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Summary

Global Navigation Satellite Systems (GNSS) have a central role in many ap-
plications that require high accuracy and precision such as in air/marine trans-
port, robotics, military operations, and precision agriculture applications. However,
GNSS signals suffer from many error sources, such as interference/jamming, iono-
spheric/atmospheric anomalies, and multipath that affect the quality of the esti-
mated position. To reach a high level of accuracy in the navigation, the GNSS errors
must be corrected. GNSS modernization with the availability of multi-frequency
signals and multi-constellations has been providing an improvement against the
degradation effects of many error sources, leaving the scintillation effect that has a
quasi-random nature and the multipath as the most significant and dominant error
contributions in positioning. In parallel, the advancement of the technology for pro-
cessors is boosting the fully software implementations of GNSS receivers running
on a General-Purpose Processor (GPP), also for multi-band and multi-constellation
architectures. Among the well-known advantages of such flexible implementations,
the software approach opens the door to new paradigms for the implementation of
the receiver functions needed for signal processing and position estimation, and re-
ceiver implementations have been constantly evolving to alleviate the performance
degradation effects of error sources such as scintillation and multipath.

In this context, this thesis aims at analyzing the effects of scintillation and
multipath through GNSS observables and measurements utilizing the implemented
post-processing GNSS receiver and investigating and designing the scintillation and
multipath detection methods based on Artificial Intelligence (AI) solutions. As-
sessing the performance analysis of GNSS receiver acquisition and tracking stages
allows to choose the best setting of the acquisition and tracking parameters to
provide the receiver operation at a comparable performance level by testing the
robustness of the implemented algorithms under harsh amplitude and phase scin-
tillation conditions. Detecting and monitoring the scintillation effects to estimate
the ionospheric scintillation in its early stages and measure the scintillation param-
eters are important as well. With the evolving AI world, Machine Learning (ML)
algorithms have gained importance to be applied for the detection of similarities
and outliers among the observables and measurements. In this thesis, one of the
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proposed methods based on supervised machine learning algorithms, namely, Sup-
port Vector Machines (SVM) is implemented and analyzed through different kernel
functions such as linear, Gaussian Radial Basis Function (RBF), and polynomial
for scintillation detection. The work addressed the investigation of an optimal ker-
nel function and parameter settings for this specific task, trading-off performance,
space and time complexity of the method. It is also known that the presence of
multipath errors falsely inflates the measurements of the ionospheric scintillation
activity. It is then of paramount importance to detect the satellite signals that
suffer from the multipath effect to reach an acceptable positioning accuracy and to
increase the scintillation detection performance. The developed and implemented
multipath detection algorithms work at the measurement level and are based on un-
supervised ML algorithms, namely, K-means and Self-Organizing Map (SOM). It is
demonstrated in the thesis that this ML approach overcomes the limitation of the
availability of training data sets a-priori obtained as representative of multipath
and no-multipath conditions. The measurement sets computed for each tracked
satellite signal, namely, carrier phase, pseudorange, and carrier-to-noise ratio are
in fact used to create clusters of consistent measurements. The performance of the
detection algorithms is assessed under different conditions with collected different
datasets.

To sum up, within the framework of this thesis study, starting from the design
and implementation of multi-frequency multi-constellation software GNSS receiver,
a detailed analysis of different signal acquisition and tracking methods in order to
test their robustness to the presence of scintillation and to select optimal setting
parameters has been realized. Having analyzed the effects of multipath and scin-
tillation on the receiver observables and measurements, investigation and use of AI
solutions through different ML algorithms to develop new countermeasures have
been studied.
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Chapter 1

Introduction

This Chapter provides a general background of Global Navigation Satellite Sys-
tem (GNSS) receivers, phenomena of multipath propagation and scintillation, Soft-
ware Defined Radio (SDR) approach in GNSS receivers. It continues with the
objectives and contributions of this research and at the end, an outline of the thesis
is presented.

1.1 Background
GNSS receivers have a central role in many applications necessitating high ac-

curacy and precision such as in air/marine transport, robotics, autonomous vehi-
cles, military operations, and precision agriculture. However, GNSS signals are
prone to suffer from numerous error sources (e.g. interference/jamming, iono-
spheric/atmospheric anomalies, multipath, etc.) that must be detected and cor-
rected at the receiver level in order to reach a good level of accuracy in the nav-
igation. GNSS modernization with the availability of multi-frequency signals and
multi-constellations, the capabilities of new civil signals, and the upsurge in research
and development of GNSS receiver algorithms have been providing an improvement
against the degradation effects of many error sources for positioning [1, 2]. How-
ever, the reception of the reflected or diffracted replicas of the desired signals due
to propagation through the ionospheric layer and the physical surrounding environ-
ment is leaving the multipath and scintillation effects as significant and sometimes
dominant error contributions in the positioning [3].

As it is observed in the trans-ionospheric communication of the radio waves while
traveling from transmitter to user, the GNSS signals are affected by the ionosphere
that is highly variable and dynamic in both time and space [4] and it is a fact
of life for a number of communication and radar systems that have to operate
through the auroral or equatorial ionosphere [5]. In the same way, scintillation
caused by the electron density irregularities in the ionospheric plasma leads to
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rapid fluctuations in the amplitude and phase of the GNSS signals, as pictorial
representation depicted in Figure 1.1 (a). Under multipath conditions, the received
signal by the GNSS antenna consists of the direct Line-Of-Sight (LOS) and the
multipath signals whereas the Non-Line-Of-Sight (NLOS) signals contain only the
reflected signals, as demonstrated in Figure 1.1 (b). The presence of scintillation
and multipath conditions cause large degradation in the navigation performance
and it is of paramount importance to detect the satellite signals suffering from the
multipath and scintillation effects.

User

GNSS Satellites

Ionosphere

Irregularities

Signal delay Signal fluctuations

(a) Ionospheric delay and scintillation -
Adapted from [6].

GNSS Satellite

Direct Path 
(LOS) 
Signal

Signal reflected 
off the ground

Multipath 
Interference

NLOS
Reception

User User

Signals reflected 
by the buildings

(b) Multipath and NLOS reception -
Adapted from [7].

Figure 1.1: Pictorial representations of ionospheric delay, scintillation effect, multi-
path, and NLOS reception. The green dashed lines are the LOS paths from GNSS
satellites to the receiver on earth; the red dashed lines account for propagation
distortion due to the ionosphere and surrounding environment of the receiver.

Proper countermeasures must be undertaken at receiver level in order to correct
and minimize the effects of such threats, and the countermeasures are specific for
each source. Various methods have been employed in a GNSS receiver either at
the signal processing and measurement level in order to cope with these effects.
Given this picture, the software radio implementation that is applicable to any
Radio Frequency (RF) transmission provides a tremendous level of flexibility and
establishes a framework for the implementation and test of advanced algorithms
[8]. It is a promising way to implement new algorithms and processing strategies.

Software GNSS receivers are being used since many years, mainly as research
tools or as tools at the early stage of the design process. They can be implemented as
software defined, or fully software receivers, depending on the computational burden
of the processing and on the real-time/non real-time requirements. Having access
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to the internal stages and related observables and measurements allows easiness
and flexibility in both design and analysis of the implemented algorithms.

Moreover, with the flourishing Artificial Intelligence (AI) world, Machine Learn-
ing (ML) algorithms enable us to interpret the data correctly, to integrate the in-
formation better, to draw wider data insights, and to improve the decisions on
the results. Therewithal, with the innovative trend of SDR receivers and ML al-
gorithms, receiver implementations have been constantly evolving to alleviate the
performance degradation effects of error sources such as scintillation and multipath.

1.2 Objectives and contributions of the thesis
Given the fundamental role of the software GNSS receiver and aspects of the

ML algorithms, the objective of this thesis is the investigation of new approaches
to the receiver design focusing on the signal processing stages. In particular, this
means to address new techniques for scintillation and multipath identification and
rejection, as well as the exploitation of new methods based on AI in this field.

Although scintillation phenomena are well known and characterized, it is diffi-
cult to find a definitive treatment of the theory of scintillation [9]. Moreover, the
observation of scintillation has been used in many research fields such as astronomy,
geophysics, atmospheric physics, telecommunications, etc. to identify the irregular
structure of the propagation medium [4]. Even if the GNSS signals are themselves
affected by scintillation too, ionospheric scintillation through some measurement
indices can be estimated by means of received GNSS signals as it is discussed in
Section 3.1.1. Specialized Ionospheric Scintillation Monitoring Receivers (ISMRs)
and software receivers have started to be used for ionospheric scintillation moni-
toring purposes. A scintillation monitoring and data collection setup at which the
data sets used throughout this thesis were collected is defined in Section 3.1.2.

Moreover, thanks to a tremendous number of observations, studies on the at-
mospheric structure, modeling the wave propagation through ionospheric irregular-
ities, and scattering theories have led to the development of different ionospheric
scintillation models. It is quite important to understand the global morphology
of ionospheric scintillation and to be able to model it. Because it helps users to
differentiate between the fluctuations that are caused by ionospheric irregularities
and the ones that are originated from equipments or other error sources [4]. The
countermeasures are specific for each error source. However, when the ionospheric
scintillation models where are discussed in Section 3.2.1 are considered, it has been
observed that there are limitations and simplicities in case of creating the charac-
teristics of actual scintillation effects in GNSS applications. Hence, this points out
the significance of collecting real GNSS data under scintillation events.

Under a scintillation event, proper countermeasures could be undertaken at
signal processing level, enabling either more robust signal acquisition and tracking
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or alternate resources to decrease the effect of disturbed signal propagations. The
work started from a comparative study of different acquisition and tracking methods
for GPS L5 and L1 C/A signals in order to test their robustness to the presence of
observed real phase and amplitude scintillations in the propagation environment.
Compared to observing the scintillation effects only in the positioning performance
of the GNSS receiver, implemented software GNSS receiver provides advantages
in both design and performance analysis of the implemented algorithms thanks to
having access to the internal stages and observables.

Besides the scintillation effect, the multipath effect is another significant and
dominant error contribution in the positioning as exemplified through the analysis
of simulated and real data sets in Section 3.3. Moreover, the presence of multi-
path errors falsely indicates the existence of ionospheric scintillation by inflating
the scintillation measurements of the receiver. In the literature, for detection of
scintillation and multipath effects, numerous algorithms, where a general overview
discussion is provided in Section 3.2.3 and Section 3.3.3, have been proposed either
at signal processing or measurement processing stages of the receiver.

In the framework of this thesis, new approaches utilizing AI solutions have been
investigated. Although there is an increasing interest in the application of ML-
based approaches in different fields, it has to be noted that ML algorithms are
not simply plug-and-play tools. The selection of the method with the design and
implementation of data preparation procedure and tuning of the setting parameters
have significant roles in the performance of the implemented algorithm for the
solution of the problem. With this perspective in mind, detection of scintillation
and multipath effects have been investigated and applied by means of implemented
ML-based methods.

Main contributions of the thesis are summarized as follows:

• A detailed comparative study of the different acquisition and tracking meth-
ods for GPS L5 and L1 C/A signals in order to test their robustness to the
presence of real phase and amplitude scintillations in the propagation envi-
ronment and to select the optimal acquisition and tracking parameters.

• With the analysis of the effects of scintillation and multipath on receiver ob-
servables and measurements, the investigation and use of AI solutions through
ML methods to develop new countermeasures.

• Development, analysis, and performance assessment of multipath detection
algorithm through simulated, real static and kinematic data.

Some of the works presented in the thesis were published in the peer-reviewed
journal papers [10, 11] and in different international conferences [12, 13, 14, 15].
Furthermore, side works related to the estimation of scintillation indices and appli-
cation of multipath detection algorithm led to other publications [16, 17].
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1.3 Outline of the thesis
Chapter 2 provides an overview of GNSS, principles of satellite navigation,

signal structures, and main GNSS error sources. It continues with GNSS receiver
architecture and the basics of the different stages in a receiver. Eventually, with
the concept of SDR-based GNSS receiver, the challenges in the implementations
are discussed.

Chapter 3 starts with a description of the scintillation effect including the es-
timation of the phase and amplitude scintillation indices that quantify and charac-
terize the scintillation events. As an introduction to the experimental part of thesis
work, the data collection setup utilizing the SDR receiver approach and analysis of
real scintillation data are provided. Having discussed the simulation models in the
literature, an overview of the effects of scintillation at the signal processing stages of
a GNSS receiver and classical scintillation detection strategies are given. Likewise,
in the last part of the chapter, the multipath effect on the GNSS measurements and
observables is investigated through the analysis of simulated and real GNSS data.
Moreover, classical multipath detection strategies and especially, the potential of
the Receiver Autonomous Integrity Monitoring (RAIM) algorithm for multipath
detection is examined.

Chapter 4 presents a detailed comparative study of the different acquisition
and tracking methods for GPS L5 and L1 C/A signals in order to test their ro-
bustness to the presence of phase and amplitude scintillations in the propagation
environment. Implementation of four L5 and three L1 C/A acquisition methods and
performance comparison in terms of probabilities of detection/false alarm, peak-to-
noise floor ratios and acquisition time duration are given. By employing Phase Lock
Loop (PLL) and Kalman Filter (KF)-based carrier-tracking algorithms for GPS L1
C/A and L5 signals, the performances of different architectures are evaluated and
compared in terms of the residual effects on the receiver observables and internal
parameters.

Chapter 5 first describes the ML-based methods and discusses the role of ML
in a GNSS receiver. Afterward, with an overview of the Support Vector Machines
(SVM) algorithm and kernel function, implementation of the scintillation detec-
tion algorithm is detailed. The impact of the kernel function on the scintillation
detection performance is evaluated by exploiting Receiver Operating Characteris-
tics (ROC) curves, confusion matrix results, and the related performance metrics.
Then, implementation details of the proposed multipath detection approach based
on K-means and Self-Organizing Map (SOM) algorithms and a comprehensive per-
formance analysis with different real static and kinematic data are provided.

Chapter 6 finally provides a summary of the researches presented within this
thesis and discusses some future works.
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Chapter 2

Global Navigation Satellite
Systems

In this chapter, an overview of GNSS and fundamentals of satellite navigation
are presented. With the signal structures, a GNSS receiver architecture and the
basics of the different stages in a receiver are explained considering the concept of
SDR-based GNSS receiver and the challenges in the implementations. Eventually,
the main GNSS error sources are pointed out.

GNSS is a generic term for a space-based navigation system that provides users
an ability to determine their Position, Velocity, and Time (PVT) in a common refer-
ence system on a continuous basis. There are four operational GNSSs, namely, the
U.S. Global Positioning System (GPS), the Russian Federation’s GLObal NAviga-
tion Satellite System (GLONASS), the European Galileo system, and the Chinese
BeiDou Navigation Satellite Demonstration System (BDS). The first operational
prototype satellite of the GPS was launched in 1978 and the initial operational
capability of the full system with 24 satellites was realized in 1993 [18]. Although
GLONASS is the second fully operational system deployed in 1995, the number of
satellites gradually decreased down to 7 in 2001 due to limited operational lifetime
of the first satellites and fully global service was re-establised in 2011 [19]. Galileo
development was initiated in late 2013 and carried out by a joint initiative of the
European Commission (EC), the European Space Agency (ESA), and the Euro-
pean GNSS Agency (GSA). Initial operational phase was declared in December
2016, and by end of 2020, there are 24 usable, 1 unavailable and 1 not-usable satel-
lites in the orbit [20]. The BDS-3 is the global service developed as extension of the
the Regional Orbit Determination Satellite Service (RDSS) implementations estab-
lished in the frame of BDS-1 and BDS-2 initiated in 2000 and 2012, respectively
[21]. Since July 2020, BDS-3 has 24 active satellites in the orbit. Furthermore, the
modernization programs including such as the changes in the signal structures and
upgrades of the satellites have been ongoing for all the aforementioned systems.

A GNSS system consists of three components: the space segment, the control
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or ground segment, and the user segment, as depicted in Figure 2.1. The space
segment comprises the satellites (i.e. space vehicles (SVs)) that broadcast signals
to both the users and the control segment and collectively known as a constellation.
The current constellation arrangements of the systems are summarized in Table 2.1.
GPS, GLONASS, and Galileo satellites are distributed among a number of Medium
Earth Orbits (MEOs) [18]. However, BDS-3 consists of 3 Geostationary Earth Orbit
(GEO) and 3 Inclined Geo-Synchronous Orbits (IGSO) satellites besides 24 MEO
satellites.

Space Segment
Space Vehicles (SVs) 

transmitting signals, time, 
ephemeris, additional 

information

User Segment
Receiving the satellite 

signals

Control Segment
Tracking stations, 

Time synchronization

Uplink data: Satellite ephemeris, clock -
correction factors, atmospheric data, almanac

Downlink data: Signals, position 
information, atmospheric data, almanac

Figure 2.1: GNSS segments.

Table 2.1: GNSS Constellation Parameters [22, 23, 24, 19, 25, 21]

Parameters GPS GLONASS GALILEO
BEIDOU (BDS-3)

GEO MEO IGSO
Number of operational satellites 24 24 24 3 24 3

Number of orbital planes 6 3 3 1 3 3
Number of satellites in a plane 4 8 8 3 8 1

Eccentricity e < 0.02 e < 0.001 e = 0.0 e = 0.0 e = 0.0 e = 0.0
Inclination 55◦ 64.8◦ ± 0.3◦ 56◦ 80◦E, 110.5◦E, 140◦E 55◦ 55◦

Nominal orbital altitude [km] 20180 19100 29600.318 35786 21528 35786
Period of revolution 11 h 58 m 11 h 15 m 44 s ± 5 s 14 h 4 m 42 s − 12 h 53 m −

The control segment consists of a network of monitoring stations, control sta-
tions, and uplink statitions as depicted in Figure 2.1. In order to determine the
satellite orbits and calibrate the satellite clocks, the ranging measurements are used

8



2.1 – Satellite navigation principles

by the monitoring stations of which locations are precisely defined, the navigation
data message for each satellite are computed and are transmitted to the space
segment by the uplink stations [18]. The user segment comprises GNSS antennas
and receivers that receive and process GNSS signals to determine user coordinates
needed in different applications. In the following with the principle of navigation,
the signal structure and the receiver architecture are introduced by recalling the
main aspects. There are many books where a detailed explanation of the fundamen-
tals of satellite navigation, signal structures, and receiver architectures are covered
such as [18, 26, 27, 28, 29].

2.1 Satellite navigation principles
GNSS signals that are detailed in the next section consist of a modulation of

the carrier on different frequencies with a unique Pseudo-Random Noise (PRN)
ranging code continuously repeating at intervals of a few milliseconds to seconds
for each satellite. On top of the ranging code, the signal may also be modulated
by low rate navigation data that contains information about the orbits and clock
offsets [30].

GNSS exploits the Time of Arrival (ToA) ranging concept in principle to deter-
mine user position [26] by measuring the propagation time of the signal from the
satellite as depicted in Figure 2.2.

𝜏
Propagation

time

Transmitted PRN code of the signal

Received by the user

Locally generated replica at the receiver

Satellite clock

Receiver clock

Figure 2.2: Clocks on range measurement and principle of pseudorange measure-
ment.
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If a satellite (i) transmits a ranging signal traveling at the speed of light (c) at
t0, it is received by the receiver at time t0 + τ , this time interval can be converted
to a range (Ri):

Ri = c τ (2.1)
Although the clocks of the satellites within a constellation are synchronized to

an internal scale that is known as system time (e.g. GPS time), the user’s clock as
picturized in Figure 2.2 has a clock offset (δtu) from the base time. If the receiver
clock is ahead, the range measurement is written as

ρi = c (τ + δtu) = Ri + ε (2.2)
where ρi is the pseudorange measurement. With only one measurement, the user
knows located on a spherical circle with radius Ri + ε centered about the satellite
that broadcast signals. Therefore, the intersection of three spherical circles allows
computing the user position in three-dimensional space as shown in Figure 2.3.
However, other intersections separated from the true user position (A) in Figure
2.3 are a function of the receiver clock offset that should be removed.

A

𝑅 + 𝜀

𝜀

𝑅 + 𝜀

𝑅 + 𝜀

Figure 2.3: Effect of receiver clock offset on Time of Arrival (ToA) measurements
(adapted from [3]).

The pseudorange measurement for the ith satellite can be written as
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ρi =
√︂

(xi − xu)2 + (yi − yu)2 + (zi − zu)2 + c δtu (2.3)
where xi, yi, zi are the coordinates of the satellite and xu, yu, zu are the user coor-
dinates. Therefore, considering the additional unknown clock offset, at least four
measurements (i.e. four satellites) are required to obtain a 3-D position solution.
It has to be noted that only the receiver clock offset with synchronized satellite
clocks are considered in this position solution. Furthermore, in the books [3, 18,
31], the concept of ranging using ToA measurements can be found in detail.

2.2 Signal structure
In this section, an overview of GNSS signal components is provided. Figure 2.4

shows a general block diagram of GNSS signal generation. The atomic clocks (e.g.
Cs, Rb, H maser, etc.) onboard satellites sustain a consistent time reference and
every GNSS signal is generated by RF carrier of which the frequency is f0 = 1/T0
Hz where T0 is the time interval between peak-to-peak.

Data
Generator

Code
Generator

Spreading
Symbol

Modulator

Satellite
Clock

RF Signal
Generator

Satellite
Signal
Filter

𝑇

𝑇

𝑇

Satellite
Antenna

Figure 2.4: GNSS signal generation (adapted from [32]).

The navigation data containing information about the orbits and clock correc-
tions is binary-coded (0 and 1) having a successive interval of Td = 1/Rd seconds,
where Rd is the data rate in bits per second (bps).

The code generator generates the PRN ranging code sequence (i.e. spreading
code) that is unique for each satellite. fc = 1/Tc is the chipping rate of the sequence
of which the chip interval is Tc. Although a chip corresponds to a bit, it is called
a chip since it does not hold any information [33] and the spreading code is known
to the receiver.
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In majority of the GNSS signals, the combination of code and navigation data
are applied to the carrier by using Binary Phase Shift Keying (BPSK) modulation
[18]. A BPSK modulated signal can be written as:

sBPSK(t) =
√

2P s(t) cos (2πf0t + ϕ) (2.4)
where P is the transmitted signal power, f0 is the carrier frequency, ϕ is the carrier
phase, and s(t) is the bipolar (i.e. +1, −1) representation of modulo-2 addition
of the spreading code and navigation data [34]. The carrier phase (ϕ) is either
0◦ or 180◦ depending on transmitted digital 0 and 1 over successive intervals of
Td seconds in time. However, in modern GNSS signals, Forward Error Correction
(FEC) is applied to the navigation data to be able detect and correct error bits that
may be introduced due to noise, interference and fading. Therefore, considering the
redundant bits that are transmitted through the defined FEC method, common
convention is to replace bit rate (Rb) with symbol rate (Rs) to distinguish data
symbols from data bits [26].

In principle, the GNSS signals employ Direct Sequence Spread Spectrum (DSSS)
modulation technique that involves the modulation of RF carrier with a spreading
code and often with the navigation data [26]. In DSSS waveforms, having frequent
phase changes created by the spreading sequence allows the receiver to reach precise
distance measurement. Moreover, the spreading symbol does not have to have a
constant amplitude over the chip period in a DSSS signal, as applied with rectangu-
lar chips in BPSK. For example, in Binary Offset Carrier (BOC) signals, modulation
of the spreading code sequence onto the square-wave subcarrier is applied [34]:

sBOCS
(t) = sPRN(t) sign [sin (2πfsct)]

sBOCC
(t) = sPRN(t) sign [cos (2πfsct)]

(2.5)

where the subscripts s and c denote the sine and cosine phasing of the BOC sub-
carrier, respectively. sPRN(t) is the bipolar representation of the spreading code
sequence, fsc is the subcarrier frequency, and sign is the signum function:

sign(x) ≜
{︄

1, x ≥ 0
−1, x < 0 (2.6)

As it is observed, BOC modulations provide additional signal design parameters
compared to BPSK modulations and reaching enhanced performance is aimed con-
sidering the constraints at both transmitter and receiver sides.

Furthermore, many modern signals split the total power of one signal between
two components, namely, data and pilot (i.e. dataless) that utilize different ranging
codes. The motivation behind is to enable receiver to be able track GNSS signals
through pilot components in more challenging environments. In order to have
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robust data bit synchronization, secondary (i.e. synchronization) codes are also
generated besides primary ranging codes in new generation GNSS signals.

To sum up, after the generated code and navigation data are applied to the
carrier by utilizing the defined modulation, RF up-conversion is applied; then,
the transmission bandwidth is restricted by the satellite filter before the signal
is being transmitted by the satellite antenna. The main differences between the
GNSS signals available in space are summarized in terms of DSSS modulation,
code length, navigation data, and the transmitted signal power level in Table 2.2.

Table 2.2: GNSS Signals Overview [22, 23, 26, 35, 36]

Signal
Center

Frequency
(MHz)

Modulation
Type

Component
Primary

Code Length
(chips)

Secondary
Code Length

(chips)

Tiered Code
Length

(ms)

Data
Rate
(sps)

Min. Received
Signal Power

(dBW)
GPS L1 1575.42 BPSK(1) L1 C/A 1023 - 1 50 -158.5

GPS L1C 1575.42
BOC(1,1) L1C-data 10230 - 10 100 -163.0
TMBOC

[comb. of BOC(1,1)
and BOC(6,1)]

L1C-pilot 10230 1800 18000 - -158.3

GPS L2 1227.60
BPSK(1) L2-CM 10230 - 20 50 -161.5
BPSK(1) L2-CL 767250 - 1500 - -161.5

GPS L5 1176.45
BPSK(10) L5-I 10230 10 10 100 -157.9
BPSK(10) L5-Q 10230 20 20 - -157.9

GAL E1 1575.42
CBOC(6,1,1/11) E1-B 4092 - 4 250 -160
CBOC(6,1,1/11) E1-C 4092 25 100 - -160

GAL E5a 1176.45
BPSK(10) E5a-I 10230 20 20 50 -158
BPSK(10) E5a-Q 10230 100 100 - -158

GAL E5b 1207.14
BPSK(10) E5b-I 10230 4 4 250 -158
BPSK(10) E5b-Q 10230 100 100 - -158

GAL E6 1278.75
BPSK(5) E6-B 5115 - 1 1000 -158
BPSK(5) E6-C 5115 100 100 - -158

BDS B1 1561.098 BPSK(2) B1I 2046 - 1 50 or 500 -163
BDS B2 1207.14 BPSK(2) B2I 2046 - 1 50 or 500 -163
BDS B3 1268.520 BPSK(10) B3I 10230 - 10 50 or 500 -163

BDS B1C 1575.42
BOC(1,1) B1C_data 10230 - 10 100

-159/-161*
QMBOC(6,1,4/33) B1C_pilot 10230 1800 18000 -

BDS B2a 1176.45
BPSK(10) B2a_data 10230 5 5 200

-156/-158*
BPSK(10) B2a_pilot 10230 100 100 -

BDS B2b 1207.14 BPSK(10) B2b_data 10230 - 10 100 -160/-162*

GLO L1OF
from 1598.0625

to 1605.375
FDMA - BPSK(0.511) C/A 511 - 1 50 -161

GLO L2OF
from 1242.9375

to 1248.635
FDMA - BPSK(0.511) C/A 511 - 1 50 -167

GLO L1OC 1600.995
BOC(5,2.5) L1SC ? ? ? - -155

BPSK(1) mux. L1OCd 1023 2 2 250
-155

BOC(1,1) mux. L1OCp 4092 - 8 -

GLO L2OC 1248.06
BOC(5,2.5) L2SC ? ? ? - ?

BPSK(1) mux. L2 CSI ? ? ? ? ?
BOC(1,1) mux. L2OCp 10230 50 1000 ? ?

GLO L3OC 1202.025
BPSK(10) L3OCd 10230 50 50 200 ?
BPSK(10) L3OCp 10230 50 1000 - ?

*The received signal power levels differ depending on the broadcasting satellite type
(i.e. MEO or IGSO).
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In Table 2.2, BPSK(b) is the shorthand notation of BPSK modulation having a
spreading code at the rate of (b · 1.023) Mega chips per second (Mcps). BOC(a, b)
modulation is created by a sine wave carrier with the modulation of a square-wave
subcarrier of which the frequency is (a · 1.023) MHz and a spreading code having
(b · 1.023) Mcps chipping rate. It has also to be noted that the transmission of
DSSS signals having the same carrier frequency with different spreading sequences
are referred to as Code Division Multiple Access (CDMA) while the use of different
carrier frequencies to transmit multiple signals having the same spreading code
sequence is known as Frequency Division Multiple Access (FDMA). As it can be
seen in Table 2.2, although FDMA is only used by GLONASS, the new generation
GLONASS satellites have started broadcasting CDMA signals as well to improve
interoperability with other GNSSs [19].

2.2.1 GNSS frequency plan
Most GNSS signals are transmitted in 1 − 2 GHz L-band of the electromagnetic

spectrum. A summary of the different GNSS signals of which the signal components
are provided in Table 2.2 and of which the carriers are centered at 1575.42 MHz
(L1), 1227.60 MHz (L2), and 1176.45 MHz (L5) frequencies are shown in Figure
2.5.

L-band offers advantages for GNSS signals to penetrate through rain, clouds,
storms, and vegetation. While in lower frequencies atmosphere causes severe fading
in the received signal, at greater frequencies to diminish rain attenuation additional
signal power is required [26].

2.2.2 GPS L1 C/A and L5 signals
Third civilian GPS signal L5 is being broadcast by 15 Block IIF GPS satellites

as of December 2020 [35]. The L5 signal, as being a new signal with advanced
features, represents an opportunity of enhanced performance for GNSS receivers.

GPS L1 Coarse/Acquisition (C/A) signal is BPSK modulated with the carrier
frequency of fL1 = 1575.42 MHz, while GPS L5 signal is Quadrature Phase Shift
Keying (QPSK) modulated and its carrier frequency is fL5 = 1176.45 MHz. L1
C/A and L5 transmitted signals by a satellite are modelled as:

sL1(t) =
√︂

2CL1cL1(t)dL1(t) cos(2πfL1t) (2.7)

sL5(t) =
√︂

CL5cL5I
(t)dL5(t)sNH10(t) cos(2πfL5t)

+
√︂

CL5cL5Q
(t)sNH20(t) sin(2πfL5t)

(2.8)
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2.2 – Signal structure

Figure 2.5: GNSS spectrum (retrieved from [32]).

where cL1 is the C/A code of 1 millisecond in length at the chipping rate of 1.023
Mchip/s, dL1 is GPS L1 C/A navigation data message at 50 bit/s, and dL5 is GPS
L5 navigation data encoded with FEC codes at 100 sample/s. Neuman-Hofman
(NH) codes (sNH10 and sNH20) are secondary codes of GPS L5 signal and are 10-
bits and 20-bits long, respectively, with the code rate of 1 kHz. cL5I

and cL5Q
are

PRN codes of in-phase and quadrature channels which are 1 millisecond in length
with a chipping rate of 10.23 Mchip/s. CL1 and CL5 correspond to the RF powers
of L1 C/A and L5 signals, respectively.

L5 signal includes a navigation data at only in-phase component (i.e. data chan-
nel), while quadrature component, namely the pilot channel, carries no message.
Furthermore, L5 signal has longer spreading codes for both in-phase and quadrature
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channels, and higher transmitting power compared to the L1 C/A signal. Accord-
ing to the interface specification document for the block IIF satellites, while the
received minimum RF signal strength is −158.5 dBW for the GPS L1 C/A signal,
the L5 signal strength is −154.9 dBW (i.e. −157.9 dBW on each channel, namely,
in phase and quadrature) [37]. The results in [38] show that experimentally receiv-
ing a mean of 3.5 dB higher power for GPS L5 compared to GPS L1 C/A could
be measured. Having a data-free pilot channel, which uses longer codes at higher
chipping rates with NH secondary codes, and higher transmitted power than L1
C/A signal, it could have better performance in GNSS receiver. Since the code on
L5 is ten times faster than the C/A code, the main peak in the auto-correlation
function is sharper by a factor of ten and cross-correlation side lobes are lower than
that for the C/A code. Hence it provides an improvement in the signal tracking ca-
pability [1]. Moreover, data-free signal components are useful in low signal-to-noise
ratio environments due to the fact that squaring loss caused by the squaring oper-
ation, that is used to remove the data modulation, is reduced with the increasing
integration time.

2.2.3 Galileo E1 and E5 signals
In Galileo signals, as being different from GPS signals, BOC modulated signals

that are characterized by rectangular sub-carrier to shape the signal spectrum,
increase frequency separation, and improve tracking performance were developed
[39].

Galileo E1 Open Service (OS) signal is Composite Binary Offset Carrier (CBOC)
modulated with the carrier frequency of 1575.42 MHz. It comprises of two signal
components, namely E1-B (data-component) and E1-C (pilot-component) [23]:

sE1(t) = 1/
√

2 (eE1−B(t) (α scE1−B,a(t) + β scE1−B,b(t)))
− 1/

√
2 (eE1−C(t) (α scE1−C,a(t) − β scE1−C,b(t)))

(2.9)

where scX(t) = sign (sin (2πRs,Xt)) is the sub-carrier component with rates Rs,X,a

and Rs,X,b that are equal to 1.023 MHz and 6.138 MHz, respectively. The pa-
rameters α =

√︂
10/11 and β =

√︂
1/11 are chosen so that the combined power of

the sub-carrier components equals 1/11 of the total power [23]. Galileo E1 signal
has increased transmitted power (−157.0 dBW) compared to GPS L1 C/A signal
(−158.5 dBW), which means improved robustness against signal impairments [40].

The wide-band Galileo E5 signal is centered at 1191.75 MHz and consists of two
individual signals, namely, Galileo E5a of which carrier frequency is 1176.45 MHz
and E5b that is centered at 15.345 MHz above the E5 carrier. E5 combined sig-
nal is generated coherently using the Alternative Binary Offset Carrier (AltBOC)
modulation scheme. E5 signal occupies a total bandwidth of 51.15 MHz with two
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main lobes of the AltBOC signal comprising of E5a and E5b. The specified mini-
mum received power by using an ideally matched Right-Hand Circularly Polarized
(RHCP) 0 dBi antenna is −155 dBW for both E5a and E5b signals [23]. More-
over, the E5 signal can also be described as 8-Phase Shift Keying (PSK) signal,
comprised of two QPSK E5a and E5b signals. The analytical baseband complex
envelope representation of the E5 signal is given in [23]:

sE5(t) =1/2
√

2 (eE5a−I(t) + j eE5a−Q(t)) [scE5−S(t) − j scE5−S (t − Ts,E5/4)] +
1/2

√
2 (eE5b−I(t) + j eE5b−Q(t)) [scE5−S(t) + j scE5−S (t − Ts,E5/4)] +

1/2
√

2 (ēE5a−I(t) + j ēE5a−Q(t)) [scE5−P (t) − j scE5−P (t − Ts,E5/4)] +
1/2

√
2 (ēE5b−I(t) + j ēE5b−Q(t)) [scE5−P (t) + j scE5−P (t − Ts,E5/4)]

(2.10)

where the dashed signal components ēE5a−I , ēE5a−Q, ēE5b−I , and ēE5b−Q represent
the defined product signals of the binary components eE5a−I , eE5a−Q, eE5b−I , and
eE5b−Q that are the signal components containing the navigation data stream and
ranging codes. scE5−S and scE5−P are the four-valued sub-carrier functions for the
single and product signals, and the coefficients and functions are defined in Galileo
Interface Control Document (ICD) [23].

2.3 GNSS receiver architecture
A functional block diagram of GNSS user equipment, in other words, GNSS

receiver is shown in Figure 2.6.

GNSS 
Antenna

Radio Front End (RFE)
Baseband Ranging

Processor
Navigation
Processor

GNSS Signals

Conversion of 
GNSS signals from 
radio to electrical

Down-conversion, band-limiting, 
sampling, oscillators

Acquisition, tracking, navigation 
message demodulation, signal-
to-noise measurement

Computation of navigation solution

Figure 2.6: GNSS receiver functional block diagram (adapted from [18]).

As it is presented in Figure 2.6, GNSS receiver can be split into four main
parts: GNSS antenna, RFE, baseband processor that performs signal acquisition
and tracking, and navigation processor computing user PVT. GNSS antenna is the
first element in the signal path and it receives the electromagnetic waves transmitted
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from the satellites. In the following subsections, the aforementioned stages are
detailed.

2.3.1 Radio front end
After the GNSS signals are received by the antenna, the signals are amplified,

filtered, down-converted to Intermediate Frequency (IF) and sampled. This process
performed at the front-end stage is depicted in Figure 2.7.

In a GNSS receiver, RFE stage determines the cost, size and power consumption
of the receiver and its design has the primary importance [41]. The key components
are the Low Noise Amplifier (LNA), the RF filter used for image rejection, the IF
filter eliminating unwanted spectral parts, and the Local Oscillator (LO) used for
down-conversion. The design and the selection of the components that satisfy the
requirements such as phase noise, stability, and noise figure through the front-end
chain gain importance.

𝑓

LNA Bandpass Filter Bandpass Filter AGC Quantizer

ADC

𝑓

Sampler

𝑓

Clock

IF Data

GNSS 
Antenna

Figure 2.7: Radio front end (RFE) architecture.

Each transmitted satellite signal is separately delayed, attenuated and affected
by Doppler and the sampled signal in the front-end is the combination of the signals
from different visible satellites. Then, the received signal from one satellite in
different frequencies (e.g. L1 and L5) can be modeled as:

rL1[n] =rL1(nTs)

=
√︂

2AL1cL1(nTs − τL1,0)dL1(nTs − τL1,0)
cos(2π(fIF,L1 + fL1,0)nTs − φL1,0)

+ηL1,IF (nTs).

(2.11)

18



2.3 – GNSS receiver architecture

rL5(nTs) =
√︂

AL5cL5I
(nTs − τL5,0)dL5(nTs − τL5,0)

sNH10(nTs − τL5,0)
cos(2π(fIF,L5 + fL5,0)nTs − φL5,0)

+
√︂

AL5cL5Q
(nTs − τL5,0)sNH20(nTs − τL5,0)

sin(2π(fIF,L5 + fL5,0)nTs − φL5,0)
+ηL5,IF (nTs).

(2.12)

where τ0, f0, φ0 are the code delay, Doppler frequency offset, and carrier phase
respectively. Ts is the sampling period which is equal to 1/fs where fs is the
sampling frequency. fIF,L1 and fIF,L5 are the IF values of the RFE for GPS L1
C/A and L5 signals, respectively. AL1 and AL5 are the signal powers of received
GPS L1 C/A and L5 signals, respectively. ηL1,IF (nTs) and ηL5,IF (nTs) are the
down-converted and filtered noise components that are assumed to be Additive
White Gaussian Noise (AWGN).

GNSS receiver algorithms are responsible for the synchronization of the received
signal and the locally generated signal to demodulate the navigation data (dL1 and
dL5) according to a two-stage architecture made of acquisition and tracking.

Depending on the sample rate and quantization type applied in the Analog-to-
Digital Converter (ADC), a data link providing a continuous stream of IF data to
the baseband processor has to be designed and implemented for real-time processing
in commercial receivers. However, mostly for software GNSS receiver implementa-
tions, IF data storage is realized so as to be able post-process the IF data.

2.3.2 Signal acquisition
At the acquisition stage, the objective is to process the incoming digitized signals

to find out all the visible satellites. Rough synchronization of the locally generated
signal with the incoming one is performed and the estimated Doppler frequency
(fD) and code phase (τ) values of all the acquired satellites are fed to the tracking
stage.

Figure 2.8 shows the general structure of a coherent acquisition using a coherent
integration time equal to one primary code period and K non-coherent accumula-
tions. While acquiring a modern GNSS signal (e.g. GPS L5) having both data and
pilot signal components, the input signal can be correlated with the pilot or the
data channel. In case of data-pilot acquisition, the number of correlators in Figure
2.8 must be doubled in number in order to include the processing of both the data
and pilot channels in two separate channels. Although it will cause an increase in
the computational burden, it will increase as well the available signal power. In
the case of processing only the pilot signal, the advantage of the absence of the
navigation data is exploited.
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Figure 2.8: GPS signal acquisition block for coherent and non-coherent cases.

At the acquisition stage, different locally generated Doppler frequency (fD)
and code delay (τ) values are tested to estimate the delay and Doppler shift of
the incoming signal. For all possible combinations (τ, fD), the correlator outputs
in Figure 2.8 for the pilot and the data channel acquisitions during the coherent
integration in the case of no sign transition are expressed as [42]:

YI,pk
(τ, fD) ≈

√︄
C

4 R(∆Tk)sin(π∆FkTc)
π∆FkTc

cos(∆θk) + ηI,pk
(2.13)

YQ,pk
(τ, fD) ≈

√︄
C

4 R(∆Tk)sin(π∆FkTc)
π∆FkTc

sin(∆θk) + ηQ,pk
(2.14)

YI,dk
(τ, fD) ≈

√︄
C

4 dkR(∆Tk)sin(π∆FkTc)
π∆FkTc

cos(∆θk) + ηI,dk
(2.15)

YQ,dk
(τ, fD) ≈

√︄
C

4 dkR(∆Tk)sin(π∆FkTc)
π∆FkTc

sin(∆θk) + ηQ,dk
(2.16)

where subscripts d and p correspond to the data and the pilot channels, respec-
tively. Subscript k is the accumulation number which corresponds to the duration
between kTc and (k + 1)Tc where Tc corresponds to the coherent integration time
interval. R(∆Tk) is the normalized k-th cross-correlation between the incoming and
the generated codes, ∆Tk is the k-th sampled code delay difference between the gen-
erated local one (τ) and the incoming one (τ0). ∆Fk is the k-th frequency difference
between the locally generated carrier and the incoming one: ∆Fk = f0 −fD. ∆θk is
unknown residual phase value. ηI,pk

, ηQ,pk
, ηI,dk

and ηQ,dk
are k-th Gaussian noise

terms. dk is the sign of the k-th navigation data bit which are only included in the
data channels.
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2.3 – GNSS receiver architecture

Having obtained the correlations in each branch, the test statistics, namely,
the Cross Ambiguity Function (CAF), is computed by squaring and summing each
result so as to remove the dependence on the unknown phase residual (∆θk):

Sk(τ, fD) = Y 2
I,p/dk

(τ, fD) + Y 2
Q,p/dk

(τ, fD)

≈
⃓⃓⃓⃓√︂

C/4 R(∆Tk) sinc(π∆FkTc) + ηIQk

⃓⃓⃓⃓2 (2.17)

where ηIQk
is the resulting noise contribution. By employing K independent corre-

lations, non-coherent acquisition method can be implemented and the test statistics
is changed to SK(τ, fD):

SK(τ, fD) =
K∑︂

k=1
Sk(τ, fD) (2.18)

The presence of a satellite signal is determined through a decision process con-
sidering a preset decision threshold (Th):

max
τ,fD

|SK(τ, fD)|2 > Th (2.19)

where the decision threshold (Th) is determined considering the noise floor and con-
trolling the false alarm probability. One of the performance comparison parameters
in the acquisition stage is the peak-to-floor ratio. It is computed as by considering
the test statistics parameters in (2.17) or (2.18):

αmax = 20 log10

(︄
max(SK)

max(Sfloor)

)︄
(2.20)

where Sfloor is the set of CAF values outside of the main peak. Since the detection
process deals with distinguishing the presence of the satellite signal from the noisy
data, ROC curve that is a plot of the detection probability versus false alarm prob-
ability and ROC analysis are also used for performance assessment and threshold
setting.

2.3.3 Signal tracking
In a GNSS receiver, after having obtained the rough synchronization of code

phase (τ̂ (A)) and Doppler frequency (f̂ (A)
D ) of the acquired satellite signals, the

values are fed to the tracking stage for code and frequency estimates refinement.
The motivation of the signal tracking stage is to strip off the carrier and the

spreading code by tracking the signal to obtain whole navigation data. While in the
code tracking loop aligned carriers are utilized, aligned spreading codes are used to
remove the carrier synchronously in the carrier tracking loop. In order to estimate
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Figure 2.9: Signal tracking stage architecture.

the signal parameters (e.g. code delay, Doppler frequency, carrier phase, etc.) and
track their variations over time, Delay Lock Loop (DLL) and PLL are used in a
coupled way as depicted in Figure 2.9.

Code tracking

A general code tracking structure is given in Figure 2.10. In code tracking,
after carrier is removed using the local replica coming from the PLL, three local
spreading codes (i.e. replicas), namely, early (cE[n]), prompt (cP [n]), and late
(cL[n]), are generated and correlated with the incoming signal.

The local replica codes are generated having a pre-defined ∆-chip spacing be-
tween early and late replicas:

cE[n] = c
(︂
nTs − (τ̂A + τ̄ + ∆/2)

)︂
cP [n] = c

(︂
nTs − (τ̂A + τ̄)

)︂
cL[n] = c

(︂
nTs − (τ̂A + τ̄ − ∆/2)

)︂ (2.21)

where τ̄ is the residual delay estimated by the DLL while τ̂ (A) is obtained from
acquisition stage. ∆ is less than or equal to chip duration Tc and the case of having
∆ = 0.5Tc spacing is picturized in Figure 2.11.

As it can be seen in Figure 2.11, when the prompt replica code is aligned with
the incoming code, the highest peak of the correlation is located at the prompt
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Figure 2.10: Signal code tracking block diagram.

replica and no error is generated by the discriminator. In other cases, the DLL dis-
criminator outputs the relevant error [43]. After in-phase (I) and quadraphase (Q)
accumulated correlator outputs are obtained, they feed to a discriminator function
to calculate a measurement of the code tracking error (i.e. residual delay error)
δτk. The most commonly used discriminators are the Dot-Product Power (DPP),
Early-minus-Late Power (ELP), and Early-minus-Late Envelope (ELE) noncoher-
ent discriminator [18]:

δτDP P,k = (IE − IL) IP + (QE − QL) QP

δτELP,k =
(︂
I2

E + Q2
E

)︂
−
(︂
I2

L + Q2
L

)︂
δτELE,k =

√︂
I2

E + Q2
E −

√︂
I2

L + Q2
L

(2.22)

where k is used to index the steps of the DLL operation. IE, QE, IL, and QL are
outputs of the correlators shown in Figure 2.10. The output error of the normal-
ized ELP discriminator is linear over 1-chip range as it is seen in Figure 2.11 and
normalization removes the amplitude sensitivity so that improves the performance
under rapidly changing Signal-to-Noise Ratio (SNR) conditions [26]. Chip-spacing
is a key design parameter that should be carefully set considering the presence of
both noise and multipath. Moreover, the loop filter that reduces the noise and is
designed with selection of the parameters (e.g. filter order and bandwidth) also
plays an important role in the code tracking performance.
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Figure 2.11: Early-prompt-late replicas, correlator outputs, and early-minus-late
DLL discriminator (adapted from [43]).

Carrier tracking

The general structure of the carrier tracking loop is given in Figure 2.12. While
tracking the carrier signal, the spreading code of the incoming signal is tried to be
aligned with the locally generated code at the same time. The aim is to have all
the power in the in-phase (I) branch. In principle, the operation and correlator
outputs are the same as in the architecture of Figure 2.8. In this case, the carrier
phase error is minimized. This is possible when the correlation value in the in-phase
branch (Ik) is maximum and in the quadrature-phase branch (Qk) is zero.

In Figure 2.12, the cp[n] is the prompt spreading code generated at the code
tracking loop and the alignment includes a code delay estimation error (δτ) which
is also included in the tracking correlator output equations:

Ik,p = AkRk(δτ)sin(πTδfk)
πTδfk

cos(δφk) + ηI,pk
(2.23)
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Figure 2.12: Signal carrier tracking block diagram.

Qk,p = AkRk(δτ)sin(πTδfk)
πTδfk

sin(δφk) + ηQ,pk
(2.24)

Ik,d = AkRk(δτ)dk
sin(πTδfk)

πTδfk

cos(δφk) + ηI,dk
(2.25)

Qk,d = AkRk(δτ)dk
sin(πTδfk)

πTδfk

sin(δφk) + ηQ,dk
(2.26)

where subscripts d and p correspond to the data and the pilot channels (e.g. GPS
L5 signal), respectively. Ik,d/p and Qk,d/p are in-phase and quadrature correlator
outputs. R is the correlation of the locally generated prompt replica code with the
incoming code, dk is the polarity of the k-th navigation data-bit when data channel
is considered, δf is the frequency estimation error. A PLL discriminator computes
the difference between the phase of incoming signal and locally generated signal.
A commonly used two-quadrant Costas PLL discriminator outputs the phase error
as:

δφk = tan−1
(︄

Qk,d/p

Ik,d/p

)︄
(2.27)

where δφk is the average carrier phase estimation error over the coherent integration
time (T ). After the loop filter, which reduces the noise, A is the carrier amplitude in
one branch and ηI,pk

, ηQ,pk
, ηI,dk

, and ηQ,dk
are independent Gaussian noise terms.

As shown in Figure 2.12, a Numerically Controlled Oscillator (NCO) generates a
sinusoid of which phase ˆ︁θk is related to filtered discriminator output (δ ˆ︁φk). δφk,
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the average carrier phase error, is the difference between the one estimated by NCO
(ˆ︁θk) and the phase of the incoming signal (θk).

In PLL loop filter design, there is a trade-off in the decision of the integration
time (T ) and loop bandwidth (Bn) besides the choice of the filter order. The
selection of the parameters is discussed in Appendix A.2.1.

2.3.4 Computation of user position
After the signal tracking is successfully achieved by synchronizing the local code

and carrier with the incoming signal, the navigation data samples are extracted by
wiping off the carrier and code from the incoming signal. Thus, as it is shown in
Figure 2.10, the in-phase prompt correlator output (IP ) contains the navigation
data sequence to be used for position computation. Figure 2.13 shows the block
diagram of the computation of user position.

Signal 
Tracking

Decoding of 
Navigation 
Message

Extraction of 
Ephemeris

Computation 
of Satellite 

Positions and 
Clock Offsets

Pseudorange Least Square or KF

PVT 
solution
(X,Y,Z,dt)

Tropospheric
Model

Ionospheric
Model

Signal 
Acquisition

Acquisition
Refinement

← Corrections are applied and updated

Figure 2.13: Block diagram of the computation of user position.

In decoding the navigation message, firstly the bit synchronization is realized by
considering the secondary code (e.g. NH) phase, the navigation data rate (e.g. 50
bps, 100 bps), and error correction technique (e.g. FEC) of the processed signal with
the employed tracking integration time (e.g. 1 ms, 10 ms, etc.) in the receiver. After
the navigation bits are obtained through some bit synchronization techniques (e.g.
Histogram method, K-P method, Viterbi algorithm, etc.) of which a summary can
be found in [44], they are decoded by following the scheme defined in the related ICD
of the GNSS system. Different GNSS systems have different structured navigation
messages defined in the ICDs. However, mostly the beginning of a message block
(e.g. frame, sub-frame, page, etc.) starts with a synchronization word (SW) or in
other words a preamble. Identifying the preamble is called frame synchronization.

In the receiver implementation, tracking each satellite signal is realized through
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an assigned channel individually. After choosing a reference channel, the pream-
ble locations in the processed samples of the remaining channels are compared to
each other to set initial pseudorange measurements. The signal travel time from
the satellites to the Earth is around 65 − 83 ms [33] and the earliest detected SW
belongs to the closest satellite. However, the relative pseudorange does not contain
any receiver clock error, and timing information cannot be extracted [43]. Af-
ter decoding the navigation data, by computing the time-count parameters in the
navigation data, accounting for clock biases, and utilizing the obtained code-delay
measurements from the DLL, a better pseudorange is approximated [27]. The ba-
sic observation equation for the pseudorange (ρk

u) between the satellite (k) and the
receiver (u) is [33]

ρk
u = dk

u + c
[︂
δtu − δtk

]︂
+ Ik

u + T k
u + ek

u (2.28)

where δtu and δtk are the receiver and the satellite clock offsets, respectively. Ik
u

and T k
u are ionospheric and tropospheric propagation delays. ek

u is the observational
error. dk

u is the geometrical range that is computed as

dk
u =

√︂
(xk − xu)2 + (yk − yu)2 + (zk − zu)2 (2.29)

where xu, yu, zu are the user coordinates to be found. The position of the satellite
(xk, yk, zk) are computed from the ephemeris.

Each satellite transmits its unique ephemeris parameters that consist of the
orbital elements (i.e. Keplerian parameters) and clock offset for a specific epoch.
It allows computing the Earth Centered Earth Fixed (ECEF) coordinates of the
satellite’s antenna phase center position. The broadcast data is updated every
specific duration (e.g. 30 minutes, 2 − 3 hours). As being different from other
GNSS systems, in GLONASS ephemeris, the state vector (position and velocity)
of the satellite along with corrections in the Earth-fixed PZ90 coordinate system is
provided [19]. In any case, the positions of the satellites (xk, yk, zk) are computed
by using the ephemeris data and the future satellite positions can be predicted
until recent ephemeris data are downloaded. Satellite clock offset (δtk) are also
computed from the ephemeris that includes the clock information as coefficients
(e.g. the satellite clock offset, clock drift and clock drift rate) of a polynomial.

When the satellite signals travel through the atmosphere, due to especially iono-
spheric and tropospheric effects a propagation delay is observed. The ionospheric
(Ik

u) and tropospheric (T k
u ) propagation delays can be approximated by utilizing

several empirical models whose coefficients are part of the broadcast ephemeris.
Thus, the atmospheric effects are tried to be mitigated in the range measurements.

In Equations 2.28 and 2.29, there are four unknowns: xu, yu, zu, δtu and the
error term ek

u that has to minimized. Therefore, at least four pseudorange measure-
ments are needed. The most commonly used algorithm for position computation is
based on the least-squares method since there are generally more observations than

27



Global Navigation Satellite Systems

unknowns [33]. By performing iterative techniques, the pseudorange measurement
equations are solved based on linearization.

2.4 Implementation of a multi-frequency multi-
constellation SDR GNSS receiver

A general SDR based GNSS receiver high-level block diagram is shown in Fig-
ure 2.14. All the signal and measurement processing techniques (e.g. signal ac-
quisition, tracking, scintillation analysis, navigation data processing, etc.) can be
implemented in software. IF data, depicted in Figure 2.14, is the most basic type
of GNSS data obtained after the RFE stage [45]. IF samples can be processed in
real-time or stored for post-processing.

Radio Front End 
(RFE)

IF Data

GNSS 
Antenna

Signal 
Tracking

Signal 
Acquisition

Scintillation
Analysis

PVT
Computation

Figure 2.14: GNSS receiver architecture.

In the framework of this thesis study, a non-real-time fully software GNSS re-
ceiver has been implemented. The details of the implemented software GNSS re-
ceiver in MATLAB [46] and the designed Graphical User Interface (GUI) are shared
in Appendix A. The receiver has been developed with a modular architecture and
is capable to process GPS L1 C/A, GPS L2-CM, GPS L5 I-Q, Galileo E1b, and
Galileo E5a-I signals.

The receiver also includes an analysis tool for scintillation phenomena to output
the amplitude and phase scintillation indices, the spectral index of phase scintilla-
tion, and the spectral strength of the phase, which are discussed in Section 3.1. The
performance analysis of the implemented different acquisition algorithms for GPS
L1 C/A and L5 signals is examined in Section 4.1. Nonetheless, when the tracking
stage is considered, the design of the signal carrier tracking filter and selection of
parameters are detailed in Appendix A.2.1. Moreover, the implementation of KF-
based PLL in which the output of the discriminator is used to map the correlator
outputs for the estimation of state errors is shared in Appendix A.2.2.

In the SDR approach, processing of the stored IF data allows the possibility to
replay the original scenario. For example, the availability of the collected IF data
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related to rare scintillation events makes the analysis of data with having a possi-
bility to replay the original event possible, and hence it enables the development
of advanced and innovative signal processing techniques to detect and mitigate the
effects [47]. It also has provided a flexibility to consider the recent developments in
the AI world for signal processing and outlier detections. Furthermore, besides the
benefits of the SDR operation such as interoperability, multi-functionality, com-
pactness, and modular architecture design with ease of upgrades, there are also
challenges in the implementations [48].

The challenge of SDR implementations in GNSS

SDR concept and the first reconfigurable architectures are defined in Joe Mi-
tola’s pioneering works [49, 50] in 1993 and 1995. The ideal software radio inter-
operates with any communication service in its RF band and the software radio
reconfigures itself to the appropriate signal format by running a different algorithm
[49]. It has been accomplished through a combination of techniques that are applied
in the RF front-end stage and the employed bit-stream processing functions in the
general-purpose programmable processors [50]. The resultant software-defined ra-
dio extends the evolution of programmable hardware with increasing flexibility via
increased programmability [50]. As Mitola had foreseen that this kind of flexibility
has opened opportunities for reduced costs and improved services for civilian and
military applications as well.

The first complete GPS receiver implementation is described by Dennis Akos in
1997 [33]. Software radio GNSS receivers are being used since many years, mainly
as research tools or as tools at the early stage of the design process. They can
be implemented as software defined, or fully software receivers, depending on the
computational burden of the processing and on the real-time/non real-time require-
ments. In [51], three categories of the architectures, namely, the classic architecture,
hybrid architecture, and fully software architecture, are identified among the variety
of solutions.

In the classic architecture, whereas a Field Programmable Gate Array (FPGA)
is used to perform high-rate massive operations (e.g. correlations), the acquisi-
tion/tracking stages and positioning software are implemented in the Digital Signal
Processor (DSP). A PC can also be used for the user interface and configuration
functions. In the hybrid architecture, the receiver is implemented partially in the
FPGA and partially through the software running on a General Purpose Processor
(GPP). Positioning, user interface and receiver management functions are realized
in the PC thanks to the high-speed data connection provided by the FPGA. Fully
software architecture implementation is based on the software running on a GPP
(e.g. PC). The connection between the RF front-end the PC is generally realized
through a USB port. In the case of near real-time implementations, FPGA might
be used for high speed sample transfer. In [51], a comparative list of available

29



Global Navigation Satellite Systems

solutions in the literature can be found.
As it is discussed in Section 2.3.1, the RFE stage determines the cost, size, and

power consumption of the receiver. One of the challenges is related to the sampling
rates. Timing and synchronization should be required to be maintained within the
radio [48]. The capacity requirements associated with the IF data and high data
rates are other main challenges [45]. By considering the sample rate and quantiza-
tion type applied in the ADC, a data link (e.g. PCI, USB, Ethernet, etc.) providing
a continuous stream of IF data for real-time processing or an IF data storage system
for post-mission processing has to be designed. In these cases, although a higher
sample rate that basically provides more measurements is tended to be preferred,
it can pose a challenge in size, weight, power, and budget requirements. Further-
more, sustaining required data-rate rate across inter-processor interfaces is difficult
[50]. In the software implementation side, the possibilities of the alteration or the
destruction of the configuration data and the overuse of processing and memory
resources should be taken into account carefully [48].

2.5 Overview of GNSS error sources
A variety of GNSS error sources are picturized in Figure 2.15. These errors

corrupt the range measurements and hence degrade overall position accuracy.
As it is mentioned in Section 2.2, the atomic clocks onboard GNSS satellites

provide a consistent time reference. Although these clocks are highly stable, they
do drift a small amount and they are not perfectly synchronized with the related
GNSS system time. With the clock corrections provided by the control segment,
the satellite provides the users an estimate of its clock offset. Furthermore, while
the satellite transmits its Keplerian elements, they are almost exactly but with a
small error broadcasted and this error grows from the time of upload by a control
station until the next upload [52]. The geographical extent of the control-segment
monitoring networks gains importance in ephemeris determination and hence these
errors change with the user location [26].

In signal generation, as it is discussed in Section 2.2 and shown in Figure 2.4,
it is expected that each ranging code generated onboard the satellite experiences
a different delay from signal generation to output from the antenna because of
the different analog and digital signal paths. Therefore, all satellite signals have
a unique offset from the GNSS system time, this is also defined as the equipment
group delay [26].

Table 2.3 shows the estimates of the pseudorange error sources and the accuracy
of the pseudorange value is termed the User Equivalent Range Error (UERE).
The aforementioned errors are listed under space/control segment with 1σ error
values in meters. The error components are considered independent and identically
distributed from satellite to satellite. Moreover, the Root Sum Squared (RSS)
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Figure 2.15: Principal GNSS error sources.

addition of UERE components forms the total system UERE that is assumed to
be Gaussian distributed [3].

When the GNSS signals travel through the atmosphere, the signals suffer from
delays and atmospheric anomalies caused by different layers of the atmosphere.
While the ionosphere is a dispersive medium located in the atmosphere between 70
km and 1000 km above the Earth, the troposphere is the lowest layer closest to the
Earth surface and it is a non-dispersive medium for radio waves below 15 GHz [3].

The ionospheric delay is proportional to the electron density along the path
length [52]. It is referred to as Total Electron Content (TEC) and it is a func-
tion of the day, user location, satellite elevation angle, weather season, magnetic
activity, ionizing flux, solar activity, and scintillation [26]. Scintillation is caused
by the electron density irregularities in the ionospheric plasma as drawn in Figure
2.15. Hence, this varying nature of the atmosphere makes the prediction of the
ionospheric delay very difficult. For a user having a single-frequency receiver, the
dominant pseudorange error is the ionospheric delay as it is seen in Table 2.3. Since
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Table 2.3: Typical GNSS User Equivalent Range Error (UERE) Budget for Single-
Frequency Receiver [18]

Segment Source Error Source 1 σ Error (m)

Space/Control
Broadcast clock 0.4
Differential group delay 0.15
Broadcast ephemeris 0.3

User

Residual ionospheric delay 7.0
Tropospheric delay 0.2
Receiver noise and resolution 0.1
Multipath 0.2

System UERE Total (RSS) 7.03

the effect is dispersive, it also depends on the frequency of the signal that travels
through the ionosphere. Therefore, having a dual-frequency receiver (e.g. GPS L1
and L2) enables the estimation of the delay on both frequencies by differencing
the pseudorange measurements made on two frequencies [26]. In this approach,
multipath error and receiver noise errors are neglected.

The speed of the signals also alters within the troposphere and the delay is
a function of the local temperature, pressure, and relative humidity. Although
its effect is nearly independent of the signal frequency, it depends on the time of
passage [52]. Therefore, a mapping function model is also needed to determine the
path length considering satellite location (i.e. elevation angle) and the user height.

Measurement errors in the receiver are induced by the signal tracking loops and
the dominant error sources are thermal noise jitter and interference effects [26].
Multipath effect is basically the self-interference of the replicas of the signals that
are reflected or refracted from the physical surrounding environment and it varies
significantly depending on the surrounding environment of the receiver and satellite
elevation angle. Both multipath and receiver noise errors are uncorrelated between
receivers and they can change very rapidly [26].

Furthermore, it has to be mentioned that there are some ways for compensating
and mitigating the errors up to a point. For example, in order to compensate for
satellite clock and satellite orbit errors, it is possible to download precise satellite
clock and ephemeris information from a Space Based Augmentation System (SBAS)
or a Precise Point Positioning (PPP) service provider [53]. Due to the fact that
the ionospheric and tropospheric conditions are very similar within a local area,
besides the models that are used to estimate the amount of error caused by the
delays, Differential GNSS or Real-Time Kinematic (RTK) receiver configurations
are exploited. Moreover, high-end GNSS receivers and antennas today tend to
have less receiver noise and be better at rejecting multipath than lower cost GNSS
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receivers [53]. Nevertheless, the modernization of the GNSS systems, availability of
multi-frequency signals with augmentation systems, and the developments in GNSS
receiver and antenna technologies leave the multipath and scintillation effects as
the dominant error contributions in the positioning.

A more detailed description of each source can be found in [18, 26, 28, 54].
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Chapter 3

Ionospheric scintillation and
multipath

This chapter starts with the description of the ionospheric scintillation, esti-
mation of the scintillation indices that quantify and characterize the scintillation
events, and analysis of real scintillation events. With the literature research on
scintillation modeling and classical scintillation detection methods, an overview
of scintillation effects on the signal processing stages of a receiver are provided.
Then, the multipath effect on GNSS measurements and observables is investigated
through the analysis of real and simulated GNSS data. Moreover, classical multi-
path detection techniques in the literature are examined.

3.1 Ionospheric scintillation
Trans-ionospheric communication of the radio waves while traveling from trans-

mitter to user is affected by the ionosphere that is highly variable and dynamic in
both time and space [4]. The ionosphere, highly varied propagation medium, has
an irregular structure due to plasma instabilities and scintillation is basically ran-
dom fluctuations of the parameters of trans-ionospheric waves. Observation of the
scintillation has been used in many research fields such as astronomy, geophysics,
atmospheric physics, ocean acoustics, telecommunications, etc. so as to identify
the irregular structure of the propagation medium [4].

GNSS signals undergo severe propagation effects such as phase shifts, group
delays, and amplitude variations while propagating through the ionosphere [47].
Ionospheric irregularities affect the GNSS signals in two ways, namely, refraction
and diffraction, and both of them are caused by the group delay and phase advance
of GNSS signals [55]. Both the aforementioned effects that are usually denoted as
scintillation as the event causing fluctuations in the signal amplitude and phase of
the received signals. Large-scale variations in both signal power and phase with the
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increased measurement noise level severely degrade the GNSS receiver performance
by preventing the receiver from correctly acquiring the GNSS signals or causing
loss-of-lock when the signals are tracked.

Under a scintillation event, proper countermeasures could be undertaken at
signal processing level, enabling either more robust signal acquisition and track-
ing or alternate resources to decrease the effect of disturbed signal propagations.
Therefore, detecting and monitoring the scintillation effects in order to estimate
the ionospheric scintillation in its early stages and measure the scintillation param-
eters gains importance. In this sense, GNSS signals provide an excellent means for
measuring scintillation effects due to the fact that they are available all the time
and can be acquired through many points of the ionosphere simultaneously [56].
With the coming new GNSS systems, a greater number of signals are available for
monitoring signals and the advantages of new modernized signals and constella-
tions for scintillation monitoring can be found in [40]. Although GNSS signals are
themselves affected by the ionospheric scintillation too, observation of the received
GNSS signals can be a possible option to estimate the ionospheric scintillation [56].

The received signal r(t), where detailed in Section 2.3.1 and that is a linear
combination of signals s(t) broadcast by N visible satellites, can be expressed under
scintillation as:

r(t) =
N∑︂

i=1
ξs,i(t) si(t) + ω(t) (3.1)

where ω(t) is zero-mean noise that is usually modeled as white Gaussian and ξs(t)
is the ionospheric scintillation disturbance effect [57]:

ξs(t) = ρs(t) exp(jθs(t)) (3.2)
where ρs(t) and θs(t) are envelope and phase components, respectively. However,
this kind of model could mimic the variations of other effects besides scintillation,
and it must also be specific among the scintillation events. Thus, modeling and
characterizing the ionospheric scintillation are not easy and straightforward as dis-
cussed in Section 3.2.1, and for example, as it is observed in the Cornell model, ξs(t)
aims to represent the perturbations of specifically equatorial scintillation activity
on the signal amplitude and phase. Correspondingly, there are two parameters (i.e.
scintillation indices) that are typically used to indicate the amount of scintillation
effect in a satellite signal and that are computed by employing the tracking outputs
[56]: amplitude scintillation index S4 and phase scintillation index σϕ.

While S4 is unitless, σϕ is measured in radians. Even if they have different
dimensions, both S4 and σϕ indices typically fall within the range of 1 and 0.
Throughout the analyses and implementations in this thesis, different levels of
scintillations are evaluated, and the values proposed for classifications are in line
with the ones in other papers [58, 59] that base the choice of the thresholds on
statistical observations. When there is no scintillation, the indices are below 0.2.
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For weak scintillation, the indices are normally between 0.2 and 0.5. It is often
considered as moderate scintillation when the indices are between 0.5 and 0.7. If
the indices are higher than 0.7, they are evaluated as strong scintillation events.

In the following, estimation of the scintillation indices by employing different
techniques that consist of detrending operations and the analysis and statistics of
the scintillation events through the collected data are provided. The necessity of
detrending the phase and/or amplitude measurements arises from the need to con-
sider the related-frequency portion of the fluctuations due to diffraction. Indeed,
the signals scattered from the surrounding environment could mimic the distur-
bance effect of ionospheric scintillation [60], which points out the significance of
post-correlation data processing in the tracking stage to quantify, detect and mon-
itor a scintillation event.

3.1.1 Estimation of scintillation indices
Phase detrending

Phase scintillation monitoring is achieved by computing the σϕ index that cor-
responds to the standard deviation of the detrended phase measurements [61]:

σϕ =
√︂

⟨φ2⟩T − ⟨φ⟩2
T (3.3)

where φ is the detrended phase measurement that can be obtained by processing the
carrier phase measurements through the filters. Accumulated Delta Range (ADR)
that corresponds to the accumulation of the estimated phase by the corresponding
carrier tracking loop is used for the carrier phase observation. ⟨·⟩T is the average
operation over a fixed period T which generally denotes a 1-min average [61].

There are two phase-detrending methods that are mostly used, and they will be
described in this Section. Generally speaking, the phase measurements are passed
through cascaded high pass filters and all low-frequency effects are removed. Raw
data (φ) at 50 Hz rate from tracking outputs are used and the indices are generally
computed at an observation interval of T = 60 s, as previously remarked.

i) Cascaded High Pass Filters: In this phase detrending algorithm, the
phase measurements are passed through three cascaded 2nd order High Pass Filters
(HPFs), and all low-frequency effects are removed [56]. The block diagram is as
shown in Figure 3.1.

Each stage filter has a transfer function in the s-plane [56]:

Hi(s) = s2

s2 + αiωNs + ω2
N

(3.4)

where fN = ωN/(2π) is the filter’s corner frequency in Hz. α1, α2, and α3 are the
coefficients, the product H1(s)H2(s)H3(s) makes up the frequency response of the
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Figure 3.1: Cascaded High Pass Filter (HPF) design for phase detrending.

high-pass filter. Although the characteristics of the ionospheric effect at different
regions require different detrending settings, generally fN = 0.1 Hz is selected in the
implementations. More information related to the selection of the coefficients and
cutoff frequency can be found in [56]. Moreover, in setting the filter cutoff frequency
and coefficients, the oscillator (e.g. TCXO, OCXO) phase noise, thermal noise,
and the multipath effects on lower frequency components should be considered to
monitor scintillation events better; hence, as it is expected, empirically derived
values are reported in the literature.

ii) Butterworth Filters: Another popular detrending method is described
in [62]. It is based on the use of a Butterworth filter that can be implemented by
cascading six 1st order high-pass Butterworth filters, each with a cutoff frequency
f

′
c as depicted in Figure 3.2.

Figure 3.2: Block diagram of Butterworth filtering for carrier phase data.

The equivalent cutoff frequency of each filter is computed by [63]:

fc = f
′
c√

21/N − 1
(3.5)

where N is set to 6 in our case and by setting fc = 0.1 Hz, it is obtained that
f

′
c = 0.035 Hz.

The selection of 0.1 Hz is proposed in [56] and the motivation behind cascading
a number of lower-order high-pass Butterworth filters instead of employing one
higher-order filter is to overcome the problem of phase shift between input and
output [62, 63].
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Amplitude detrending

S4 index that is used to quantify the amplitude scintillation is derived from
the detrended intensity of the signals. S4 values are also computed over T = 60 s
intervals by processing the prompt in-phase (Ii) and quadraphase (Qi) correlator
outputs at 50 Hz rate. For example, in the case of employing 1 ms integration time
in the tracking of GPS L1 C/A signal, in other words, having Ii and Qi samples
with 1 kHz rate, the Narrow Band Power (NBP) and Wide Band Power (WBP)
are computed as [56]:

WBP =
20∑︂

i=1
I2

i + Q2
i

NBP =
(︄ 20∑︂

i=1
Ii

)︄2

+
(︄ 20∑︂

i=1
Qi

)︄2 (3.6)

where the raw signal intensity is equal to (NBP − WBP) and it is measured every
20 milliseconds. In the case of measurements performed over data channels, a
summation over a bit transition has to be avoided. The value of 20 ms is a heritage
of GPS signals processing wherein the L1 C/A code data rate is 50 Hz.

Figure 3.3: Block diagram of Butterworth low pass filtering for intensity measure-
ments.

The transfer function of each filter depicted in Figure 3.3 has the form in the
s-plane [56]

Hi(s) = ω2
N

s2 + αiωNs + ω2
N

(3.7)

where fN = ωN/(2π) is the filter’s corner frequency in Hz and it is not necessarily
the same as for phase detrending. The detrending signal intensity SI is computed
by diving the raw signal intensity by the output of the low-pass filter stage [56]:

SIk = (NBP − WBP)k

(NBP − WBP)LP F,k

(3.8)
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where k is the measurement index that corresponds to a 20 ms processing interval.
Then, the S4 metric is calculated as [64]

S4 =

⌜⃓⃓⎷⟨SI2⟩T − ⟨SI⟩2
T

⟨SI⟩2
T

(3.9)

where SI is the detrended signal intensity, ⟨·⟩T is the average operation over a fixed
period T . So as to compute the scintillation effect on the signal amplitude and to
remove the variations due to other effects (e.g. thermal noise, tropospheric delay,
multipath, receiver clock, etc.), detrending operations that commonly correspond
to processing the signal intensity through cascaded low-pass filters are employed.
However, in some cases where the fluctuations and noise that mixed into the signal
are not at the level to contaminate the actual scintillation data, the S4 can be
approximated without detrending the signal intensity.

3.1.2 Data collection and sites
The amount of amplitude and phase scintillation that affect the GNSS signal

can be monitored and measured by exploiting the signal tracking stage correlator
outputs in the GNSS receiver. Specialized ISMRs or SDR based receivers can be
used for monitoring purposes [47, 64, 65, 66, 67, 68].

Figure 3.4 shows an example of scintillation monitoring and data collection
setup. A part of the data that are used throughout this thesis study were collected
in an Antarctic station and in an Equatorial site by means of data grabbers of this
kind. Data collection stations and coordinates are given in Table 3.1.

Table 3.1: Data Collection Sites

Station Coordinates
South African Antarctic

Research Base (SANAE-IV), Antarctic
Lat.: 71.67°S

Long.: 2.84°W

Hanoi, Vietnam Lat.: 21.00°N
Long.:105.84°E

Centro de Radioastronomia e
Astrofisica Mackenzie (CRAAM), Brazil

Lat.: 23.55°S
Long.: 46.65°E

The data collecting setup is a custom-designed solution based on a multi-
constellation and multi-frequency GNSS data grabber and a SDR receiver [65, 69].
The data collection process in Antarctica started in 2015 in the framework of the
DemoGRAPE project and it is still on-going [69].

In such an installation, the data grabber used is Fourtune, which is a multi-band
multi-frequency data collection unit and it is able to perform medium-complexity

40



3.1 – Ionospheric scintillation

Figure 3.4: GNSS experimental scintillation data collection configuration.

signal processing (e.g. decimation, digital filtering, quantization, etc.). It has been
developed by the researchers at Joint Research Center (JRC) of the European
Commission in Italy and an interested user can find more information about its
architecture in [64].

GNSS signals have been captured by an active antenna embedding a built-in
amplifier with 39 ± 2 dB gain and maximum 2.8 dB noise figure. The LNA of
the front-end has 30 dB gain and 3 dB noise figure. However, depending on the
test setup, due to the antenna cable, coaxial connectors and one-to-four splitter,
additional losses are experienced. An interested reader can find useful material
about the design of monitoring stations of this kind in [47]. The data grabber
operates by means of monitoring of regular intervals of S4 and σϕ, and in case their
level passes a threshold, it triggers the data storage.

The collected IF data through the data grabber are post-processed in the pro-
prietary non-real-time fully software GNSS receiver that has been developed within
the thesis work and of which the implementation details are shared in Appendix
A. All the signal and data processing techniques (e.g. signal acquisition, tracking,
scintillation analysis, navigation data processing, etc.) have been implemented in
MATLAB with a modular architecture.

3.1.3 Analysis of real scintillation data
In order to provide a computation example and discuss also the benefits and

limitations of scintillation detection based on S4 and σϕ, in this Section some ex-
amples of real data processing are provided. The ionospheric scintillation indices
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are computed by the software receiver through post-processing of the collected IF
data.

Figure 3.5 (a) and (b) show an example of the computed amplitude and phase
scintillation indices of GPS L1 signal that belongs to the data collected at SANAE
IV on January 21, 2016. In Figure 3.5 (b), a sharp increase starting around 12:50
a.m. can be noticed which indicates that the GPS signal broadcast from PRN-14
satellite experiences strong phase scintillation. On the other hand, in Figure 3.5
(a), there is no increase observed in the computed S4 indices which could be an
indicator for amplitude scintillation.
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(a) Amplitude Scintillation.
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(b) Phase Scintillation.

Figure 3.5: Scintillation index values of GPS L1 C/A PRN-14 signal - January 21,
2016 (SANAE IV).

Figure 3.6 (a) and (b) show an example of the computed amplitude and phase
scintillation indices of GPS L1 signal that is broadcast from PRN-20 satellite. It is
seen that both amplitude and phase scintillations occur at the same time in these
data that were collected in Hanoi on April 16, 2013.

Owing to the fact that the occurrence of the ionospheric scintillation depends
on the several factors such as solar and geomagnetic activity, geographic location,
the season of the year, and local time [65], it is not straightforward to model the
occurrence of the event, and statistical analyses have been exploited in order to
characterize the intensity, duration and occurrence frequency of the scintillation
events observed in different locations [70, 71]. Due to polar location of SANAE IV,
phase scintillation statistically occurs more often than amplitude scintillation [70].
In the scintillation events observed at the equatorial region, typically both phase
and amplitude scintillations occur with faster and deeper signal power fadings that
take longer durations [71]. Furthermore, in [71], the authors provided a statistical
analysis of intensity, duration and occurrence frequency of amplitude and phase
scintillation by analyzing the collected data-sets in both high latitude and equato-
rial regions. The analysis shows also that while the mean duration of amplitude
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(a) Amplitude Scintillation.
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Figure 3.6: Scintillation index values of GPS L1 C/A PRN-20 signal - April 16,
2013 (Hanoi).

scintillation events observed in the equatorial region lasts 12.4 minutes, the mean
duration of the phase scintillation events in the polar region is 5.6 minutes. An
interested reader can find more statistics related to scintillation events in [71, 70].

3.2 Scintillation effect
Although scintillation phenomena are well known and widely characterized, it

is difficult to find a definitive treatment of the theory of scintillation [9], and it
is a fact of life for a number of communication and radar systems that have to
operate through the auroral or equatorial ionosphere [5]. Moreover, it has been
found that the atmospheric structure has the basic characteristics of fluid turbu-
lence in the equilibrium range, which is characterized by the well-known properties
of Kolmogorov turbulence [9]. It has led to the development of the theoretical
characterization of the scintillation effect [72, 73] besides the observational point
of view of the scintillation effect. Moreover with the scintillation observations to
identify and diagnose the irregular structure, different scintillation models including
the modeling of the wave propagation through the ionospheric irregularities have
been developed.

It is quite important to understand the global form of ionospheric scintillation
and to be able to model it. Because it helps users to differentiate the observed
fluctuations whether are originated from the ionospheric irregularities or from the
equipment or human-made so that countermeasures could be developed having
identified the effects [4].
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3.2.1 Signal characterization and simulation models
Ionospheric scintillation models in the literature can be divided into three groups,

namely, analytical models, climatological models based on in situ data, and global
climatological models [4, 74].

The most known analytical models such as the ones developed by Fremouw
and Rino [75] and Aarons [76] are suitable for trans-ionospheric Very High Fre-
quency (VHF) and Ultra High Frequency (UHF) communication links. Although
in the model of Franke and Lui [77], multi-frequency scintillations observed in C-
band and L-band besides VHF band are used for modeling through analytical and
numerical techniques, the study is limited to the amplitude scintillation data ob-
served in the equatorial region [74]. Likewise, the three-dimensional ionospheric
plume model developed by Retterer [78], and the empirical model that exploits the
cubic spline technique to reproduce the variation of scintillations developed by Iyer
et al [79] suffer from being limited to either a geographical sector (e.g. low latitude)
or the VHF band frequencies.

The first attempt for a climatological model based on in situ data is
by Basu et al in 1976 [80]. A developed model of equatorial scintillations with a
study of F-region irregularities using the density measurements obtained from the
Retarding Potential Analyzer (RPA) data onboard the OGO-6 satellite located at
altitude of 400 km is presented in [80]. Moreover, in 1981, by using the Atmo-
spheric Explorer D (AE-D) data, the model of scintillations at high latitudes was
developed [4]. Another most-known model based on in situ data is the Wernik-
Alfonsi-Materassi (WAM) model [81]. It is a scintillation climatological model for
the Northern Hemisphere high-latitude ionosphere and it uses the Dynamics Ex-
plorer 2 plasma density data collected between August 1981 and February 1983, the
International Reference Ionosphere (IRI) model [82] for estimating the irregularity
layer thickness, and the phase screen approach of Rino [83]. However, the afore-
mentioned models based on in situ data are limited in space and time by the data
used in their constructions and hence, their outputs cannot be used for real-time
GNSS applications [74].

The most known and used global climatological models are WideBand
MODel (WBMOD) and Global Ionospheric Scintillation Model (GISM) [4, 74].
Moreover, these models have been preferred to be used to estimate the scintillation
effects on GNSS receivers.

• WBMOD was developed over 40 years ago by NorthWest Research Asso-
ciates (NWRA) scientists to study ionospheric scintillation. On their web-
page, NWRA still provides an access to the solar and geomagnetic activity
indices that are frequently used as inputs to space-weather models [84]. The
WBMOD is a global model and it includes the variations with solar cycle,
season, geomagnetic disturbance levels, and local time [85]. The model is
formed by two parts: the modeling of the electron-density irregularities in

44



3.2 – Scintillation effect

the F-region, which is the highest region of the ionosphere and located at al-
titudes greater than 160 km, and a wave propagation law that is the power-law
phase screen model [83] developed by Rino in 1979 [85]. The phase spectrum
Pϕ(f) is characterized by the power law with two parameters, namely, the
spectral index (p) and the strength of the phase spectrum at a fluctuation
frequency of 1 Hz (T ) [86]:

p ≈ q + 1
T = N(q)λ2(CsL) sec θ GV q

e

(3.10)

where N is a normalization factor. q is one dimensional spectral index of
electron density fluctuations as measured in situ onboard a satellite. λ is the
radio wavelength and CsL is the strength of the irregularities where Cs is the
turbulence strength parameter and L is the irregularity layer thickness [83]. θ
is the zenith angle. G(a, b, δ) is a phase enhancement factor due to geometry
with three-dimensional anisotropic irregularities with respect to the magnetic
field, which a is along the field, b is across the field, and δ is an orientation
angle in relation to the local magnetic shell. Ve(Vs, Vd, a, b, δ) is the effective
scan speed across contours of plasma density [86]. Vs is the line-of-sight scan
velocity and Vd is the plasma irregularity drift velocity.
Then, by taking the integral of the phase spectrum Pϕ(f) over a processing
interval, phase variance is given by [4, 86]

σ2
ϕ =

∫︂ ∞

fc

Pϕ(f)df = 2
∫︂ ∞

fc

Tdf

(f 2
0 /f 2)p/2 (3.11)

where fc is low frequency cut off, f0 = Ve/2πr0 where r0 is the outer scale
of ionospheric structure. For weak intensity scintillation, in the absence of
multiple scatter, the corresponding weak-scatter scintillation index S4w is [86]:

S2
4w = M(q)

N(q) T
F

G

Zq/2

V q
e

S2
4 ≈ 1 − exp(−S2

4w)
(3.12)

where F (q, a, b, δ) is the Fresnel filter factor and Z(λ, h) is the Fresnel zone
size. M(q) is the normalization factor. The varied range of irregularities
with respect to the plasma drift velocity impose perturbations on the signals
and the threshold separating small and large scale irregularities is given by
Fresnel’s scale [16]. While the irregularities having scale sizes below Fresnel’s
scale, both refractive and diffractive effects occur at the same time which
results in an interference pattern at a ground receiver [87], the irregularities
having scale sizes above Fresnel’s scale result in a refractive effect.
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• GISM was developed by Bèniguel and Buonomo in 1999 [88] with the inclu-
sion of the Multiple Phase Screen (MPS) technique that consists the Parabolic
Equation (PE) method for a medium divided into successive layers of which
each acts a phase screen. In the extended version of the model provided by
Bèniguel in 2002 [89], the inputs of the model are listed as the geophysical
parameters (e.g. flux number, drift velocity), the inhomogeneity data, and
the operating data (e.g. carrier frequency etc.). In homogeneity character-
istics, the spectral density of the electron density fluctuations, correlation
distance of the inhomogeneities, height of the irregularities, and drift veloc-
ity and direction of the inhomogeneities are to be specified [89]. Besides
the MPS technique, the GISM also includes the NeQuick model as an iono-
spheric electron density model. NeQuick model is particularly for the study
of trans-ionospheric propagation applications and was developed by ICTP
Trieste and the University of Graz and the model genesis, uses, and evolu-
tion can be found in [90]. Furthermore, the details of GISM can be found in
the published user manual [91]. It has to be noted that the GISM outputs
the intensity and phase scintillation indices and also provides the time series
synthesis of transmitted signal phase and intensity [89].

Since both WBMOD and GISM have a climatological nature, they do not prop-
erly represent the actual conditions but rather show an average dependence of the
propagation characteristics on geophysical conditions [74]. Furthermore, these mod-
els are being calibrated with the data sets that do not include the GNSS derived
data; hence, it causes a limitation in the case of GNSS applications on which the
geometry is always changing and is different from geostationary and polar-orbiting
satellite links [92]. A comparison of GISM and WBMOD with experimental data
for satellite navigation applications is provided in [92].

Moreover, with a need for a simple scintillation model relevant to GNSS user
equipment, scientists at Cornell University developed the Cornell Scintillation Model
(CSM) to test and evaluate the performance of GNSS receivers under scintillation
[55, 93]. In the model, scintillation amplitude is assumed to follow a Rice distribu-
tion:

K =
√

m2 − m

m −
√

m2 − m
=

√︂
1 − S2

4

1 −
√︂

1 − S2
4

, S4 ≤ 1 (3.13)

where K ≤ 0 is the Rician parameter and Nakagami-m distribution is defined for
m ≤ 1/2. Another important assumption of the model is that the rapidly-varying
component of the complex scintillation has a spectrum similar to the white noise
passing through a low-pass second-order Butterworth filter. Block diagram of the
scintillation model is depicted in Figure 3.7. There are two input parameters to
define the severity of the scintillation: S4 and τ0.
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Figure 3.7: Block diagram of the Cornell Scintillation Model (CSM) (adapted from
[93].)

In the output of the model z(t) = z̄ + ξ(t), z̄ is the direct component and ξ(t) is
the time-varying multipath component (i.e. refers to the fading process). τ0 > 0 is
the channel decorrelation time at which the autocorrelation of ξ(t) reduces to 1/eth

of its initial value. Having a narrow autocorrelation function or in other words,
having a small τ0 implies a scintillation that changes rapidly with time [93]. When
there is no scintillation z(t) = 1. The details of the model can be found in [55, 93,
94].

It has to be noted the CSM is not a global scintillation model and it is based on
equatorial scintillation effects. Furthermore, it is a statistical model that generates
perturbations on the signal amplitude and phase; hence, the statistics may disagree
with the localized irregularity patches that are associated with the ionospheric
scintillation [95, 96].

Moreover, a comparative summary of some ionospheric models with a detailed
literature review can be found in [4].

3.2.2 Scintillation effect at the signal processing stages
During a scintillation event, the availability, reliability, and accuracy of GNSSs

can be affected. In order to mitigate the effect of the rapid fluctuations in the
amplitude and phase of the signal, one of the solutions could be to minimize the
effects of the scintillation by making the signal acquisition and tracking stages that
are two key stages of the receiver more robust. In the literature, the aforementioned
simulation models have been practically used in the analysis of the scintillation
effects on GNSS receivers and the development of robust architectures.

It can be pointed out that most of the studies in the literature do not consider
the effects of scintillation on the acquisition stages. It has been assumed that
the rate of phase changes that occurred during the phase scintillation events stays
quite constant over the integration time or this effect is minimal in the acquisition
process. However, while the phase scintillation might have has less impact on the
acquisition stage, strong amplitude scintillation can prevent the acquisition of the
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signal. Detailed comparative performance analysis of different acquisition methods
and their robustness to the presence of phase and amplitude scintillation in the
propagation environment are presented in Section 4.1.

Nonetheless, as far as the tracking stage is concerned, when an amplitude scin-
tillation occurs, the amplitude of the correlator outputs is reduced and it causes
a lower signal carrier-to-noise density power ratio (C/N0) hindering a receiver’s
ability to track the signal. On the contrary, phase scintillation not only intro-
duces extra noise to the estimation of the carrier phase error but also causes deep
fadings because of the destructive interference resulting in the loss of lock of the
signal. In order to be able to cope with the fading and abrupt phase changes of
the scintillation effects, some additional robust architectures and various tracking
schemes (e.g. FLL-assisted-PLL, KF-based carrier tracking, etc.) have been in-
vestigated in the literature. In such techniques, additional degrees of freedom are
provided by applying different choices for the integration time and loop parameters
(orders, bandwidths, etc.) and by employing different state space design models by
considering the presence of thermal noise, oscillator effects, receiver dynamics, and
challenging environmental conditions. Examples of generalized GNSS signal carrier
tracking loop architectures using traditional (FLL/PLL/DLL) and KF-based state
space representations can be found in [97, 98, 99, 100].

For example, different methods have been proposed to tune the dynamic models
by exploiting the knowledge about the scintillation level as in [101] or by using
the C/N0 levels as a control parameter to improve the tracking of the incoming
signals as in [102, 103]. However, these types of adaptive algorithms require parallel
computation of the scintillation level and to feed back such information to the
tracking stage. Moreover, in [104], different constant-bandwidth PLL structures
and KF-based tracking are compared under scintillation; unfortunately, the analysis
is limited to an equatorial scintillation event in terms of loss-of-lock duration only.

Moreover, in order to show the performance of the proposed signal tracking
techniques, different ionospheric scintillation models have been used. Some of the
proposed algorithms are tested by using the CSM as in [93, 105], others the GISM
[106, 107] or the WBMOD as in [108, 109]. It can be stressed that most of the
aforementioned studies do not consider the effects of scintillation on GNSS signals
under real scintillation events, but they limit the analysis to simulations. The
performance of the carrier tracking methods, namely, traditional PLL and KF-
based PLL, have been compared by using real GNSS signals affected by significant
phase and amplitude scintillation effects in Section 4.2. The innovative aspect of
the analysis resides in exploiting the real GNSS data instead of oversimplified or
limited scintillation models.
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3.2.3 Classical scintillation detection strategies
Detecting and monitoring the scintillation effects in order to estimate the iono-

spheric scintillation in its early stages, measure the scintillation parameters, and
warn users about the potential degradation in the navigation gain importance. As
classified in the recently published survey paper on scintillation detection, moni-
toring, and mitigation [57], in the literature, there are mainly four scintillation de-
tection strategies, namely, visual inspection, thresholding, non-scintillation indices-
based techniques, and machine learning approaches. Machine learning-based im-
plementations are discussed in Section 5.2.1.

Although the visual inspection approach is time-consuming, not being auto-
matic, open to user error, and lacking scientific rigor, it assures the best detection
performance [57]. Besides the scintillation indices S4 and σϕ, other measurements
(e.g. C/N0, TEC, Rate of TEC (ROT), satellite azimuth and elevation, etc.) and
other instruments such as solar flare detectors and magnetometers can be exploited
to decide scintillation classification. Furthermore, since the multipath effect can
inflate the scintillation indices and falsely indicate an ionospheric scintillation ac-
tivity [110], a comparison with historical data can help to distinguish the unique
pattern of scintillations and the similar trends on S4 fluctuations, which are caused
by the multipath effect depending on the daily satellite motion when the receiver
position is fixed.

The thresholding method is a comparison of the scintillation indices including
some additional masks to the predefined thresholds in order to characterize the
scintillation phenomenon. In the case of that the scintillation indices (S4, σϕ) are
directly compared to the thresholds (TS4 , Tσϕ

), it is referred to as hard detection
rule [6]:

Sn[n] > TS4 or σϕ > Tσϕ
(3.14)

where the scintillation is claimed to be present if the indices exceed the thresh-
olds. The performance of detection clearly depends on the choice of the threshold.
Although this approach has simplicity, relatively low computational burden, and
low tuning requirements, it is prone to have a large false alarm or missed detection
rates because of other propagation errors (e.g. multipath, etc.) [57].

Furthermore, in the semi-hard detection approach, additional conditions on the
satellite elevation angle (θel) and C/N0 measurements can be applied to reduce the
false alarm rates and better characterize the scintillation [6]:

(S4[n] > TS4) ∧ (θel[n] > Tθel
) ∧ (C/N0[n] > TC/N0) (3.15)

where Tθel
is the elevation threshold that is to be decided considering the sur-

rounding environment. However, TC/N0 is mainly dependent on the receiver. For
example, in [111], an amplitude scintillation event trigger based on S4 and C/N0
measurements is proposed:
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S4 > 1.075 − C/N0 · 0.01875 (3.16)
where C/N0 is in dB-Hz. This threshold is based on the collected data in Alaska
through a commercial GNSS receiver. However, in [112], elevation angle is consid-
ered a better variable for the threshold setting in some cases:

S4 > −9.09 · 10−4θel + 0.1373,

σϕ > −6.36 · 10−4θel + 0.1091 radians.
(3.17)

where θel is in degrees. The main disadvantage of the thresholding approaches is
that they rely on the collected or analyzed data and they are not scaled for different
spatial and temporal observations [57].

One of the non-scintillation indices-based techniques is based on wavelet-
based detrending [113] and proposed alternative scintillation indices [61]. As it is
discussed in Section 3.1.1, in the estimation of the scintillation indices, the detrend-
ing method and the selected cutoff frequency have an influence on the accuracy and
validity of the computed indices. Through the wavelet transforms, preserving the
local features of the signal by taking into consideration the non-stationarity of the
raw signals unlike time-invariant Butterworth filters has been aimed [61]. Further-
more, in [114], rather than using the calculation of S4 for the scintillation events
that are not lasting T = 60 s [see Equation (3.9)] or more, inspecting the scalo-
grams, which are wavelet statistical energy plots, from continuous wavelet analysis
has been found useful.

In S4 estimation, while the prompt correlator samples (3.6) are processed in
traditional closed-loop tracking architectures, a statistical metric that is based on
the histogram of the processed samples has been proposed in the assisted open-loop
architectures that do not include either a PLL or an FLL [115, 116]. Although this
approach is specific to the dedicated receiver architecture, it is insensitive to the
degradation of the results under strong scintillations [57].

3.3 Multipath effect
Under multipath conditions, the received signal by the GNSS antenna consists

of the direct LOS signal and the multipath signals. However NLOS contains only
the reflected signals. In Figure 3.8, basic multipath and NLOS scenarios are demon-
strated.
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Figure 3.8: Multipath Interference and NLOS Reception.

3.3.1 Multipath effect on GNSS observables and measure-
ments

The received signal by the GNSS receiver under multipath conditions can be
modeled as [117]:

s(t) = A p(t − τ0) cos (2πf0t + θ0)
Direct Signal (LOS)

+A
N∑︂

k=1
αk p (t − τ0 − τk)

cos [ 2πf0t + θ0 + ∆ϕM,k + 2π (∆fk − fD) t ]
N Multipath Signals

(3.18)

where A, τ0, θ0, f0, and fD are the amplitude, propagation time, carrier phase,
frequency, and Doppler shift of the direct signal, respectively. Ranging and data
codes are represented by p. The direct LOS signal is superimposed by N multipath
signals in which are attenuated by the coefficient αk in the amplitude depending on
the reflection and antenna gain pattern. τk is the time shift between the direct signal
and the kth multipath signal. ∆ϕM,k is the multipath relative phase corresponds
to the phase shift between the direct signal and the kth multipath component.
Multipath phase rate (i.e. fading frequency) is determined by the Doppler difference
(∆fk − fD) between the direct signal and the multipath component [117].

As it can be understood from (3.18), code and phase observations of the LOS
signal are influenced by the multipath propagation. Measured code pseudorange
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(ρk
j ) and carrier phase (ϕk

j ) measurements for the k-th satellite in the j-th band by
a GNSS receiver can be written as [118]

ρk
j = dk

u + c
[︂
δtu − δtk

]︂
+ Ij + T + Mρ

j + ϵρ
j

ϕk
j λj = dk

u + c
[︂
δtu − δtk

]︂
− Ij + T + Nλj + Mϕ

j + ϵϕ
j

(3.19)

where dk
u represents the true range between the satellite k and the user u. λ is the

wavelength of the incoming carrier wave (e.g. λ1 = 0.19 m for GPS L1 C/A signal).
N is the integer ambiguity that refers to number of full carrier cycles between the
satellite and receiver. c is the speed of the light. δtu and δtk are the receiver clock
bias and satellite clock bias, respectively. I, T , M and ϵ denote the ionospheric
delay, tropospheric delay, multipath error, and receiver noise. When the signal
travels through the dispersive medium (ionosphere), the signal delay terms in code
and carrier measurements are equal in magnitude but opposite in sign [27].

As it is denoted in (3.19), both observations can be affected by multipath.
Moreover, although it is harder to mitigate the multipath in the carrier phase than
in pseudorange, Mρ

1 is larger than Mϕ
1 [119]. For example, the analyses based on

weighted multipath error envelopes model show that with some assumptions (e.g.
the use of 0.1 chip narrow correlator in DLL, consideration of an urban environment,
the use of multipath limiting antennas, etc.) mean multipath errors up to 4.9 m for
the GPS L1 C/A signal having 42 dBHz C/N0 are expected. However, maximum
carrier multipath errors are around 21 mm for the aforementioned conditions. An
interested reader can find the detailed comparative analysis in [117].

Moreover, the error characteristics of the multipath and NLOS reception is
quite different. Whereas multipath affects code- and carrier-based measurements
differently by producing different errors on different frequencies, in NLOS reception,
the pseudorange measurement errors are dominated by the path delay, which is the
difference between the reflected signal and the direct path, and indeed they are
same for both code and carrier through different frequencies [7].

Multipath interference also affects C/N0 measurements due to the fact that the
measurements are based on the prompt correlator output of which size increases or
decreases depending on the phase difference of the direct and reflected signals [7,
120]. The phenomenon is called constructive multipath interference if the phase of
the direct and reflected signals differs less than ±90◦. It results in an increase in
the prompt correlator outputs and hence C/N0 measurements. On the contrary,
when the signals are out-of-phase (i.e. phase difference is around 180◦), destructive
multipath occurs resulting in a decrease in both prompt correlator outputs and
C/N0 measurements.

Furthermore, the strength of NLOS signals can be as nearly strong as the
blocked direct signal or can be very weak, and even multipath interference and
NLOS reception can occur together [7], which eventually lead to measurement and
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position errors caused by the processing of the NLOS and multipath signals.

3.3.2 Analysis of simulated and real multipath data
Both real GNSS data and the simulated data in which the ionospheric, tropo-

spheric, and multipath errors are modeled are analyzed from the point of multipath
effect.

Simulated data

Table 3.2 shows the parameters of the simulated data. As a first step, by using
the downloaded YUMA Almanac data [121], the orbital parameters of the satellites
are obtained. By considering the pre-defined user position, the time and the al-
manac data, the positions of the visible satellites are computed. For each satellite,
tropospheric, ionospheric, and thermal noise errors are added to the actual dis-
tance to model the pseudorange value (3.19). The ionospheric/tropospheric errors
are modeled as in [28], where detailed information can be found. The error models
are summarized in Table 3.2.

Table 3.2: GPS Constellation and Errors - Simulation Parameters

Parameters Values
Signal Frequency 1575.42 MHz

User Position (Lat; Lon; Height) 45.0548◦ ; 07.6866◦ ; 250 m
Almanac Data YUMA (Week 74) [121]

Tropospheric Delay Modified Hopfield Algorithm [28]
Ionospheric Delay Klobuchar Model [28]
Pseudorange Noise Normal dist. with mean 0 and var. 1

Figure 3.9 shows the skyplot of the visible satellites and the positioning error
computed in the East-North-Up (ENU) frame.

The multipath effect is generated exploiting an open source GPS multipath
simulator developed in MATLAB [122] with the simulation parameters reported in
Table 3.3.

Figure 3.10 shows the simulated multipath signatures generated through the
multipath simulator [122] with respect to changing elevation angles. It can be noted
that code and phase observations are affected in different ways depending on the
elevation angles and the values can be used to consider different test scenarios. In
the implementation of the proposed multipath detection algorithm that is detailed
in Section 5.3, setting parameters have been decided through the simulated data
analysis.
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Figure 3.9: Simulated GPS Constellation and GPS Positioning Error.

Table 3.3: Multipath Simulation Parameters

Parameters Values

Signal Type GPS L1 C/A
Frequency 1575.42 MHz

Medium
Material

Top Air

Bottom Soil (sandy loam with
moisture content)

Reflecting Surface
Height Std. 0.1 meters

Antenna
Model Trimble Choke Ring
Height 2.0 meters
Slope Boresight/zenith are aligned

Receiver
Noise Temperature 290 K
Noise Bandwidth 1 Hz

Discriminator Type Non-coherent early
minus late power

Real data

Besides the simulated data, two different data sets that were collected on Jan-
uary 20 and 21, 2016 in the Antarctic station SANAE -IV are analyzed. Figure
3.11 (a) and (b) show the amplitude scintillation index values computed for the
duration in which the data is analyzed. It has been observed that the increases or
changes in the index values of some satellites repeat and follow almost the same
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Figure 3.10: Simulated Multipath Effects in the Observables with Changing Eleva-
tion Angles.

trend on consecutive days. This is actually an artifact due to the presence of multi-
path errors that inflate the scintillation values and falsely indicate the ionospheric
scintillation activity.

When the satellites that suffer from the multipath effect are included in the po-
sition computation, a degradation in the accuracy and the precision of the position
solution is experienced. Figure 3.12 shows the computed positions with different
satellite sets in Universal Transverse Mercator (UTM) coordinate system by pro-
cessing the real data set collected on January 20, 2016. The differences between
the mean positions of different clouds of points can be noticed.

3.3.3 Classical multipath detection strategies
The countermeasures are specific for each error source and as far as multipath

is concerned, various methods have been employed in a GNSS receiver either at the
signal processing level or at the measurement level in order to cope with its effect
[123].

Among the methods detecting and estimating the multipath features at the
signal processing level, it is worth mentioning the Multipath Estimating Delay
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Figure 3.11: Amplitude scintillation index values at GPS L1 C/A signals - 20-21
Jan 2016 SANAE IV Station.
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Figure 3.12: Real Multipath Effects in the Estimated Position.

Lock Loop (MEDLL) method [124] and its variants such as Multipath Mitigation
Technology (MMT) [125] and Vision Correlator (VC) [126] techniques. Thanks
to existing several correlators the signal parameters such as amplitude, delay, and
phase of the LOS and multipath signals can be estimated as well as can be applied
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3.3 – Multipath effect

for multipath detection purposes. For these methods, although an improvement in
detecting and removing multipath signals is provided, a large number of correlators
and higher sampling frequency are also needed which leads to a computational
burden [127][117]. Moreover, since they are implemented at the signal processing
level they are not flexible to modifications that might be required, not as may be
able to act only at the measurement level.

There are indeed algorithms working at the measurement level and they are
based on the consistency check of the produced measurements. The basic significant
approach in the literature is the Receiver Autonomous Integrity Monitoring (RAIM)
algorithm [128]. The RAIM methods such as the range comparison method, least-
squares residual method, and parity method, are snapshot detection schemes with
the assumption that noisy redundant range-type measurements are available at a
given time epoch and in all cases, the problem is linearized about some nominal
value of the position and clock bias [129]. The RAIM algorithm is mainly based
on the calculation of the least square residuals to detect outliers by building a test
statistic under the assumption of a Gaussian error [123][130] and it has the potential
to detect multipath influences [117].

RAIM algorithm is contained in the receiver and autonomously provides a self-
consistency check on the measurements. The RAIM algorithm, namely, the parity
method, starts with the basic linearized GNSS measurement relationship that can
be written as follows:

y = Hx + ϵ (3.20)
where y is (n×1) vector of equivalent pseudorange measurements. n is equal to the
number of the satellites in view. H is the Direction Cosine Matrix (DCM) between
the user positions and the satellite positions in view, x is (4 × 1) vector of user’s
position with receiver clock bias and ϵ is (n×1) vector of pseudorange measurement
error. Least-square estimate of x is denoted as x̂ and it is computed as:

⎡⎢⎣ x̂
. . .
p

⎤⎥⎦ =

⎡⎢⎢⎣
(︂
HT H

)︂−1
HT

. . .
P

⎤⎥⎥⎦ y (3.21)

where p is the parity vector and P is defined as the parity transformation matrix
of which size is (n − 4) × n. P is obtained by QR factorization of the H matrix.

H = QR =
[︂
Q1

... Q2

]︂ ⎡⎢⎣R1
. . .
0

⎤⎥⎦ = Q1R1 (3.22)

where Q is the orthogonal matrix and R is the upper triangular matrix.

P = QT
2 (3.23)
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Ionospheric scintillation and multipath

The magnitude of the parity vector (p = Py) is used as the test statistics. For
the real data, parity vectors are computed and Figure 3.13 shows the results of the
magnitude change of the parity vector in time for different sets of satellites.
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Figure 3.13: Magnitude of the RAIM Parity Vector in Time (Real Data).

In the Figure 3.13, the magnitude of the parity vector can be mistakenly eval-
uated as at the acceptable levels in the cases where all the satellites are included.
Moreover, in order to be able to detect all the satellites that suffer from the multi-
path, the differences between each calculation should be formed and analyzed in a
comparative way, but finding the set that is not including erroneous measurement
may not be possible.

If the percentage of the erroneous measurements exceeds 50 %, RAIM algorithm
fails [130]. Moreover, since the measurement errors caused by extreme multipath
and NLOS signals do not follow the white Gaussian noise pattern [131], the un-
derlying assumption of the RAIM method does not hold all the time for multipath
detection.

Furthermore, with the evolving AI world, different ML algorithms started to be
applied for the multipath detection and inconsistency check of the measurements.
These methods are discussed in Section 5.3.1.
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Chapter 4

Design and testing of robust
GNSS receiver architectures for
scintillation mitigation

In this Chapter, a detailed comparative study of the different acquisition and
tracking methods for GPS L5 and L1 C/A signals in order to test their robustness to
the presence of real phase and amplitude scintillations in the propagation environ-
ment is presented. The analyzed scintillated data in this analysis are summarized
in Table 4.1. The datasets were chosen as representative of events at equatorial and
polar regions. The satellite selections are dependent on the observed scintillation
effect if the area of scintillation falls between the satellite and receiver.

Table 4.1: Specifications of The Scintillated Data

Date Station Coordinates

1
May 8, 2016
Aug 17, 2016

South African Antarctic
Research Base (SANAE-IV), Antarctic

Lat.:71.67278°S
Long.: 2.840556°W

2 Sept 13, 2017
Centro de Radioastronomia e

Astrofisica Mackenzie (CRAAM), Brazil
Lat: 23.5474825°S

Long: 46.6523133°E

Figure 4.1 (a) and (b) show the computed phase scintillation indices for both
L1 C/A and L5 signals for the two datasets collected at the Antarctic station.
For comparison, the indices computed by a Septentrio PolaRxS PRO professional
receiver are also plotted. Due to the polar location of SANAE-IV, the computed
S4 indices are low, and only phase scintillation indices have been plotted. The
figures show 20-minute length portions of the data affected by the phase scintillation
events occurred around 8 p.m. and 4 a.m., respectively. Since the ionospheric
scintillation effect on GNSS signals is caused by the scattering due to irregularities
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Design and testing of robust GNSS receiver architectures for scintillation mitigation

in the distribution of electrons encountered along the radio propagation path, it
rarely occurs on all visible satellites simultaneously [132]. GPS signals that are
broadcasted from two Block-IIF satellites (PRN 3 and PRN 9) that transmit signals
both on the L1 and L5 frequencies experience strong scintillation (σϕ > 0.7) in these
data-sets.
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(a) Phase Scintillation (PRN3) - May 8,
2016.
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(b) Phase Scintillation (PRN9) - Aug 17,
2016.

Figure 4.1: Phase scintillation index values at GPS L1 C/A and L5 signals (SANAE
IV).

Moreover, another event which is observed in the data collected on Septem-
ber 13, 2017 at the Brazilian monitoring station has been considered. Figure 4.2
shows computed amplitude and phase scintillation indices for both L1 C/A and
L5 signals. The figures refer to the portions of the data affected by the ampli-
tude and phase scintillation events occurred starting from 2:15 a.m. as denoted
by the sharp increases in the indices. As it can be seen, GPS L1 C/A and L5
signals that are broadcasted from Block IIF (PRN-10) satellite are experiencing
strong (S4,σϕ>0.7) and moderate (0.5<S4,σϕ<0.7) amplitude and phase scintilla-
tions. Since ionosphere is a dispersive medium, the type of interaction between the
signal and the ionosphere is dependent on the frequency of the signal and both am-
plitude and phase scintillation levels have an inverse relation with the signal carrier
frequency [132]. Therefore, the L5 signal experiences larger signal fluctuations than
the L1 C/A during the 45 minutes data collection, as expected.

To sum up, S4 and σϕ parameters reflect the intensity of the scintillation and
disturbance rate on the received power and carrier phase measurements [71]. In the
following, the disturbance effects of these events on the acquisition and the tracking
structures are analyzed.

The significance of working with real signals has to be noted compared to the
analysis often done based on the models that are oversimple with respect to re-
ality. Moreover, although it is observed in Figures 4.1 and 4.2 that the software

60



4.1 – Performance of signal acquisition methods

02:10 02:20 02:30 02:40 02:50

Time UTC - September 13,2017

0

0.2

0.4

0.6

0.8

1

Septentrio GPS L1

Septentrio GPS L5

Software Receiver - GPS L1

Software Receiver - GPS L5

(a) Amplitude Scintillation.

02:10 02:20 02:30 02:40 02:50

Time UTC - September 13,2017

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Septentrio GPS L1

Septentrio GPS L5

Software Receiver - GPS L1

Software Receiver - GPS L5

(b) Phase Scintillation.

Figure 4.2: Amplitude and phase scintillation index values at GPS L1 C/A and L5
signals - September 13, 2017 (CRAAM).

receiver (post-processing) solution also provides all amplitude and phase indices
continuously like Septentrio PolaRxS PRO, it does not mean both receivers are
capable to operate continuously during the scintillation events. The degradation
on the observables can be handled by internal algorithms specific to the receivers.
In this research work, the software approach provides flexibility, and having access
to the full receiver chain and to intermediate signal processing stages allows a deep
analysis of the impact of scintillation and to improve the design correspondingly.

4.1 Performance of signal acquisition methods

4.1.1 Acquisition methods
In this work, four L5 and three L1 C/A acquisition methods are implemented

and compared in terms of probabilities of detection/false alarm, peak-to-noise floor
ratios and acquisition time duration. Although Figure 2.8 shows the time-domain
implementation of the acquisition structure with cross-correlations, in this imple-
mentation, the cross-correlation of the incoming and generated signal is computed
through FFT-based correlation.

The first applied technique (Method-A), coherent channel combining, was orig-
inally proposed in [133], [134] and [135], and it has been implemented for Tc = 1
ms with K non-coherent accumulations in order to be able to neglect the presence
of the NH codes. The choice of Tc = 1 ms is due to the fact that both primary
spreading code and one NH bit are 1 ms long and that a potential bit transition
that could lead to degradation when finding the peak in the acquisition is aimed

61



Design and testing of robust GNSS receiver architectures for scintillation mitigation

to be avoided.
The second technique considered (Method-B) is the zero-padding algorithm

presented in [136] and [42]. This algorithm takes into account the degradation
effect of the possible presence of NH bit transitions. These sign transition issues
are generally solved by using extended local replica with zero-padding [42]. Zero
padding acquisition is implemented by circularly correlating two code periods of the
incoming signal with one primary code period of locally generated code appended
by one primary code period of zeros. This method produces two peaks in the output
and it is possible to find a degraded peak in the second half of the correlation due
to NH bit transition [42]. Although this method increases the computational load
due to the augmented FFT length compared to Method-A, it also increases the
chance of acquiring the satellite signal considering the effect of NH bit transitions.
However, selecting FFT length for zero padding is a design parameter to consider
in terms of computation issues and an interested reader can find useful materials
in [137].

As third strategy (Method-C), Tc = 20 ms with non-coherent accumulations on
the data-less channel is implemented. This method has been proposed in different
configurations for L5 signals in [134] and [136]. Such an integration is highly effec-
tive for low signal-to-noise ratio conditions; however, it is computationally heavy
with respect to the previous two aforementioned methods. Moreover, since L5 sig-
nal includes secondary NH codes (differently from L1 C/A), a misalignment of the
NH code could cause false peaks in the L5 CAF output. In the scientific literature,
in order to obtain a perfect synchronization with NH codes, a couple of techniques
have been proposed. In the first approach, it is suggested to employ consecutive ac-
quisitions with short integration time to detect the NH bit transitions in a tree data
structure [138] or to eliminate secondary code ambiguity based on multi-hypothesis
in Galileo primary code acquisition [139]. The aforementioned methods described
in [138] and [139] that apply possible secondary code combinations in an evolution-
ary tree structure are improved by coherently extending the integration time by
testing all possible combinations through the m-sequence method [140] and coher-
ently accumulating the correlation values obtained over shorter length sequences
[141]. In the second approach, the synchronization is obtained by implementing
correlations with secondary codes [142] or by combining those secondary correla-
tions [143] to reduce the number of possible secondary code delays and complexity.
In this implementation, the first approach by applying an exhaustive search con-
sidering all possible combinations in a hierarchical tree structure is followed. At
first consecutive zero-padding acquisitions over primary code lengths of the incom-
ing signal are performed by including both first and second half of the correlation
output. The peaks of CAF are evaluated to detect the correlation peaks which are
distributed along the Doppler axis due to sign transitions. The NH code phase is
obtained by exhaustive testing. Later, by generating the full-length NH code with
the known phase, Method-C is applied. In Method-C, while Tc can be chosen as
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4.1 – Performance of signal acquisition methods

20 ms for L5 pilot channel, it is set to 10 ms for L1 C/A due to possible data-bit
transitions. Between two consecutive 10 ms data intervals, at most one navigation
data bit phase transition exists and one of these has no data bit phase transition
[144].

In the last considered option (Method-D), instead of detecting all the sign-
transitions of the NH codes, the differentially coherent channel combining with sign
recovery algorithm whose implementation details are available in [145] and that has
a lower computational complexity is applied. The motivation of this algorithm is
to decrease the effect of the NH bit sign-transition by combining the information
of both cases where the NH bits are 1 and 0 for two consecutive 1 ms intervals of
data. Since the motivation comes from the existence of the secondary codes, this
method has not been applied to the L1 C/A signal.

Table 4.2 summarizes the parameters of the implemented acquisition methods
for L1 C/A and L5. The first analysis has been performed under non-scintillated
conditions.

Table 4.2: Specifications of the Acquisition Methods

Method
A

Method
B

Method
C

Method
D

Coh. Integ.
Time [ms]

L5 1 1 20 2
L1 C/A 1 1 10 -

Number of Non.Coh
Accumulations

3 3 3 1

In Table 4.3, the results obtained for the performance metrics are given. The test
was realized by processing the data that belong to 8 May 2016 (see Figure 4.1 (a)).
By considering the first 3 minutes interval of the data in which the scintillation has
not started yet, the peak-to-floor ratios are computed for each method. The results
in Table 4.3 are the mean values obtained. Moreover, computed mean C/N0 values
for GPS L5 and L1 C/A signals are 51 dBHz and 48 dBHz, respectively. As it can be
seen in Table 4.3, when the coherent integration time is extended, an improvement
in the peak-to-noise ratio is observed, but at the same time, an increment of the
computational load, which is the consequence of the time dedicated by the receiver
to the acquisition stage, is observed. The number of non-coherent accumulations is
decided experimentally by trying to make it as lowest as possible and at the same
time having an acceptable peak-to-floor ratio.

In Table 4.3, there are two different values for Method-D as being different
from the other methods. The difference between the two cases corresponds to the
situations where the NH bit sign transition occurred and not occurred in consecutive
two 1 ms intervals. The number of non-coherent accumulations is set to 1 to make
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Table 4.3: Performance Metrics of the Acquisition Methods

Method
A

Method
B

Method
C

Method
D

Peak-to-
floor ratios [dB]

L5 23.12 25.55 39.5 14.25 − 17.81
L1 C/A 19.79 21.01 33.1 -

Acq. time per SV*
∼Comput. Load

L5 t5 2.5t5 14t5 1.6t5

L1 C/A t1 2t1 8.25t1 -

*Front-end sampling frequencies for L1 and L5 signals are 5 MHz and 30 MHz, re-
spectively. Since the number of the samples for the chips are different, two different
time-measurement parameters (t5 and t1) are defined, obtaining that t5 = 3.65t1.

it simpler, otherwise, the number of different peak-to-noise ratio values increase
depending on the number of possible NH bit combinations. Therefore, it is inferred
that the performance of Method-D is dependent on the observation of NH bit change
in the considered 2 ms coherent integration time interval.

Furthermore, Figure 4.3 (a) and (b) show the ROC curves, which are the plots
of the probability of detection (PD) versus the probability of false alarm (PF A) at
the search space level, of the implemented acquisition algorithms for GPS L5 pilot
and GPS L1 C/A signals, respectively. In fact, for example in case of non-coherent
acquisition, probability of false alarm and probability of detection can be written
as [146]:

PF A,K(β) = exp
(︄

− β

2σ2
n

)︄
K−1∑︂
i=0

1
i!

(︄
β

2σ2
n

)︄i

(4.1)

PD,K(β) = QK

(︄√︄
Kλ

σ2
n

,

√︄
β

σ2
n

)︄
(4.2)

where β is the detection threshold and QK(a, b) is the generalized Marcum-Q func-
tion. λ and σ2

n are computed from CAF outputs [13, 133, 146]. λ is the non-
centrality parameter of the test statistics SK(τ, fD) that is a non-central χ2 random
variable with 2K degrees of freedom when the local signal is aligned with the re-
ceived signal [145]. σ2

n is the variance of the in-phase (Y 2
I,p/dk

) and quadrature-phase
(Y 2

Q,p/dk
) correlator outputs. Moreover, the successful acquisition of a satellite sig-

nal is declared when SK(τ, fD) passes the decision threshold (β) for a value of τ and
fD. ROC curves are then obtained (varying β) for each methods at each second
(i.e. for the C/N0 experienced at that epoch).
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4.1 – Performance of signal acquisition methods

As it can be seen in Figure 4.3, the performance of the Method-A is not re-
markably better than the Method-D for GPS L5 pilot channel. However, the zero-
padding method (Method-B) is slightly better than the Method-A. Moreover, as
expected, extending the integration time (Method-C) provides an improvement in
the performance. The performance improvement in the probability of detection of
GPS L5 signal compared to the L1 C/A signal is induced from 3 dBHz difference
in the signal-to-noise ratio.
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Figure 4.3: ROC curves of the implemented methods for GPS L1 C/A, L5 signals
under no-scintillation.

After having analyzed the performance of the implemented methods with the
non-scintillated data, a study on the scintillation effect on the L5 and L1 C/A
acquisition stages is presented in the following subsection.

4.1.2 Performance Comparison of the Acquisition Methods
After the description of acquisition methods, they have been tested, at first,

on the data sets that were collected on May 8 and August 17, 2016 (Figure 4.1
(a)-(b)) in the Antarctic stations SANAE IV and that are affected only by strong
phase scintillation. The estimated mean C/N0 values for the data-sets are 51 dBHz
and 46 dBHz for GPS L5 signals, respectively. However, for GPS L1 C/A signals,
they are estimated as 48 dBHz and 44 dBHz, respectively. In the analysis, the
acquisition algorithms (with PF A = 0.001) are run every second for the whole
data collection and then the amount of time (duration) that the algorithms fail to
acquire the satellites (i.e. PRN3 and PRN9) affected by strong phase scintillation
has been checked. This process is repeated for all the acquisition methods for GPS
L5 and L1 C/A signals. It is observed that during the phase scintillation events
the signal is acquired all the time for all the methods. This result is not surprising
since the phase scintillation has less impact on the acquisition stage. It points out
that the rate of phase changes occurred during the phase scintillation events stays
quite constant over the integration time or this effect is minimal in the acquisition
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Design and testing of robust GNSS receiver architectures for scintillation mitigation

process. In order to analyze the effects of the phase scintillation, the changes in
the ROC curves due to scintillation are also analyzed.

Such ROC curves are computed by employing the acquisition results at each
second. Every second has been identified where the scintillation is strong (σϕ > 0.7)
or no-scintillation exists (σϕ < 0.2). In this way, it has been possible to make
a statistical and fair comparison between the case of no-scintillation and phase
scintillation. For the two cases, the mean PD values are computed for each given
PF A values. Then, the differences between the mean PD values of no-scintillation
and scintillation cases for the same PF A values are computed. This procedure is
repeated for the two data sets.

Figures 4.4 and 4.5 show the loss in the PD values of the aforementioned L5
and L1 C/A acquisition methods under phase scintillations for the two events. It
is observed that, in case of strong scintillation, there is a loss in PD of only 0.013-
0.002 with respect to the case without scintillation. Whereas the ROC curves in
Figure 4.3 belong to a timestamp, Figures 4.4 and 4.5 cover a duration during
which different levels of phase scintillation exist, and the C/N0 changes in time as
it might be expected. Therefore, due to its experimental nature in which the data
are analyzed for different levels of scintillation, any conclusion related to shapes
of curves would be misleading except the comparison of the loss in PD among the
methods. This is why the analysis results are limited to inferring the loss in PD of
the acquisition methods under phase scintillation.
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Figure 4.4: The loss in PD of the acquisition methods for GPS L1 C/A, L5 signals
under phase scintillation - 8 May 2016.

In the second test, the data that were collected on September 13, 2017 in Brazil
have been used. In this event, phase scintillation is mixed with amplitude scin-
tillation. Figure 4.6 shows the acquisition performance of the methods during
45 minutes length data. The percentages of successful acquisition times (with
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Figure 4.5: The loss in PD of the acquisition methods for GPS L1 C/A, L5 signals
under phase Scintillation - 17 August 2016.

PF A = 0.001) are computed and summarized in Table 4.4.

Table 4.4: Percentages of Successful Acquisition Times under Amplitude and Phase
Scintillation Event – Test Date: 13 September 2017

Method
A

Method
B

Method
C

Method
D

T=1 ms
K = 3

T=1 ms
K = 3

T=10 ms
K = 3

T=20 ms
K = 3

T=2 ms
K = 1

L5-Q 79.96 % 88.73 % 98.55 % 98.90 % 64.49 %
L1 C/A 57.26 % 59.71 % 99.78 % - -

*T is the coherent integration time and K is the number of non-coherent accumu-
lations.

As it can be seen in Table 4.4, the acquisition performance of the L5 outperforms
L1 C/A in both Method-A and Method-B. However, as mentioned in Section 2.2.2,
the signal structures and transmitted power are different in L1 C/A and L5. C/N0
values of GPS L5 signals are higher than GPS L1 C/A signals. On the contrary
the scintillation is stronger in GPS L5 signal than GPS L1 C/A signal as it can be
seen in Figure 4.1 (a)-(b) and Figure 4.2 (a)-(b). At the same time, it is observed
that Method-C outperforms the other methods in both cases.

Moreover, so as to compensate the C/N0 difference between GPS L1 C/A and L5
signals and also to see whether performance difference is caused by the signal level
difference, extra gain to L1 C/A signal processing is provided. If the integration

67



Design and testing of robust GNSS receiver architectures for scintillation mitigation

02:10 02:15 02:20 02:25 02:30 02:35 02:40 02:45 02:50

30

40

50

 C
/N

0
 

(d
B

H
z
)

Amplitude and Phase Scintillation Event

Test Date: 13 September 2017 - GPS L1 and L5 Signals (PRN-10)

GPS L5

GPS L1

02:10 02:15 02:20 02:25 02:30 02:35 02:40 02:45 02:50

No

Yes

S
ig

n
a

l 

A
c

q
u

ir
e

d
?

Acquisition Method-A

GPS L5

GPS L1

02:10 02:15 02:20 02:25 02:30 02:35 02:40 02:45 02:50

No

Yes

S
ig

n
a

l 

A
c

q
u

ir
e

d
?

Acquisition Method-B

GPS L5

GPS L1

02:10 02:15 02:20 02:25 02:30 02:35 02:40 02:45 02:50

No

Yes

S
ig

n
a

l 

A
c

q
u

ir
e

d
?

Acquisition Method-C

GPS L5

GPS L1

02:10 02:15 02:20 02:25 02:30 02:35 02:40 02:45 02:50

Time UTC - September 13, 2017

No

Yes

S
ig

n
a

l 

A
c

q
u

ir
e

d
?

Acquisition Method-D

Figure 4.6: Performance comparison of GPS L1 C/A, L5 signal acquisition methods
under amplitude and phase scintillation - Test Date: 13 September 2017.

time is extended to 2 ms, theoretically, an additional 3 dB coherent integration
gain is obtained, and in this case, it is expected that L1 C/A performance could
get better than L5. As expected, it is observed that for 2 ms and 3 ms coherent
integration time implementation for GPS L1 C/A, the percentages of successful
acquisition times reach up to 89.74 % - 95.18 %. However, instead of increasing
the coherent integration time of L1 C/A acquisition method, if the number of non-
coherent accumulations is increased to K = 3 and K = 7 for Method-A, it is
observed that the percentages of successful acquisition times increase to 74.79 %
and 77.16 %, respectively.

Summarizing, it is observed that while phase scintillation is not at the level to
prevent the acquisition of the signal, strong amplitude scintillation can prevent the
acquisition of the signal. In that case, extending integration time can be a solution,
and Method-C performs best among the other methods. Moreover, in the compar-
ison of Method-A to Method-B, which both have the lowest coherent integration
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times that are equal to one code period, it is observed that the performance of
Method-B is slightly better than Method-A. Although Method-B having an aug-
mented FFT length due to zero-padded local code increases the computational load
compared to Method-A, Method-B producing two peaks in the output increases the
chance of acquiring the satellite signal that might be suffering from the scintillation
effect and/or possible bit transitions.

4.2 Performance of signal carrier tracking meth-
ods

In the following, the analyses are limited to the signal carrier tracking stage,
whose objective is to wipe off the carrier by generating a perfectly aligned one.
Because carrier tracking is so susceptible to the scintillation due to PLL’s stringent
tracking threshold the equatorial phase scintillation adversely affects the operation
of carrier tracking leading to cycle slips and complete loss of carrier lock.

To have robust architectures optimized to operate in a harsh ionospheric envi-
ronment, firstly PLL tracking loops are tested by considering the different choices
for the loop filter order (2nd or 3rd), the coherent integration time (T ) and the car-
rier noise bandwidth (Bn). The order of the filter and noise bandwidth determine
the loop filter’s response to signal dynamics and in PLL loop filter design there is
also a tradeoff in the decision of T and Bn parameters [147].

Figures 4.7, 4.8, 4.9 (a) and (b) show the changes in the values of correlator
outputs (Ik,d/p and Qk,d/p), raw PLL discriminator output (δφk), C/N0 and carrier
frequency estimations during the occurrence of scintillation and no-scintillation ac-
tivities for GPS L5 data, pilot channels and GPS L1 C/A signal. As it can be
seen in Figures 4.7, 4.8, 4.9 (a) and (b), the amplitude of the prompt correlator
output (Ik,d/p) both increases and decreases during the scintillation event. Because
the diffracted signals interfere with the actual signal and they are added to the ac-
tual signal both constructively and/or destructively that yields to alternately both
attenuation and strengthening in the signal amplitude and C/N0 values measured
by the user [148].

The data that were collected on 13 September 2017 are used for the analysis
in this section. In the analysis shown in the figures, the PLL design parameters
Bn = 10 Hz, T = 10 ms and T = 20 ms are selected for GPS L5 and GPS L1 C/A
signals, respectively. Furthermore, at the same conditions, a KF-based tracking,
of which implementation details are provided in Appendix A.2.2 and that provides
more flexibility thanks to a time-varying bandwidth and gain, has been evaluated
and compared in terms of the residual effects on the receiver observables and the
internal parameters.
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(a) GPS L5 Data Channel Outputs with 2nd Order PLL, Bn = 10 Hz,
T = 10 ms - under strong scintillation.
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(b) GPS L5 Data Channel Outputs with 2nd Order PLL, Bn = 10 Hz,
T = 10 ms - no-scintillation

Figure 4.7: Comparison of the tracking observables and internal parameters for
L5 data channel under strong scintillation and no-scintillation - Test Date: 13
September 2017.
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(a) GPS L5 Pilot Channel Outputs with 2nd Order PLL, Bn = 10 Hz,
T = 20 ms - under strong scintillation.
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(b) GPS L5 Pilot Channel Outputs with 2nd Order PLL, Bn = 10 Hz,
T = 20 ms - no-scintillation.

Figure 4.8: Comparison of the tracking observables and internal parameters for L5
quadrature channel under strong scintillation and no-scintillation - Test Date: 13
September 2017.
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(a) GPS L1 C/A Signal Outputs with 2nd Order PLL, Bn = 10 Hz,
T = 20 ms - under strong scintillation.
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(b) GPS L1 C/A Signal Outputs with 2nd Order PLL, Bn = 10 Hz,
T = 20 ms - no-scintillation.

Figure 4.9: Comparison of the tracking observables and internal parameters for L1
C/A signal under strong scintillation and no-scintillation - Test Date: 13 September
2017.
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4.2.1 Standard Deviation of Doppler Estimations
The best PLL parameters to be able to track the Doppler frequency accurately

are tried to be found. Doppler shift measurements allow us to compare the tracking
robustness in the presence of scintillation effects. Figures 4.7, 4.8, 4.9 (a) show 120
seconds portion of the Doppler estimates of the processed data, which experience
both strong amplitude and phase scintillation. By applying different choices of
the loop orders, bandwidth (Bn) and integration time (T ), the effects of the PLL
parameters on the tracking stage under scintillation have been analyzed. In the
analysis, while the extended integration time is set to T = 10 ms in the L5 data
channel by considering the data bit interval, in the L5 quadrature (dataless) channel
the integration time is extended to T = 20 ms. Moreover, so as to provide a
perceptive comparison in terms of the effect of noise bandwidth, commonly used
bandwidths with 5 Hz increments are included in the analysis. Due to scintillation
an increment of the standard deviation of Doppler measurements can be observed
with different settings of tracking parameters.

To have better comparison, the maximum values of the standard deviations of
the Doppler measurements, each value computed on a non-overlying block of 100
ms, have been estimated and all the results are summarized in Tables 4.5 and 4.6
for scintillation and no-scintillation cases, respectively.

It is observed that processing the L5 data or the pilot channel with T = 1 ms
has no advantages over each other, as expected. Moreover, although there is not
a remarkable performance difference with using L1 C/A or L5 signals in case of
T = 1 ms, it is clear that the performance degrades with increasing Bn values which
means that the noise level can be reduced by reducing the noise bandwidth. On
the contrary, when the coherent integration time is extended to 10 ms for the L5
data channel and 20 ms for the L5 pilot channel and GPS L1 C/A signal, the latter
shows a lower error in the Doppler measurement for low value of bandwidth (i.e.
< 10 Hz).

As it can be seen in Table 4.5, there is a sharp increase in the values due to
the change of Bn from 15 Hz to 20 Hz especially in the case of T = 20 ms. Since
the product BnT increases, the true noise bandwidth tends to be larger than the
aimed value and hence the loop filter becomes unstable [147]. Moreover, although
the second order is unconditionally stable, the third order can be unstable under
fluctuating C/N0 values due to scintillation. In the cases of third order loop filter
with Bn = 15 and 20 Hz and T = 20 ms, tracking is completely is lost after some
time.
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Table 4.5: Max value of the standard deviations of the Doppler measurements [Hz].
Each std-value corresponds to 100 ms of 3-minute long signal record of the strong
scintillation event - Test Date: 13 September 2017

2nd Order PLL 3rd Order PLL
Noise Bandwidth (Bn) [Hz] Noise Bandwidth (Bn) [Hz]

5 10 15 20 5 10 15 20

In
te

g.
T

im
e

(T
)

1ms
L5I 2.16 4.00 6.19 8.34 2.49 4.61 7.28 9.33
L5Q 2.01 3.97 6.01 8.09 2.26 4.57 7.21 9.23

L1 C/A 2.19 3.83 6.01 8.39 2.18 4.79 7.49 9.54
L5I: 10 ms L5I 1.89 5.09 7.59 10.85 2.68 5.56 7.75 10.8
L5Q: 20 ms L5Q 1.96 5.64 8.50 14.94 1.98 6.00 9.90 143

L1 C/A: 20 ms L1 C/A 1.90 5.00 7.44 15.55 2.49 5.38 34.2 167

Table 4.6: Max value of the standard deviations of the Doppler measurements [Hz].
Each std-value corresponds to 100 ms of 3-minute long signal record of the no-
scintillation event - Test Date: 13 September 2017

2nd Order PLL 3rd Order PLL
Noise Bandwidth (Bn) [Hz] Noise Bandwidth (Bn) [Hz]

5 10 15 20 5 10 15 20

In
te

g.
T

im
e

(T
)

1ms
L5I 0.68 1.38 2.08 2.80 0.78 1.58 2.38 3.19
L5Q 0.66 1.33 2.01 2.69 0.76 1.51 2.29 3.06

L1 C/A 0.89 1.82 2.75 3.67 1.02 2.07 3.10 4.16
L5I: 10 ms L5I 0.29 0.65 1.08 1.61 0.32 0.69 1.11 1.69
L5Q: 20 ms L5Q 0.28 0.74 1.85 4.61 0.31 0.82 1.58 2.75

L1 C/A: 20 ms L1 C/A 0.39 0.93 2.17 5.49 0.45 1.03 2.02 3.53

4.2.2 Phase Error
A PLL discriminator, shown in the Figure 2.12 carrier tracking structure, com-

putes the difference between the phase of the incoming signal and the locally gen-
erated signal. Here two-quadrant Costas PLL discriminator is used, which outputs
the phase error as:

δφk = tan−1
(︄

Qk,d/p

Ik,d/p

)︄
(4.3)

where (δφk) is the estimated carrier phase error over the integration time (T ).
Figures 4.7, 4.8 (a)-(b) show the tracking results of the processed L5 data and

pilot signals. The tracking results of the L5 data channel show similar character-
istics with L1 C/A shown in Figure 4.9. Since L1 C/A and L5 data signals have
180-degree phase ambiguity due to the navigation data, NCO creates two different
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cloud of points that are visible in the Figures 4.7,4.9 (b) in the discrete-time scatter
plot. However, the tracking results of the L5 pilot (Figure 4.8 (b)) channel with
extended integration time (20 ms) differs from them in terms of the phase mea-
surement. In both cases, the amplitude scintillation causes the elongation of the
clouds due to the occurrence of the power fades, which can be clearly seen in the
IQ prompt correlator in time graphs. When the two clouds get closer to each other
while tracking the L1 C/A and the L5 data-channel signals, it causes an increase in
the error with the increase in the standard deviation of the phase measurements.
Moreover, the abrupt phase changes causing the phase error are seen at the output
of the discriminator in the figure. Finally, the trend and the scintillation of the
C/N0 values during the scintillation can be observed in time.

Furthermore, the computed phase error values in the case of both scintillation
and normal conditions are compared and their trends at different C/N0 values are
shown in Figure 4.10 (a)-(b) for L5 and L1 C/A signals, respectively. The phase
error values in Figure 4.10 are the mean of the computed values at each 1 dB-
Hz intervals. As expected, the phase error is higher at lower C/N0 values and it
decreases with increasing C/N0. It is inferred that a constant degradation in the
accuracy of the carrier phase measurements can be encountered due to scintillation
and hence fluctuating C/N0. It can be observed that the L1 C/A signal tracking
provides a phase error that is slightly higher (few degrees) than the one computed
for the L5 signal under the same condition of the scintillations, namely when they
have the same C/N0 values. In the L5 case, due to larger fluctuations when C/N0
goes to lower values, phase error reaches to higher values than observed in L1
C/A. Besides, it is observed that the C/N0 measurements stay in the limited range
without having fluctuation when there is no-scintillation. It has to be noted that
since the real data are processed in the analyses, in Figure 4.10, the computed
phase error values are linked to the existing computed C/N0 measurements in the
data.

Moreover, in the first data set (8 May 2016) in which having scintillation signals
with only phase variations and no amplitude fading, the same analysis is made.
Phase error values at different C/N0 values are plotted in Figure 4.11. As it can
be inferred from Figure 4.11, phase changes are not as abrupt as observed in the
data set (13 September 2017) that is collected in the CRAAM station. A good
signal-to-noise ratio is observed due to there is no amplitude scintillation and deep
fading.

As analyzed up to now, the loop order, the bandwidth (Bn) and the integration
time (T ) are typically a-priori set in the PLL structure. In the following subsections,
in order to evaluate the robustness of a KF-based PLL with respect to a traditional
2nd order PLL, two parameters have been considered: Phase Lock Indicator (PLI)
and PLL noise jitter.
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Figure 4.10: Phase error vs C/N0 comparison for L1 C/A, L5 data and pilot chan-
nels under scintillation (amplitude + phase) and no-scintillation cases - Test Date:
13 September 2017.

76



4.2 – Performance of signal carrier tracking methods

45 46 47 48 49 50 51 52 53 54 55
0

2

4

6

8

10

P
h

a
s
e
 E

rr
o

r 
(°

)

Phase Error vs C/N
0
 Under No-Scintillation

L5 In-Phase - 2
nd

 Order PLL B
n
=5Hz T=1ms

L5 In-Phase - 2
nd

 Order PLL B
n
=5Hz T=10ms

L5 Quadrature - 2
nd

 Order PLL B
n
=5Hz T=1ms

L5 Quadrature - 2
nd

 Order PLL B
n
=5Hz T=20ms

45 46 47 48 49 50 51 52 53 54 55

C/N
0
 (dB-Hz)

0

2

4

6

8

10

P
h

a
s
e
 E

rr
o

r 
(°

)

Phase Error vs C/N
0
 Under Phase-Only Scintillation

(a) GPS L5 Data - Pilot Signals.

45 46 47 48 49 50 51 52 53 54 55
0

2

4

6

8

10

P
h

a
s
e
 E

rr
o

r 
(°

)

Phase Error vs C/N
0
 Under No-Scintillation

L1 - 2
nd

 Order PLL B
n
=5Hz T=1ms

L1 - 2
nd

 Order PLL B
n
=5Hz T=20ms

45 46 47 48 49 50 51 52 53 54 55

C/N
0
 (dB-Hz)

0

2

4

6

8

10

P
h

a
s
e
 E

rr
o

r 
(°

)

Phase Error vs C/N
0
 Under Phase Only Scintillation

(b) GPS L1 C/A Signal.

Figure 4.11: Phase error vs C/N0 comparison for L1 C/A, L5 data and pilot chan-
nels under phase-only scintillation and no-scintillation cases - Test Date: 8 May
2016.
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4.2.3 Tracking Lock Indicator
PLI is computed by considering the prompt IQ correlator outputs of the carrier

tracking algorithm [149]:

PLIk =
I2

k,d/p − Q2
k,d/p

I2
k,d/p + Q2

k,d/p

≈ cos(2∆φk) (4.4)

where PLI = 0.866 is taken as the acceptable threshold which corresponds to
∆φ = 15◦ as the limit of the phase error in the implementations. The phase error
threshold has been decided by considering the results provided for no-scintillation
cases in the previous analysis.

In the analysis, the PLI samples which are less than 0.866 are indicated as
loss of tracking points and the number of the samples is used as the performance
assessment parameter for the comparison of the different algorithms. Figure 4.12
shows the computed PLI values of the L5 data, pilot channels and L1 C/A signals
when the signals experience both strong phase and amplitude scintillations. It is
observed that with short integration time implementation, signal tracking is lost
for a long time.

Table 4.7 summarizes the unsuccessful tracking percentages for L5 data-pilot
channels and L1 C/A signal with different integration times in 3 minutes length of
the processed data for PLL and KF-based tracking structures. When the integra-
tion is extended to T = 10 ms and T = 20 ms, the percentages of the loss-of-tracking
decrease.

Table 4.7: PLL and KF-based Carrier Tracking - Percentages of Unsuccessful Track-
ing During 3-minute Length Strong Scintillation Event - 13 September 2017

Carrier
Tracking

L5-I L5-Q L1 C/A
T = 1 ms T = 10 ms T = 1 ms T = 20 ms T = 1 ms T = 20ms

2nd Order PLL
Bn = 5 Hz

12.03 % 2.37 % 12.26 % 2.19 % 27.40 % 1.99 %

KF-Based 11.44 % 1.91 % 11.53 % 1.14 % 26.12 % 1.33 %

As mentioned, KF-based carrier tracking algorithm outperforms the PLL-based
tracking; however, it can also fail under phase scintillation accompanied by strong
amplitude scintillation conditions. With KF implementation, it has been observed
that the tracking is improved and the loss-of-tracking percentages decreased for the
L5 data, pilot and L1 C/A signal.

Furthermore, in the first data set (8 May 2016) in which having scintillation
signals with only phase variations and no amplitude fading, both the traditional
PLL and the Kalman-based carrier tracking structure have been used to process
the signals. In this case, both PLL and KF-based carrier tracking performed well
without experiencing any loss-of-lock. It can also be inferred from Figure 4.11
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(a) GPS L5 Data Channel. (b) GPS L5 Pilot Channel.

(c) GPS L1 C/A Signal.

Figure 4.12: PLL carrier tracking - PLI values of L5 data, pilot channels and
L1 C/A signal under strong amplitude and phase scintillations - Test Date: 13
September 2017.

because computed phase error values are not higher than the threshold that is
considered for loss of tracking.

4.2.4 Jitter
Phase jitter is the root sum square of every source of the uncorrelated phase

error, such as thermal noise and oscillator noise [147]. The jitter is estimated by
computing the standard deviation of the carrier phase tracking error defined in
(4.3) and as the last metric, it has been used for performance comparison [150].

In the analysis, first of all by considering the phase and amplitude indices shown
in Figure 4.2 (a)-(b), the scintillation effect is classified as strong, moderate, weak
and no-scintillation and the starting/ending times are defined for each. For the
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defined portions-in-time, the phase jitter values are computed for each method and
the signal type. Figure 4.13 shows the jitter values of the tracking outputs for L5
data, pilot channels and L1 C/A signal.
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Figure 4.13: Carrier Tracking Noise Jitter of Different Methods for L5 Data, Pilot
Channels and L1 C/A Signal - Test Date: 13 September 2017.

It is expected that the L5 pilot channel, which uses a longer integration time
and thus gives a higher SNR in output than the L5 data channel, provides better
results. As it can be seen in Figure 4.13, L5-pilot channel tracking provides better
jitter performance than the L5-data channel in both PLL and KF-based tracking
methods. Furthermore, KF-based tracking provides improvement compared to the
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PLL-tracking structure in terms of jitter performance in the case of both L5 and L1
C/A signals. However, it is expected that the GPS L5 signal, whose chipping rate
is 10 times higher and its power is higher than L1 C/A, provides better results. As
expected, tracking of L1 C/A signal experiences higher jitter compared to the L5
signal.
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Chapter 5

Machine learning based methods
to counteract GNSS impairments

AI refers to a broader term in the field of machine intelligence that comes up
at the Dartmouth Summer Research Project on AI held at Dartmouth College in
1956 [151]. It refers to the idea that machines can execute the tasks smartly and
the design of intelligent systems that perceive the environment and take actions.
ML is a subset of AI as depicted in Figure 5.1.

Brain-Inspired

ML

SNN

NN

DL

AI

Figure 5.1: The taxonomy of Artificial Intelligence (AI) (adapted from [152]). ML:
Machine Learning, NN: Neural Network, SNN: Spiking Neural Network, DL: Deep
Learning.

ML automates the analytical model building by using the methods from such
as Neural Networks (NNs), statistics, operations research, and physics, and it deals
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with finding hidden insights in data without being explicitly programmed to where
to look in the data [153]. ML is usually divided into two main types: predictive
or supervised learning approach and descriptive or unsupervised learning approach
[154]. In the supervised approach, the aim is to learn the mapping of inputs (x) to
outputs (y) through a given labeled set of input-output pairs [154]:

D = {(xi, yi)}N
i=1 (5.1)

where D is the training data set and N is the number of training examples. Each
training input xi is a d-dimensional vector of variables called features, attributes,
or covariates. yi is the output or the response variable. If yi is real-valued, the
problem is referred to as regression and when yi is categorical the problem is known
as classification, as depicted in Figure 5.2.

Supervised 
Learning

Unsupervised
Learning

Regression Classification

• Predict a label 
associated with a 
feature

• Predict a real 
number associated 
with a feature

Machine Learning 
Paradigms

Reinforcement 
Learning

Set of feature
Label pairs

Set of feature
Without label pairs

Clustering Density 
Estimation

Visualization

Semi-supervised
Learning

• Decision process
• Learn series of actions
• Interact with environment

Figure 5.2: Machine Learning Paradigms.

In the descriptive or unsupervised learning approach, the aim is to find the
pattern in the given inputs D = {xi}N

i=1. In density estimation of the unsupervised
learning approach, the goal is to infer the properties of the probability density p(x)
[155]. In the characterization of the input values (x), density estimation methods
might fail in high dimensions [155]. Hence, the dimensionality reduction method
that is projecting the data to a lower-dimensional subspace is useful for visualiz-
ing high-dimensional data. The most commonly used approach is called Principal
Component Analysis (PCA) [154]. Some other unsupervised learning algorithms
perform dividing the data into groups of similar examples and it is referred to as
clustering [156].

As depicted in Figure 5.2, semi-supervised learning approach falls between su-
pervised learning and unsupervised learning. A combination of the labeled examples
from p(x, y) and unlabeled data from p(x) are used to estimate p(y|x) or predict
y from x [156]. There is another type of machine learning named reinforcement
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learning that is less commonly used and it is used for learning how to act with the
existence of reward or punishment signals and a feedback loop between the learning
system and experiences [154, 156].

Artificial Neural Networks (ANNs) are popular ML techniques inspired by the
workings of human brain [153]. Likewise, human nervous system contains neurons
and the ANNs contain computation units that are referred to neurons [157]. Spiking
Neural Networks (SNNs) are inherently more biologically plausible considering the
fact that neurons in the brain process binary spike-based information as a function
of time; however, ANN inputs are static [158]. An NN has a particular nested
function: [159]:

y = fNN(x) = f3 (f2 (f1(x))) (5.2)
where this 3-layer neural network returns a scalar y. The vector functions can be
of the following form [159]:

fi(x) def= gl (Wlz + bl) (5.3)
where l is layer index that can span from 1 to any number of layers. gl is called
activation function. The matrix Wl and vector bl are learned for each layer de-
pending on the applied task. For example, by breaking the desired complicated
mapping problem into a series of simple mappings of which each is described by
a different layer of the model, Deep Neural Network (DNN) learning (or, simply,
Deep Learning (DL)) aims to solve complex problems.

In Figure 5.3, the flows of traditional ML and DL are shown. DL is also known
as hierarchical learning that consists of multiple layers and feature extraction [160].
Every subsequent layer process the outputs of the previous layer as input (5.2)
and the learning phase is not spanned on a single layer. Moreover, as depicted in
Figure 5.3, while the features are learned automatically in DL implementations,
ML approaches use feature extraction algorithms and then the learning algorithm
is applied [152].

Input DL Algorithm Output

Input Output
Feature

Extractor
ML

Algorithm
Features

Figure 5.3: Machine Learning and Deep Learning flows (adapted from [160]).

In recent years, DL has gained huge success in a variety of applications through
different methods of which some are listed in the Figure 5.4. A survey on DL theory
and architectures is given in [152].
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Supervised Unsupervised

Deep Learning

Reinforcement 

Semi-supervised

 Deep Neural Networks (DNN) 
 Convolutional Neural Networks (CNN) 
 Recurrent Neural Networks (RNN)

• Long Short-Term Memory (LSTM)
• Gated Recurrent Units (GRU) 

 Auto-Encoders (AE)
 Restricted Boltzman Machines (RBM)
 Generative Adversarial Networks (GAN)

 Deep Q- Learning
Deep Q Network (DQN)

Figure 5.4: Common Deep Learning Approaches.

In this section, an overview summary of ML and DL approaches has been pre-
sented and more detailed information on theory and architectures can be found in
several books [154, 155, 156, 157, 159].

5.1 Discussion on the role of ML for GNSS
With the innovative trend of SDR receivers that are flexible to implement new

architectures, receiver implementations have been constantly evolving with the uti-
lization of both ML and DL algorithms so as to alleviate the performance degra-
dation effects of error sources such as scintillation and multipath. Scintillation and
multipath detection methods in the literature are discussed in Sections 5.2.1 and
5.3.1, respectively. Furthermore, there have been possible scenarios and applica-
tions in which ML has been considered in the GNSS area.

Instead of implementing correlators and matched filters to detect noise-like sig-
nals, a NN approach including a layered architecture has been implemented and
applied for radio signal detection in [161]. Moreover, DNNs that are a branch of DL
algorithms have been a powerful tool achieving excellent performance on difficult
problems such as speech recognition and visual object recognition [162]. A survey
of implemented DL techniques for wireless signal recognition is provided in [163]. In
another paper, DNN has been applied for automatic classification of different signal
modulations with three hidden layers [164]. Furthermore, there are two main types
of DNNs, namely, Convolutional Neural Network (CNN or ConvNet) and Recurrent
Neural Network (RNN) [165]. While CNN is a hierarchical DNN including convolu-
tion and pooling layers, RNN is a sequential DNN with different memory structure.
In [166], a CNN-based architecture for the modulated signal detection in the pres-
ence of noisy channel observations is proposed and the advantages over DNNs in
which suffer from the curse of dimensionality are presented. Although, recently,
in [167] a DL approach to GNSS signal acquisition by addressing a classification
problem from CAF delay/Doppler maps has been proposed, in the literature the
GNSS receiver side has not been fully studied yet; however, DL-based applications
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have been highly investigated in the different implementations of communication
engineering.

GNSS signals are vulnerable to intentional interference and spoofing attacks
which have been becoming an increasing threat to, in particular, critical applica-
tions such as aviation. Therefore, detection, mitigation, and classification methods
for GNSS interference and spoofing have been crucial. A survey on coping with
intentional interference for manned and unmanned aircraft [168] covers both tra-
ditional and ML algorithms applied by the research community at different stages
(e.g. front-end, pre- and post-correlation). For example, in [169], GNSS spoofing
jamming recognition based on SVM classifier has been applied after applying sev-
eral nonlinear dimensionality reduction and feature extraction algorithms such as
classical ISOmetric MAPping (ISOMAP), Laplacian Eigen (LE) mapping , PCA,
and Wavelet Transform - Singular Value Decomposition (WT-SVD). Likewise, in
[170], monitoring the cross-correlation of multiple GNSS observables and measure-
ments that are input for SVM algorithm to detect spoofing is realized. A better
understanding of the relation between the selected variables and the indicator of
spoofing-jamming attacks is considered as a prerequisite for the success of the algo-
rithm. Moreover, a real-time interference monitoring technique has been applied by
means of Twin Support Vector Machine (TWSVM) algorithm that is claimed to be
faster than conventional SVM in [171]. Although ML algorithms seem promising,
their performance and complexity on GNSS interference classifications have yet to
be fully investigated and studied.

In a GNSS receiver, predictions of the satellite orbits are based on the physics-
based models and broadcasted ephemeris. In order to improve the orbit prediction
and reduce the required time to provide the first position estimate, supervised ML
algorithms have started to be applied. In [172], besides the applied orbit predic-
tion model, CNN algorithm is used to improve the performance of the mechanistic
model. A generalized hybrid implementation approach that employs both SVM
and physics-based model for Resilient Space Objects’ (RSOs’) orbit predictions are
defined in [173]. In the same manner, another key parameter to be predicted along
with satellite orbit prediction is the satellite clock offset. A comparison of imple-
mented polynomial regression, Kalman filtering, and Least Squares Support Vector
Machine (LSSVM) algorithms for predicting the clock offset of GPS and GLONASS
satellites have been provided in [174].

Due to the fact that unpredictable variability of the ionospheric parameters due
to space weather limits the efficiency of trans-ionospheric communication systems,
forecasting TEC values is crucial for GNSS, as well [175]. There are various NN-
based implementations to forecast ionospheric parameters where a summary of the
approaches with prediction lead times and main features are provided in [176]. For
example, while Nonlinear Autoregressive with External Input (NARX) network is
applied for 24 h TEC forecasting in [176], a CNN-based architecture for image
sequence (i.e. TEC maps) prediction is designed for a longer range forecasting up
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to 48 h in [177].
RF Fingerprinting (RFF) is the process of gathering information about the

radio transmitters by examining their electromagnetic wave characteristics and sig-
natures to identify unique features that a device possesses [178, 179]. Mostly in
wireless networks, it has been applied as a solution to reduce the vulnerability of
the networks against security threats and attacks [178, 180] and for indoor posi-
tioning by using mainly Received Signal Strength (RSS) measurements [181]. ML
algorithms also assist RFF in providing automatic identification of the unique as-
pects of the individual RF emitters [182]. Furthermore, so far in the GNSS area,
fingerprinting approach has been investigated by selecting features for automatic
receiver identification [179, 183]. In [183], the usage of clock-derived metrics for
GNSS receiver fingerprinting by means of the application of Gaussian Naïve Bayes
Classifier (NBC) is investigated for security-enhanced applications. For urban posi-
tioning problems, the shadow-matching technique (i.e. a type of pattern-matching
positioning) for smartphone-based positioning using 3D city models is proposed in
[184]. In [184], a modified k-Nearest Neighbors (kNN) is applied to estimate the
location averaging the grid positions with the highest satellite visibility scores. For
spoofing detection, after applying a feature extraction algorithm that is based on
Axial Integrated Wigner Bispectrum (AIWB) of the received GNSS signal, SVM
is used in [185]. Furthermore, in [186], with a summary of the RFF approaches in
the literature, SVM- and CNN-based classifications processing different frequency
transforms (e.g. wavelet, spectrogram) of the received GNSS signals are investi-
gated through a controlled simulation environment.

In this section, a summary of possible ML implementations considered in the
literature has been provided. With the increasing interests and needs day by day,
researches on ML-based applications have been very active in the GNSS area.

5.2 Scintillation detection

5.2.1 Scintillation detection methods
One of the proposed methods is based on a SVM algorithm [187] that belongs

to the class of supervised machine learning algorithms [188]. Supervised algorithms
require large data sets to properly train the algorithm so that it is able to recognize
the scintillation presence during the analysis of new measurements. In [6], another
type of supervised learning algorithm, namely, the decision tree, is applied to en-
able early scintillation alerts. In [189], the performance of SVM implementations
for phase and amplitude scintillation detection have been evaluated. The main
weakness of these works is that the impact of the design parameters of the different
algorithms on the achieved performance has not been carefully analyzed in detail as
witnessed by the limited literature addressing the application of machine learning
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to GNSS. Since the success of the SVM algorithm can be attributed to the joint
use of a robust classification procedure and of a versatile way of pre-processing the
data, the parameters of the machine learning phase must be carefully chosen [190].

SVM algorithm is the most widely used kernel learning algorithm [187]. Kernel
method enables the SVM algorithm to find a hyperplane in the kernel space by
mapping the data from the feature space into higher dimensional kernel space and
leading to achievement of non-linear separation in the kernel space [191]. Kernel
representations offer an alternative solution to increase the computational power of
the linear learning machines [192]. In SVM implementations, the kernel functions
are linear, Gaussian Radial Basis Function (RBF), and polynomial are widely used.
Hence, the problem of choosing an architecture for an ML-based application is
equivalent to the problem of choosing a suitable kernel for an SVM implementation
[192]. Moreover, when training an SVM algorithm, besides choosing a suitable
kernel function a number of decisions should also be made in the preparation of the
data, by labeling them, and setting the parameters of the SVM [193]. Otherwise,
uninformed choices might result in degraded performance [194].

In this thesis study, linear and Gaussian kernels, the implementation of different
order polynomial kernels, and the performance comparison on the cross-validation
results are the original core of the study. The impact of the kernel function on the
scintillation detection performance by considering the related design parameters
(e.g. scale parameter, polynomial order) is discussed. Performance is assessed by
exploiting the ROC curves, confusion matrix results and the related performance
metrics. This study is performed using real GNSS signals that are affected by
significant phase and amplitude scintillation effect, collected at SANAE IV and
Hanoi.

5.2.2 Overview of Support Vector Machines (SVM) method
An SVM algorithm classifies the data by finding the best hyper-plane that

separates all the data of one class from those of the other class [195]. Figure 5.5
shows a pictorial example of two data sets that can be separable into two classes.
However, as it can be seen in Figure 5.5 (a) that there could be an infinite number
of separating hyper-planes. The classes can be separated by the linear boundaries
as well as non-linear boundaries. SVM approaches to this problem through the
concept of the smallest distance between the decision boundary and any of the
data samples [196]. In Figure 5.5 (b), as an example of linear classifiers, the best
hyper-plane that corresponds to the one providing the largest margin between the
classes is depicted. The margin is the maximum width of the slice, parallel to the
hyper-plane, that has no data samples within [195]. The data samples that are
closest to the separating hyper-plane are called support vectors as shown in Figure
5.5 (b).

In SVM linear classification, the idea is to take the projection of an unknown
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(a) Separating hyper-planes. (b) Best hyper-plane.

Figure 5.5: An overview sketch of Support Vector Machines (SVM) algorithm linear
classifier.

vector xi along vector ω̄, which has to be perpendicular to the decision boundary
medium (e.g. it has to be in the third dimension if the decision boundary is spanned
in two dimensions), and to check whether it crosses the boundary or not in order
to decide the classification. The implementation starts with the derivation of the
optimal hyper-plane of SVM. The derivation of the optimum hyper-plane is given
in Appendix B.1.

The decision function of SVM is computed as:

ŷ(xi) = sign
⎛⎝Ns∑︂

j=1
[âitiκ(xj, xi)] + b0

⎞⎠ (5.4)

where {x1, x2, ..., xN} is the input data-set. Corresponding target values {t1, t2, ..., tN}
to the input values are decided according to yi and b0 is the parameter of the opti-
mum hyperplane. â is the set of Lagrange multiplier used to compute the optimal
parameters of the hyperplane and κ is the kernel function.

Kernel Extension

A kernel is a function κ that for all x, y ∈ X satisfies [197]

κ (x, y) = ⟨ϕ(x), ϕ(y)⟩ (5.5)
where ϕ is a mapping from X to Fκ that is an inner product feature space associated
with the kernel κ:
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ϕ : x ∈ X → ϕ(x) = κ (x, ·) ∈ Fκ (5.6)
Any finite subset of the space X are positive semi-definite and the kernel func-

tion satisfies positive semi-definite condition as mentioned. Actually, correspond-
ing space Fκ is referred as Reproducing Kernel Hilbert Space (RKHS), which is
a Hilbert space containing Cauchy sequence limit condition [197]. Theory of re-
producing kernels were published by Aronszajn in 1950, and detailed theory can
be found in [198]. Moreover, the kernel concept was introduced into the pattern
recognition field by Aizerman in 1964 [196].

In most cases, the samples may not be linearly separable. The linear kernel can
be expressed as

κ(xi, xj) = xT
i xj (5.7)

If the classification problem is not linearly separable, SVM can be powered up by
a proper kernel function. Kernel method enables SVM to find a hyperplane in the
kernel space and hence non-linear separation can be achieved in that feature space
[191].

An example of non-linear kernels is Gaussian RBF, which can be written as

κ(xi, xj) = exp
(︄

−∥xi − xj∥2

2σ2

)︄
= exp

(︂
−γ ∥xi − xj∥2

)︂ (5.8)

where σ defines the width of the kernel. If the parameter σ is close to zero, SVM
tends to over-fitting which means all the training instances are used as support
vectors [191]. Assigning a bigger value to σ may cause under-fitting leading all the
instances to be classified into one class. Therefore, a proper value must be selected
for the kernel width. In the same manner, kernel scale parameter corresponds to γ
parameter in the RBF definition as being different from the σ representation.

Another most commonly used kernel function is the polynomial that can be
represented as

κ(xi, xj) =
(︂
1 + xT

i xj

)︂p
(5.9)

where p is the order of the polynomial kernel. The lowest degree polynomial cor-
responds to the linear kernel and it is not preferred in case of having nonlinear
relationship between the features. The degree of the polynomial kernel controls the
flexibility of the classifier and higher-degree allows a more flexible decision boundary
compared to linear boundaries [199].

The performance of linear, Gaussian and polynomial kernels are compared in
the implementation in the next section.
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5.2.3 Training Data Preparation and Labeling
Some of the scintillated data sets that are collected via Fourtune and analyzed

are summarized in Table 5.1. Scintillation monitoring and data collection setup is
given in Figure 3.4. PRN codes are ranging code components of the transmitted
satellite signals and are unique for each satellite signal. In Table 5.1, they refer to
the satellites from which the scintillation effect observed in the received signals.

Table 5.1: Specifications of the Analyzed Scintillated Data Sets

Dates PRNs Station Coordinates

1

Jan 21, 2016
Feb 3, 2016
Feb 8, 2016

Aug 17, 2016

11 − 14 − 22
3 − 6

1 − 12 − 14
9

South African Antarctic
Research Base (SANAE-IV), Antarctic

Lat.: 71.67°S
Long.: 2.84°W

2

April 10, 2013
April 12, 2013
April 16, 2013

October 4, 2013

11
17

01 − 20 − 28
15 − 21 − 24

Hanoi, Vietnam Lat.: 21.00°N
Long.: 105.84°E

The preparation of the data is the most important step in the machine-learning
implementations. Amplitude and phase scintillation indices have to be put into a
format so that the SVM algorithm can detect the scintillation in the correct way. As
it is mentioned, it is difficult to model the occurrence of scintillation due to temporal
and spatial variabilities of the ionosphere [71]. Statistical analysis has been highly
benefited and also chosen fixed period (T ) for the computations of S4 and σϕ indices
is quite important given in (3.9) and (3.3). Generally, T is adjusted to 60 seconds
in ISMR receivers. In this case, by considering only one value to feed the algorithm,
early detection of the scintillation seems not to be possible. Moreover, according to
performed analysis of high-latitude and equatorial ionospheric scintillation events
in [71], phase scintillation lasts around 5.6 minutes at high latitude regions and
10.2 minutes in the equatorial region. On the other hand, it has been observed
that amplitude scintillation events last around 3.1 minutes at the high-latitude
region and 12.4 minutes in the equatorial region. Therefore, so as to enable early
scintillation detection, the training data is put into a format by partitioning the
data into 3 minutes blocks via a moving time window.

In this work, only two class labels, namely, scintillation and no-scintillation are
assigned as follows:

class(xi) =
{︄

C1 {Scintillation} , ti = 1 (σϕ ≥ 0.3 or S4 ≥ 0.4)
C2 {No-Scintillation} , ti = 0 (σϕ < 0.3 or S4 < 0.4) (5.10)

The class definitions in (5.10) have been decided according to the limit values of σϕ

and S4 indices given in [201, 200] that are observed in high-latitude and equatorial
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scintillation events. The list of the training data segments is reported in Table 5.1.
The data collected on different days at SANAE IV and Hanoi stations are put in
the defined structure and labeled according to the class definition above. Figure
5.6 (a)-(b) shows an example of labeling for both amplitude and phase scintillation
data-sets.
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(a) Amplitude Scintillation.
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(b) Phase Scintillation.

Figure 5.6: Labeling of the amplitude and phase scintillation index values in the
training data sets.

In Figure 5.6 (a), S4 indices computed from the received GPS L1 signal broad-
cast from the satellite PRN-11 are plotted. It belongs to the data collected on April
10, 2013 in Hanoi. The figure indicates that amplitude scintillation events occurred
starting around 1:20 p.m.

Another event which is observed in the data collected on January 21, 2016 at the
Antarctic station SANAE IV is analyzed and the computed σϕ indices are plotted in
Figure 5.6 (b). The figure shows the phase scintillation event occurred starting from
12:40 a.m. as denoted by the sharp increase in the indices. Although the σϕ values
go to values lower than 0.3 around 12:50 a.m., such a time interval is still considered
to be part of the scintillation event and then accordingly labeled as. In fact, the
data portion between the consecutive scintillation events is anyway affected by a
residual scintillation effect that can be observed in the receiver tracking outputs
and GNSS measurement observables. Therefore, labeling has been done manually,
by inspection, for all the training data sets.

5.2.4 Experimental Tests
In this section, the implementation and performance analysis of the scintillation

detection based on the SVM method that exploits different kernel functions are
provided through the collected data.
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Cross Validation

After class labels are assigned to the data-sets for amplitude and phase scin-
tillation events, SVM methods with different kernel functions are trained. In this
section, the performance of validation of the methods is evaluated in terms of ROC
curves.

As it has been already discussed in Section 4.1.1 for the performance comparison
of different signal acquisition methods, the ROC curve, which has been widely used
in signal detection theory, is a plot of the probability of detection (PD) versus
the probability of false alarm (PF A). Furthermore, in recent years, it has been
increasingly used for binary classification problems in ML with the corresponding
different metrics as well.
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Figure 5.7: An example of Receiver Operating Characteristics (ROC) space for
classification evaluation.

Figure 5.7 shows an example of the ROC graph. It is a two-dimensional plot of
a classifier indexed in one dimension by the False Positive Rate (FPR) and in the
other by the True Positive Rate (TPR). A ROC graph depicts relative trade-offs
which a classifier makes between benefits (true positives) and costs (false positives)
[202]. TPR (i.e. sensitivity) and the True Negative Rate (TNR) (i.e. specificity) are
the terms which split the predictive performance of the classifier into the proportion
of positives and negatives correctly classified, respectively.

In ROC space, the point (0,1) represents the perfect classification as shown in
Figure 5.7. The dashed diagonal line represents the case of random assignment of
an element to a class. If one point is closer to the upper left corner (i.e. higher
TPR, lower FPR), its classification performance is better than another. Classifiers
appearing on the left side of the ROC space are named as conservative such that
they make classification with strong evidence so they have small FPR, but they
generally have low TPR [203]. On the other hand, the classifiers on the right
side of the ROC space are thought as liberal. They make classifications with low
evidence so they classify all the positives correctly with a drawback of high FPR.
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Each point on the ROC curve represents a trade-off, in other words, a cost ratio
[204]. Cost ratio is equal to the slope of the line tangent to the ROC curve at a
given point.

SVM implementation for both phase and amplitude scintillation detection has
been done by employing MATLAB’s statistics and machine learning toolbox [205].
In order to evaluate the performance of the implemented SVM methods, 10-fold
cross-validation technique has been applied. In this technique, the partitions are
put into 10 randomly chosen subsets of equal size. Then, each subset is used
to validate the model by using the trained remaining 9 subsets. This process is
repeated 10 times so that each subset is used once for the validation.

Figure 5.8 (a) and (b) show the ROC curves of SVM methods with different
kernel functions for amplitude and phase scintillation, respectively. In general, it
shows that in amplitude scintillation case the performance of the SVM methods is
better than the phase scintillation case. However, due to the fact SVM performance
depends on the data-sets, each scintillation case is evaluated separately and the
performance of the kernel functions under the same conditions is compared.
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Figure 5.8: ROC curves of SVM methods with different kernel functions.

In the analysis, Gaussian RBF kernel scale parameter γ in (5.8) is adjusted to
different values according to following assumptions [206]:

γfG =
√︂

n/4, for fine Gaussian
γmG =

√
n, for medium Gaussian

γcG = 4
√

n, for coarse Gaussian.

(5.11)

where n is the number of features or the dimension size of xi in (5.4). Moreover,
second and third-order polynomial kernels are included in the analysis. The differ-
ent colored plus symbols on the figures indicate the operating points of each method
in Figure 5.8. Since the ROC curves are close to each other and it is not easy to
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differentiate the differences between each method, the results are summarized in
Table 5.2 and Table 5.3.

Table 5.2: Phase scintillation detection performance comparison in terms of com-
plexity, True Positive Rate (TPR), False Positive Rate (FPR), and Area Under
Curve (AUC) under 10-fold cross-validation test.

SVM Method Kernel
Scale

Running
Time

Validation
Accuracy (%)

Operating Point AUC
(%)TPR FPR

Linear 1 tp 86.01 0.6772 0.0468 91.98
Coarse Gaussian 6.9 1.28tp 86.29 0.6755 0.0482 90.10

Medium Gaussian 1.7 1.55tp 86.16 0.6751 0.0480 90.85
Fine Gaussian 0.43 1.70tp 85.95 0.6890 0.0530 93.16

Polynomial (Order:2) 1 1.37tp 86.26 0.6768 0.0485 89.38
Polynomial (Order:3) 1 3.20tp 86.04 0.6779 0.0488 92.67

In Table 5.2 and 5.3, the time complexity values which are dedicated time to
both training and testing are compared. The complexity of a classifier is divided
into two kinds of complexity, namely, time complexity and space complexity [207].
While time complexity deals with the time spent on the execution of the algorithm,
space complexity considers the amount of memory used by the algorithm [207].
For example, run-time complexity of linear and RBF kernels differ from each other.
While the complexity of the RBF kernel is shown to be O (nSV × d), which is
dependent on the number of support vectors (nSV ) and the input dimension (d),
linear method has O (d) prediction complexity [208]. Therefore, as it is seen in both
Table 5.2 and 5.3, running time increases in the cases of the kernel functions in which
the samples are uplifted into higher dimensions and it also becomes dependent on
the number of samples.

Table 5.3: Amplitude scintillation detection performance comparison in terms of
complexity, True Positive Rate (TPR), False Positive Rate (FPR), and Area Under
Curve (AUC) under 10-fold cross-validation test.

SVM Method Kernel
Scale

Running
Time

Validation
Accuracy (%)

Operating Point AUC
(%)TPR FPR

Linear 1 ta 90.44 0.8990 0.0460 95.37
Coarse Gaussian 6.9 1.02ta 90.72 0.9004 0.0487 95.18

Medium Gaussian 1.7 1.18ta 91.65 0.9004 0.0487 95.19
Fine Gaussian 0.43 1.33ta 91.56 0.9018 0.0378 96.01

Polynomial (Order:2) 1 1.08ta 91.42 0.8920 0.0265 95.61
Polynomial (Order:3) 1 1.80ta 91.56 0.8927 0.0292 95.88

The parameter, Area Under Curve (AUC), represents the estimated area under
the ROC curve and it is used as a performance measure for the machine learning
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algorithms [209]. AUC is accepted as an indicator for the overall accuracy of the
classifier, both Table 5.2 and 5.3 show the importance of kernel scale parameter.
While the overall accuracy of coarse and medium Gaussian kernel SVM methods are
less than the linear SVM, fine Gaussian SVM outperforms the linear. Moreover, the
third-order polynomial kernel provides improved performance compared to linear,
coarse and medium Gaussian kernel SVMs, but it comes with a cost of increased
complexity and time.

Tests and Evaluation

In this section, as a performance cross-check, the collected data which are not
included in the training sets are also used to evaluate the performance of scintillation
detection methods. Figure 5.9 (a,b) show the decisions of the different kernel SVM
methods for the data sets for both amplitude and phase scintillation.

In order to evaluate the performance comparison, the confusion matrix tech-
nique, which is a two-dimensional matrix indexed in one dimension by the true
class of an object and in the other by the class that the classifier assigns [210] as
it is seen in Table 5.4, is applied. A confusion matrix represents the dispositions of
a set of instances (i.e., test data) according to a defined classification model that
maps the set of instances to predicted classes [203]. Actually, each different point
in a ROC curve corresponds to a confusion matrix.

In the two-class data classification problem, the four cells of the confusion matrix
correspond to the values of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). By considering the numbers of the measures, this
matrix forms the basis for the terms, namely, accuracy, precision, sensitivity, speci-
ficity, and error rate. Accuracy is the ratio of the correct predictions (i.e., the sum
of true positives and true negatives) to the total predictions made by the classifier.
In the same sense, the error rate is the ratio of the incorrectly classified objects to
the total objects. In Table 5.5, the performance of different kernels for the data
sets in terms of accuracy and error rate are summarized.

Table 5.4: Confusion matrix.

CONFUSION
MATRIX

ACTUAL
Scintillation No-Scintillation

PREDICTION Scintillation True Positive (TP) False Positive (FP)
No-Scintillation False Negative (FN) True Negative (TN)

As it is expected, the results in Table 5.5 are consistent with the cross-validation
results. With the correct setting of the kernel scale parameter, the fine Gaussian
SVM method outperforms in terms of accuracy rate. Furthermore, although the
differences in the accuracy of the methods seem not to be at a considerable level,
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(b) Phase scintillation detection.

Figure 5.9: Scintillation detection results based on Support Vector Machines (SVM)
with different kernel functions. “1” corresponds to the points in which the related
method points out the scintillation event and “0” means no-scintillation event is
detected. Both amplitude and phase scintillation indices synchronized in time can
be evaluated as ground truth in the graph to evaluate the performances of different
kernels.

in terms of early detection, the method that provides higher accuracy gains impor-
tance. For example, in the cases of the computation rate of the scintillation indices
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being around one minute, the method having a higher accuracy rate will provide
quite advantageous conditions in terms of early detection. However, the third order
polynomial kernel provides an improvement in the accuracy compared to the lin-
ear kernel, but its performance should be evaluated with increased time and space
complexity.

Table 5.5: Accuracy and error rate performances of different kernel SVMs for scin-
tillation detection

Phase Scintillation Amplitude Scintillation

Accuracy Error Rate Accuracy Error Rate

Linear 90.98% 9.02% 94.46% 5.54%
Coarse Gaussian 92.61% 7.39% 94.18% 5.82%
Medium Gaussian 92.61% 7.39% 94.18% 5.82%
Fine Gaussian 92.50% 7.50% 95.02% 4.98%
Polynomial (Order:2) 92.28% 7.72% 94.46% 5.54%
Polynomial (Order:3) 93.59% 6.41% 94.74% 5.26%

To sum up, through this research work selecting a suitable kernel function in
SVM-based scintillation detection has been mainly questioned. However, consider-
ing obtained validation accuracies, the addition of different possible features (e.g.
tracking stage correlator outputs, signal intensity measurement, etc.) and extension
of training datasets could be studied to improve the performance and consolidate
the work.

Furthermore, it has to be also noted that the SVM approach that is well-founded
on maximum margin-based classification offers one of the most robust and accurate
solutions in today’s ML applications [211]. By the way, the main disadvantage of
the algorithm is computational inefficiency that can be encountered in the case of
finding maximum margin hyperplanes to a large number of instances (e.g. thou-
sands and millions) at once. Thus, breaking this large optimization problem into
smaller problems and working on subset (i.e. core) sets have been shown to provide
a good and fast approximation for SVM learning in [212]. In this implementation,
it has been decided that the dataset size is not at that level by considering the
dedicated durations spent on both training and test.

In the literature, quantitative measures, in other words, classification perfor-
mance metrics such as TPR, FPR, AUC, etc., have been widely exploited for per-
formance assessment of training dataset selection [213]. An example combined
quality function used for training set selection by maximizing the classification
accuracy and decreasing the execution time that is in parallel to minimizing the
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number of support vectors is

Q(AUC, nSV ) = q
AUC

AUCB + (1 − q) nB
SV

nSV

(5.12)

where nB
SV is the lowest number of support vectors and AUCB is the largest AUC

obtained across the investigated test sets [213]. q is denoted for the importance of
the objective and resides between 0 and 1. The largest Q value indicates the best
training data set. However, in this implementation, depending on the availability
of the scintillated dataset, training datasets are processed, and the attained overall
accuracy are evaluated after design and implementation for parameter tuning. The
AUC in (5.12) can be replaced by any other metrics for performance evaluation as
well.

5.3 Multipath detection

5.3.1 Multipath detection methods
Different ML algorithms started to be applied for the multipath detection and

inconsistency check of the measuremens. In [214], the author proposed a classifier
based on the SVM method, which is a supervised ML algorithm, by training a
large amount of collected GNSS data to distinguish clean, multipath, and NLOS
measurements. In a similar way, an ML algorithm characterizing the measurement
quality and detecting the multipath is proposed in [215]. Multipath error estima-
tion is considered as a regression problem and epsilon-insensitive Support Vector
Regression (ε−SVR) method is employed to estimate the multipath error at most
ϵ deviation from the actual target for all training data in [216, 118]. Moreover,
CNN utilizing deep neural networks to span the feature learning on multiple lay-
ers has been applied recently for multipath detection in the GNSS receiver [217,
218]. While the pseudorange and carrier phase observations are utilized in [217],
the correlator outputs at the signal processing level are trained through the CNN
algorithm in [218]. Furthermore, an RNN-based NLOS classifier that discriminates
LOS and NLOS satellites implemented in [219] has been claimed to have 20 % bet-
ter discrimination performance has been claimed in comparison to the conventional
SVM-based NLOS classifier. However, in the aforementioned ML implementations,
the algorithms are trained with the collected multipath-affected and clean data sets
so that the algorithm learns the features of multipath thanks to the labeling, and
then it could be able to recognize the multipath presence during the analysis phase
of the new measurements. As expected, the supervised algorithms require consid-
erable large data sets in order to properly train the algorithm due to a large variety
of stations and scenarios that might be classified as a GNSS multipath event.

In this thesis study, a new approach for multipath detection based on unsuper-
vised machine learning algorithms in a GNSS receiver has been proposed. In this
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research, the preliminary results of K-means clustering implementation [12] have
been extended to a comprehensive analysis, and the Self-Organizing Map (SOM)
based multipath detection algorithm has been included. The scope of this approach
is multi-fold:

• A post-receiver technique that utilizes common GNSS stand-alone receiver
observables, namely, carrier phase, pseudorange, and signal carrier-to-noise
ratio is applied. The algorithm processes the measurement sets computed for
each satellite. Since the algorithm works at the measurement level, it can be
applied widely in GNSS applications exploiting commercial GNSS receivers
and it is flexible to modifications that might be required.

• The implemented ML algorithms belong to the class of unsupervised ML
algorithms; therefore, the limitation of the availability of training data sets a-
priori obtained and required as representative of multipath and no-multipath
conditions has been overcome.

• Unsupervised learning in ML has sufficient flexibility to be used in a kinematic
environment where the boundary conditions change over time.

• A robust algorithm that is not sensitive to the percentage of erroneous mea-
surements and is able to sustain clustering in case of having a higher percent-
age of erroneous measurements has been targeted.

5.3.2 Overview of K-means and Self-Organizing Method
(SOM)

In this section, an overview of clustering and a brief description of the K-means
and SOM algorithms are provided.

Clustering

A cluster is a collection of the data items, which are similar between them and
are dissimilar to the data items in other clusters, and clustering means partitioning
a set set into set of clusters [220]. Figure 5.10 depicts an example of clustering a
two-dimensional data set consisting of N samples into five clusters.

Clustering can be realized through two different approaches, namely, hierarchi-
cal and partitive [220]. The hierarchical approach can also be divided into methods
such as agglomerative and divisive algorithms that correspond to bottom-up and
top-down strategies aiming to build a hierarchy of clusters, respectively. However,
partitive clustering targets partitioning the data simultaneously without forming
a hierarchical structure [221]. Partitive clustering is preferred and used more fre-
quently than other clustering algorithms due to the fact that it is not dependent
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Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Figure 5.10: Clustering of N -samples data in 2D space.

on previously founded clusters and partitive methods make implicit assumptions
on the representation of the data that can be represented by prototypes and hence
clusters [220, 221]. In partitive clustering, it is supposed that the data can be repre-
sented by a set of prototypes, and hence it is also called prototype-based clustering.
Moreover, it can further be classified into two groups: point-prototype-based clus-
tering and prototype-based clustering [221]. One of the well-known and most used
point-prototype-based clustering methods in the literature is K-means clustering
that assumes each cluster is represented by a point in the feature space [221]. SOM
is a type of ANN proposed by Kohonen [222] and known as a clustering tool, too.
SOM performs vector quantization to divide an input space of n-dimensional data
vectors into a reduced subset of prototype vectors organized in a regular grid [223]
as depicted in Figure 5.11. Then clustering of the prototypes is realized instead of
directly clustering the data.

Figure 5.11: SOM Prototype-Based Clustering in 2D space.

In the following subsections, an overview of K-means and SOM algorithms is
provided.
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K-means Clustering

In K-means algorithm, the data is divided into k clusters and each cluster has a
center that is called centroid. The number of clusters (k) is decided in advance. The
implementation of the algorithm can be summarized by starting with the definitions
of the data set [196]:

X = {x1, x2, . . . , xN}
xi = (ai1, ai2, . . . , aiµ)

(5.13)

where X is the set of data points, N is the number of observations, xi is a vector in
X, and µ is the dimension of the data set. Initially, k points are randomly chosen
as the initial centroids and the points that are closest to the centroid are assigned
to the related cluster. Cluster set is written as follows:

C = {C1, C2, . . . , xk} (5.14)
where Cj is the jth cluster and the centroid of the cluster is defined as mj =
(mj1, mj2, . . . , mjµ).

A score is assigned to each data point by considering its distance to the centroid
the cluster. The objective function (J) is defined by computing the sum of squares
of the distances of each data point to its assigned cluster centroid [12]:

J =
k∑︂

j=1

∑︂
x∈Cj

d (x, mj)2

d (xi, mj) =
⌜⃓⃓⎷ µ∑︂

l=1

(︂
x

(l)
i − m

(l)
j

)︂2
(5.15)

where d (x, mj) is the Euclidean distance between the data points (x) and the
centroid. The aim is to minimize J by finding the correct separation and it is
implemented through a two-step iterative procedure [196]. After having chosen the
initial values for the mj, in the first phase minimizing J is aimed with respect to the
data points when mj is fixed. In the second phase, by keeping the data points in the
clusters are fixed, minimizing J is targeted by re-computing the mj points. This
two-stage optimization is repeated until convergence or up to predefined iteration
value (t).

If each data points are assigned to a single cluster, it is called hard clustering
that is not applicable for complex data sets containing overlapping clusters. The
important aspects of the K-means algorithm are that its speed of convergence is
high and little storage space is required [221]. Its complexity is denoted as O(nµkt)
where n is the number of data points in X referred above.
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SOM Prototype-Based Clustering

SOM is a prototype based clustering algorithm and it was proposed by Kohonen
[222] as a data visualization technique that reduces the dimensionality of the data
[221]. SOM forms an “elastic surface” that folds onto the “cloud" fitted to the input
data [220, 222]. Prototype vector p represents the each unit i

pi = [pi1, . . . , piµ] (5.16)
where µ is the input vector dimension. SOM is trained iteratively and in each step,
one vector from the input data set X is chosen randomly to compute the distances
between x and prototype vectors p (i.e. weight vectors representing neurons) of the
SOM. The best-matching unit (BMU) denoted as pb is the closest neuron or map
unit with prototype vector closest to x: [220, 224]

∥x − pb∥ = min
i

{∥x − pi∥} (5.17)

where ∥.∥ denotes Euclidean distance. After finding the BMU, the prototype vectors
are updated so that the BMU is moved towards the input sample in the input space.
The update rule of the prototype vector of the unit i is:

pi(t + 1) = pi(t) + α(t)hbi(t) [x(t) − pi(t)] (5.18)
where t is time, α(t) is the adaptation coefficient or learning rate factor with 0 <
α(t) < 1, and hbi is the neighborhood kernel centered on the winner unit. hbi defines
the region of influence that the input sample has and widely applied neighborhood
kernel is the Gaussian function [222]:

hbi(t) = exp
(︄

−∥rb − ri∥2

2σ2(t)

)︄
(5.19)

where σ defines the width of the kernel (i.e. neighborhood radius). rb and ri are
the positions of the neurons b and i on SOM grid map. Both α(t) and σ(t) are
monotonically decreasing functions of time. In training, at first, relatively large
initial learning rate and radius are used to adjust SOM approximately to the same
space of the input data, then the values are decreased for the fine-tuning of the
map [224].

In SOM algorithm computational complexity increases linearly with the number
of data samples [220]. In the case of clustering N samples through K-means by
means of M prototypes, the total complexity is proportional to NM +∑︁kmax

k Mk.
For example, when the number of clusters kmax is set to

√
N and M = 5

√
N , the

reduction of the computational load is about
√

N/15 compared to clustering the
data directly [220]. Therefore, using a set of prototypes as an intermediate step
provides a reduction in the total complexity of the clustering.
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After briefly describing K-means and SOM algorithms, their application to mul-
tipath detection is defined in the following section.

5.3.3 Implementation of Multipath Detection Algorithm
The implementation flow chart of the algorithm realized and evaluated in this

study is shown in Figure 5.12. After the GNSS measurements are put into a format
in the data preparation part, two different implementations are carried out as shown
in two cases in Figure 5.12. In Case-2, as depicted in Figure 5.11, the SOM output
space consists of a regular, and usually two-dimensional, grid of map units. This is
the input for the clustering procedure differently from Case-1 where the data are
directly fed to the clustering algorithm. The number of clusters is fixed to two,
namely, multipath and no-multipath sets, also maintaining the information of the
satellite PRN numbers. Once the measurements are gathered into two clusters (C1
and C2), a decision mechanism has to be implemented in order to decide which
cluster includes the satellites suffering from the multipath or not.

The details of the data preparation and implementation of the algorithm are
provided in the following.

Data Preparation and Details of the Implementation

Data preparation is, in general, the most important step in machine learning
applications. GNSS measurements have to be put into a format so that the al-
gorithm could cluster them in the correct way, eventually gathering the satellites
affected by multipath into the same group.

In this implementation, the dimension (µ) of the data set (X) where the defi-
nitions are provided in Section 5.3.2 is set to three by including the carrier phase,
pseudorange and C/N0 measurements for each tracked satellites. In Figure 5.13,
the data preparation procedure for the pseudorange measurements is depicted. The
implementation for the carrier phase and C/N0 measurements is repeated in the
same way.

As it can be seen in Figure 5.13, a sliding window of size Tw is applied to
include a number of measurements at the consecutive epochs. The pseudorange
measurements of each visible satellite during the considered window duration are
passed through a designed feed-forward filter depicted in Figure 5.14:

∆ρk
Wj

(ti) =
M∑︂

k=0
bk ρk(ti − k) (5.20)

where ρk(ti) is the last pseudorange measurement of the satellite PRN k at time ti

in the applied window Wj. The applied filter is referred to as a tapped-delay line
filter or finite-duration impulse response (FIR) filter [225] that consists of three
basic elements, namely, unit delay elements (z−1), multipliers with respective tap
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Figure 5.12: Flow chart of the implemented algorithm.

weights (bk), and adders that sum individual multiplier outputs yielding the filter
output ∆ρk

Wj
(ti). M is the number of delay elements and referred to as the filter

order. The scope of this filter is detrending of the time-series of the pseudorange
values, in other words, the removal of the deterministic variability over time of
the psedorange values. For this reason, the tap weights (bk) of the FIR filter are
determined from the computed finite-difference coefficients for different orders [226]:

dmf

d xm

⃓⃓⃓⃓
x=x0

≈
n∑︂

ν=0
δm

n,ν f(αν), m = 0,1, ..., M and n = m, m + 1, ..., N (5.21)

where M is the order of the highest derivative to be approximated. αν is a set of
N + 1 grid points having uniform spacing and centered at x = x0 (i.e. at the first
point). δm

n,ν are the coefficients of the forward differences that are applied in the
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Satellite Pseudorange Observations for GPS L1 C/A Signals in Time

PRN 1 𝜌 𝑡 − 𝑇 + 1 𝜌 𝑡 − 𝑇 + 2 ⋯ ⋯ 𝜌 𝑡 𝜌 𝑡 + 1 ⋯ 𝜌 𝑡 + 𝑁 − 1

PRN 2 𝜌 𝑡 − 𝑇 + 1 𝜌 𝑡 − 𝑇 + 2 ⋯ ⋯ 𝜌 𝑡 𝜌 𝑡 + 1 ⋯ 𝜌 𝑡 + 𝑁 − 1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

PRN 𝑘 𝜌 𝑡 − 𝑇 + 1 𝜌 𝑡 − 𝑇 + 2 ⋯ ⋯ 𝜌 𝑡 𝜌 𝑡 + 1 ⋯ 𝜌 𝑡 + 𝑁 − 1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

PRN 𝑛 𝜌 𝑡 − 𝑇 + 1 𝜌 𝑡 − 𝑇 + 2 ⋯ ⋯ 𝜌 𝑡 𝜌 𝑡 + 1 ⋯ 𝜌 𝑡 + 𝑁 − 1

𝑊 𝑊

𝑇

⋯ 𝑊

Figure 5.13: Preparation of the pseudorange measurements to clustering algorithm
through the sliding windows of size TW .

FIR filter above. For example, in case of the number of observations is set to five
in the window (i.e. Tw = 5), the applied tap-weights in the filter to approximate
different orders of derivations are listed in Table 5.6.

𝑧 𝑧 𝑧 𝑧 ⋯

𝑏 𝑏 𝑏 𝑏

⋯

𝑏

𝑧𝜌 𝑡

∆𝜌 (𝑡 )

Figure 5.14: Feed-forward filter applied to the measurements during the duration
of the window Wj.

Table 5.6: Tap Weights in the Applied FIR Filter for Tw = 5 to Approximate
Different Orders of Derivatives

Order of
derivative (M)

Tap-weights of the filter
b0 b1 b2 b3 b4

2 35/12 −26/3 19/2 −14/3 11/12
3 −5/2 9 −12 7 −3/2
4 1 −4 6 −4 1

Furthermore, through differentiation operation, deterministic errors common to
consecutive pseudorange values are removed. Then, the filter outputs are organized
in a vector

xk
ρ =

[︂
∆ρk

Wj
(ti) ∆ρk

Wj+1
(ti + 1) · · · ∆ρk

Wj+Nw−1
(ti + Nw − 1)

]︂
(5.22)
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where Nw is the number of windows applied. (ti + Nw − 1) corresponds to the
last time index of the applied windows depicted in Figure 5.13. After collecting
the results of the Nw consecutive sliding windows, the standard deviation of the
measurements is computed:

σk
ρ =

⌜⃓⃓⃓
⎷ 1

Nw − 1

Nw∑︂
i=1

(︄
xk

ρ(i) −
∑︁Nw

i=1 xk
ρ(i)

Nw

)︄2

(5.23)

All the computed standard deviation values for the carrier phase (σϕ), pseu-
dorange (σρ), and C/N0 (σC/N0) measurements are then organized in the data set
matrix (5.13)

X =

⎡⎢⎢⎢⎢⎢⎢⎣
σ1

ϕ σ1
ρ σ1

C/N0

· · · · · · · · ·
σk

ϕ σk
ρ σk

C/N0

· · · · · · · · ·
σn

ϕ σn
ρ σn

C/N0

⎤⎥⎥⎥⎥⎥⎥⎦ (5.24)

is ready to be fed as input to the clustering algorithm.
In the implementation the number of sliding windows (Nw) and window sizes

(Tw) were chosen as Nw = 3 and Tw = 5. Such values could be increased; however, it
comes to the cost of data buffering during which an output cannot be provided. On
the other hand, a shorter observation time (Nw + Tw − 1) might not be adequate
to perceive the changes in the measurements that reflect inconsistency. In our
implementation, as it can be inferred from Figure 5.13, in this case during the first
7 measurement epochs the clustering algorithm is not able to produce a result;
however, after this data buffering period, clustering outputs at every measurement
epochs. In a dynamic environment the shorter is this transient time better is since
the propagation condition may change in a fast way.

In this study, as being different from the general K-means clustering algorithm,
the computation of the objective function (J) [see (5.15)] is needed to be modified
by applying a weighting (w̄) to the parameters (i.e. the dimensions (µ) of the data
set) [12]:

w̄ =
[︂
wϕ wρ wC/N0

]︂
(5.25)

J =
k∑︂

j=1

∑︂
x∈Cj

w̄ d (x, mj)2 (5.26)

where w̄ is the weighting vector for the carrier phase, pseudorange, and C/N0
measurements. The summation of the weighting parameters is equal to 1. As it has
been indicated, since the carrier multipath is much smaller than the code multipath,
wρ is higher than wϕ and wC/N0 in order to balance the different contributions.
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Moreover, in order to decide which cluster includes the satellites suffering from
the multipath and also to take into account a case of the no-multipath scenario, a
decision mechanism has been developed. After the satellite set is gathered in the
clusters C1 and C2, the mean values of the C/N0 measurements of the satellites in
the same cluster are computed as c̄1 and c̄2. The values are compared to a threshold
in order to decide which cluster includes the satellites suffering from the multipath
or not:

• (c̄1 > c̄2) ∧ (c̄2 < th) =⇒ C2 : multipath cluster, C1 : no-multipath cluster

• (c̄1 < c̄2) ∧ (c̄1 < th) =⇒ C1 : multipath cluster, C2 : no-multipath cluster

• ((c̄1 < c̄2) ∨ (c̄1 > c̄2)) ∧ ((c̄1 > th) ∧ (c̄2 > th)) =⇒ No-multipath

At the decision mechanism, especially considering a no-multipath scenario, a
threshold is needed to be defined. It is not so straightforward to develop an adap-
tive algorithm taking into account both multipath effect and NLOS reception since
the changes of the C/N0 measurements with changing elevation angles under a mul-
tipath environment are dependent on many factors. In this work such a threshold
was heuristically set by means of an extensive analysis of simulated and real GNSS
data sets.

The other setting parameters of the algorithm have been tuned by means of a
simulation campaign as described in the following.

Algorithm Setting

In this study, both real GNSS data and simulated data, in which the ionospheric,
tropospheric, and multipath errors are modeled, are exploited. An example of
simulated multipath data is provided in Section 3.3.2. Through the simulated data
implementation, the setting parameters of the implemented algorithm have been
decided. The implementation of the algorithms and the analyses have been done by
employing the SOM Toolbox [224] and MATLAB (R2016b, The Mathworks, Inc.,
Natick, MA, USA) [205].

The input data are put into the format defined in X in (5.24) and depicted in
Figure 5.15. This is the input to K-means clustering in the Case-1 implementation
where the data are directly fed to the clustering algorithm. For the same input
data, in Case-2 implementation, the input space of the SOM algorithm consisting
of the initialization of neurons (represented as black dots) and their neighborhood
links (depicted as gray lines) is shown in Figure 5.16 (a).

As it can be observed in Figure 5.16 (a), SOM algorithm requires prototype
vectors (i.e. weight vectors representing neurons) that have the same vector dimen-
sionality of the input data in order to form a surface that interpolates at its best
the input data. However, the SOM algorithm output space depicted in Figure 5.16
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Visualization of the input data fed to 
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Figure 5.15: Case 1 - Visualization of the simulated input data for K-means clus-
tering.
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Figure 5.16: Case 2 - Visualization of the SOM input space and SOM output space
that is input to K-means clustering.

(b) is arranged in 2-dimensional space with hexagonal lattice considering its bet-
ter visual effect compared to rectangular lattice [222]. The map size is adaptively
adjusted depending on the number of PRNs. Then this map is fed to the K-means
clustering in the Case-2 implementation.

Parameter tuning has been heuristically implemented searching for suitable val-
ues of the parameters through the simulated data analysis and they are summarized
in Table 5.7.

In the SOM algorithm detailed in Section 5.3.2, the neighborhood radius σ(t) of
the widely applied Gaussian kernel function hbi(t) is set to a relatively large value
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Table 5.7: Summary of Setting Parameters

Stage Parameters Values

Data
Preparation

Dimension (µ) of the data set 3
Number of observations Number of visible satellites
Window size Tw 5
Number of consecutive windows Nw 3
The order (M) of the FIR filter 2,3,4

Self-Organizing
Map

Dimensionality 2-dimensional space
Map size and map lattice Adaptive and hexagonal
Neighborhood function hbi(t) Gaussian
Neighborhood radius σ(t) Linearly decreasing: σinit = 5 and σfinal = 1
Learning rate function α(t) Inverse of time: α(t) = α0/ (1 + 100t/T )
Training length T 10
Initial learning rate α0 0.05

K-means
Clustering

Number of clusters 2
Iteration value 5
Weighting w̄ =

[︂
0.15 0.45 0.40

]︂
Decision Mechanism Threshold (th) C/N0 38-40 dBHz

σinit in the first phase of training so that SOM approximately is tuned to the same
space of the input data. It ends with a smaller value σfinal for the fine tuning
of the map. It has to be also noted that the neighboring function influences the
training results, and selecting a proper function depending on the characteristics
of the datasets is quite important. In the same sense, learning rate function α(t) is
a non-increasing function and can be linear, power series, or inversely proportional
to time t [227]. In this study, inverse of time function having an initial learning
rate α0 has been used for SOM training during the training time T . These two
hyperparameters, namely, the learning rate and neighborhood function radius, are
important to adjust the compatibility between the model and data distribution.

Furthermore, in the K-means algorithm, a predefined iteration value has been
decided to avoid a case of that convergence is not reached. The quality of final
clustering is dependent on the convergence check, stop criterion, and also the way
applied for the initialization of the data. The cost of the optimal solution decreases
with increasing number of clusters, which is fixed in this study. Although K-
means is the most widely used clustering algorithm due to its simplicity, reasonably
scalability, and modifiability to deal with datasets, there are some drawbacks such
as being highly sensitive to initialization and description of the data [211].

5.3.4 Experimental Tests
After the algorithms have been set and tuned by means of the simulated data

sets, their performance has been analyzed through static and kinematic real data
sets.
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Visual Analysis of the SOM

In order to visualize and analyze the results of the SOM algorithm, U-matrix
technique is exploited [222]. Figure 5.17 shows an example of the results on a
graphic display called the U-matrix. The U-matrix shows the average distances be-
tween neighboring prototype vectors represented by pseudo-color scales [220, 222].
Whereas dark shades represent large distances, light shade is used for a small aver-
age distance of neighboring [224]. Moreover, the U-matrix located on the top left is
shown along with three component planes of carrier-phase, pseudorange, and C/N0
related measurements. As it is depicted on an empty grid below, each hexagon
corresponds to a different PRN in the component planes shown.

In this example, Figure 5.17 also consists of the K-means clustering of the SOM
prototypes based on the measurement-sets that belong to duration between 17:37:43
and 17:37:50 UTC of a real static data collected on 29 May 2016. In other words,
the algorithms are run once for one observation time (Nw +Tw −1 = 7 s). In Figure
5.17, it can be observed that the U-matrix does not show a clear separation among
the satellites of which the PRN labels are given on the empty grid. However, from
the component planes, it can be seen that some correlation exists between carrier-
phase and pseudorange related measurements indicating a close relation of some
satellites in terms of observed effect on the measurements. With the application
of K-means clustering, three satellite signals (e.g. PRN 10, PRN 11, and PRN 17)
are clustered into the same subset, and through the designed detection mechanism
they are claimed to be the satellite signals suffering from the multipath effect.
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Figure 5.17: K-means clustering of the SOM prototypes based on the measurement-
sets that belong to duration between 17:37:43 and 17:37:50 UTC of the data col-
lected on 29 May 2016 at SANAE IV.
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Real Static Multipath Data

In the analyses, different data sets that were collected at the Antarctic sta-
tion SANAE-IV have been used. The collected data is obtained from a scintillation
monitoring station by means of a data grabber and an implemented GNSS software
radio receiver [47, 65]. These data are interesting because they might be affected
by scintillation and multipath. They can be exploited to demonstrate the effec-
tiveness of a good multipath estimation. In fact, exclusion of multipath affected
PRNs improves the positioning performance, but multipath is also a threat for the
scintillation monitoring operations.

• Degradation in the positioning accuracy due to multipath
As it has been exemplified in Section 3.3.2, when the satellites that suffer from
the multipath effect are included in the position computation, a degradation
in the accuracy and precision of the position solution is inevitably expected.
Figure 5.18 (a) shows the sky plot of the visible satellites considering an ele-
vation mask angle of 5 degrees by processing data collected between 17:30 and
17:40 on 29 May 2016 at the station. Figure 5.18 (b) shows the computed
positions with different satellites in UTM coordinate system by processing
the same data. The differences between the different clouds of points can be
noticed in Figure 5.18 (b), and it is observed that the estimated receiver posi-
tion is pulled toward erroneous solutions when the satellite signals influenced
by the multipath effects are not eliminated. Moreover, it is explained and
detailed how this degradation is attributed to the multipath effect for some
satellite signals through the analysis of the same data in the following of the
thesis.

• False scintillation due to multipath
Scintillation is caused by the ionospheric irregularities affecting GNSS signals
in both refractive and diffractive ways associated with random propagation
delay and signal attenuation factor as observed in the multipath effect. Two
parameters, namely, S4 index and σϕ index, are used to indicate the amount
of scintillation effect in a received GNSS signal [56]. Both indices are com-
puted from the signal tracking stage outputs and whereas the S4 index is the
standard deviation of the received power that is computed from the normal-
ized prompt correlator samples, the σϕ index is the standard deviation of the
detrended carrier phase measurements [56].
As an example, Figure 5.19 (a) and (b) show the computed S4 index values
for the tracked GPS L1 C/A signals at the same time of the consecutive days
at the Antarctic station. Although it is likely that due to the polar location
of the SANAE IV station it is expected that phase scintillation occurs more
frequently, increases in the amplitude scintillation levels of some satellites
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Figure 5.18: Sky-plot of GPS satellites and positioning solution computed using
the data collected between 17:30-17:40 on 29 May 2016 at SANAE IV station.

are observed. However, as it can be noticed in Figure 5.19 (a) and (b), the
changes in the computed S4 index values of some satellites (e.g. PRN 10, PRN
11, PRN 17 etc.) repeat and follow almost the same trend daily depending
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on the satellite motion since the station position is fixed. This is why the
observed effect is attributed to multipath influence on the received signals of
the aforementioned satellites.
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Figure 5.19: Amplitude scintillation index values at GPS L1 C/A signals - 28-29
May 2016 SANAE IV Station.

By following the data preparation procedure, GPS measurements computed
from the processed data set collected on 29 May 2016 are put into the format and
processed. In Figure 5.20, clustering percentages of the tracked GPS satellites into
the multipath class for a 10-minute period are shown. It has been observed that the
received signal of satellite PRN 10 of which the computed S4 index is mostly higher
than 0.3 as depicted in Figure 5.19 (b) has been classified as multipath signal with
an accuracy of 90 %.

Tests of the clustering algorithm
The multipath events have been identified by inspection of the cases in which

similar trends on the S4 indices on the consecutive days exist and having S4 in-
dices higher than 0.3. Then, the clustering algorithms have been applied and the
performance of the algorithms is reported in Table 5.8.

The results given in Table 5.8 clearly shows that clustering algorithm can be
used to classify the multipath signals considering the accuracy values reported.
With the results obtained specific to static data set at the monitoring station,
the algorithm provides us to overcome the need of the computation of scintillation
indices, the comparison of the indices for the same satellites on the consecutive days,
and collection of large training data sets a-priori for an application of a possible
supervised algorithm for multipath detection.

As it is mentioned in Section 5.3.2, in terms of computational complexity, it is
more convenient to cluster a set of prototypes rather than directly the data [220].
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Figure 5.20: Clustering percentages of tracked GPS satellite PRNs into the mul-
tipath class for a 10-minute period between 17:30 and 17:40 on 29 May 2016 at
SANAE IV Station.

Table 5.8: Multipath Clustering Performance of Real Static GPS L1 C/A Measure-
ments Collected at SANAE IV Station.

Date
Start-End Times

(UTC)
GPS PRNs

affected

K-means clustering
(Case-1)

SOM Prototype Based
Clustering (Case-2)

with the FIR filter having with the FIR filter having
Order=2 Order=3 Order=4 Order=2 Order=3 Order=4

01/02/16 05 : 40 − 05 : 50 31 88.26 % 88.82 % 88.14 % 85.06 % 86.46 % 87.27 %
05 : 10 − 05 : 20 5 89.54 % 90.22 % 90.60 % 91.28 % 91.12 % 91.57 %

06/03/16 16 : 20 − 16 : 30 9 90.50 % 90.18 % 90.35 % 91.85 % 91.68 % 91.68 %
02/06/16 09 : 40 − 09 : 50 9 86.54 % 86.21 % 86.38 % 89.20 % 89.20 % 89.37 %
03/12/16 07 : 40 − 07 : 50 25 93.85 % 93.85 % 94.19 % 93.02 % 94.35 % 94.68 %
04/01/17 10 : 00 − 10 : 05 10 91.03 % 89.53 % 90.03 % 93.69 % 93.36 % 92.69 %

Besides, when the accuracies of the clustering operations are compared it has been
observed that the percentages of correctly clustering the satellite signal suffering
from multipath has improved through the application of SOM algorithm as well.
Moreover, thanks to the projection realized from three-dimension to two-dimension
through the SOM algorithm, clustering run-time complexity that deals with the
time spent on the execution of the algorithm has decreased. For example, in the
case of having tracked 11 visible satellites, it has been measured that running time
of directly clustering the data is around 1.5 times the spent time for clustering the
prototypes.
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Real Kinematic Multipath Data

The urban testing environment allowed collecting the GPS L1 C/A data sets
containing multipath interference and NLOS reception through the road test that
was conducted in The Hague, The Netherlands utilizing a USRP N210 front-end.
Figure 5.21 shows the trajectory of the data collection campaign obtained from the
commercial receivers (e.g. Trimble and Septentrio) that are able to process multi-
constellation multi-frequency satellite signals. Throughout the implementations
and analysis carried out in this study, only L1 C/A signal of the GPS constellation
is considered to make the single frequency position computation robust to the
multipath effect by detecting the satellite signals that suffer from the multipath
effect and excluding them from the computation of the position.

Figure 5.21: The Google Earth trajectory of the collected GNSS raw data using a
car equipped with GNSS antenna, front-end (USRP N210) and commercial GNSS
receivers (Septentrio and Trimble) in The Hague, The Netherlands.

Figure 5.22 shows a portion of the trajectory during which multipath/NLOS
effects are quite visible in the positioning estimations obtained through the pro-
cessing of GPS L1 C/A signals. The red car icons show the position estimations
from the commercial receiver that has the ability of processing multi-frequency and
multi-constellation satellite signals and of which the estimations are improved with

117



Machine learning based methods to counteract GNSS impairments

the support of float-ambiguity fixed PPP results. The blue car icons indicate the
position estimations computed from the GPS measurements obtained by processing
the front-end outputs (i.e. raw GPS IF data) through the software receiver. It has
been computed that the 2D positioning difference between the red car icons, which
are accepted as ground-truth, and the blue car icons is around 9.5 meters.

Figure 5.22: Biased position estimation due to the multipath effect and/or NLOS
reception.

Whereas the number of visible GPS satellites is around 10 − 11 in the forestry
area shown in Figure 5.22, it decreases to 6 − 7 by losing the track of the low-
elevation satellite signals that are circled in Figure 5.23 on the road between tall
buildings located on both sides of the road. It is confirmed by the increase of the
Geometric Dilution of Precision (GDOP) jumping from 1.717 to 3.128.

During the conducted road tests, when the portion of the roads in which tall
buildings have adverse effects on the number of visible satellites by the receiver,
clustering algorithm has run. Figure 5.24 (a) shows the sky plot of GPS satellites.
As being different from the sky plot depicted in Figure 5.23, the satellite signal
broadcast by PRN 30 has also been acquired and tracked. Figure 5.24 (b) shows
the K-means clustering of the SOM prototypes based on the measurement sets of the
tracked satellites. It is observed that two satellites, PRNs 8 and 30, are clustered as
multipath signals. When the measurements obtained from these satellite signals are
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Figure 5.23: Sky plot of the GPS satellites observed during the portion of the
conducted real kinematic test.

not included in the positioning computation, the positioning errors have decreased
around 2.3 meters in the 2D positioning estimations, getting closer to the ground-
truth solutions.

When the data preparation procedure is considered, during the first 7 measure-
ment epochs the clustering algorithm is not able to produce a result due to data
buffering although it might not be so significant for the static scenarios. How-
ever, after this data buffering period, it has been observed clustering provides a
remarkable information on the satellite selection at every measurement epochs.
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(b) K-means clustering of SOM prototypes.

Figure 5.24: SOM Prototype Based K-Means Clustering of Real Kinematic GPS
Measurements under Multipath Effects and/or NLOS Receptions.
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Chapter 6

Conclusions and future activities

The thesis deals with analyzing the scintillation and multipath effects on the
receiver side by means of a designed and developed multi-frequency and multi-
constellation software GNSS receiver. The main objective of the work has been
to investigate and develop new approaches to the receiver design focusing on the
signal processing stages. In particular, it has addressed the AI solutions through
different ML- and DL-based methods.

As an introduction, Chapter 2 provides an overview of a GNSS receiver archi-
tecture, main GNSS error sources, and the concept of SDR-based GNSS receiver,
which has been considered in the development of the work.

In Chapter 3, scintillation and multipath effects are specified in detail. With
the description of scintillation measurements on the receiver side, as an introduc-
tion to the experimental part of the thesis, the data collection setup utilizing the
SDR receiver approach and some analysis of the real scintillation data have been
provided. Having discussed the scintillation models and classical detection strate-
gies proposed in the literature, the significance of real data collection to observe
the actual effects of the scintillation on the receiver side and the need for new ap-
proaches for scintillation detection have been defined. Likewise, after analyzing the
multipath effect on the GNSS measurements and observables, classical multipath
detection strategies in the literature have been discussed. The analyses have con-
tributed to the development of the multipath detection algorithm that has been
proposed in the thesis.

In Chapter 4, different signal acquisition techniques and different carrier track-
ing methods, namely, traditional PLL and KF-based PLL for GPS L1 C/A and
L5 signals have been used to analyze their performance under strong amplitude
and phase scintillations and the no-scintillation environment by exploiting the real
GNSS signals. Even if the implemented acquisition and tracking structures are well
known in the literature, the scope of this research is to select the optimal acquisi-
tion and tracking parameters able to make a GPS receiver robust enough to work
even under strong scintillation conditions.
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• In acquisition stage, it has been observed that the usage of only one chan-
nel for the GPS L5 signal, namely the pilot channel, provides simplicity and
reduction in the computational load. In addition, having compared the per-
formance of the algorithms for L5 and L1 C/A in terms of ROC curves,
peak-to-floor ratios, the signal acquisition time or computational load, the
trade-off between sensitivity and complexity has been provided to evaluate
better the performances of the acquisition methods. Concerning the perfor-
mance under scintillation, under phase-only scintillation, although the signal
is acquired all the time, a loss in the probability of detection is computed
around 0.013 − 0.002. Although the phase scintillation is not at the level to
prevent the acquisition of the scintillated signal, the phase scintillation ac-
companied by the strong amplitude scintillation can prevent the acquisition
of the signal. In that case, extending the integration time can be consid-
ered as a solution and Method-C performs best among the other methods.
Among Method-A and Method-B, which both have the lowest coherent in-
tegration times that are equal to one code period, Method-B employing the
zero-padding approach provides slightly better performance at the cost of an
increased computational burden compared to Method-A.

• In tracking stage, with the performance analysis in terms of the residual
errors on the receiver observables and internal parameters, it is observed that
although L5 signal experiences larger fluctuations under scintillation due to
its lower frequency, the tracking outputs of the processed L1 C/A signal
have provided more errors, mostly due to lower power with respect to the L5
signal. It has been showed that extending the integration time and lowering
the noise bandwidth have benefits on the accuracy and loss-of-lock durations
of the tracking measurements up to a point. Furthermore, although KF-based
carrier tracking outperforms the PLL-based tracking, it can also fail under
both strong amplitude and phase scintillation conditions, yet it performs with
having no loss-of-lock duration under phase-only scintillation events.

In Chapter 5, after providing an overview of AI solutions and discussing the role
of ML in a GNSS receiver, the implementations of the designed scintillation and
multipath detection methods have been defined. The main contributions on these
approaches can be summarized as follows:

• The linear, Gaussian, and polynomial kernel SVM algorithms for both phase
and amplitude scintillation detection have been reviewed and analyzed. Per-
formance comparison has been assessed by exploiting the ROC curves, confu-
sion matrix results, and the performance metrics associated with the confusion
matrix. It has been observed that, if the kernel scale parameter of Gaussian
RBF kernel SVM algorithm is optimized, the performance of the RBF kernel
SVM method outperforms the linear kernel SVM method in terms of overall
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accuracy. Moreover, although third order polynomial kernel SVM performs
better than the linear kernel, it comes with a cost of increased time and space
complexity. Furthermore, although the differences in the accuracy rates of the
methods seem not to be at a considerable level (e.g. around 1 % among dif-
ferent kernel functions), the method providing higher accuracy gains critical
importance in terms of early detection considering that the fed scintillation
indices to the algorithm have a sampling interval of 60 s.

• GNSS multipath detection algorithms based on unsupervised machine learn-
ing algorithms, namely, K-means and SOM, have been designed, implemented,
and tested. By processing common GNSS receiver observables, namely, car-
rier phase, pseudorange, and carrier-to-noise-ratio creating clusters of con-
sistent measurements to allow the identification of satellite signals suffering
from the multipath error has been targeted. The test results realized with
both static and kinematic data sets exploited in the study have an outcome
of improved accuracy in the positioning. It has been observed that correctly
clustering of the satellite signals suffering from multipath with accuracies
reaching 90 % in the output of the algorithm has been possible. However,
the improvement in the overall positioning accuracy is dependent on the con-
ducted test scenario where type and strength of multipath signals (e.g. NLOS
and LOS), number of satellites suffering from the multipath, and test type
(e.g. static or kinematic) can be various. For example, in specific static and
kinematic test configurations, it has been possible to obtain around 10 m and
2.5 m improvement in 2D positioning accuracy, respectively.
Moreover, it has been shown that applying the SOM algorithm before the
K-means clustering is more convenient, less computationally complex, and
having more accuracy rather than clustering the data directly through K-
means algorithm. However, during a transient time (e.g. 7 measurement
epochs) the clustering algorithm is not able to produce a result due to data
buffering and this might be a limitation in high dynamics scenarios. The use
of unsupervised algorithms, even if needs a proper initial tuning, allows for
automatic detection of the multipath events, thus allowing the GNSS receiver
to adapt to the environment and provide better performance.

Future activities could include investigations on the implementation of a DL
algorithm for GNSS signal acquisition and tracking in a receiver architecture that
can cope with harsh ionospheric scintillation and multipath conditions. Moreover,
considering regression-based ML algorithms and DL approaches, prediction of satel-
lite clock and orbital parameters to improve applied corrections and reach better
accuracy in the positioning could be worked in case of non-availability of related
information.
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Appendix A

Software GNSS Receiver

A multi-frequency multi-constellation GNSS SDR receiver is developed in MAT-
LAB language, and it is intended as a non-real time tool that is able to implement
full processing chain from the received signal to the PVT computation including
scintillation analysis capability.

A.1 Flow of the Algorithms
The flow diagram of software GNSS algorithms is shown in Figure A.1. More-

over, in order to ease the configuration of the receiver, a GUI has been created, and
it is depicted in Figure A.2.
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Figure A.1: Flow diagram of software GNSS receiver algorithms.
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Figure A.2: Graphical User Interface (GUI) of MATLAB based Software Defined
Radio (SDR) receiver.

A.2 Signal Carrier Tracking Strategies - Filter
Designs

A key block in the carrier phase tracking loop is the loop filter that reduces the
noise and tracks the variations of the signal.

A.2.1 Traditional PLL
A PLL discriminator computes the difference between the phase of the incoming

signal and the locally generated signal. Here, a two-quadrant Costas PLL discrim-
inator is given, which outputs the phase error as:

δφ̂k = tan−1
(︃

Qk

Ik

)︃
(A.1)

where Ik and Qk are the in-phase and quadra-phase correlations at time k in
the tracking stage. In Table A.1, the basics of second and third-order analog PLL
filter architectures are summarized.

The parameter ωn in the equations in Table A.1, is the natural frequency of
the loop filter and it is computed from the bandwidth Bn, which is the designer’s
choice.

126



A.2 – Signal Carrier Tracking Strategies - Filter Designs

Table A.1: Specifications of the Analog Phase Lock Loop Filters

Second Order Loop Third Order Loop
Closed Loop

Transfer Functions
H2(s) = α2ωns+ω2

n

s2+α2ωns+ω2
n

H3(s) = β3ωns2+α3ω2
ns+ω3

n

s3+β3ωns2+α3ω2
ns+ω3

n

Noise
Bandwidth (Hz)

Bn =
(︂1+α2

2
4α2

2

)︂
ωn Bn =

(︃
α3β2

3+(α2
3−β3)

4(α3β3−1)

)︃
ωn

Digital PLL transfer loop functions can be computed from their analog coun-
terparts through the conversion of s = 1−z−1

T
where T is the integration time. The

numerically controlled oscillator (NCO) that generates a sinusoid of which phase is
related to the filtered discriminator output has a transfer function equal to N(z):

N(z) = z−1

1 − z−1 (A.2)

Table A.2 shows the digital counterpart of the analog PLL filters. Moreover,
the typical values, which are used in the literature to compute the PLL parameters,
are given in Table A.2.

Table A.2: Specifications of the Digital Phase Lock Loop Filters

Second Order Loop Third Order Loop
Closed Loop

Transfer Functions
H2(z) = (α1+α2)z−α1

(z−1)2+α1(z−1)+α2z
H3(z) = α2

(z−1)3+α1(z−1)2+α2z(z−1)+α3z2

Loop
Parameters

α1 = α2ωnT α1 = β3ωnT

α2 = ω2
nT 2 α2 = α3ω

2
nT 2

α3 = ω3
nT 3

Typically, α2 = 1.414 Typically, α3 = 1.1 & β3 = 2.4
Bn = 0.53ωn Bn = 0.7845ωn

In PLL loop filter design, there is a tradeoff in the decision of integration time
(T ) and loop bandwidth (Bn) parameters. In fact, in order to get more accurate
carrier measurements, the integration time should be long and noise bandwidth
should be narrow. However, under dynamic scenarios, the integration time should
be kept short and the bandwidth of the filter should be maintained narrow [3].
Furthermore, the order of the filter that is related to the capacity of the filter to
track the different types of signal dynamics also determines the loop filter’s response
[228].

127



Software GNSS Receiver

A.2.2 Kalman Filter Based PLL
Kalman Filter (KF) based tracking is the recursive estimation of the time-

varying states with the incoming observations by using the prior statistical knowl-
edge about the variations. Generally, the following state-space system dynamic
model [98]:

xk+1 = AkXk + Gkwk (A.3)
and the measurement model:

zk = Hkxk + vk (A.4)

are used, where the dimension and description of the variables are listed in Table
A.3.

Table A.3: Description of the Kalman Filter (KF) based carrier tracking variables

Variables Vector/Matrix Dimensions
State vector xk (3 × 1)

State transition matrix Ak (3 × 3)
Process noise matrix Gk (3 × 3)
Process noise vector wk (3 × 1)

Measurement zk (1 × 1)
Observation matrix Hk (1 × 3)
Measurement noise vk (1 × 1)

In a conventional GNSS receiver, the state vector and the states in the KF-based
PLL tracking are

xk =
[︂
∆φ ∆f ∆ḟ

]︂
k

(A.5)

where ∆φ is the carrier phase error, ∆f is the carrier frequency error and ∆ḟ is
the carrier frequency rate error. The state transition matrix has the following form
in this three state vector design [97]:

Ak =

⎡⎢⎣1 T T 2/2
0 1 T
0 0 0

⎤⎥⎦ (A.6)

Having defined dynamic and measurement models, KF implementation is sum-
marized in two steps [229], namely, prediction steps:

x̂−
k+1 = Ak+1x̂k (A.7)

P −
k+1 = AkPkAT

k + Qk (A.8)
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and correction steps:

Kk = P −
k HT

k

[︂
HkP −

k HT
k + Rk

]︂−1
(A.9)

x̂k = x̂−
k + Kk

[︂
zk − Hkx̂−

k

]︂
(A.10)

Pk = [I − KkHk] P −
k [I − KkHk]T + KkRkKT

k (A.11)
where x̂−

k+1 is priori state estimates after the projection of the transition matrix on
the states, P −

k+1 is priori estimate of state covariance matrix, Qk is process noise
covariance matrix, Kk is the KF gain vector with three elements which weight the
error between the measurements and predictions. Hk is observation matrix defined
as follows:

Hk =
[︂
1 T

2
T 2

6

]︂
(A.12)

Rk is measurement noise covariance matrix which is computed from E
[︂
vkvT

k

]︂
. x̂k

is posteriori state estimates after measurements are included and zk is the measure-
ment and in this case, it will be equal to average phase error which is the output of
the carrier loop discriminator during the integration time T .

[︂
zk − Hkx̂−

k

]︂
is named

as residuals and it shows the discrepancy between the measurements and estimates.
Pk is posteriori error covariance matrix.

The process noise covariance matrix Qk and the measurement noise covariance
matrix Rk should be set carefully in the KF design [230]. The process noise covari-
ance matrix is related to the process noise ωk, and can be modelled as

ωk =
[︂
ωbias ωdrift ωaccel

]︂
k

(A.13)

where ωbias, ωdrift and ωaccel are zero mean white noises (ωk ∼ N (0, Qk)) with the
power spectral densities Sbias, Sdrift and Saccel, respectively:

Sbias = h0

2 (A.14)

Sdrift = 2π2h−2 (A.15)
that depend on the h0 and h−2 Allan variance (AV) coefficients for timing standards
(e.g. TCXO, OCXO, Rubidium, Cesium) and Saccel can be determined by the LOS
jerk [229]. Process noise covariance matrix is computed as:

Q = E
[︂
GωωT GT

]︂
=

⎡⎢⎣f 2
RF Sbias 0 0

0 f 2
RF Sdrift 0

0 0 f2
RF Saccel

c2

⎤⎥⎦ (A.16)
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Qk ≈ 1
2
[︂
Ak Q + Q AT

k

]︂
T (A.17)

Furthermore, the measurement noise covariance matrix Rk is the noise variance
of vk, which is a zero-mean white noise, and is computed as:

Rk = E
[︂
vkvT

k

]︂
= σ2

v = 1
2 C/N0

(︄
1 + 1

2 C/N0 T

)︄
(A.18)
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Appendix B

Support Vector Machines (SVM)
Algorithm

B.1 Derivation of the Optimum Hyper-plane
With the given input data-set {x1, x2, ..., xN} where xi ∈ Rn, the two-class data

classification problem using linear models are written in the following form [196]:

yi = f(xi) = ωT
0 xi + b0 (B.1)

where ωT
0 x corresponds to the projection of x over the direction spanned by ω0.

ω0 and b0 are parameters of the optimum hyperplane [188]. Corresponding target
values {t1, t2, ..., tN} to the input values are decided according to yi:

class(xi) =
{︄

C1, ωT
0 xi ≥ −b0 → ti = +1

C2, ωT
0 xi < −b0 → ti = −1 (B.2)

where ti ∈ {−1, +1} defines the class labels. If all the points are classified correctly,
it leads to tiyi > 0 for all i. The distance of xi from the hyperplane is computed as
[231]

d(xi) = |f(xi)|
∥ω∥

=
ti

(︂
ωT

0 xi + b0
)︂

∥ω∥
(B.3)

Up to this point, there are not enough constraints to fix specific values for b and
ω. Therefore, in order to define a decision rule and have an optimum hyper-plane,
the parameters should be optimized by considering the maximum width for the
margin that can be obtained by solving [196]

arg max
ω0,b0

=
{︄

1
∥ω∥

min
i

[︂
ti

(︂
wT xi + b

)︂]︂}︄
(B.4)
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The direct optimization problem would be very complex and this constrained
optimization problem is solved by using Lagrange Multipliers [196]. The cost func-
tion is written as

L = 1
2 ∥ω∥2 −

N∑︂
i=1

ai

{︂
ti

(︂
ωT xi + b

)︂
− 1

}︂
(B.5)

where a = (a1, a2, ...aN)T are Lagrangian multipliers with ai ≥ 0. The solutions are
saddle points of the cost function L. There is a minus sign before the multipliers,
because saddle points are obtained by minimizing with respect to ω and b and
maximizing with respect to a [196, 188]. The derivatives of the cost function with
respect to ω and b are then set to zero:

∂L

∂ω
= 0 → ω0 =

N∑︂
i=1

αitixi (B.6)

∂L

∂b
= 0 →

N∑︂
i=1

αiti = 0 (B.7)

Replacing (B.6) and (B.7) in (B.5) leads to the dual representation of the maximum
margin problem [196]

L̃(a) =
N∑︂

i=1
ai − 1

2

N∑︂
i=1

N∑︂
j=1

aiajtitjκ(xi, xj) subject to (B.8)

ai ≥ 0, i = 1, ..., N (B.9)
where κ(xi, xj) = xT

i xj is kernel function. A necessary and sufficient condition for
a function κ(xi, xj) to be a valid kernel, the function κ(xi, xj) should be positive
semi-definite for all the possible choices and this also ensures that the Lagrangian
function L̃(a) is bounded [196]. The Lagrange multipliers are obtained by solving

â = arg max
a

L̃(a) (B.10)

with respect to a subject to the constraints

â ≥ 0, i = 1,2, ..., N (B.11)
N∑︂

i=1
âiti = 0 (B.12)

where all the points which have â /= 0 are on the margin, in other words they
are support vectors [191]. For all the points that do not lie on the margin, the
corresponding Lagrange multiplier is â = 0. Now, yi, defined by (B.1), can be
evaluated as
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yi = f(xi) =
N∑︂

j=1
âjtjκ(xi, xj) + b (B.13)

The optimization of this form satisfies the following Karush-Kuhn-Tucker (KKT)
conditions which are both necessary and sufficient for optimum SVM solution [195,
196, 231]:

α̂i ≥ 0, ∀i

tiyi − 1 ≥ 0, ∀i

α̂i {tiyi − 1} = 0, ∀i

(B.14)

After obtaining the Lagrange multipliers â by solving (B.10), the optimal pa-
rameters w0 and b0 can be computed by considering the set of support vectors S.
Because, any data point for which â = 0 plays no role in making predictions for
the new data points. Having obtained the â and support vector xi values that
satisfy KKT conditions and (B.13), the value of the threshold parameter b can be
determined [196]

w0 =
∑︂
iϵS

âitixi (B.15)

and

b0 = 1
NS

∑︂
iϵS

⎛⎝ti −
∑︂
jϵS

âjtjκ(xi, xj)
⎞⎠ (B.16)

where NS is the total number of support vectors in the set S and averaging
over all support vectors provides a numerically more stable solution for b0 [196].
Eventually, the decision function of SVM is computed as

ŷ(xi) = sign
⎛⎝Ns∑︂

j=1
[âitiκ(xj, xi)] + b0

⎞⎠ (B.17)
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