization

Guoguo [99] TOF 6–26 ✓ Sound pollution can have adverse effects on
localization. limitation caused by sampling
rate/anti-aliasing filter of commonly used
microphones

Beep [100] TOF 90 (95 %) ✓
WalkieLokie
[101]

N/A 63 ✓

Visible
Light

LocaLight [76] N/A 50 ✓

Needs line of sight. Errors can increase
w.r.t. deployment conditions

LiTell [78] N/A N/A ✓
LiTell2 [102] N/A N/A ✓
Pharos [26] RSS 30 ✓
[79] TDOA 0.18 ✓

Ultrasound
BAT [83] TOF 4 ✓ Susceptible to reflections and ultrasonic

noise.Cricket [84] TOF 10 ✓
Marvelmind
[80]

N/A 2 ✓

BLE

[103] RSSI 97 ✓

Low accuracy.[86] CSI 86 ✓
[87] RSSI/

TOF
240 ✓

Thermopile

[104] IR N/A Only location classification
[105] IR N/A Only people count
[106] IR 17.5 8 thermopiles covering 4.9 m × 6.2 m
[107] IR/AOA 13.39 Two 16 pixel × 4 pixel thermopiles covering

2.35 m × 3 m
Capacitive
sensing

[108] Transmit 10 Extensive changes are required to the floor
of the area under observation.[109] Loading 2.2

with the position of the person. After training, the ML classifiers can be used
for localization, in which they receive new data sets for which they return the
approximate location of the person based on the internal model built during training.

Previous studies evaluated various algorithms for different classifications and
using different types of sensors, e.g., GPS and accelerometers. Shafique and Hato
in [110] review various studies on using sensor data for training and testing ML
classifiers. One such study uses GPS coordinates, speed, heading change, and
acceleration among others, and tests these features on five different classification
algorithms (Bayesian net, decision tree, random forest, naive Bayesian and multilayer
perceptron) [111]. The test results show that random forest outperforms other
algorithms. Wenjie et al. [36] used k-NN, multivariate Gaussian mixture model
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(GMM) and support vector machine (SVM) for classification and for tracking moving
person used two hidden Markov model (HMM) based methods, namely GMM-based
HMM and k-NN- based HMM for device free localization using RFID based system.

K-nearest neighbors is an instance-based (lazy) learning method that uses a
similarity metric between the test and training samples (e.g., Euclidean distance).
As most lazy learning algorithms, k-NN assumes little or no knowledge on data
distribution because it does not create a generalization of the training data [112].
Hence, the modeling time is reduced, but the algorithm needs to keep all training
samples in memory during classification, which can be fairly memory- and processing-
expensive for low-resource embedded devices or for large training sets.

Support vector clustering (SVC) [113] is a clustering method based on support
vector machines (SVM). SVC maps data points to a high dimensional feature space
using Gaussian kernels, where the algorithm searches for the minimal enclosing
sphere. This sphere is mapped back to data space, where it forms the contours that
contain clusters of data points.

Random forest was proposed by Breiman as one of the ensemble methods [114].
Its internal model is generated by training multiple trees separately with the same
distribution and choosing randomly the data samples to ensure that the decision
trees are not correlated [115]. The classification is done by a majority vote among
the decisions of all trees. The algorithm is robust to noise and outliers, and can
work with nonlinear associations in a wide range of application domains, such as
environment, ecology, bioinformatics, remote sensing and in physical time-activity
classification [115, 116].

The performance of the classifiers can be improved by boosting techniques, such
as a majority vote among similar classifiers or a weighted majority vote (AdaBoost)
[117]. AdaBoost classifies well new sets, but its performance can degrade for noisy
data due to the exponential change of its loss function [118]. LogitBoost uses a
logarithmic loss function that changes linearly with the classification error and
reduces the algorithm sensitivity to data noise and outliers [117].

Recently the artificial neural network (ANN) have made huge progress in many
fields for example image processing, voice recognition, autonomous driving, just
to name few. One of the features of ANNs is its ability to extract deep features
from data contrary to conventional ML approaches which use hand crafted features
extracted on basis of human knowledge [119].

ANNs can be many flavours, e.g., multi-layer perceptron, convolutional (CNN),
autoregressive which are feed-forward NNs and long-short term memory (LSTM)
which is recurrent NN. A detailed explanation of these varieties is beyond the scope of
this thesis, however in Chapter 5 we give an overview of each type along with various
parameters that were tuned and the interaction of these NNs with the input data.

Feed-forward NN in its simplest form can contain a neuron in a single hidden
layer. An artificial neuron is made of a linear function and an activation function
(non-linear), for example rectified linear unit (ReLU) [120], sigmoid [121], etc. For
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designing the NN for a specific application various parameters must be tuned, this
includes the number of hidden layers, number of neurons in hidden layers, type of
activation, type of optimizer, learning rate, optimal number of epochs required to
train the NN (more epochs can cause the NN to over-fit and less epochs can leave it
under-fit), and the way data is fed to the NN.

Convolutional neural networks (CNN) are based on three main ideas, sparse
interactions, parameter sharing, and equivalent representations [122]. CNN have
gained huge popularity in image processing, speech and text analysis, thanks to
their ability to extract useful features from the input data. While 2D CNNs are
popular for image processing, the sensors for human activity produce output as time
series, e.g., accelerometer which has multi-dimensional temporal output, thermopile
infra red sensor which produce low resolution thermal image which can be treated
as a time series as we will see in Chapter 5. On time series, CNN provides two
advantages: local dependency, which means neighbouring signals in human activity
related data are likely correlated, and scale invariance, which means invariance to
changes in scale or pace [119]. CNNs are usually composed of convolution layers,
followed by a pooling layer and fully connected layers. Various hyper-parameters
must be tuned to optimize the CNN, e.g., the kernel size and the number of filters in
convolution layers, the optimizer type, the activation function, the type of pooling
layer, the number of fully connected layers and their number of neurons, and the
size of input window to the CNN, as we will explain in Chapter 5, section 5.1.4.

The LSTM introduced by Sepp et al. [123] is a type of recurrent neural networks
(RNN) widely used to extract features from data sequences, such as speech or
handwriting. A typical LSTM cell, like a RNN cell, has an internal state that has
context information which it passes on to the next time step, so at each time step
the output is not only dependent on the current input, but also on the context.
However, LSTM differs from RNN because it resolves the problem of vanishing and
exploding gradients. Even though the mostly commonly used LSTM architecture
(vanilla LSTM) works reasonably well on various datasets [124], there are still crucial
parameters which need to be tuned, such as the size of input data window, the size
of the LSTM cell and the number of stacked LSTM cells.

1D convolutional NNs (CNNs), long-short term memory NNs and their variants
were used in multiple sensing applications. Wang et al. [119] survey the use of
NN architectures for human activity recognition, including 1D CNNs, recurrent
neural networks, and hybrid architectures using data from various sensors to classify
human activities. LSTM networks were used for indoor static localization using the
magnetic and light sensors that are included in the modern smartphones [125]. They
do so in close proximity to the site where they trained the system (a 6 m × 12 m lab)
to preserve the validity of the magnetic field calibration. Chen et al. [126] used Wi-
Fi fingerprinting for LSTM-assisted indoor discrete localization of multiple persons
in a research lab of 35.3 m × 16.0 m and in an office of 55 m × 50 m.
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2.3 Capacitive Sensing for Indoor Localization
Capacitive sensing has been used for human detection, localization and identi-

fication [51, 52]. Capacitive coupling has various uses, from musical instruments
(Theremin) to precision instruments (e.g., to measure the mechanical vibration of mo-
tors and generators) and for user interaction with the touch screens of mobile phones.
The measurements are passive and are not affected by materials with relative permit-
tivity close to that of the air, hence they can operate behind objects made of such
materials [47]. While short-range capacitive sensors have been extensively researched,
long-distance capacitive sensors are a relatively new research area. An extensive
overview of more than 193 capacitive sensing techniques categorised by application
domain includes indoor localization along, e.g., touch, gesture, grip and grasp recogni-
tion [55]. Often, indoor localization requires sensor installation in the floor [108, 127–
131] or costly changes of the monitored area which are impractical for home use [132–
134], on in mats [5]. The latter determines the person location relative to mat posi-
tion and the monitored area can be extended by deploying more sensor-fitted mats.

Capacitive sensors for localization may also be installed in predefined places, for
example near light switches, the study table [135–137], or to detect the presence of the
driver in a vehicle [138]. The sensors can be used for close proximity interaction with
computers, e.g., gesture recognition and interaction with computer games from short
distances [139, 140]. Similarly, capacitive sensors were used for gesture recognition
to prevent a patient from falling off a chair [141] or installed in a bed to detect sleep
patterns [142]. Haescher et al. [143] use capacitive sensors to classify different modes
of walking (fast, jogging and walking while carrying weight). In another study, the
authors use capacitive sensors to classify various postures of the user [144]. In all
these studies the sensor range is too short for the purpose of indoor localization.

Human activity can be detected using capacitive sensors from behind a piece of
furniture, without a direct line of sight [59], or to detect variations in environmental
fields, e.g., those generated by power lines [145, 146]. Prance et al. [146] used the
50 Hz field generated by the power supply lines to localize a human subject in an area
of 3.52 m × 3.52 m by correlating the sensor outputs with an accurate camera-based
localization, but without machine learning techniques. Spread spectrum capacitive
sensors for human detection up to 1 m were also proposed [147], but their suitability
for localization is not clear.

Environmental electromagnetic noise and surrounding objects with permittivity
different than air may interfere with capacitive sensor measurements. To mitigate
these effects, the sensor plate can be guarded by auxiliary fields to reduce the
unwanted couplings of the sensor plate with the surrounding objects [59, 140,
148], and by post-processing sensor data to improve the reliability of long-range
measurements.
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2.4 Infrared Sensing for Indoor Localization
Passive infrared sensors or thermocouples have been extensively investigated

and are often used to detect indoor presence and localization. PIR sensors are
sensitive to movement, while thermopiles can also detect stationary heat sources
[149]. Most of the studies involving human indoor tracking with thermopile sensor
have been done using using machine learning for classification tasks [104, 105, 150–
152], mathematical modelling [106, 153, 154], and image processing techniques for
low resolution camera [107, 155–157].

Classification tasks involve selecting between predefined activities or positions in
case of localization, for example detecting bed-exit motion [150], estimating people
count classifying direction of motion [105], for activity recognition of people within
1 m [151], classifying location of a person with in a grid [104], and classifying gestures
such as sitting down, moving forward, walking diagonally etc [152].

A single point thermopile with mechanical sub-masks was used to classify human
presence among 16 locations with compressing sensing [158]. Eight thermopiles were
used in an area of 4.9 m × 6.2 m to achieve mean error of 17.5 cm using probability
hypothesis density filter [106]. Ng [153] used five thermopile sensors in an area
of 4.6 m × 2.7 m with detection accuracy of ±50 cm using temperature-distance
relationship. Similarly Zhang et al. [154] used two thermopile sensors and the voltage-
distance relationship for an approximate equation set to estimate the trajectory,
but did not mention the mean error.

Using thermopile array sensors as low resolution infrared cameras typically in-
volve image processing, such as background removal and noise reduction [88, 159].
A 4 pixels × 4 pixels thermopile array was used to estimate trajectory using fuzzy
logic in an area of 1.58 m × 1.58 m, with mean positioning error of 0.215 m [160].
Two 16 pixel × 4 pixel thermopile sensors were used to detect the angle of arrival
with multi-frame averaging, background subtraction, and quadratic regression to
localize a person in 60 cm-spaced positions on a snake-like trajectory, with a mean
error of 13.39 cm [107]. Qu et al. in [156] used thermopile sensor “GridEye” of
8 pixels × 8 pixels in an area of 4 m × 4 m and interpolated it to 71 pixels × 71 pixels.
The data was pre-processed by a Gaussian filter and an adaptive threshold, and
the trajectory was obtained using a Kalman filter. They report an average error
of 7 cm with a single human target walking on a horizontal line. For multiple hu-
man targets (up to 3), they show a few straight line trajectories but without re-
porting the error. Gu et al. [155] used a thermopile sensor of 24 pixels × 32 pixels to
track a maximum of two persons on pre-defined trajectories. For single-human tar-
get, the mean RMSE was 9.5 cm. They used interpolation to enhance the thermal
image from 24 pixels × 32 pixels to 93 pixels × 125 pixels, and various other tech-
niques, for example background removal and weighted mean-shift method, to lo-
calize human targets. Shetty et al. [157] used a thermopile array sensor "Grid-
Eye" of 8 pixels × 8 pixels. The authors used a combination of interpolation (from
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8 pixels × 8 pixels to 100 pixels × 100 pixels), background subtraction, Gaussian fil-
tering, and iterative threshold algorithm to process the data and used a Kalman
filter to localize a human target, but without reporting the localization error.

The existing works do not address continuous tracking of arbitrary person
movements using very low resolution infrared images. We, on the other hand, take a
different approach. We use the sensor output as a time series, without any filtering
and enhancing, and evaluate it on an extensive arbitrary path instead of few straight
paths, which resemble more closely the walking patterns of a person.

In Section 5.2 of Chapter 5, we explore the performance of various NNs for indoor
tag-less person localization and movement tracking using a very low resolution
4 pixels × 4 pixels thermopile array, for assisted living applications. We explore the
localization and movement tracking accuracy and smoothness for several types of
neural networks. We search the networks and the configurations that perform best
and use the least resources and computation, making them suitable for embedded
processing on low power sensors.
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Chapter 3

Sensors for Tag-less Indoor
Human Sensing

This Chapter describes the working principles of both capacitive and thermopile
sensors, data acquisition, and filtering methods. We collected the data from the
capacitive sensors when the person was in fixed locations. We then collected the
data when the person was walking randomly, from both the capacitive sensors and
the thermopile sensors, using the same reference system (which requires the user to
wear a tag) to provide the ground truth for training and testing.

3.1 Long-Range Capacitive Sensors
Electrical capacitance is defined as the electrical charge stored on a conductive

object divided by the resulting change of its potential. The capacitance depends
primarily on the geometry, distance, and dielectric properties of a system [140].

We use a capacitive sensor in load mode. In this mode, the sensor is connected
to one plate of the capacitor, while the other plate is made of the environment
and the person body, whose potential is considered constant for the purpose of the
measurement. We indirectly measure the changes in the capacitance of the sensor by
measuring the free running frequency of an astable multivibrator, which repeatedly
charges and discharges the capacitor of the sensor.

A larger plate capacitive sensor has a higher sensitivity, but it typically collects
more noise from the environment, which in turn limits the sensor sensitivity. For a
given plate size, its capacitance depends on the distance d between the plate and
the person body and on the properties of the environment (geometry, permittivity,
conductivity). We show that the effects of the environment on the localization can
be reduced if the data from several sensors are used for training and testing of the
ML classification algorithms, with minimal data filtering.
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3.1.1 Working Principle
The capacitive sensors are based on an LM555 circuit configured as astable

multivibrator and using the sensor plate capacitance (see Fig. 3.1). The oscillation
frequency f is inversely proportional to sensor plate capacitance C

f = kc

C
(3.1)

through a constant kc determined by the resistor values in the multivibrator circuit.
Plate capacitance cannot be determined analytically for distances d between the
plate and the human body that are much longer than the plate diagonal. Empirically,
it changes with the inverse of the distance at a power n (n ≈ 3) through a constant
α, sensor area A, and with an offset C0, depending on geometric, electric, and
dielectric properties of the sensor and the environment [161, 162]

C ≈ C0 + α
A

dn
, (3.2)
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802.15.4

ATMega328

Figure 3.1: Schematic of capacitive sensor front-end using an astable multivibrator
to convert the plate capacitance to frequency, measured by a microcontroller.

For the experiments using static positions, each sensor had an 8 cm × 8 cm copper-
clad plate attached as a capacitor to a 555 integrated circuit in astable multivibrator
configuration, for which the oscillation frequency is given by the formula:

Frequency = 1
0.7 (R1 + 2R2) C

, (3.3)

where R1 = 200 kΩ and R2 = 560 kΩ. The size for the sensor plate was selected
because from previous analysis it provides a good trade-off between the sensor size
and its sensitivity [51]. The sampling rate for static position experiments was 1 Hz.
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3.1 – Long-Range Capacitive Sensors

Figure 3.2: Organization of the experiment floor and body orientation for first
localization experiment (experiment A). A fridge and metallic cabinet are partially
included in the designated room space, while a metallic door and an electric switch
board are close to the room space. They emulate the presence of metallic and electric
objects in an apartment or house.

However for the free movement experiments, we used a 16 cm × 16 cm copper-clad
plate attached to the 555 integrated circuit in astable multivibrator configuration.
In addition to that, we improved both the sampling rate of our previous sensor from
1 Hz to 3 Hz, to adequately track a person moving indoors, as well as its discretization
error, from 20 ppm to 3 ppm, further lowered to 1.5 ppm through oversampling,
decimation and averaging (or about 15 aF while measuring a plate capacitance of
roughly 10 pF). Yet, Equation (3.2) shows that sensor distance resolution changes
much with the distance.

3.1.2 Static Position Experiments
We set up a realistic experiment in order to assess the performance of different

ML classification algorithms for the localization of a person in an uncontrolled
indoor environment. We designated an area of 3 m × 3 m as the “room” and we
positioned four capacitive sensors (A, B, C, and D) at the center of each one of the
four “walls” of the room, at a height of 115 cm from the floor, as shown in Fig. 3.2.
By “uncontrolled” we mean that we did not prepare the room in any way for the
experiment. For instance, we kept in place large metallic objects which may affect
the plate capacitance and its sensitivity to the person presence, as well as sources
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of electric noise, such as a fridge and an electric switch board on a side wall.
To gather a single set of experimental data, a person stood still for 8 s on each

position, while each sensor acquired 8 samples with a sampling frequency of 1 Hz.
We kept the sampling rate low to reduce the energy consumption, while still being
able to track the daily movements of an elderly person moving with a speed of
1 km/h to 2 km/h indoor. We repeated this procedure for all the 16 positions in
the room (shown in Fig. 3.2) to complete the experiment, thus each experiment
provided 128 four-tuple samples.

Although the absolute frequency can vary significantly between experiments, the
relative variations due to person proximity remain very similar among experiments,
as we can see in Fig. 3.6.

We noticed that the base frequency of the sensors (i.e., without a person nearby)
may change each time they are turned on. Thus, after gathering the data for each
of the 16 positions within one experiment, we reset all the sensor nodes in order to
make sure that we include also this type of noise in the experimental data.

We also noticed that the data are afflicted by very low frequency drifts and
environmental conditions, hence we split the collection of the experimental data in
three sessions. In Session A, we performed 20 experiments from which we obtained
2560 four-tuple samples (20 experiments × 8 samples per location × 16 locations).
From now on we will refer to these data as Set A. After a few months, we used
the same equipment to perform 10 additional experiments, in which we collected
1280 four-tuple samples (10 experiments × 8 samples per location × 16 locations).
One week later, we collected another 10 experiments that added 1280 more four-
tuple samples (10 experiments × 8 samples per location × 16 locations). Then we
grouped the last 20 experiments (2560 samples) in a single set, Set B.

Moreover, the orientation of the body can also influence the sensor measurements,
because for different rotation angles the distance from the closest body part to the
sensor may change for a given position in the room. Thus, the 20 experiments in Set
A were actually made of two sets: 10 experiments in which the person orientation
was the one shown in Fig. 3.2 (i.e., with the chest towards sensor A), and the other
10 experiments in which we changed the orientation by 90°, as shown in Fig. 3.3 (i.e.,
with the chest towards sensor B). The latter orientation was kept also for all samples
collected in Set B. We considered only two orientations during the experiments,
namely either facing the sensors or exposing a shoulder to the sensors, because the
human body is roughly symmetric and the capacitance difference between the front
and back or between the left and right shoulder are similar.

The capacitive sensors change their base frequency over time even without a
person in range, because of changes in the environmental conditions. These changes
can significantly offset the acquired data, as shown in Fig. 3.4 and Fig. 3.5, where
each plotted line represents a different experiment.

To compensate for these changes, we used the following method: we calculated
the standard deviation of all the samples in a given set, then we calculated the
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3.1 – Long-Range Capacitive Sensors

Figure 3.3: Organization of the floor and body orientation for the second localization
experiment (B).
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Figure 3.4: Raw data for Set A, sensor A, B, C, D in (a), (b), (c) and (d) respectively.
Each color corresponds to one of the 20 data sets collected.
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Figure 3.5: Raw data for Set B, sensor A, B, C, D in (a), (b), (c) and (d) respectively.
Each color corresponds to one of the 20 data sets collected.

average only for the samples within the bounds of the standard deviation, and then
we subtracted the average value for each set from all the samples in that set. We
applied this procedure for all experiments and we see in Fig. 3.6 and Fig. 3.7 that
the data sets are better aligned.

Then we have used these sets to test the performance of the ML classification
algorithms for person localization. This is similar to using a median filter, as in [51],
with a window of 128 s.

Sampling Frequency and Sensor Plate Size

In our previous study [51], we evaluated three different plate sizes: 4 cm × 4 cm,
8 cm × 8 cm, and 16 cm × 16 cm. As mentioned earlier, we calculate the changes in
capacitance by measuring the changes in the sensor interface oscillation frequency.

The relation between a parallel-plate capacitor area and the capacitance is

C = εokA

d
, (3.4)

where C is the capacitance between the two plates (in Farad), k is the relative
dielectric permittivity of the material between plates (k = 1 in case of free space),
εo is the absolute dielectric permittivity of free space (8.854 × 10−12 F/m), A is the
effective area of capacitor plates (in m2), and d is the distance between the capacitor
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Figure 3.6: Offset-compensated data for Set A, sensor A, B, C, D in (a), (b), (c)
and (d) respectively. Each colour corresponds to one of the data sets collected.
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Figure 3.7: Offset-compensated data for Set B, sensor A, B, C, D in (a), (b), (c)
and (d) respectively. Each colour corresponds to one of the data sets collected.

23



Sensors for Tag-less Indoor Human Sensing

plates (in meters), assumed to be much smaller than the plate sizes. This assumption
is not valid in our experiments, for which we determined empirically (3.2).

The effective area of the capacitor plates A affects the sensitivity (to both the
signal and the environmental noise). For a smaller plate size, we observe smaller
changes in the output frequency, which are closer to the noise level. Thus we need to
adopt a larger measurement period for smaller plates to attenuate noise and extend
the sensing range.

A measurement period of 1 s is sufficient to monitor persons in static positions,
but it is too long to properly capture the dynamics of a moving person. Larger
plates improve the signal-to-noise ratio for the same measurement distance allowing
to reduce the measurement period. This makes the larger plate size more suitable
to observe the dynamic movements with higher sampling frequencies.

The optimal sampling frequency also depends on the application domain [163].
For example, if the target application involves observing the movements of limbs
then the sampling frequency must be higher. This is because the movements of
limbs tend to be faster than the movement of the whole body, e.g., hands and fingers
move faster as compared to the displacement of the whole body.

The specter of indoor walking is below 1 Hz [164]. So for trajectory tracking
experiments, we use a larger plate (16 cm × 16 cm) which allows us to increase the
sampling frequency to 3 Hz, sufficient for tracking normal indoor walking [12].

3.1.3 Free Movement Experiments
We emulate in our laboratory a small (yet realistic with respect to a typical

apartment room where an elderly person may live) room as an empty space of
3 m × 3 m. We monitor the position of the person within the room using two systems.
The target system uses four capacitive sensors, each one with a sensing plate of
16 cm × 16 cm installed at chest level in the center of a “wall” of the virtual room
(as shown in Fig. 3.8), providing readings three times per second. The reference
system (from Marvelmind Robotics [80]) is based on four ultrasound anchors that
can localize a mobile tag with ±2 cm accuracy at 15 Hz.

We characterize the localization accuracy of the ultrasound-based reference
system in our environment by acquiring four times per second for five seconds the
location of a person that wears the tag on the head, while standing on each one of 16
predefined locations inside the experimental room space (see Fig.3.9). The average
localization error of the system is ±3.9 cm, with a maximum error of ±6.4 cm, and a
maximum standard deviation (calculated over the norm) of ±0.7 cm. We note that
the absolute localization error in our setting is higher than the ±2 cm reported by
the producer, but with a good stability.

Fig. 3.10 shows the actual room setup with four capacitive sensors around the
experimental space and a person walking with tag of ultrasound reference system.
In the lower part of the figure, the arbitrary trajectory is shown, obtained after
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3.1 – Long-Range Capacitive Sensors

Figure 3.8: Four capacitive sensors centered on the walls of a 3 m × 3 m virtual room
in the lab trace the position of a person moving in the space.
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Figure 3.9: Static test of the reference system in 16 locations (red ‘x’). The results
shows very good stability (blue circles) and adequate accuracy.

walking in room for about nine minutes (1626 tuples at 3 tuples/s).
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Figure 3.10: Virtual room used for movement tracking experiments and person
trajectory (split into segments for NN training, validation and testing).

3.1.4 Sources of Errors and Filtering Techniques
However, this sensor front-end is sensitive to both high pitch and drift envi-

ronmental noise, which limits its range and stability over time. In Fig. 3.11, we
show an example of sensor data, where the high-pitch noise is mostly visible at long
range, at the top of the plot, while the drift is mostly visible at the beginning, up
to around the 200 sample mark, and towards the end, especially beyond the 1200
sample mark. Environmental noise typically reduces considerably the sensing range,
e.g., in laboratory tests we were able to detect a person standing at a distance up
to 1.6 m to 1.8 m in front of the sensor. Nevertheless, the higher noise susceptivity
of the sensors allows us to better compare how efficiently different signal process-
ing techniques can reject environmental noise. For instance, instead of using period
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Figure 3.11: Example of raw sensor data acquired at 3 Hz while a person was moving
in the room. High-pitch noise is visible at the top (far end of sensor range). Slow
drift is mostly visible before sample #200 and after #1200.

modulation to measure the capacitance of the sensor transducer, we can explore
front-ends based on carrier modulation in amplitude and/or phase, as well as other
techniques that are less susceptible to and reject better the environmental noise.

In this setting, we record concurrently the reference position of the person
using the ultrasound system (ground truth) and the capacitive sensor readings (see
Fig. 3.12). Then we:

1. translate the average of the latter to zero,

2. pass it through a wide window (50 s) median filter (MF), to extract the slow
drift,

3. pass it through a low-pass filter (LPF) with a pass-band edge of 0.1 Hz and
a stop-band edge of 0.6 Hz, to reduce high-pitch noise (see both traces in
Fig. 3.13(a)),

4. and finally, we subtract the median filter output from the LPF output, and

5. normalize the values to the [0, 1] range to use them to train and test the
performance of different NN types.

Note that the best values for the window and the cutoff frequency were found via
an extensive design space exploration, as reported in Section 5.1.2.

In the semi-logarithmic scale plot of the inverted normalized output (1 − y) of
the filter block shown in Fig. 3.13(b), we can see a rugged but relatively flat low
level as effect of the median filter reducing much of the drift visible on the top side
of raw sensor output in Fig. 3.11. Filtering effects can also be seen in Fig. 3.14
comparing the frequency spectrum of the raw and the filtered sensor signals. As
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Figure 3.12: Experimental data processing uses an accurate ultrasound-based refer-
ence (for training data labelling and inference testing), and the capacitive sensor
processing chain with digital filters and the neural network under test.

noted in Fig. 3.13(b), the very low frequency components are reduced by the median
filter, while the components above 0.3 Hz are attenuated by the high-pass filter
below the noise level around −60 dB.

Comparing the frequency spectrum of the capacitive sensors with the spectrum
of the location data from the ultrasound-based reference localization system, shown
in Fig. 3.15, we note that also the noise floor of the reference system is around
−60 dB, and that the signal emerges above it for frequencies below 0.3 Hz. However,
while the sensor spectrum flattens around −40 dB for lower frequencies, the reference
signal starts to increase below 0.1 Hz and is about 20 dB stronger than the sensor
signal for lower frequencies, around 0.02 Hz. This part of the spectrum is important
because most of the movement in the room during the experiment was slow, as can
be expected of an elderly person, and likely contributed to the lower end of the
frequency spectrum.
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Figure 3.13: Sensor output sampled at 3 Hz after (a) filtering [50 s-window median
(MF) and 0.1 Hz low-pass (LPF) filters], (b) normalization (shown inverted and in
semi-logarithmic scale to expose the noise), and (c) distance to person body as they
roam the room.
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Figure 3.14: Power frequency spectrum of one sensor output before (“raw”) and
after digital filtering (“filtered”). The median filter attenuates frequencies below
0.02 Hz and the low-pass filter attenuates frequencies above 0.3 Hz.
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Figure 3.15: Power frequency spectrum of the reference localization system output
coordinates, X and Y. Below 0.3 Hz the signal rises above the noise floor and
increases especially at lower frequencies, corresponding to slow movements.

Comparing the filtered sensor signal in Fig. 3.13(b) to the plot of the distance
between the person and the sensor in Fig. 3.13(c) (calculated from the reference
system measurements), we can see a strong and well correlated sensor response when
the person comes closer [the top peaks in Fig. 3.13(b) match the bottom peaks in
Fig. 3.13(c)], but noise still limits the sensor sensitivity at longer distances [which
can be seen from the poor correlation with the distance sensor-person of the rugged
lower part of sensor response in Fig. 3.13(b)].

Considering the high noise level of this type of sensors, we are mostly interested in
how well various neural network types can extract position and trajectory information
from them.
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Figure 3.17: Cross-section view of the Omron D6T thermopile [166].

3.2 Infrared Sensing and Thermopiles

3.2.1 Working Principle
Thermopiles are made of several thermocouples connected usually in series. Ther-

mocouples produce voltage proportional that is dependent on temperature differ-
ence as a result of the thermoelectric effect. We used a 4 pixel × 4 pixel Omron D6T-
44L-06 thermopile infrared sensor with temperature resolution 0.14 °C and accuracy
±1.5 °C [165]. The sensor utilizes the Seebeck effect, in which a thermoelectric force
is generated because of the temperature difference on the opposite ends of the junc-
tion point of two different types of metal [166].

Figure 3.16: Detection principle of thermopile sensor [166]: Seebeck effect in which
thermoelectric force is generated because of the temperature difference on the
opposite ends of the junction point of two different types of metal.

As shown in Fig. 3.16, the cold junctions are attached to a thermally isolated
membrane, while the hot junction is influenced by ambient temperature. A voltage
difference is generated which is proportional to the temperature gradients in the
thermocouple between the hot and cold junctions. Fig. 3.17 shows the cross section

31



Sensors for Tag-less Indoor Human Sensing

Height

Ax

Ay
X

X

X

y

y

y

Figure 3.18: Conceptual view of the experimental space [166]. αx and αy show the
view angles for X and Y direction respectively, while Height is the height of ceiling
where sensor was placed. Ax and Ay show the area covered by field of view.

view of the Omron D6T thermopile, displaying various components of the sensor.
The silicon lens on the top focus the radiant energy from objects or humans onto
the thermopile. The radiant energy focused on the MEMS thermopile generates
electromotive force. The values of the generated electromotive force and the internal
thermal sensors are measured, and are then used to calculate the temperature of the
object through interpolation, which compares the measured values with an internally
stored lookup table [167]. The measured values are sent out through an I2C bus. We
used an Arduino Uno as the host system, which received the measurements from
the thermopile and sent them to the base station via XBee 802.15.4.

3.2.2 Data Acquisition
The D6T thermopile outputs the temperature of the objects in its field of view

(FOV) in the form of 16 channels. These 16 channels cover the FOV in a 4 × 4 grid,
as shown in Fig. 3.18.

The FOV varies as the distance between the sensor and the measured area changes.
When the sensor is far from the ground, the FOV becomes large, but consequently, it
will reduce the occupancy ratio of the person in the FOV. Thus, the environmental
temperature can have more influence than the temperature of the person, which can
adversely affect the localization performance. The X and Y view angles are provided
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Figure 3.19: Experimental data processing uses an accurate ultrasound-based refer-
ence (for training data labelling and inference testing), and the thermopile sensor
processing with the neural network under test.

in the catalog [166] which can be used along with the height of the ceiling, where the
sensor is placed, to calculate the precise FOV through the trigonometric functions.
The view angle in X direction is 44.2° and in Y direction is 45.7°, which we denote
by αx and αy respectively. The FOV forms an isosceles triangle, which has two sides
of equal length, and both base angles are the same. We denote base angles as βx

and βy. Using the trigonometric identity in (3.5) we get βx = 67.90 and βy = 67.15.

β = 180 − α

2 (3.5)

The sensor was placed at height of 3.05 m which we can denote as h = 3.05. Using
(3.6) and (3.7), we obtain the field of view (FOV) 2.48 m × 2.57 m.

Ax = 2.h

tan(βx) = 2.48m (3.6)

Ay = 2.h

tan(βy) = 2.57m (3.7)

Fig. 3.18 shows the conceptual overview of the experimental room and correspond-
ing field of view. Like for the experiments we conducted for capacitive sensing in
Section 3.1.3, we used the same 3 m × 3 m experiment space. Similarly, we collected
the reference person location with a tag of the Marvelmind Starter Set HW v4.9
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(a)

(b)

Figure 3.20: Thermopile output sample for the experiment conducted in the morning
with subject 1 (a) with no person (b) with a person under FOV.

ultrasound-based system [80], with ±2 cm localization accuracy at 15 Hz. As de-
scribed earlier, the average localization accuracy in our environment is ±3.9 cm (max
±6.4 cm and ±0.7 cm standard deviation) measured by acquiring four times per
second for five seconds the location of a person standing in turn on 16 equidistant
predefined locations inside the 3 m × 3 m experiment space. We conducted four
data gathering campaigns with the thermal sensor. Two of these campaigns were
conducted in the morning, while the other two were conducted the next day in the
evening. Two human subjects were involved in gathering the data, each performed
one experiment in the morning and one in the evening. During each experiment, the
subject walked for around 30 min an arbitrary path with variable speed, and we col-
lected synchronous readings from both the IR sensor and the ultrasound reference
at 5 Hz (see Fig. 3.19). The specific conditions of the experiments are following:

1. Morning, subject 1: The experiment was conducted in the afternoon on
a sunny day. The room had a window on one side from where sunlight was
entering the room. There was no other object on the floor. As can be seen in
Figure 3.20, the temperature difference between the human subject and the
background is around 2.4 °C.

2. Morning, subject 2: This experiment was also conducted in the afternoon on
the same day. Besides the sunlight entering through the window, an additional
source of heat was introduced in this experiment by placing a bottle of warm
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(a)

(b)

Figure 3.21: Thermopile output sample for the experiment conducted in the morning
with subject 2 with a bottle of warm water on the floor(a) with no person (b) with
a person on the border between two FOVs.

(a)

(b)

Figure 3.22: Thermopile output sample for the experiment conducted in the evening
with subject 1 (a) with no person (b) with a person under FOV.
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Figure 3.23: (a) Sixteen output waveforms from the thermopile sensor, (b) arbitrary
path followed by a person.

water on the floor. This bottle can be observed as a warmer point in Figure 3.21.

3. Evening, subject 1: This experiment was conducted on the following day
in the evening, after sunset. A greater difference between the human subject
and the ambient temperature can be observed in Figure 3.22

4. Evening, subject 2: This experiment was also conducted in the evening on
the same day, but by a different human subject.

Each experiment lasted for almost half an hour and the sensor data was collected
with a sampling rate of 5 Hz. So, for each experiment we collect 8500 to 9000 tuples
made of 16 thermal sensor readings and two room co-ordinates from the ultrasound
reference. Fig. 3.23 shows a part of 16 output waveforms from the thermopile sensor
as a person moves inside its FOV arbitrarily and a part of the arbitrary path
followed by a person. The ground truth in the figure is recorded with the reference
localization system (Marvelmind Starter Set HW v4.9 ultrasound-based system).
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Chapter 4

Machine Learning for Indoor
Position Classification With
Capacitive Sensors

In this chapter we compare the performance of most ML classifiers in the Weka
collection [1] in order to support the selection of the optimal ML algorithms to process
sensor data for person localization. The performance of the of ML classification
algorithms was analyzed in terms of localization accuracy, average distance error,
precision, recall. Moreover, the effect of training data size on localization performance
of the algorithms was examined. We use the data collected in a 3 m × 3 m room on
16 predefined positions, as explained in Section 3.1.2.

4.1 Machine Learning Based Classification
We executed all machine learning (ML) classifiers in the current study with

their default parameter values used in the Weka collection, except for the boosting
algorithms, where we tried only the base algorithms which are mentioned in the
results tables along with the names of boosting algorithms. These default parameters
can be found in Weka collection documentation [168].

• In BayesNet, the search algorithm is set by default to K2 and the maximum
number of parents of a node is set to 1.

• For Random Forest, the number of iterations was set to 100 and unlimited tree
depth. We also tried with 200 iterations but that gave an improvement of less
than 0.5 % which is very limited when compared to doubling of computational
cost.

• For SVM, we used the SVC clustering method with the radial basis function
from the Weka collection LibSVM package [169].
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Table 4.1: Average localization accuracy and error for data Set A for 100 runs of
Weka collection best performing ML classification algorithms and boost methods.

Set A
Algorithm Accuracy Error

% σ (m) σ

Bayes Net 85.07 1.34 0.13 0.014
k-Nearest Neighbors 91.14 1.07 0.07 0.010
Support Vector Machine 91.75 1.01 0.07 0.011
Random Forest 92.81 0.968 0.06 0.009
LogitBoost(Random Forest) 93.55 0.918 0.05 0.008
AdaBoostM1(Random Forest) 92.96 1.01 0.06 0.009
AdaBoostM1(C4.5) 92.49 0.95 0.06 0.009

• For k-NN, we set k = 1. We also tried k values up to 100, but higher values
degraded the performance in our case.

• For LogitBoost running on top of Random Forest, the number of boosting
iterations was set to 10, on top of Random Forest 100 iterations.

• Similarly, for AdaBoostM1 the number of boosting iterations was set to 10 on
top of Random Forest 100 iterations and on top of C4.5.

4.2 Localization Performance
We first evaluated the performance of the Weka collection ML classifiers for

indoor person localization using data sets A and B (see Section 3.1.2). Then, we
merged Set A and Set B in a new set, Set C, which had a higher variance than each
of its composing sets A and B, and we processed Set C with Weka algorithms as
well. For each algorithm, Weka splits the input data in two parts: 75 % for algorithm
training and 25 % for algorithm testing. We executed each algorithm 100 times,
reshuffling the input data before each run, then we averaged the localization results
over all 100 runs for each algorithm.

We show in Tables 4.1, 4.2, and 4.3, the results for data sets A, B and C of the
four best performing ML classification algorithms in the Weka collection: Random
Forest, k-Nearest Neighbors (for k = 1, i.e., one neighbor), Bayes Net and Support
Vector Machine with SVC. We also report the results of LogitBoost used on top of
Random Forest and AdaBoostM1 on top of Random Forest and C4.5. For all of them,
we compare the localization performance in terms of accuracy and average distance
error, calculated by summing all localization errors for all room locations and for all
test samples, and dividing by the total number of test samples. For Set C, we also
show in parentheses the results of 10-fold cross-validation, averaged over 100 runs.
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Table 4.2: Average localization accuracy and error for data Set B for 100 runs of
Weka collection best performing ML classification algorithms and boost methods.

Set B
Algorithm Accuracy Error

% σ (m) σ

Bayes Net 87.25 1.38 0.11 0.012
k-Nearest Neighbors 87.35 1.12 0.11 0.010
Support Vector Machine 87.84 1.32 0.11 0.013
Random Forest 91.53 1.09 0.07 0.009
LogitBoost(Random Forest) 92.06 1.02 0.07 0.009
AdaBoostM1(Random Forest) 91.81 1.01 0.07 0.009
AdaBoostM1(C4.5) 90.65 1.08 0.08 0.010

Table 4.3: Average localization accuracy and error for data Set C for 100 runs (and
average of 100 runs of 10-fold cross-validation in parentheses) of Weka collection
best performing ML classification algorithms and boost methods.

Set C
Algorithm Accuracy Error

% σ (m) σ

Bayes Net 83.39 (84.08) 0.980 (0.242) 0.14 (0.14) 0.009 (0.002)
k-Nearest Neighbors 87.64 (88.56) 0.766 (0.200) 0.10 (0.09) 0.007 (0.002)
Support Vector Machine 87.80 (88.35) 0.903 (0.173) 0.11 (0.10) 0.009 (0.002)
Random Forest 91.56 (92.10) 0.861 (0.173) 0.07 (0.07) 0.007 (0.002)
LogitBoost(Random Forest) 92.34 (92.83) 0.753 (0.158) 0.06 (0.06) 0.007 (0.001)
AdaBoostM1(Random Forest) 91.61 (92.20) 0.836 (0.191) 0.07 (0.07) 0.008 (0.002)
AdaBoostM1(C4.5) 90.98 (91.66) 0.910 (0.257) 0.08 (0.07) 0.008 (0.002)

Average distance error calculations were based on the confusion matrix generated
by Weka for each tested algorithm. Fig. 4.1 shows one confusion matrix for Random
Forest applied to Set A. The top row lists the correct positions and the rightmost
column lists the positions determined by the algorithm. In absence of localization
errors, the confusion matrix is diagonal. Each number outside the diagonal represents
the number of erroneous predictions. We use these numbers together with the distance
between the actual and the predicted position to calculate the total distance error.

Random Forest was consistently the best performing algorithm of the Weka
collection, with accuracies of 92.81 %, 91.53 % and 91.56 % for Set A, Set B, and Set
C respectively, and the lowest average distance error. The algorithm performance
generally decreased on Set B because it is noisier [see Fig. 3.7, especially sensor
B data in Fig. 3.7(b)]. SVM and k-NN were generally the second best performing
algorithms with almost similar results. Bayes Net performance on Set B was almost
the same, unlike k-NN and SVM whose performances decreased on Set B. Among the
boosting algorithms, both LogitBoost and AdaBoostM1, showed slight improvements
in terms of accuracy and average distance error. However, LogitBoost can be fairly
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Figure 4.1: One Random Forest confusion matrix generated by Weka for data Set A.
The top row lists the correct positions and the rightmost column shows the positions
determined by the algorithm. Each non-diagonal number represents the number of
erroneous predictions.

expensive during both training and inferring, as we will discuss in Section 4.3.1.

4.2.1 Average Distance Error Per Position
Fig. 4.2 shows the distribution of the total distance error of each algorithm

between the 16 room positions defined in Fig. 3.2. For each room position, we added
the distance between the actual and the predicted position, and divided the sum
by the total number of test samples. The average distance error is shown both
quantitatively (in meters, below each position) and qualitatively (as dot intensity,
darker for higher errors). Random Forest remains the best performing in terms of
error among all locations. Note that the idea behind calculating the distance error
(also reported in Table 4.1, 4.2 and 4.3) is to give a comparative idea on which
algorithms have erroneous classification but closer in distance to the actual position.
This information can be better seen through confusion matrix, but to provide a
single comparative metric we used distance error.

4.2.2 Precision and Recall
Recall and precision are calculated as follows:

Recall (%) = True Positives
True Positives + False Negatives × 100 (4.1)
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Figure 4.2: Localization error (in meters) for each position for Set C: (a) Random
Forest, (b) SVM, (c) k-NN (for k=1), (d) Bayes Net. Darker dots for higher errors.

Table 4.4: Average precision and recall for Set A for 100 runs of Weka collection
best performing ML classification algorithms and boost methods.

Algorithm Set A
Precision (%) Recall (%)

Bayes Net 85.80 85.08
k-Nearest Neighbors 91.41 91.15
Support Vector Machine 92.42 91.76
Random Forest 93.04 92.82
LogitBoost(Random Forest) 93.77 93.55
AdaBoostM1(Random Forest) 93.20 92.97
AdaBoostM1(C4.5) 92.75 92.50

Precision (%) = True Positives
True Positives + False Positives × 100 (4.2)

where True Positives is the number of 4-tuples that are correctly classified, False
Negatives is the number of 4-tuples pertaining to a position that are incorrectly
classified as other positions, and False Positives is the number of 4-tuples pertaining
to other positions that are incorrectly classified as a given position.

Tables 4.4, 4.5, and 4.6 show the average precision and recall of the algorithms
for Set A, B, and C respectively. As mentioned above, 75 % of the samples in
each each set was used for training and 25 % was used for testing. For Set C, we
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Table 4.5: Average precision and recall for Set B for 100 runs of Weka collection
best performing ML classification algorithms and boost methods.

Algorithm Set B
Precision (%) Recall (%)

Bayes Net 87.64 87.26
k-Nearest Neighbors 87.71 87.36
Support Vector Machine 88.43 87.85
Random Forest 91.78 91.55
LogitBoost(Random Forest) 92.30 92.07
AdaBoostM1(Random Forest) 92.07 91.82
AdaBoostM1(C4.5) 90.92 90.66

Table 4.6: Average precision and recall for Set C for 100 runs (and average of 100
runs of 10-fold cross-validation in parentheses) of Weka collection best performing
ML classification algorithms and boost methods.

Algorithm Set C
Precision (%) Recall (%)

Bayes Net 83.70 (84.13) 83.39 (84.08)
k-Nearest Neighbors 87.81 (88.58) 87.64 (88.57)
Support Vector Machine 88.12 (88.46) 87.80 (88.35)
Random Forest 91.72 (92.13) 91.56 (92.10)
LogitBoost(Random Forest) 92.49 (92.86) 92.35 (92.84)
AdaBoostM1(Random Forest) 91.77 (92.22) 91.62 (92.20)
AdaBoostM1(C4.5) 91.13 (91.67) 90.98 (91.66)

also show in parenthesis the average of 100 runs of 10-fold cross-validation results.
LogitBoost on top of Random Forest performed best for all sets, followed closely by
AdaBoostM1 on top of Random Forest and then by their base algorithm, Random
Forest. LogitBoost precision and recall are above 93 % for Set A, and above 92 %
for sets B and C. Random Forest precision is above 93 % and the recall is above
92 % for Set A, and above 91 % for Set B and C.

The slightly lower performance for Set B is likely due to its noisier data, as can be
seen in Fig. 3.7. Note, however, that all best performing ML algorithms considered
are very robust to the significant amount of noise exhibited by our data sets.

4.2.3 Sensitivity To Training Data Size
The performance of the ML classifiers strongly depends on their training. However,

there is no agreement on the optimal size of the training data in the scientific
literature. The influence of the training data size on the performance of various
algorithms is summarized by [110] from various previous studies.

In the following, we investigate how different Weka collection ML classification
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Figure 4.3: Training data size dependency of average accuracy (a), distance error
(b), precision (c) and recall (d) for set C for best performing machine language
classification algorithms in Weka collection: Bayes Net (BN), k-Nearest Neighbors (k-
NN with k = 1), Random Forest (RF), Support Vector Machine (SVM), LogitBoost
(LB(RF)) and AdaBoostM1(AB(RF)) running on top of Random Forest, and
AdaBoostM1(AB(C4.5)) running on top of C4.5.

algorithms perform when trained with reduced data sets. The purpose is to explore
if we can reduce the duration of training with a low impact on performance, so that
the end users do not have to spend too much time training the system in actual
deployments. For this purpose, we split the 5120 four-tuples samples in Set C in
25 % (1280 four-tuple samples) for testing and a variable size for training as follows:

1. 15 % (768 four-tuple samples) for training and 25 % (1280 four-tuple samples)
for testing

2. 30 % (1536 four-tuple samples) for training and 25 % (1280 four-tuple samples)
for testing

3. 45 % (2304 four-tuple samples) for training and 25 % (1280 four-tuple samples)
for testing

4. 60 % (3072 four-tuple samples) for training and 25 % (1280 four-tuple samples)
for testing
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Table 4.7: Accuracy, precision and recall after using set A for training and set B for
testing.

Algorithm Training Set A, testing Set B
Accuracy (%) Precision (%) Recall (%)

Bayes Net 58.98 59.60 59.00
k-Nearest Neighbors 60.31 63.10 60.30
Support Vector Machine 55.12 68.10 55.10
Random Forest 67.11 70.30 67.10
LogitBoost(Random Forest) 64.10 65.50 64.10
AdaBoostM1(Random Forest) 67.85 71.70 67.90
AdaBoostM1(C4.5) 67.27 71.10 67.30

5. 75 % (3840 four-tuple samples) for training and 25 % (1280 four-tuple samples)
for testing

For each training ratio above, we shuffled all data in Set C before splitting it into
training and testing samples, then we ran the localization algorithm. We repeated
this process 100 times for each ratio.

The results in Fig. 4.3, Fig. 4.5, and Fig. 4.6 show that different algorithms are
affected differently by the size of the training set. Generally, a larger training set
improves the performance up to a point of near saturation. Precision and recall
follow a similar trend, again with LogitBoost improving slightly the performance of
its base algorithm, Random Forest.

4.3 Effect of Train and Test Sets From Different
Distributions

So far in all the evaluations we performed, the train and test sets were taken
either from the same distribution, or were mixed, with 75 % of the data used for
training and 25 % of the data used for testing.

We also evaluated the ML algorithms where the one data set was used for training
and the other data set was used for testing, i.e. Set A was used for training and Set
B was used for testing and vice versa. Note that these two sets were taken months
apart, with different human subjects, the sensor were taken off the experimental
area and the reinstalled. Thus, this test represents a more challenging scenario.

In these conditions, we obtained the best accuracy of 67.85 % when Set A was
used for training and Set B was used for testing with AdaBoostM1 running on top
of Random Forest. When Set B was used for training and Set A was used for testing
we obtained the best accuracy of 71.05 %, also with AdaBoostM1 running on top of
Random Forest.
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Table 4.8: Accuracy, precision and recall after using set B for training, and set A for
testing.

Algorithm Training Set B, testing Set A
Accuracy (%) Precision (%) Recall (%)

Bayes Net 63.63 66.20 63.60
k-Nearest Neighbors 63.09 65.70 63.10
Support Vector Machine 38.40 65.80 38.40
Random Forest 69.77 71.50 69.80
LogitBoost(Random Forest) 70.16 72.10 70.20
AdaBoostM1(Random Forest) 71.05 72.30 71.10
AdaBoostM1(C4.5) 66.84 69.70 66.80

Table 4.9: Average processing effort during training and inferring for set C for 100
runs of the best performing Weka collection algorithms. Random Forest seems to
be the best trade-off between processing effort and performance.

Algorithm Time
Training (s) Test (s)

Bayes Net 0.4365 0.2699
k-Nearest Neighbors 0.0799 2.3113
Support Vector Machine 5.4715 3.1431
Random Forest 4.4159 1.1028
LogitBoost(Random Forest) 99.5197 42.634
AdaBoostM1(Random Forest) 26.2447 9.0915
AdaBoostM1(C4.5) 5.3893 0.3608

4.3.1 Training and Testing Effort
We compare the training and inferring effort required by some of the best per-

forming localization algorithms. The performance during the inferring (localization)
phase is by far the most critical for most applications, since it typically lasts for the
entire exploitation phase of a deployed system (years), while the training phase is
generally much shorter.

The Weka collection ML algorithm suite was run on a Virtual Machine running
Ubuntu (64 bit). The Virtual Machine was allocated 2 GB of physical memory and
1 CPU. The host system had an AMD Athlon 64 X2 Dual Core processor, 4 GB
RAM and was running Windows 10.

Table 4.9 shows the time taken by different algorithms to build the model during
training and the time taken to infer the location using the test data. LogitBoost
performs slightly better than AdaBoostM1, both on top of Random Forest, but at
the cost of much higher modelling and inferring time since it computes the weights
after every iteration based on the obtained classifier [170]. AdaBoostM1 on top of
C4.5 performs slightly worse than Random Forest, but it infers faster.

K-nearest neighbor is a non-parametric lazy learning algorithm that keeps all
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Figure 4.4: Processing effort in terms of CPU time during training (a) and processing
effort during inferring (b) versus accuracy for set C. Bayes Net (BN), k-Nearest
Neighbors (k-NN with k = 1), Random Forest (RF), Support Vector Machine
(SVM), LogitBoost [LB(RF)] and AdaBoostM1[AB(RF)] running on top of Random
Forest, and AdaBoostM1[AB(C4.5)] running on top of C4.5. Random Forest and
AdaBoostM1 with C4.5 seems the best trade-off between localization processing
effort and performance.

training data in memory for inferring instead of building a model during training.
Hence, it trains fast, but it is computing- and RAM-intensive during inferring.

Random Forest is an ensemble method whose overall training complexity is
close to the sum of the complexities of building the individual trees. The actual
complexity varies with parameters like the number of trees (100 in our case).

Fig. 4.4 shows the training and inferring times versus accuracy. As can be
observed, Random Forest and AdaBoostM1(C4.5) are the best trade-offs between
localization processing effort and performance, especially during the testing phase.
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4.4 Summary
We tested the performance of ML classification algorithms in the Weka collection

for indoor person localization using capacitive sensors. We compared localization
accuracy, precision and recall, distance error, classification error, and resource
requirements (processing, memory and training set size). We used two sets of
2560 four-tuples of samples gathered from four sensors at different times. We first
measured the localization accuracy and distance error for most Weka collection
classification algorithms (see Fig. 4.5 and Fig. 4.6). Then, we analyzed in detail the
most promising ones: Bayes Net, k-Nearest Neighbors, Support Vector Machine,
Random Forest, LogitBoost (running on top of Random Forest) and AdaBoostM1
(running on top of Random Forest and C4.5).

Generally, we can conclude that Random Forest was performing best. Both
LogitBoost and AdaBoostM1 running on top of Random Forest showed slightly
better performance than Random Forest. However, they required significantly more
processing time for training and inferring.

It is worth noting, however, that AdaBoostM1 used on top of C4.5 required
much less inferring time than Random Forest, with only a slight loss of accuracy
and requiring a comparable training time. Hence, as mentioned earlier, AdaBoostM1
on top of C4.5 can be best for energy-constrained localization applications, e.g., to
reduce the maintenance requirements of battery-powered nodes.
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Figure 4.5: Training data size dependency of average accuracy for set C for Weka
collection ML classification algorithms. Starred algorithms are built on top of
Random Forest.
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Chapter 5

Neural Network Architectures
and Localization Performance for
Indoor Position Tracking

In this chapter we explore how well different types of neural networks in basic
configurations can extract location and movement information from noisy experimen-
tal data (with both high-pitch and slow drift noise) obtained from capacitive sensors
operating in loading mode at ranges much longer than the diagonal of their plates.
Through design space exploration, we optimize and analyze the location and trajec-
tory tracking inference performance of multilayer perceptron (MLP), autoregressive
feedforward, 1D Convolutional, and Long-Short Term Memory neural networks on
experimental data collected using four capacitive sensors with 16 cm × 16 cm plates
deployed on the boundaries of a 3 m × 3 m open space in our laboratory. We evalu-
ate the localization and tracking performance, as well as resource and processing
requirements, of various neural network (NN) types. Then, we evaluate the per-
formance of the same NN architectures optimized for data from a low resolution
16-pixel thermopile sensor array monitoring the same experimental room.

5.1 Neural Network Architectures and Localiza-
tion Performance for Capacitive Sensors

We use two types of tests: static localization and movement tracking. For the
former, we use the data that was collected for classification experiments, as described
in Section 3.1.2, i.e. 320 tuples collected while a person was standing in each one of
the 16 positions shown in Fig. 5.3, i.e. 320 × 16 = 5120 total tuples.

For the latter, we use the sensor and reference data collected while the person
moves along arbitrary paths in the room for about nine minutes (1626 tuples at
3 tuples/s, as was described in Section 3.1.3).
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Generally, the trajectory does not come too close to the walls to better reflect
the person movements in actual rooms and because the sensor measurements closer
to the center of the room (far from the sensors) are noisier, hence more interesting
for us, because they are more difficult to interpret.

Note that in both tests we train and test the neural networks to report the
location estimation as a pair of X/Y coordinates, not to classify the position into a
predefined set of locations.

We optimize and compare the performance of several types of neural networks in
terms of mean square error (MSE) and average Euclidean distance error (ADE) be-
tween the inferred position and the reference position (ground truth). For movement
tracking, we also compare graphically the plots of the ground truth (as reported by
the reference system) and the NN inference. We do this separately for the X and Y co-
ordinates instead of 2D plots of full trajectories to visualize better inference discrep-
ancies from ground truth and to comparatively analyze the accuracy of different NNs.

We discretize the sensor data (shown on top-left of Fig. 5.1) at 3 Hz into four-
sample tuples, S1, . . . , S4, holding one sample for each capacitive sensor. Then
we concatenate the tuples in chronological order and provide them (with suitable
windowing, as we will discuss later) to the tested neural networks.

s1 s3s2 s4

t10t9t8t7t6t5t4t3t0 t2t1

s1 s3s2 s4 s1 s2

t0 t2t1

s1

s2

s3

s4

Neural Network

Figure 5.1: Sensor data (top-left) is discretized at 3 Hz in four-sample tuples,
S1, . . . , S4, which are then concatenated in chronological order and input to the
neural network with appropriate windowing.
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5.1.1 Static Position Classification With Multilayer Percep-
tron Neural Networks

We use the preprocessed experimental data from our previous classification
experiment (see Section 3.1.2). They hold 320 capacitive sensor tuples collected
when the person stood in each of the 16 positions shown in Fig. 5.3 (320 tuples ×
16 positions = 5120 tuples) labelled with the coordinates of each position.

Because this experiment monitors static positions, we can consider the tuples
independent and use a multilayer perceptron NN (see Fig. 5.2), which does not con-
sider the tuple temporal sequence. Hence, we split the experimental data randomly
in subsets of size 60 %, 20 %, and 20 % to use for NN training, validation, and test-
ing, respectively. We use the validation set to stop the NN training before it starts
overfitting, i.e. when the NN inference error on the validation set starts to increase
while the error on the training set continues to decrease.

# of neurons in 
fully connected layers X Y

#
 o

f 
la

y
e
rs

s1 s3s2 s4 s1 s3s2 s4 s1 s3s2 s4

tk-1 tk tk+1

Figure 5.2: Network structure and data access for the multilayer perceptron network.
The input layer receives sensor data tuples from randomly selected time frames
(with labels during training, not shown for readability) and reports the inferred x
and y coordinates of the person.

We keep the size of the input layer fixed at four neurons, equal to the number of
sensors. We vary the structure of the rest of the neural network from one hidden
layer with four neurons up to five hidden layers with 64 neurons each (all hidden
layers have always the same number of neurons). For each configuration, we train
and test the NN ten times using random initializations.

Table 5.1 shows the best MSE performance of the multilayer perceptron NN.
Both performance metrics (MSE and ADE) improve as either the number of hidden
layers or the number of neurons per hidden layer increase, albeit with diminishing
returns beyond four hidden layers with 32 neurons each.

Fig. 5.3 shows the location inferred by the best NNs for each one of the 16 static
locations. Standard deviation is from 0.040 m to 0.227 m and we can see that most

53



Neural Network Architectures and Localization Performance for Indoor Position Tracking

Table 5.1: Mean Square Error (MSE) and Average Distance Error (ADE) for
multilayer perceptron neural network inferring static locations.

Number of hidden layers

1 3 4 5

Neurons MSE ADE MSE ADE MSE ADE MSE ADE
per layer (m2) (m) (m2) (m) (m2) (m) (m2) (m)

4 0.116 0.373 0.074 0.299 0.073 0.298 0.065 0.271
8 0.084 0.324 0.062 0.262 0.053 0.235 0.051 0.225

16 0.076 0.307 0.048 0.224 0.042 0.203 0.039 0.188
32 0.072 0.302 0.037 0.186 0.030 0.159 0.026 0.142
64 0.063 0.273 0.026 0.150 0.024 0.137 0.022 0.124

inferences are close to the actual location. We also note that the inference spread
appears to be higher in the upper and the right parts of the room. This may be due
to higher environmental noise in that areas of the experimental space.
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Figure 5.3: Inference of 16 static positions (black ‘x’) using multilayer perceptron
neural networks. Inference results (dots) are colored according to their reference
positions.
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5.1.2 Filter Optimization and Trajectory Tracking With
Multilayer Perceptron Neural Networks

We will show later that neural networks that track the position of the person
considering the past behaviour can have better accuracy than those that consider one
tuple at a time, as in Section 5.1.1. But we evaluate first the tracking performance
of the multilayer perceptron neural networks (see Fig. 5.2), which do not consider
the past behaviour, to establish a baseline for the next experiments.

We split the whole trajectory of the person in the room (after applying the
median and low-pass filter) in three contiguous segments 60 %, 20 %, and 20 %
long for neural network training, validation, and testing, respectively, as shown in
Fig. 3.10. Note that the trajectory segments are different, as they would be in the
case of a real-life deployment.

We use the best NN structure that we found in Section 5.1.1, five hidden layers
with 64 neurons each. We next optimize the parameters of the filters (see Fig. 3.13)
by analyzing the NN performance for all combinations of:

• median filter window: 50 s, 100 s, and 150 s

• low-pass filter pass-band edge: 0.1 Hz, 0.2 Hz, 0.3 Hz, 0.4 Hz, and 0.6 Hz

• low-pass filter stop-band edge: 0.2 Hz, 0.3 Hz, 0.4 Hz, 0.5 Hz, 0.6 Hz, and 0.7 Hz.

We obtain the best NN performance (MSE 0.111 m2 and ADE 0.405 m) for
a median filter window of 50 s, and low-pass filter pass-band edge of 0.3 Hz and
stop-band edge of 0.4 Hz,Hz (see the top ten results shown in Table 5.2). The NN
performance seems to be more dependent on the median filter window (windows
longer than 50 s generally lead to poorer NN results) than on the parameters of
the low-pass filter (almost all present in the NN top ten best results). This can be
explained because the amplitude of the drift can be much higher than that of the
high-pitch noise (see Fig. 3.11). For these parameters, we show in Fig. 5.4 the NN
inference separately for the X and Y coordinates compared with the ground truth.
We notice the ragged look of both X and Y inference, which seems not to smooth
enough the sensor noise. We also notice increasing discrepancies in the latter part
of the X and Y tracks (roughly after sample 250).

5.1.3 Trajectory Tracking With Autoregressive Feedfor-
ward Neural Networks

This is the first experiment to infer the trajectory using a neural network
that considers some aspects of the movement history. We choose autoregressive
feedforward neural networks [171, 172] because they are non-recurrent (i.e., feedback-
free) sequence-aware models that can be used to infer sequential data as a simpler
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Table 5.2: Design space exploration results for filter optimization for the best multi-
layer perceptron neural network Mean Square Error (MSE) and the corresponding
Average Distance Error (ADE).

Low-pass filter Median filter Error

Passband edge Stopband edge Window MSE ADE
(Hz) (Hz) (s) (m2) (m)

0.3 0.4 50 0.111 0.405
0.5 0.7 50 0.115 0.418
0.2 0.6 50 0.116 0.432
0.1 0.3 50 0.121 0.429
0.6 0.7 50 0.122 0.428
0.4 0.5 50 0.122 0.431
0.1 0.6 50 0.125 0.432
0.1 0.4 50 0.126 0.445
0.2 0.6 100 0.127 0.449
0.3 0.6 50 0.128 0.447

alternative to recurrent neural networks (see Fig. 5.5). They are akin to finite impulse
response filters in digital signal processing, while recurrent NNs are akin to infinite
impulse response filters. We provide the NN with capacitive sensor tuples that
fall within a temporal window and train the NN to infer the X and Y coordinates
corresponding to the middle tuple in each window. Hence, the window gives the
NN access to both past and future readings in the sensor time series. Using these,
during training the NN can refine the best weights for both the past and future
sensor readings (around the current position) to better reject the noise and perhaps
also to learn the dynamic characteristics of person movements, such as maximum
speed, acceleration, movement patterns or direction changes. Of course, the NN
may also significantly overfit in a real deployment, hence we put a lot of attention
to the “natural looking” aspects of our sample trajectories.

Since the NN needs a window width of samples to produce a valid inference,
it will start inferring after seeing a full window of samples at the beginning of the
trajectory and stop when the last sample of the trajectory enters the window. But
it infers the position corresponding to the middle of the window, hence the inferred
trajectory in Fig. 5.6 starts and stops half a window from trajectory extremes. This
behavior is not a problem for our target applications, which are not particularly
sensitive to delays of a few seconds. The same applies to the other NNs based on
windows that are discussed later. We implement the best network structure that we
found in Section 5.1.1 (see Fig. 5.5), i.e., five hidden layers with 64 neurons each.
The input layer receives all sensor samples within the input window and is fully
connected to the first hidden layer, like in Fig. 5.2.

We explore the performance of this neural network by setting the duration of its
input window to 5 s, 10 s, and 15 s. They give the number of input tuples (thus the
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Figure 5.4: Multilayer perceptron neural network trajectory tracking inference and
ground truth for the (a) X axis and (b) Y axis.

size of the NN input layer) that are seen by the NN at any moment at 3 Hz sampling
rate. For example, for an input window of 5 s we have on the NN input layer

5 s × 3 tuples/s × 4 samples/tuple = 60 input neurons. (5.1)

We also vary the parameters of the low-pass and median filters in the ranges
shown in Section 5.1.2. As can be seen from the top-ten best results shown in
Table 5.3, the best MSE is 0.079 m2 for an ADE of 0.342 m. They show a marked
improvement compared to the multilayer perceptron NN results shown in Table 5.2,
which is attributable to allowing the NN to infer the position while examining the
sensor tuples of a segment of the trajectory instead of just the current tuple. We also
note that the optimal length of the trajectory segment (input window) in our DSE
seems to be 10 s (the performance for windows of 5 s are equal or marginally better).
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Figure 5.5: Network structure and data access for the autoregressive feedforward
network. The input layer receives sensor data tuples from sequential time frames that
fall into network window (labelled with the x and y coordinates of the central sample
during training, not shown for readability) and reports the inferred coordinates of
the person.

Table 5.3: Design space exploration results for filter optimization for the best
autoregressive feedforward neural network Mean Square Error (MSE) and the
corresponding Average Distance Error (ADE).

NN Input Low-pass filter Median filter Error

Window Passband Stopband Window MSE ADE
edge edge

(s) (Hz) (Hz) (s) (m2) (m)

5 0.1 0.6 50 0.079 0.342
10 0.2 0.6 50 0.082 0.347
10 0.3 0.6 50 0.083 0.340
10 0.4 0.7 50 0.085 0.365
10 0.6 0.7 100 0.086 0.371
5 0.3 0.6 50 0.092 0.358
10 0.1 0.5 100 0.092 0.380
10 0.4 0.6 50 0.092 0.373
5 0.5 0.6 50 0.093 0.358
10 0.4 0.7 100 0.093 0.395

In Fig. 5.6 we see that the inferences of the X and Y coordinates are smoother and
tend to follow closer the ground truth almost everywhere, and especially towards the
end (roughly after sample 250) than the multilayer perceptron NN shown in Fig. 5.4.
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Figure 5.6: Autoregressive feedforward neural network trajectory tracking inference
and ground truth for the (a) X axis and (b) Y axis.

5.1.4 Trajectory Tracking With 1D Convolutional Neural
Networks

We extend the tests of neural networks that infer the trajectory based on
movement history using 1D Convolutional NNs [173]. They are known to be effective
for deriving meaningful features from fixed-length segments (input windows) of data
sequences. Typical applications include sequences of sensor data (e.g., accelerometer,
audio), which are similar to the ones that we have in this application.

We use 1D CNNs with the structure shown in Fig. 5.7. We set the window size
to 5 s, which we determined to be among the best options in Section 5.1.3. We scan
this window with several 1D convolution filters with kernels of the same size, which
make one convolutional layer. Convolutional processing in our NN uses several such
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layers, followed by a pooling layer, and a fixed size MLP network (of two layers with
64 neurons each), before the output layer. During the DSE, we change the number
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Figure 5.7: Network structure and data access for the convolutional network. Each
filter processes the data tuples within the kernel width, then the kernel slides one
tuple to the right until the end of the input window. When done, the window moves
one tuple to the right and the kernel restarts its scanning. For network training,
each window is labelled (not shown for readability) with the person coordinates
corresponding to the middle tuple in the window.

of convolutional layers (in groups of two convolutional layers followed by a 50 %
dropout), the convolution kernel size, and the number of filters. In each experiment,
we keep constant for each network architecture the kernel size and the number of
filters per layer. We use the LPF and MF parameters optimized in Section 5.1.2.

We train and test ten times the neural network for each combination of hyper-
parameters. We show in Table 5.4 the results of the best network for each hyperpa-
rameter combination. We note that most of the best configurations have four convo-
lutional layers, while the network performance tends to degrade for either smaller
or larger number of layers. Also, for a given number of convolutional layers, the
network configurations with fewer filters appear to have the best performance. The
best overall network configuration has the least number of filters (eight) and the
smallest convolutional kernel size (three). We show in Fig. 5.8 the inference of the X
and Y coordinates of the best networks for each number of convolutional layers, two,
four, and six (highlighted in Table 5.4). We note how the six-layer network matches
well the last part of the X trace, but less so in the middle. The two-layer network
appears to have the highest ripples, while the four-layer seems to match best almost
the whole trace, except for the last part, roughly after sample 250. On the Y trace,
the four-layers network appears to stay closest to the ground truth overall.
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Table 5.4: Design space exploration results for 1D convolutional neural networks
Mean Square Error (MSE) and the corresponding Average Distance Error (ADE)
for different convolutional kernel sizes, number of convolutional layers, and filters.

Number of filters

8 16 32 64

Kernel MSE ADE MSE ADE MSE ADE MSE ADE
size (m2) (m) (m2) (m) (m2) (m) (m2) (m)

Two 1D convolutional layers

3 0.086 0.351 0.092 0.370 0.090 0.364 0.085 0.357
5 0.084 0.346 0.094 0.373 0.093 0.369 0.092 0.371
7 0.080 0.347 0.093 0.359 0.078 0.343 0.097 0.384

Four 1D convolutional layers

3 0.063 0.307 0.089 0.372 0.090 0.366 0.085 0.351
5 0.081 0.350 0.088 0.358 0.088 0.371 0.091 0.365
7 0.093 0.369 0.090 0.351 0.091 0.388 0.078 0.342

Six 1D convolutional layers

3 0.078 0.328 0.101 0.377 0.087 0.364 0.092 0.385
5 0.086 0.365 0.090 0.372 0.099 0.379 0.093 0.378
7 0.098 0.387 0.107 0.397 0.092 0.366 0.092 0.373

5.1.5 Trajectory Tracking With Long-Short Term Memory
Networks

After testing feedforward neural networks (multilayer perceptron, autoregressive,
and 1D convolutional types, discussed in previous sections), we explore recurrent
neural networks. Of these, the LSTMs [123] are widely used to extract features from
data sequences, such as speech or handwriting.

Fig. 5.9 shows the structure of our LSTM network [123]. It is a typical LSTM,
in which the cells transfer the state horizontally and receive inputs either from the
sensors (the first layer) or from the outputs of the previous layer. To explore the
LSTM network performance, we vary the hyperparameters known to have most
influence [124], namely the number of neurons in the hidden layers and the number
of hidden layers. During the DSE, we run ten times the LSTM training (with random
initialization) and testing for each combination of hyperparameters, and report the
best results in the top half of Table 5.5. We note that the network performance, MSE,
does not change much with the number of hidden layers or their number of neurons,
and especially so for smaller numbers of neurons (8 or 16 per each hidden layer). An
LSTM with one hidden layer with 16 neurons appears to perform best. Bidirectional
LSTMs (BD-LSTMs) [174] can improve the LSTM performance leveraging future
samples in their inference (e.g., handwriting recognition can improve by looking

61



Neural Network Architectures and Localization Performance for Indoor Position Tracking

50 100 150 200 250 300
sample #

0

0.5

1

1.5

2

2.5

3

X 
ro

om
 c

oo
rd

in
at

e 
(m

)

Ground Truth
1D-2layers
1D-4layers
1D-6layers

(a)

50 100 150 200 250 300
sample #

0

0.5

1

1.5

2

2.5

3

Y 
ro

om
 c

oo
rd

in
at

e 
(m

)

Ground Truth
1D-2layers
1D-4layers
1D-6layers

(b)

Figure 5.8: Best 1D convolutional neural network trajectory tracking inferences
and the ground truth for the (a) X axis and (b) Y axis for different number of
convolutional layers.

also at letters after the current one). We test the BD-LSTM performance for our
problem using the same DSE parameters and report the results in the second half
of Table 5.5. Performance seems to be more sensitive to hyperparameters, and
especially to the number of hidden layers. The best appears again the configuration
with one hidden layer with 16 neurons.

We show in Fig. 5.10 the inference of the X and Y coordinates of the best LSTM
and BD-LSTM network (highlighted in Table 5.5). Generally, we note very little
differences between them. They both miss the first two peaks of the X coordinate and
the central peak of the Y coordinate, as well as the beginning (up to sample 70 or so)
and end (from around sample 250) of the Y coordinate. In some occasions BD-LSTM
appears to come closer than LSTM to the ground truth, such as around sample 50
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Figure 5.9: Network structure and data access for the Long-Short Term Memory
(LSTM) network, in which the LSTM cells in the input layer process the data
tuples from the input window. Each window is labelled for training with the
person coordinates corresponding to the middle tuple in the window (not shown for
readability).

Table 5.5: Design space exploration results for uni- and bi-directional long-short term
memory networks Mean Square Error (MSE) and the corresponding Average Distance
Error (ADE) while varying the number of hidden layers and neurons per layer.

Internal units of LSTM layer

8 16 32 64

MSE ADE MSE ADE MSE ADE MSE ADE
Layers (m2) (m) (m2) (m) (m2) (m) (m2) (m)

Unidirectional long-short time memory neural network

1 0.085 0.339 0.080 0.325 0.085 0.333 0.089 0.352
2 0.083 0.345 0.082 0.335 0.088 0.347 0.091 0.357
3 0.084 0.350 0.083 0.342 0.096 0.366 0.087 0.355

Bidirectional long-short time memory neural network

1 0.083 0.342 0.079 0.326 0.091 0.341 0.095 0.362
2 0.095 0.362 0.092 0.352 0.099 0.378 0.102 0.376
3 0.080 0.339 0.099 0.372 0.110 0.408 0.107 0.401

on the Y trace and sample 160 on the X trace. We note that the trajectories inferred
by the LSTM network are the smoothest among all networks that we explored. They
seem to reflect more closely the movement dynamics of a person, albeit with slightly
higher error than the best inference (LSTM 0.079 m2 MSE and 0.326 m ADE versus
1D convolutional 0.063 m2 MSE and 0.307 m ADE). We intend to investigate in
future work if LSTM networks indeed capture better movement dynamics and if
their performance improves using less noisy readings from capacitive sensors that
are more robust to environmental noise.
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Figure 5.10: Best Long-Short Term Memory (LSTM) and Bidirectional LSTM (BD-
LSTM) neural network trajectory tracking inferences and the ground truth for the
(a) X axis and (b) Y axis.

5.1.6 Summary
In Fig. 5.11, we can compare visually the quality of the inferred X and Y traces

of the room trajectory of the best configurations of all neural network types. Their
performance metrics are shown in Table 5.1 and in Table 5.3 to Table 5.6. In Table 5.6
we report the correlation between the network inferences and the ground truth, as a
measure of the inference replication of the actual person trajectory regardless of
systematic distance errors. We also report the RMS of the first and second derivative
of the inferences, as inverse measures of the speed and acceleration smoothness of
the inferences, respectively (lower numbers are associated with better smoothness)
[175, p. 62]. Note that the figures for the smoothness of the ground truth itself are
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Figure 5.11: Ground truth and best neural network trajectory tracking inferences
of the (a) X axis and (b) Y axis for different types of neural networks: multilayer
perceptron (FF), autoregressive feedforward (AR-FF), 1D convolutional (1D-Conv),
and bidirectional long-short term memory (BD-LSTM).

rather high, mostly because the localization data collected from the ultrasound-
based reference system has some centimeter-level jitter which we did not filter, but
which seems to be filtered well by all neural networks. The 1D convolutional network
appears to follow best the X and Y components of the reference trajectory. The
four-layer 1D CNN inference has the lowest MSE and the best correlation with the
ground truth. The 1D CNN inference is also among the smoothest, closely matching
the dynamics of the actual movement of the person, as can be seen in Fig. 5.11. In
fact, the RMS of the first and second derivatives of the inferred location are bested
only by networks in the LSTM class, as shown in Table 5.6.

The inference of the recurrent networks, LSTMs, seems to be the smoothest,
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Table 5.6: Characterization of movement inference quality in terms of correlation
with the ground truth, and speed and acceleration smoothness calculated as the
root mean square (RMS) of the first and second derivatives, respectively.

Inference characterization

Ground truth RMS first RMS second
correlation derivative derivative

Neural network type (%) (m/s) (m/s2)

Multilayer perceptron 77.1 0.215 0.370
Autoregressive 83.1 0.211 0.475
1D CNN (2 layers) 83.3 0.157 0.172
1D CNN (4 layers) 87.5 0.162 0.187
1D CNN (6 layers) 84.5 0.176 0.259
LSTM 85.0 0.129 0.106
Bidirectional LSTM 84.0 0.133 0.129

Ground truth 0.143 0.333

closely matching the actual person movement dynamics, as shown by the low RMS
of first and second derivatives of the inferred location in Table 5.1. LSTM ground
truth correlation is also very good, but its MSE is higher because it does not follow
well all parts of the person trajectory. We intend to investigate in future work if the
discrepancy is due to the low signal-to-noise ratio of the sensor data.

Fig. 5.11 shows that the multilayer perceptron network infers a trajectory with
the largest oscillations. Hence, it has the lowest correlation with the ground truth
and distinctly high RMSs of the inference first and second derivatives. This can be
because the network has no means to understand the physical movement dynamics
because it is trained with separate points of the trajectory, which carry no dynamic
information. But even in autoregressive configuration, where it is trained using
segments of trajectory, the performance of the multilayer perceptron network does
not improve, most likely because it lacks filtering capabilities, unlike the convolution
filters of the 1D CNN or the intrinsic recurrent memory of the LSTMs. However,
the multilayer perceptron networks can infer with good accuracy static positions, as
shown in Table 5.1 and Fig. 5.3. Besides the noise in the sensor data, we should
note that the accuracy of neural network inferences was affected both by errors of
the reference system and by differences in the posture of the person. As discussed
in Section 3.1.3, we measured the former to average at ±3.9 cm with peaks of
±6.4 cm in our experimental conditions. The latter can depend on head inclination
(the person was wearing the mobile tag on the head) or body rotation, which can
change the distance between the part of the body that is closest to the sensors for
the same position of the person in the room. In fact, the human body can have
complex postures and irregular shape, making it difficult to accurately define its
position. Hence part of the reported neural network errors can be attributed to this
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Table 5.7: Number of parameters, floating-point operations (FLOPs), and inference
error [mean square (MSE) and average distance (ADE)] for the best neural networks
of each type.

Neural network Parameters FLOPs MSE ADE
(m2) (m)

Multilayer perceptron 17 090 34 180 0.111 0.405
Autoregressive 20 674 40 382 0.079 0.342
1D CNN (2 layers) 14 530 22 318 0.078 0.343
32 filters, kernel size 7
1D CNN (4 layers) 7618 34 078 0.063 0.307
8 filters, kernel size 3

1D CNN (6 layers) 8018 45 838 0.078 0.328
8 filters, kernel size 3

LSTM 1378 16800 0.080 0.325
Bidirectional LSTM 2754 33 600 0.079 0.326

Table 5.8: Training, validation, and test errors (RMSE) for the best configuration of
each neural network type trained on capacitive sensors.

Neural network Training Validation Test
(m) (m) (m)

Multilayer perceptron 0.422 0.433 0.333
Autoregressive 0.365 0.514 0.282
1D CNN (2 layers) 0.368 0.463 0.280
32 filters, kernel size 7
1D CNN (4 layers) 0.340 0.533 0.252
8 filters, kernel size 3

1D CNN (6 layers) 0.334 0.559 0.279
8 filters, kernel size 3

LSTM 0.341 0.471 0.283
Bidirectional LSTM 0.347 0.475 0.281

intractable application domain-specific uncertainty.
In Table 5.7, we show the number of parameters, processing effort (estimated as

the number of floating-point operations), and the inference accuracy for the best
neural network of each type. The four layer 1D convolutional has the best accuracy,
but needs more parameters and higher processing effort. The single layer LSTM
provides very good localization estimation, the smoothest movement tracking, and
also requires the fewest parameters and lowest processing effort (both important for
embedded applications). The training, validation, and test errors in terms of RMSE
for the best configuration of each neural network type are reported in Table 5.8.

67



Neural Network Architectures and Localization Performance for Indoor Position Tracking

Table 5.9: Edge devices suitable to deploy the best NN architecture.

Device Processor Memory Frequency Latency

Ambiq Apollo Arm Cortex-M4F with FPU 64 kB 24 MHz 1.42 ms
MAX32620FTHR Arm Cortex-M4F with FPU 256 kB 96 MHz 0.35 ms
EVK-NINA-B1 Arm Cortex-M4 with FPU 64 kB 64 MHz 0.53 ms

5.1.7 Edge Devices for NN Deployment
There are several platforms available in the market for edge computing integrating

accelerators specifically designed for AI applications. Considering the FLOPS and
parameters requirements in Table 5.7, we can evaluate what platforms are suitable
for NN deployment. For evaluation, we select the parameters and FLOPS of the
NN architecture with the best MSE and ADE, i.e. the four-layers 1D CNN with 8
filters each and kernel size of 3. It requires 34 078 FLOPS, 7618 parameters and 650
activations. If we consider parameters and activations floating-point numbers, then
we need at least 32.29 KiB of memory.

In Table 5.9, we list some devices which can be the suitable candidates for the
deployment of the NN, along with their available memory and CPU frequency, and
the estimated inference latency. The latter is within a few milliseconds, which is fast
eough for low-energy real-time processing. Devices with dedicated NN accelerators,
like MAX 78000, are currently beyond the requirements, but may be considered to
support more complex NNs in future developments.

5.2 Neural Network Architectures and Localiza-
tion Performance for IR Sensors

In this section we evaluate the effectiveness of methods devised in Sections 5.1.1,
5.1.3, 5.1.4, and 5.1.5 to reconstruct human trajectory using similar NNs but based on
experimental data from a thermopile infra-red sensor. Following the similar pattern,
we test three feedforward NN types: MLP, autoregressive, and 1D-CNN, and one
recurrent, LSTM. The neurons use the ReLU activation function, except some LSTM
gates that use the default activations [123]. We split the experimental data in 60 %
sequential tuples for training, 20 % sequential tuples for validation, 20 % sequential
tuples for testing. We used 50 % dropout layers where appropriate to avoid training
data overfitting. We train 50 times for each hyperparameter combination with the
Keras library and TensorFlow v2.2 back-end, and Adamax first order gradient-based
optimization with default parameters. We also tried the Adam optimizer which had
an essentially identical RMSE, within ±8 %, or ±0.006 m, of Adamax.

We evaluate (1) the inference quality by the accuracy RMSE, (2) the smoothness
of the inferred trajectory by the average of the second derivative [175, p. 62], and
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Table 5.10: Required parameters (memory), floating-point operations (FLOPs), train,
validation, and test accuracy (RMSE), and smoothness for the best configuration of
each neural network type.

Neural network type Train Validation Test
RMSE RMSE RMSE Smooth

Param. FLOPs (m) (m) (m) (m/s2)

Multilayer perceptron
128 neurons, 3 layers 35 458 70 149 0.196 0.203 0.103 1.329

Autoregressive
1 s win., 64 neur./layer, 3 layers 13 634 26 885 0.195 0.197 0.117 0.990

1 s win., 256 neur./layer, 3 layers 152 834 304 133 0.183 0.196 0.098 0.638
1D CNN

3 s win., 16 filt., 1 conv. lay., ker. 5 4562 8964 0.177 0.199 0.108 0.305
1 s win., 32 filt., 1 conv. lay., ker. 3 3810 7428 0.192 0.196 0.096 0.515
LSTM

3 s window, 2 layers, 64 units 53 890 172 300 0.186 0.199 0.105 0.163
1 s window, 2 layers, 64 units 53 890 172 300 0.191 0.195 0.109 0.765

Ground truth
smoothed over 1 s window 0.443
smoothed over 3 s window 0.292

(3) the NN computation and memory resource requirements by the total number of
operations and parameters. The results, including the RMSE of training, validation,
and test errors for the best configuration of each neural network type are reported
in Table 5.10.

5.2.1 Multilayer Perceptron Neural Networks
Similar to Section 5.1.1, the NN receives one sensor tuple, 16 temperature

readings on 16 input neurons, and infers the X and Y co-ordinates of the person in
the room on two output neurons. For design space exploration (DSE), we vary the
network depth from one to five hidden layers and the number of neurons per hidden
layer from 4 to 512, in powers of two.

The best network has three hidden layers with 128 neurons each, inference
accuracy RMSE 0.103 m, and smoothness 1.329 m/s2, which is much higher than
the ground truth smoothness (see Table 5.10).

5.2.2 Autoregressive Feedforward Neural Networks
Similar to Section 5.1.3, the NN receives a sliding window of inputs containing

multiple sequential 16-sensor reading tuples and infers the X and Y co-ordinates
of the middle tuple on two output neurons. The NN accesses both past and future
samples, which can help it to learn the movement dynamics. The DSE varies the
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NN depth from one to five hidden layers, from 4 to 512 neurons per hidden layer
in powers of two, and window widths of 1 s and 3 s (covering 5 and 15 tuples
respectively, thus changing the input layer size from 80 neurons for the 1 s window
to 240 neurons for the 3 s window).

An autoregressive NN with three hidden layers, 256 neurons per layer, and 1 s
input window has among the lowest inference RMSE, 0.098 m (see Table 5.10). But
smaller networks, e.g., with 64 neurons per hidden layer, have also small RMSEs,
of 0.117 m. Compared to MLP, the autoregressive NN significantly improves the
smoothness of the inferred trajectory, to 0.638 m/s2 from 1.329 m/s2, thus better
capturing the movement dynamics.

5.2.3 1D Convolutional Neural Networks
Convolutional NNs can efficiently extract relevant data patterns and are widely

used in image and data time series processing e.g., accelerometer sensors. Efficient
pattern recognition helps significantly reduce the computation effort compared to
fully connected NNs. Similar to 5.1.4, the 1D-CNN receives a sliding window of
inputs containing multiple sequential 16-sensor tuples and infers the X and Y co-
ordinates of the middle tuple on two output neurons. The NN accesses both past
and future samples, which can help it to learn the movement dynamics. The DSE
varies the number of kernels from 2 to 64, in powers of two, the kernel size (3, 5,
and 7 tuples), the number of convolution layers (1, 2, and 4), and the window width
(1 s and 3 s). The hidden layers have convolution layers, an average pooling layer of
size five, and a fully connected layer with 64 neurons.

A 1 s window CNN with 32 filters and kernel size of 3 tuples has the best RMSE
of 0.096 m and a smoothness of 0.515 m/s2, both better than the autoregressive NN
and requiring only about a quarter of the resources (see Table 5.10). With a larger
3 s window, the RMSE increases slightly and the smoothness improves markedly, at
the expense of more resource requirements.

5.2.4 Long-Short Term Memory Neural Networks
LSTMs are recurrent networks used mostly where history and context awareness

can improve the inference, e.g., for handwriting and speech recognition, or translation.
Similar to previous work 5.1.5, the LSTM receives a sliding window of inputs
containing multiple sequential 16-sensor tuples and infers the X and Y co-ordinates
of the middle tuple. In the DSE we vary the LSTM layers (1, 2, and 3), LSTM units
from 2 to 64, in powers of two, and the input window width (1 s and 3 s).

The LSTM achieves by far the best smoothness, 0.163 m/s2, with a good RMSE
of 0.105 m using a 3 s input window (see Table 5.10), but requires 15 to 20× more
resources than the 1D-CNN. With a smaller window of 1 s, the RMSE changes
only slightly to 0.109 m, but the smoothness lowers significantly to 0.765 m/s2 for
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Table 5.11: Evaluation of the best NN models in RMSE on the data sets obtained
at various times and with a different person.

Neural network type Evening Evening Morning
Person 2 Person 1 Person 2
RMSE (m) RMSE (m) RMSE (m)

Multilayer perceptron
128 neurons, 3 layers 0.109 0.230 0.163

Autoregressive
1 s win., 64 neur./layer, 3 layers 0.120 0.232 0.208

1 s win., 256 neur./layer, 3 layers 0.127 0.239 0.172
1D CNN

3 s win., 16 filt., 1 conv. lay., ker. 5 0.174 0.254 0.251
1 s win., 32 filt., 1 conv. lay., ker. 3 0.124 0.221 0.260

LSTM
3 s window, 2 layers, 64 units 0.149 0.220 0.228
1 s window, 2 layers, 64 units 0.179 0.294 0.278

virtually the same resource requirements (being a recurrent network, the resource
requirements are largely independent on the input window size).

5.2.5 Effects of Room Temperature Variations
As mentioned in Section 3.2.2, we gathered two data sets in the morning and

on the following day two data sets in the evening. The results in Table 5.10 were
obtained after training and testing by using 60 % and 20 % of the data from the
same experiment, i.e., Morning, Person 1. We evaluated the trained NN models
on the other data sets, to see the robustness of the trained NN architectures. This
means, the NN models trained on 5400 tuples of data from Morning Person 1 were
tested on 8664, 8818, and 8982 tuples of Evening Person 2, Evening Person 1, and
Morning Person 2 respectively. Table 5.11 shows the inference RMSE obtained on
the best configuration of various NNs. The experiments show that minimum RMSE
of 0.109 m, 0.220 m, and 0.163 m were obtained for Evening Person 2, Evening
Person 1, and Morning Person 2 respectively, which makes it suitable for a realistic
localization system.

5.2.6 Summary
We summarize in Fig. 5.12 (further zoomed around the origin in Fig. 5.13) the

dependence of a) memory requirements (parameters) and b) processing requirements
(FLOPs) on the localization inference RMSE and the inference smoothness (2nd
derivative) for all the NNs. Each NN allows a distinct performance-resource trade-
off (note that memory and processing are closely correlated). The MLP NNs can
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(a)

(b)

Figure 5.12: Inference localization accuracy (RMSE) and trajectory smoothness
(second derivative) as a function of (a) memory (parameters) and (b) processing
(FLOPS) requirements for multilayer perceptron, autoregressive feedforward, 1D
convolutional, and long-short term memory (LSTM) neural networks.

have low RMSEs, but mostly poor smoothness and high resource requirements. The
autoregressive NNs have better inference smoothness, especially with 3 s windows,
but still high resource requirements (see Fig. 5.13). The 1D-CNN and LSTM NNs
perform best. The former generally have better performance-resource trade-offs with
3 s windows.

Fig. 5.14 comparatively shows the inference of the X and Y co-ordinates of the
person while moving within the space. The MLP and the autoregressive NNs seem
to be the most “noisy.” The LSTM looks the smoothest, but leaves some extremes
uncovered, while the 1D-CNN seems a good compromise between trajectory coverage
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(a)

(b)

Figure 5.13: Detail of inference localization accuracy (RMSE) and trajectory smooth-
ness (second derivative) as a function of (a) memory (parameters) and (b) process-
ing (FLOPS) requirements for multilayer perceptron, autoregressive feedforward,
1D convolutional, and long-short term memory (LSTM) neural networks.

and smoothness.
Considering the above, the 1D-CNN with 3 s input window seems the best

trade-off between inference performance and resource requirements for embedded
implementation (see Table 5.10). Moreover, our most accurate tracking inference
over an area of 3 m × 3 m using one 4 pixel × 4 pixel sensor has 0.096 m RMSE
(see Table 5.10), which is sufficient for most assisted living or home automation
applications. The reports in the state-of-the-art used tens of sensors to monitor a
space 15 times larger with a much higher average error of 0.322 m [176], or used two
higher-resolution sensors to classify the location in predefined 60 cm-spaced positions
with higher mean error of 0.134 m [107], or a sensor with comparable resolution over
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a quarter of our monitored space, with much higher average error of 0.246 m [160],
or more expensive sensors with four times higher resolution, further enhanced with
interpolation, achieving comparable localization accuracy over comparable areas,
but for predefined (not arbitrary) trajectories [156, 157].
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Figure 5.14: Ground truth, trajectory tracking inference and its error for the (a) X
axis and (b) Y axis for the best NN configurations.
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Chapter 6

Conclusions and Future Work

We tested various machine learning techniques for device free indoor person
tracking with capacitive sensors and for a low resolution thermopile infrared sensor.
For classification of a person’s location inside a 3 m × 3 m room, we tested various
aspects of the performance of most Weka collection ML classification algorithms for
indoor person localization using capacitive sensors.

The data sets used for training and testing were collected during experiments in
an uncontrolled noisy environment, at three separate times and with different body
orientations, in order to acquire realistic data sets. We used these data sets with very
little preprocessing to test Weka collection machine learning classification algorithms.
We found that Random Forest was performing best overall, while AdaBoostM1 used
on top of C4.5 requires much less time for inference at the cost of a small accuracy loss.

For reconstructing a person’s trajectory, we tested the inference accuracy of
several neural network types, both feedforward and recurrent, while tracking the
location and movement of a person using data from four capacitive sensors placed in
the middle of the “walls” of a 3 m × 3 m empty laboratory area. Sensor sensitivity was
limited by noise level, and their stability was also affected by a slow but significant
drift. While we used filters to reduce both the drift and the high-pitch noise, we
were especially interested in how much the remaining noise affects the accuracy of
the inference of person location and trajectory for various types of neural networks.

The best inference, evaluated both as mean square error and as smoothness
and closeness to the actual person movement in the room, was obtained by neural
networks trained on trajectory segments, processing either windows (feedforward
autoregressive and 1D convolutional) or sequences (long-short term memory). The
latter kind seems to capture best the movement dynamics, while the 1D convolutional
network has the smallest error. Networks that consider trajectory points in isolation
perform well with data collected for static positions, but have the worst trajectory
inference error and do not capture the movement dynamics at all.

1D-CNN with four convolution layers has the best localization accuracy, of
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0.251 m RMSE. However a single layer LSTM achieved the best inference smooth-
ness, 0.106 m/s2, and 0.283 m localization accuracy RMSE, and also needs much
fewer computing resources (1378 FLOPs compared to 7618 FLOPs for 1D-CNN)
and memory resources (16 800 parameters compared to 34 078 parameters for 1D-
CNN). Thus, the single layer LSTM provides very good localization estimation, the
smoothest movement tracking, and also requires the fewest parameters and lowest
processing effort (both important for embedded applications).

It is hard to define accurately the position of the human body, especially while
moving, due to its complex shapes and postures. This can explain part of the
inference errors, in addition to the limited accuracy of the reference system (±3.9 cm
average and ±6.4 cm max in our setting).

We note that even with these noisy sensors, the best average localization RMSE
of 0.251 m is suitable for our main target application, namely assisted living of
elderly persons.

We also showed that low resolution infrared thermopile sensors can also be
used for low cost privacy-aware indoor person localization and movement tracking
using neural networks. Network architecture and hyperparameter values greatly
influence the sensor performance. We explored trade-offs between location accuracy,
trajectory smoothness, computing cost and memory resources, in order to find the
best compromise for embedded implementations with limited resources.

As we showed for capacitive sensors, networks that consider a sequence of sensor
readings, such as the autoregressive, 1D-CNN, or LSTM, have smoother inferences
that better follow the actual dynamics of the movements of a person. Among these,
the recurrent networks, such as LSTMs, achieved the best inference smoothness,
0.163 m/s2, and 0.105 m localization accuracy RMSE. However, the 1D-CNN with a
1 s input window has the best localization accuracy, of 0.096 m RMSE, needs much
fewer computing resources (7428 FLOPs compared to 172 300 FLOPs for LSTMs)
and memory resources (3810 parameters compared to 53 890 parameters for LSTMs),
thus being better suited for embedded implementation.

We discussed two different approaches that can be used for human indoor
localization, capacitive sensing-based and infrared-based. It is difficult to make one to
one comparison of these approaches as they have different working principles and both
have their advantages and disadvantages. Thermopile sensors can provide real-time
localization because no filtering-related delays are involved to remove environmental
noise and fewer computational resources are required to infer localization information.
In terms of deployment, a single thermopile can cover the area for which multiple
capacitive sensors would be required. However, infrared sensing can be problematic
in areas where there are many warm objects, for example, heated floor, pipes of
hot water, pets, etc. In such scenarios, the capacitive sensors can provide better
localization, especially if used as a proximity sensors. For example, capacitive sensors
placed on the walls will not be afflicted by a pet, since pets of human height are very
rare. In the future, we can test such scenarios by fusing data from both these sensors
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and compare their performance with the performance of a single sensor type.
Indoor localization is still an active area of research and many aspects still need

to be investigated. For example, we plan to extend the duration of the experiments
and to increase the size of the experimental room beyond 3 m × 3 m, and use real
rooms, instead of an empty space in a lab, thus imposing much more stress on the
algorithms. We also plan to look into transfer learning techniques, to ease the post-
deployment training after the installation of the sensors in a new place, e.g., an
apartment or an office.

The implementation of these localization systems on embedded platforms is an
important aspect toward their real-world deployment. Reduced processing and mem-
ory requirements can help save power (which can enhance battery life) and improve
inference time. In the future, we plan to explore how quantized ML algorithms
can affect the accuracy and processing requirements.

Moreover, the localization techniques described here were limited to a single
person tracking. In the future, these localization techniques can be extended to
multiple persons. We also plan to fuse capacitive sensor data with infrared based
thermopile data because both these have features complementary to each other.
Similarly, fusion with other types of sensors can be experimented for presence,
movement and distance tracking to improve the quality of the results.
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Nomenclature

Acronyms / Abbreviations

ADE Average Distance Error

ANN Artificial Neural Network

AOA Angle of Arrival

AP Access Point

BLE Bluetooth Low Energy

BT Bluetooth

CNN Convolutional Neural Networks

CSI Channel State Information

DBL Device Based Localization

DFL Device Free Localization

DSE Design Space Exploration

FDOA Frequency Difference of Arrival

FIR Finite Impulse Response

FLOPS Floating Point Operations per Second

GCD Greatest Common Divisor

GLONASS Global Navigation Satellite System

GMM Gaussian Mixture Model

GNSS Global Navigation Satellite System

GPS Global Positioning System
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Nomenclature

HMM Hidden Markov Model

IIR Infinite Impulse Response

IoT Internet of Things

ISM Industrial, Scientific, and Medical

LED Light Emitting Diode

LPF Low-Pass Filter

LSTM Long-Short Term Memory

MF Median Filter

MLP Multi-Layer Perceptron

MSE Mean Square Error

NN Neural Networks

ReLU Rectified Linear Unit

RFID Radio-frequency Identification

RSS Received Signal Strength

SVC Support Vector Clustering

SVM Support Vector Machine

TDOA Time Difference of Arrival

TOA Time of Arrival

TOF Time of Flight

UWB Ultra-Wide Band
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