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RIESZ TRANSFORMS ON SOLVABLE EXTENSIONS

OF STRATIFIED GROUPS

ALESSIO MARTINI AND MARIA VALLARINO

Abstract. Let G = N⋊A, where N is a stratified group and A = R acts on N

via automorphic dilations. Homogeneous sub-Laplacians on N and A can be
lifted to left-invariant operators on G and their sum is a sub-Laplacian ∆ on G.
Here we prove weak type (1, 1), Lp-boundedness for p ∈ (1, 2] and H1

→ L1

boundedness of the Riesz transforms Y∆−1/2 and Y∆−1Z, where Y and Z

are any horizontal left-invariant vector fields on G, as well as the corresponding
dual boundedness results. At the crux of the argument are large-time bounds
for spatial derivatives of the heat kernel, which are new when ∆ is not elliptic.

1. Introduction

Let N be a stratified Lie group of homogeneous dimension Q. Let G be the
semidirect product N ⋊A, where A = R acts on N via automorphic dilations. The
group G is a solvable extension of N that is not unimodular and has exponential
volume growth. For all p ∈ [1,∞], let Lp(G) denote the Lp space with respect to a
right Haar measure µ on G.

Consider a system X̆1, . . . , X̆q of left-invariant vector fields on N that form a

basis of the first layer of the Lie algebra of N and let X̆0 be the standard basis of
the Lie algebra of A. The vector fields X̆0 on A and X̆1, . . . , X̆q on N can be lifted
to left-invariant vector fields X0, X1, . . . , Xq on G which generate the Lie algebra
of G and define a sub-Riemannian structure on G with associated left-invariant
Carnot–Carathéodory distance ̺. A horizontal left-invariant vector field on G is
any R-linear combination of X0, X1, . . . , Xq.

Let ∆ be the left-invariant sub-Laplacian on G defined by

(1.1) ∆ = −
q

∑

j=0

X2
j .

The operator ∆ extends uniquely to a positive self-adjoint operator on L2(G). Here
is our main result.

Theorem 1.1. Let Y, Z be any horizontal left-invariant vector fields on G.

(i) The first-order Riesz transform Y∆−1/2 is of weak type (1, 1), bounded on
Lp(G) for p ∈ (1, 2] and bounded from H1(G) to L1(G).

(ii) The second-order Riesz transform Y∆−1Z is of weak type (1, 1), bounded on
Lp(G) for p ∈ (1,∞) and bounded from H1(G) to L1(G) and from L∞(G) to
BMO(G).

We refer to Section 4.1 below for a precise definition of the Riesz transforms
Y∆−1/2 and Y∆−1Z. The spaces H1(G) and BMO(G) in the above statement are
the Hardy and bounded mean oscillation spaces associated with the metric-measure
space (G, ̺, µ) and its Calderón–Zygmund structure. It should be noted that the
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standard Calderón–Zygmund theory for doubling metric-measure spaces [1] does
not apply to (G, ̺, µ), which has exponential volume growth. Instead we exploit
the non-doubling Calderón–Zygmund theory of Hebisch and Steger [10] and the
corresponding Hardy and BMO theory developed in [14, 24, 25].

Boundedness of Riesz transforms associated with Laplacians and sub-Laplacians
has been studied in a variety of settings. Here we recall those results which have
a direct connection with ours and refer to the cited works and references therein
for a broader discussion. We remark that we are interested in Lp-boundedness
with respect to a right Haar measure; in the case of a left Haar measure, the Riesz
transforms Y∆−1/2 considered here are not Lp-bounded for any p ∈ [1,∞] [11].

In the case N = RQ is abelian, the operator ∆ is a full Laplacian (although it is
not the Laplace–Beltrami operator on the hyperbolic space R

Q
⋊ R). In this case,

various parts of Theorem 1.1 are contained in already known results. Weak type
(1, 1) and Lp-boundedness (1 < p ≤ 2) of the first-order Riesz transforms Y∆−1/2

is in [10, Theorem 2.4] (previous partial results are in [20]). Weak type (1, 1) and
Lp-boundedness (1 < p < ∞) of the second-order Riesz transforms Y∆−1Z is in
[5, 6]. H1 → L1 boundedness of first- and second-order Riesz transforms is studied
in [21] in the particular case Q = 2. The main novelty of our result lies in the fact
that we can consider nonabelian N and, correspondingly, nonelliptic ∆.

Other Riesz transforms on solvable extensions of stratified groups were previously
studied in the literature for distinguished full Laplacians, especially in the context of
Iwasawa NA groups of rank 1 [5, 6, 27]. All these results involving a full Laplacian
make strong use of spherical analysis on semisimple Lie groups (see also [3, 10, 24]
for the study of spectral multipliers of a full Laplacian in such a context). This tool
is not available for the analysis of the sub-Laplacian ∆ on G (unless N is abelian),
hence here different techniques are needed.

Due to the noncommutativity of G, the Riesz transform Y∆−1Z differs from
Y Z∆−1 and ∆−1Y Z. Indeed Y Z∆−1 and ∆−1Y Z are not Lp-bounded for any
p ∈ [1,∞], at least when N is abelian [5, 6], and therefore the Riesz transforms
Y∆−1Z are the only ones for which it makes sense to investigate Lp-boundedness.
Hence Theorem 1.1 gives a complete picture regarding Lp-boundedness of second-
order Riesz transforms associated with ∆, as well as Lp-boundedness for p ≤ 2 for
the first-order Riesz transforms Y∆−1/2.

Note that the adjoint of Y∆−1Z is Z∆−1Y , so it is natural that the Lp-
boundedness range for these Riesz transforms is symmetric with respect to p = 2.
The same does not hold for first-order transforms, and Lp-boundedness for p > 2
of Y∆−1/2 is equivalent to Lp-boundedness for p < 2 of (Y∆−1/2)∗ = −∆−1/2Y .
For the operators ∆−1/2Y very few results appear to be available in the literature:
in the case Q = 2, it is known that the operators ∆−1/2Y are not bounded from
H1(G) to L1(G) [21]; on the other hand, in the case Q = 1 (i.e., the “ax+ b group”
case), ∆−1/2Y is known to be of weak type (1, 1) and Lp-bounded for p ∈ (1,∞) for
a particular choice of Y (i.e., when Y ∈ RX1) [7]. While the existing results do not
exclude that ∆−1/2Y may be bounded for p < 2 in greater generality, they seem to
indicate that methods different from the ones employed in the present paper would
be necessary for such an investigation.

Indeed the proof of our results goes through showing that the Riesz transforms
under consideration are singular integral operators of Calderón–Zygmund type,
which implies weak type (1, 1) as well as H1 → L1 boundedness.

As it is well-known, Riesz transforms can be subordinated to the heat semigroup
e−t∆ and their boundedness properties can be derived from estimates of suitable
derivatives of the heat kernel ht. It should be noted that, while small-time estimates
for heat kernels associated to sub-Laplacians are available in great generality, precise
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large-time estimates on exponentially growing groups are known only in particular
cases. Here we obtain weighted L1-estimates

‖eǫ|·|̺/t1/2ht‖1 .ǫ 1, ‖eǫ|·|̺/t1/2Y ht‖1 .ǫ t
−1/2

for any ǫ ≥ 0 and all t ∈ (0,∞), where | · |̺ denotes the ̺-distance from the
identity and Y is any horizontal left-invariant vector field. These estimates imply,
via Calderón–Zygmund theory, the boundedness of the Riesz transforms Y∆−1/2 for
p ∈ (1, 2]. The above heat kernel estimates extend those in [10] (where only the case
N abelian is considered and explicit formulas for the heat kernel are exploited, which
are not available in our generality) and enhance those in [14] (where unweighted
estimates were proved for general N).

As for the second-order Riesz transforms Y∆−1Z, the argument for N abelian
in [5, 6] is based, among other things, on a precise characterisation and asymptotic
analysis of a fundamental solution of ∆−1, which is made possible by the fact
that this fundamental solution is radial (after multiplication by a suitable power
of the modular function). These properties are no longer available in the case
N nonabelian and a different route is followed here, based on estimates of the
second-order derivatives Y (Zht)

∗ of the heat kernel (here f 7→ f∗ is the usual
L1-isometric involution): note that −

∫∞
0 Y (Zht)

∗ dt is the convolution kernel of

the Riesz transform Y∆−1Z. Indeed the “local part”
∫ 1

0
Y (Zht)

∗ dt of the kernel
is shown to satisfy estimates of Calderón–Zygmund type as before. The “part at
infinity”

∫∞
1 Y (Zht)

∗ dt, instead, turns out to be integrable. More precisely, in the
case Y, Z ∈ span{X1, . . . , Xq}, we can prove that

‖eǫ|·|̺/t1/2 Y (Zht)
∗‖1 .ǫ min{t−1, t−3/2}

and the “extra decay” for large t yields
∫∞
1

Y (Zht)
∗ dt ∈ L1(G). In the case one of

Y and Z (or both) is a multiple of X0, instead, a more careful analysis is employed,
exploiting additional cancellations occurring in the integration in t.

Our analysis is essentially based on a formula [16, 8] expressing the heat kernel
ht on G in terms of the corresponding heat kernel hN

t on N , as well as on a formula
expressing the distance ̺ on G in terms of the sub-Riemannian distance on N
[9, 14]. Through a number of manipulations, estimates for derivatives of ht are
then reduced to estimates for derivatives of hN

t , which are well-known. In these
respects, our methods appear to be more robust than those used in previous works
in the case N abelian: instead of symmetry and radiality properties (which are not
available for general N), here we directly exploit the semidirect product structure
of G = N ⋊A to relate analysis on G to analysis on N .

The Lp-boundedness of first-order Riesz transforms given in Theorem 1.1(i)
might be the starting point to discuss properties of homogeneous Sobolev spaces de-
fined in terms of the sub-Laplacian ∆, in the spirit of the work done for nonhomoge-
nous Sobolev spaces on nonunimodular groups in [19] and for both homegeneous
and nonhomogeneous Sobolev spaces on unimodular groups in [2].

Moreover, it would be interesting to investigate boundedness properties for Riesz
transforms associated with the sub-Laplacian with drift ∆−X , whereX is a suitable
horizontal left-invariant vector field, for which a multiplier theorem was proved in
[14]. Some results in this direction were obtained in [12].

The structure of the paper is as follows. In Section 2 we recall a number of
known facts regarding the groups G and N , the sub-Riemannian structure, and the
related Calderón–Zygmund theory. In Section 3 we derive weighted L1-estimates
for certain derivatives of the heat kernel. Finally, in Section 4 we prove our main
result, Theorem 1.1.
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Let us fix some notation that will be used throughout. R+ and R
+
0 denote the

open and closed positive half-lines in R respectively. The letter C and variants such
as Cs denote finite positive constants that may vary from place to place. Given
two expressions A and B, A . B means that there exists a finite positive constant
C such that A ≤ C B. Moreover A ∼ B means A . B and B . A.

2. Preliminaries

The material presented in this section summarises a number of definitions and
results extensively discussed in [14], to which we refer for details and references to
the literature.

2.1. Stratified groups and their extensions. Let N be a stratified group. In
other words, N is a simply connected Lie group, whose Lie algebra n is equipped
with a derivation D such that the eigenspace of D corresponding to the eigenvalue
1 generates n as a Lie algebra. The eigenvalues of D are positive integers 1, . . . , S
and n is the direct sum of the eigenspaces of D, which are called layers: the jth
layer corresponds to the eigenvalue j. Moreover n is S-step nilpotent, where S is
the maximum eigenvalue.

The exponential map expN : n → N is a diffeomorphism and provides global
coordinates for N , that shall be used in the sequel without further mention. Any
chosen Lebesgue measure on n is then a left and right Haar measure on N , which
we fix throughout. The formula δt = exp((log t)D) defines a family of automorphic
dilations (δt)t>0 on N , and Q = trD is called the homogeneous dimension of N .

Let A = R, considered as an abelian Lie group. Again we identify A with its
Lie algebra a. Then A acts on N by automorphic dilations, and we can define the
corresponding semidirect product G = N ⋊A, with operations

(2.1) (z, u) · (z′, u′) = (z · euDz′, u+ u′), (z, u)−1 = (−e−uDz,−u)

and identity element 0G = (0N , 0). G is a solvable Lie group, and the Lie algebra
g of G is natually identified with the semidirect product of Lie algebras n⋊ a.

The left and right Haar measures µℓ and µ on G are given by

dµℓ(z, u) = e−Qu dz du dµ(z, u) = dz du

and the modular function m is given by m(z, u) = e−Qu. In particular G is not
unimodular and has exponential volume growth. In the following the right Haar
measure µ will be used to define Lebesgue spaces Lp(G) = Lp(G, dµ) on G and
‖f‖p will denote the Lp(G)-norm of a function f on G. Recall that L1(G) is a
Banach ∗-algebra with respect to convolution and involution given by

f ∗ g(x) =
∫

G

f(xy−1) g(y) dµ(y), f∗(x) = m(x)f(x−1)

for all f, g ∈ L1(G) and x ∈ G.

2.2. Sub-Riemannian structure. Consider a system X̆1, . . . , X̆q of left-invariant
vector fields onN that form a basis of the first layer of n. These vector fields provide
a global frame for a sub-bundle HN of the tangent bundle TN of N , called the
horizontal distribution. Since N is stratified, the first layer generates n as a Lie
algebra and consequently the horizontal distribution is bracket-generating.

Let gN be the left-invariant sub-Riemannian metric on the horizontal distribution
of N which makes X̆1, . . . , X̆q into an orthonormal basis, and ̺N the associated
Carnot–Carathéodory distance on N . Since the horizontal distribution is bracket-
generating, the distance ̺N is finite and induces onN the usual topology. Moreover,
since X̆1, . . . , X̆q are left-invariant and belong to the first layer, the distance ̺N is
left-invariant and homogeneous with respect to the automorphic dilations δt.
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Let X̆0 = ∂u be the canonical basis of a. The vector fields X̆0 on A and
X̆1, . . . , X̆q on N can be lifted to left-invariant vector fields on G given by

X0|(z,u) = X̆0|z = ∂u, Xj |(z,u) = euX̆j |z for j = 1, . . . , q.

Analogously as above, the systemX0, . . . , Xq generates the Lie algebra g and defines
a sub-Riemannian structure on G with associated horizontal distribution HG, sub-
Riemannian metric g and left-invariant Carnot–Carathéodory distance ̺.

Let |x|̺ = ̺(x, 0G) be the distance of x ∈ G from the identity; similarly, let
|z|N = ̺N (z, 0N) be the distance of z ∈ N from the identity. The following
relation between the Carnot–Carathéodory distances on G and N is proved in
[14, Proposition 2.7] (see also [9]).

Proposition 2.1. For all (z, u) ∈ G,

(2.2) |(z, u)|̺ = arccosh
(

coshu+ e−u|z|2N/2
)

.

For a (differentiable) function f on G we define the horizontal gradient∇Hf(x) ∈
HxG at x ∈ G by

gx(∇Hf(x), v) = (df)x(v) ∀v ∈ HxG,

where (df)x is the differential of f at x. It is easily seen that

(2.3) |∇Hf(x)|2g = gx(∇Hf(x),∇Hf(x)) =

q
∑

j=0

|Xjf(x)|2.

The close relation between the horizontal gradient ∇H and the sub-Riemannian
distance ̺ is clearly expressed by the following well-known estimate (see, e.g., [26,
VIII.1.1] and [14, Lemma 5.4]). Here we denote by Ry the right translation operator
defined by

Ryf(x) = f(xy)

for all f : G → C and x, y ∈ G.

Lemma 2.2. For all f ∈ L1
loc(G) such that |∇Hf |g ∈ L1(G), and for all y, z ∈ G,

‖Ryf −Rzf‖1 ≤ ̺(y, z)
∥

∥

∥
|∇Hf |g

∥

∥

∥

1
.

2.3. Calderón–Zygmund theory and Hardy spaces. A detailed description
of the Calderón–Zygmund and Hardy space theory on (G, ̺, µ) can be found in
[14, Section 3], to which we refer also for the definition of the Hardy and bounded
mean oscillation spaces H1(G) and BMO(G). For the reader’s convenience, here
we record a criterion for boundedness of singular integral operators, which is a
rephrasing of [10, Theorem 1.2] and [14, Theorems 3.2 and 3.8] in the particular
case of left-invariant operators on L2(G). Note that any such operator T is a
convolution operator:

Tφ = φ ∗ k
for some convolution kernel k (which in general is a distribution on G) and all
φ ∈ C∞

c (G); if k is a locally integrable function, then

Tφ(x) =

∫

K(x, y)φ(y) dµ(y)

for almost all x ∈ G, where the integral kernel K of T is given by

K(x, y) = k(y−1x)m(y) for a.a. x, y ∈ G.

Theorem 2.3. Let T be a linear operator bounded on L2(G) such that T =
∑

n∈Z
Tn, where

(i) the series converges in the strong topology of operators on L2(G);
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(ii) every Tn is a left-invariant operator with convolution kernel kn ∈ L1(G);
(iii) there exist positive constants b, B, ε, c with c 6= 1 such that, for all n ∈ Z,

∫

G

|kn(x)|
(

1 + cn|x|̺
)ε

dµ(x) ≤ B,(2.4)

∫

G

|k∗n(xy)− k∗n(x)| dµ(x) ≤ B
(

cn|y|̺
)b ∀y ∈ G.(2.5)

Then T is of weak type (1, 1), bounded on Lp(G) for p ∈ (1, 2], and bounded from
H1(G) to L1(G).

Remark 2.4. In view of Lemma 2.2, the condition (2.5) with b = 1 can be replaced
by the stronger condition

∫

G

|∇Hk∗n(x)|g dµ(x) ≤ B cn.

3. Heat kernel estimates for the sub-Laplacian ∆

3.1. The sub-Laplacian and its heat kernel. Let ∆ be the sub-Laplacian de-
fined in (1.1). We now briefly recall some well-known properties of ∆ and the
associated heat kernel (see, e.g., [26] and [14, Section 4.1] for further details).

Since the horizontal distribution on G is bracket-generating, ∆ is hypoelliptic.
Moreover ∆ is essentially self-adjoint and positive with respect to the right Haar
measure; in fact, for all f, g ∈ C∞

c (G),

(3.1) 〈∆f, g〉 =
q

∑

j=0

〈Xjf,Xjg〉,

where 〈·, ·〉 denotes the inner product of L2(G). In particular ∆ extends uniquely
to a positive self-adjoint operator on L2(G).

The heat kernel t 7→ ht is a semigroup of probability measures on G. By hypoel-
lipticity of ∂t + ∆, the distribution (t, x) 7→ ht(x) is in fact a smooth function on
R+ ×G and satisfies

ht ∗ ht′ = ht+t′ , ht ≥ 0, ‖ht‖1 = 1, h∗
t = ht.

It is also possible to obtain small-time “Gaussian-type” estimates for ht and its
group-invariant derivatives. Let Σ and Σ0 denote the sets of finite sequences of
elements of {1, . . . , q} and {0, . . . , q} respectively (note that Σ ⊆ Σ0). For α =

(j1, . . . , jk) ∈ Σ0 we write |α| = k and Xα = Xj1 · · ·Xjk . Similarly one defines X̆α

when α ∈ Σ.

Proposition 3.1. For all x ∈ G, α ∈ Σ0, and t ∈ R+,

|Xαht(x)| ≤ Cα t−(Q+1+|α|)/2eωαt exp(−bα|x|2̺/t),
where Cα, bα, ωα ∈ R

+. In particular, for all t0 ∈ R
+, ǫ ∈ R

+
0 and α, β ∈ Σ0,

‖eǫ|·|̺/t1/2Xα(Xβht)
∗‖1 ≤ Cα,β,t0,ǫ t

−(|α|+|β|)/2

for all t ∈ (0, t0].

Proof. The pointwise estimate is a particular instance of [13, Theorem 2.3(e)], which
in turn is a rephrasing of results in [23]. Integrating this estimate against the weight

eǫ|·|̺/t
1/2

on G readily yields the L1 estimate in the case |β| = 0 (see also the proof
of [13, Theorem 2.3(f)]). Finally, the general case follows by observing that

Xα(Xβht)
∗ = Xα(Xβ(ht/2 ∗ ht/2))

∗ = (Xβht/2)
∗ ∗ (Xαht/2);

hence, by Young’s inequality,

‖eǫ|·|̺/t1/2Xα(Xβht)
∗‖1 ≤ ‖eǫ|·|̺/t1/2Xβht/2‖1 ‖eǫ|·|̺/t

1/2

Xαht/2‖1
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and one can apply the particular case of the estimate to each factor. �

We remark that analogous estimates hold for general connected Lie groups and
sub-Laplacians thereon, but are effective for small times only; large-time estimates,
instead, are a much more delicate problem in this generality.

One case where large-time estimates are not problematic is that of the heat kernel
hN
t associated to the sub-Laplacian ∆N = −∑q

j=1 X̆
2
j on N . Here homogeneity

considerations (cf. [4, formula (1.73)]) readily imply that
(3.2)

X̆α(X̆βhN
λ−2t)

∗(z) = λQ+|α|+|β|X̆α(X̆βhN
t )∗(δλz) ∀λ, t ∈ R

+, z ∈ N,α, β ∈ Σ,

whence precise weighted L1-estimates follow.

Proposition 3.2. For all α, β ∈ Σ and γ0 ∈ R
+
0 , there exists Cα,β,γ0

∈ R+ such
that, for all γ ∈ [0, γ0] and all s ∈ R

+,
∥

∥

∥
| · |2γN X̆α(X̆βhN

s )∗
∥

∥

∥

L1(N)
≤ Cα,β,γ0

sγ−(|α|+|β|)/2.

3.2. Weighted L1-estimates of heat kernel derivatives. The heat kernel ht

associated to ∆ can be expressed in terms of the heat kernel hN
t associated to the

sub-Laplacian ∆N (see [16, §3] or [8, §2]):

(3.3) ht(z, u) =

∫ ∞

0

Ψt(ξ) exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ,

where

(3.4) Ψt(ξ) =
ξ−2

√
4π3t

exp

(

π2

4t

)
∫ ∞

0

sinh θ sin
πθ

2t
exp

(

−θ2

4t
− cosh θ

ξ

)

dθ.

The following identities and estimates involving the first derivative of the func-
tion ξ 7→ ξΨt(ξ) will be useful in the sequel.

Lemma 3.3. We have the following:

(i) ∂ξ[ξΨt(ξ)] =
ξ−2

4
√
π3t3

∫∞
0 cosh θ

[

π cos πθ
2t − θ sin πθ

2t

]

exp
(

π2−θ2

4t − cosh θ
ξ

)

dθ;

(ii)
∫∞
1 ∂ξ[ξΨt(ξ)] dt =

ξ−2

√
4π3

∫∞
0

∫ π

0 cos sθ
2 exp

(

s2−θ2

4 − cosh θ
ξ

)

cosh θ ds dθ;

(iii)
∣

∣

∫∞
1

∂ξ[ξΨt(ξ)] dt
∣

∣ ≤ Cξ−2
∫∞
0

exp
(

− θ2

4 − cosh θ
ξ

)

cosh θ dθ.

Proof. The proof of (i) is given in [14, Proposition 4.2]. The identity (ii) follows
from (i) and
∫ ∞

1

exp

(

π2 − θ2

4t

)[

π cos
πθ

2t
− θ sin

πθ

2t

]

dt

t3/2
= 2

∫ π

0

exp

(

s2 − θ2

4

)

cos
sθ

2
ds,

which we now prove. Note first that

1

t3/2
exp

(

π2 − θ2

4t

)[

π cos
πθ

2t
− θ sin

πθ

2t

]

= ℜ
[

π + iθ

t3/2
exp

(

(π + iθ)2

4t

)]

and
∫ ∞

1

π + iθ

t3/2
exp

(

(π + iθ)2

4t

)

dt = 2

∫ π+iθ

0

exp

(

w2

4

)

dw,

where the latter is meant as a contour integral in the complex plane. Moreover,
∫ π+iθ

0

exp

(

w2

4

)

dw =

∫ iθ

0

+

∫ π+iθ

iθ
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and the first summand is purely imaginary, as it is easily seen by integrating along
a straight line. In conclusion,

∫ ∞

1

exp

(

π2 − θ2

4t

)[

π cos
πθ

2t
− θ sin

πθ

2t

]

dt

t3/2

= 2ℜ
∫ π+iθ

iθ

exp

(

w2

4

)

dw = 2

∫ π

0

ℜ exp

(

(s+ iθ)2

4

)

ds

and (ii) is proved.
The estimate (iii) is an immediate consequence of (ii). �

The following technical lemma, which we will repeatedly use in the sequel, ex-
tends [14, Lemma 4.1] and can be proved following the same lines.

Lemma 3.4. For all α, β, θ ∈ R
+
0 with β ≥ α, and δ ∈ [0, 1/2],

∫

R

∫ ∞

0

cosh(αu)

ξ2+β
(ξδ + (coshu)δ) exp

(

−cosh θ + coshu

ξ

)

dξ du

≤ Cα,β

{

e(δ−1−β+α)θ if α > 0,

e(δ−1−β)θ(1 + θ) if α = 0,

where the constant Cα,β does not depend on δ.

We now derive weighted L1-estimates for ht and its horizontal gradient, whose
unweighted version is proved in [14, Proposition 4.2].

Proposition 3.5. For all ǫ ∈ R
+
0 , there exists Cǫ ∈ R+ such that, for all t ∈ R+,

∥

∥

∥
eǫ|·|̺/t

1/2

ht

∥

∥

∥

1
≤ Cǫ,

∥

∥

∥
eǫ|·|̺/t

1/2 |∇Hht|g
∥

∥

∥

1
≤ Cǫ t

−1/2.

Proof. Fix t0 ∈ R
+ sufficiently large so that ǫ/t

1/2
0 ≤ 1/2.

By (2.3) it suffices to show that

‖eǫ|·|̺/t1/2 ht‖1 ≤ Cǫ, ‖eǫ|·|̺/t1/2 Xjht‖1 ≤ Cǫ t
−1/2

for all j ∈ {0, 1, . . . , q} and t ∈ R+. In the case t ≤ t0, these estimates are
given by Proposition 3.1. Therefore in the rest of the proof we will assume that
t ≥ t0. We remark that the constants in these estimates may depend on ǫ, hence
on t0; therefore the same dependence is allowed for all the implicit constants in the
estimates throughout the proof.

If γt = ǫ/t1/2 and t ≥ t0, then γt ∈ [0, 1/2] and therefore, for all (z, u) ∈ G, by
Proposition 2.1,

(3.5) exp(γt|(z, u)|̺) ≤ (cosh |(z, u)|̺)γt . (coshu)γt + (e−u|z|2N)γt ,

where the implicit constant does not depend on t ∈ [t0,∞).

We discuss first the estimate for Xjht in the case j > 0. Recall that Xj = euX̆j .
Then, by (3.3) and differentiation under the integral sign,

(3.6) Xjht(z, u) =

∫ ∞

0

Ψt(ξ) exp

(

−coshu

ξ

)

euX̆jh
N
euξ/2(z) dξ.
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Therefore, by (3.5) and Proposition 3.2,

‖eγt|·|̺ Xjht‖1

.

∫

R

∫ ∞

0

(coshu)γt

∥

∥

∥
X̆jh

N
euξ/2

∥

∥

∥

L1(N)
|Ψt(ξ)| exp

(

−coshu

ξ

)

eu dξ du

+

∫

R

∫ ∞

0

e−γtu
∥

∥

∥
| · |2γt

N X̆jh
N
euξ/2

∥

∥

∥

L1(N)
|Ψt(ξ)| exp

(

−coshu

ξ

)

eu dξ du

.

∫

R

∫ ∞

0

|Ψt(ξ)|
eu/2

ξ1/2
((coshu)γt + ξγt) exp

(

−coshu

ξ

)

dξ du.

Since t ≥ t0, by (3.4) the above integral is controlled by a constant (depending on
t0, but not on t) times

t−1/2

∫ ∞

0

sinh θ

∣

∣

∣

∣

sin
πθ

2t

∣

∣

∣

∣

exp

(

−θ2

4t

)

×
∫

R

∫ ∞

0

eu/2

ξ2+1/2
((coshu)γt + ξγt) exp

(

−cosh θ + coshu

ξ

)

dξ du dθ.

By applying Lemma 3.4 (with α = β = 1/2), the integral in u and ξ is controlled
by a constant times e(γt−1)θ, hence

‖eγt|·|̺ Xjht‖1 . t−1/2

∫ ∞

0

sinh θ

eθ
θ

t
exp

(

ǫθ

t1/2
− θ2

4t

)

dθ . t−1/2.

This proves the estimate for Xjht in the case j > 0. A similar argument, using
Lemma 3.4 with α = β = 0, gives the estimate for ht.

It remains to discuss the estimate for X0ht. Note that, again by (3.3),

X0ht(z, u) = −
∫ ∞

0

Ψt(ξ)
sinhu

ξ
exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

+

∫ ∞

0

Ψt(ξ) exp

(

−coshu

ξ

)

∂

∂u
[hN

euξ/2(z)] dξ

= −
∫ ∞

0

Ψt(ξ)
eu

ξ
exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

−
∫ ∞

0

∂ξ[ξΨt(ξ)] exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

= I1 + I2.

(3.7)

Here the fact that ∂u[h
N
euξ/2(z)] = ξ∂ξ[h

N
euξ/2(z)], integration by parts and the

identity sinhu+ coshu = eu were used.
The norm ‖eγt|·|̺ I1‖1 of the summand I1 can be controlled analogously as above

(here Lemma 3.4 is applied with α = β = 1). As for I2, we observe that, by (3.5)
and Proposition 3.2,

‖eγt|·|̺ I2‖1

.

∫

R

∫ ∞

0

(coshu)γt
∥

∥hN
euξ/2

∥

∥

L1(N)
|∂ξ[ξΨt(ξ)]| exp

(

−coshu

ξ

)

dξ du

+

∫

R

∫ ∞

0

e−γtu
∥

∥

∥
| · |2γt

N hN
euξ/2

∥

∥

∥

L1(N)
|∂ξ[ξΨt(ξ)]| exp

(

−coshu

ξ

)

dξ du

.

∫

R

∫ ∞

0

|∂ξ[ξΨt(ξ)]| ((coshu)γt + ξγt) exp

(

−coshu

ξ

)

dξ du.
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Consequently, by Lemma 3.3(i), since t ≥ t0, ‖eγt|·|̺ I2‖1 is bounded by a constant
(depending on t0) times

t−3/2

∫ ∞

0

cosh θ

∣

∣

∣

∣

π cos
πθ

2t
− θ sin

πθ

2t

∣

∣

∣

∣

exp

(

−θ2

4t

)

×
∫

R

∫ ∞

0

ξ−2 ((coshu)γt + ξγt) exp

(

−cosh θ + coshu

ξ

)

dξ du dθ.

By applying Lemma 3.4 (with α = β = 0), the integral in ξ and u is controlled by
a constant times e(γt−1)θ(1 + θ), hence

‖eγt|·|̺ I2‖1 . t−3/2

∫ ∞

0

cosh θ

eθ
(1 + θ2/t) (1 + θ) exp

(

ǫθ

t1/2
− θ2

4t

)

dθ . t−1/2

and we are done. �

Remark 3.6. Simple modifications of the proof of Proposition 3.5 yield that
∥

∥

∥
eǫ|·|̺/t

1/2

Xαht

∥

∥

∥

1
≤ Cǫ,α max{t−|α|/2, t−1/2}

for all ǫ ∈ R
+
0 , t ∈ R+ and α ∈ Σ with |α| > 0.

Similar techniques as above yield estimates for certain second-order derivatives
of the heat kernel, which show an “extra decay” for large time.

Proposition 3.7. For all ǫ ∈ R
+
0 , there exists Cǫ ∈ R+ such that, for all t ∈ R+

and j, l = 1, . . . , q,
∥

∥

∥
eǫ|·|̺/t

1/2

Xl(Xjht)
∗
∥

∥

∥

1
≤ Cǫ min{t−1, t−3/2}.

Proof. Choose t0 sufficiently large so that ǫ/t
1/2
0 ≤ 1/2. For t ≤ t0 the desired

estimate follows from Proposition 3.1, hence in what follows we assume that t ≥ t0.
By (2.1), (3.2) and (3.6) we deduce that

(Xjht)
∗(z, u)

= e−Qu

∫ ∞

0

Ψt(ξ) exp

(

−coshu

ξ

)

e−uX̆jh
N
e−uξ/2(−e−uDz) dξ

=

∫ ∞

0

Ψt(ξ) exp

(

−coshu

ξ

)

(X̆jh
N
euξ/2)

∗(z) dξ.

(3.8)

Hence, for all l = 1, . . . , q,

(3.9) Xl(Xjht)
∗(z, u) =

∫ ∞

0

Ψt(ξ) exp

(

−coshu

ξ

)

euX̆l(X̆jh
N
euξ/2)

∗(z) dξ.

By proceeding as in the proof of Proposition 3.5 and applying Proposition 3.2, if
we define γt = ǫ/t1/2, then we obtain that, for t ≥ t0,

‖eγt|·|̺ Xl(Xjht)
∗‖1

.

∫

R

∫ ∞

0

|Ψt(ξ)|
1

ξ
((coshu)γt + ξγt) exp

(

−coshu

ξ

)

dξ du

. t−1/2

∫ ∞

0

sinh θ

∣

∣

∣

∣

sin
πθ

2t

∣

∣

∣

∣

exp

(

−θ2

4t

)

×
∫

R

∫ ∞

0

1

ξ2+1
((coshu)γt + ξγt) exp

(

−cosh θ + coshu

ξ

)

dξ du dθ

. t−1/2

∫ ∞

0

sinh θ

eθ
e(γt−1)θ (1 + θ)

θ

t
dθ . t−3/2,
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where Lemma 3.4 (with α = 0 and β = 1), Proposition 3.2 and the fact that
γt ≤ 1/2 were used. �

An analogous decay for t large can be obtained for certain third-order derivatives
of the heat kernel.

Proposition 3.8. For all ǫ ∈ R
+
0 , there exists Cǫ ∈ R+ such that, for all t ∈ R+

and j = 1, . . . , q and k, l = 0, . . . , q with (k, l) 6= (0, 0),

∥

∥

∥
eǫ|·|̺/t

1/2

XlXk(Xjht)
∗
∥

∥

∥

1
≤ Cǫ t

−3/2.

Proof. Choose t0 sufficiently large so that ǫ/t
1/2
0 ≤ 1/2. For t ≤ t0 the desired

estimate follows from Proposition 3.1. Consider now the case t ≥ t0. From (3.8)
we deduce that, for all k, l = 1, . . . , q,

XlXk(Xjht)
∗(z, u) =

∫ ∞

0

Ψt(ξ) exp

(

−coshu

ξ

)

e2uX̆lX̆k(X̆jh
N
euξ/2)

∗(z) dξ.

By proceeding as in the proof of Proposition 3.7, if we define γt = ǫ/t1/2, then we
obtain that, for t ≥ t0,

‖eγt|·|̺ XlXk(Xjht)
∗‖1

.

∫

R

∫ ∞

0

|Ψt(ξ)|
eu/2

ξ3/2
((coshu)γt + ξγt) exp

(

−coshu

ξ

)

dξ du

. t−1/2

∫ ∞

0

sinh θ

∣

∣

∣

∣

sin
πθ

2t

∣

∣

∣

∣

exp

(

−θ2

4t

)

×
∫

R

∫ ∞

0

eu/2

ξ2+3/2
((coshu)γt + ξγt) exp

(

−cosh θ + coshu

ξ

)

dξ du dθ

. t−1/2

∫ ∞

0

sinh θ

eθ
e(γt−1)θ θ

t
dθ . t−3/2

where Lemma 3.4 (with α = 1/2 and β = 3/2), Proposition 3.2 and the fact that
γt ≤ 1/2 were used. This proves the desired estimate when k 6= 0 6= l.

Consider now the case where k = 0 6= l. Starting from (3.8) and proceeding as
in the derivation of (3.7), one easily obtains that

XlX0(Xjht)
∗(z, u) = I1 + I2,

where

I1 = −
∫ ∞

0

Ψt(ξ)
eu

ξ
exp

(

−coshu

ξ

)

euX̆l(X̆jh
N
euξ/2)

∗(z) dξ,

I2 = −
∫ ∞

0

∂ξ[ξΨt(ξ)] exp

(

−coshu

ξ

)

euX̆l(X̆jh
N
euξ/2)

∗(z) dξ.

The estimate ‖eγt|·|̺ I1‖1 . t−3/2 for t ≥ t0 is then proved analogously as above
(here Proposition 3.2 and Lemma 3.4 with α = 1 and β = 2 are used). As for I2,
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from Lemma 3.3(i) and Proposition 3.2 we obtain, for t ≥ t0,

‖eγt|·|̺ I2‖1

.

∫

R

∫ ∞

0

|∂ξ[ξΨt(ξ)]|
1

ξ
((coshu)γt + ξγt) exp

(

−coshu

ξ

)

dξ du

. t−3/2

∫ ∞

0

cosh θ

∣

∣

∣

∣

π cos
πθ

2t
− θ sin

πθ

2t

∣

∣

∣

∣

exp

(

−θ2

4t

)

×
∫

R

∫ ∞

0

1

ξ2+1
((coshu)γt + ξγt) exp

(

−cosh θ + coshu

ξ

)

dξ du dθ

. t−3/2

∫ ∞

0

cosh θ

eθ
e(γt−1)θ (1 + θ)2 dθ . t−3/2

where Lemma 3.4 (with α = 0 and β = 1) and the fact that γt ≤ 1/2 were used.
As for the case where l = 0 6= k, note that [X0, Xk] = Xk, hence

X0Xk(Xjht)
∗ = Xk(Xjht)

∗ +XkX0(Xjht)
∗.

The desired estimate then follows from the estimate ‖eγt|·|̺ XkX0(Xjht)
∗‖1 . t−3/2

for t ≥ t0, which has just been proved, and the estimate ‖eγt|·|̺ Xk(Xjht)
∗‖1 .

t−3/2 for t ≥ t0, which is in Proposition 3.7. �

Finally, we obtain some pointwise estimates for second-order derivatives of the
heat kernel for large time. While they do not yield decay in the space variables,
these estimates will be nevertheless useful to justify the absolute convergence of
the integral defining the “part at infinity” of the kernel of the second-order Riesz
transforms (see formula (4.1) below).

Proposition 3.9. For all t0 ∈ R+, l, j ∈ {0, . . . , q}, there exists Ct0 ∈ R+ such
that, for all t ≥ t0 and (z, u) ∈ G,

|Xj(Xlht)
∗(z, u)| ≤ Ct0 t

−3/2e−Qu/2 coshu.

Proof. Let us preliminarily observe that from (3.4) and Lemma 3.3(i) one readily
obtains that, for all t ≥ t0 and ξ > 0,
(3.10)

|Ψt(ξ)| . t−3/2

∫ ∞

0

θ
sinh θ

ξ2
exp

(

−cosh θ

ξ

)

dθ,

|∂ξ[ξΨt(ξ)]| . t−3/2

∫ ∞

0

(1 + θ)
cosh θ

ξ2
exp

(

−cosh θ

ξ

)

dθ,

|∂ξ[ξ∂ξ[ξΨt(ξ)]]| . t−3/2

∫ ∞

0

(1 + θ)

[

cosh θ

ξ2
+

cosh2 θ

ξ3

]

exp

(

−cosh θ

ξ

)

dθ,

where the implicit constants may depend on t0.
Suppose first that j, l ∈ {1, . . . , q}. By (3.9), (3.2) and (3.10), we deduce that

|Xj(Xlht)
∗(z, u)| ≤

∫ ∞

0

|Ψt(ξ)| exp
(

−coshu

ξ

)

eu|X̆j(X̆lh
N
euξ/2)

∗(z)| dξ

. e−Qu/2

∫ ∞

0

|Ψt(ξ)| exp
(

−1

ξ

)

ξ−Q/2−1 dξ

. t−3/2e−Qu/2

∫ ∞

0

θ sinh θ

∫ ∞

0

exp

(

−cosh θ + 1

ξ

)

ξ−Q/2−3 dξ dθ

(3.11)

and the integral in θ and ξ is immediately seen to be convergent.
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Assume instead that j ∈ {1, . . . , q} and l = 0. From (3.7), (2.1) and (3.2) it
follows that

(X0ht)
∗(z, u) = −

∫ ∞

0

Ψt(ξ)
e−u

ξ
exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

−
∫ ∞

0

∂ξ[ξΨt(ξ)] exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ,

(3.12)

whence

Xj(X0ht)
∗(z, u) = −

∫ ∞

0

Ψt(ξ)
1

ξ
exp

(

−coshu

ξ

)

X̆jh
N
euξ/2(z) dξ

−
∫ ∞

0

∂ξ[ξΨt(ξ)] exp

(

−coshu

ξ

)

euX̆jh
N
euξ/2(z) dξ

= I1 + I2.

(3.13)

Analogously as in (3.11), one can see that

|I1| ≤
∫ ∞

0

|Ψt(ξ)|
1

ξ
exp

(

−coshu

ξ

)

|X̆jh
N
euξ/2(z)| dξ

. t−3/2e−u(Q+1)/2.

(3.14)

Moreover, by (3.2) and (3.10),

|I2| ≤
∫ ∞

0

|∂ξ[ξΨt(ξ)]| exp
(

−coshu

ξ

)

eu|X̆jh
N
euξ/2(z)| dξ

. t−3/2e−u(Q−1)/2

∫ ∞

0

(1 + θ) cosh θ

∫ ∞

0

exp

(

−cosh θ + 1

ξ

)

ξ−(Q+5)/2 dξ dθ

. t−3/2e−u(Q−1)/2,

(3.15)

since the integral in θ and ξ is convergent. In conclusion

|Xj(X0ht)
∗(z, u)| . t−3/2e−Qu/2 cosh(u/2).

Note that, if l ∈ {1, . . . , q} and j = 0, then X0(Xlht)
∗ = (Xl(X0ht)

∗)∗, hence
again

|X0(Xlht)
∗(z, u)| . t−3/2e−Qu/2 cosh(u/2).
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Finally, assume that j = l = 0. From (3.12), by proceeding analogously as in
the derivation of (3.7),

X0(X0ht)
∗(z, u)

=

∫ ∞

0

Ψt(ξ)
e−u

ξ
exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

+

∫ ∞

0

Ψt(ξ)
e−u sinhu

ξ2
exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

−
∫ ∞

0

Ψt(ξ)
e−u

ξ
exp

(

−coshu

ξ

)

ξ∂ξ[h
N
euξ/2(z)] dξ

+

∫ ∞

0

∂ξ[ξΨt(ξ)]
sinhu

ξ
exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

−
∫ ∞

0

∂ξ[ξΨt(ξ)] exp

(

−coshu

ξ

)

ξ∂ξ[h
N
euξ/2(z)] dξ

=

∫ ∞

0

Ψt(ξ)
1

ξ2
exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

+ 2

∫ ∞

0

∂ξ[ξΨt(ξ)]
coshu

ξ
exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

+

∫ ∞

0

∂ξ[ξ∂ξ[ξΨt(ξ)]] exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

= J1 + 2J2 + J3.

(3.16)

Similarly as before, one then sees that
(3.17)

|J1| ≤
∫ ∞

0

|Ψt(ξ)|
1

ξ2
exp

(

−coshu

ξ

)

|hN
euξ/2(z)| dξ . t−3/2e−Qu/2,

|J2| ≤
∫ ∞

0

|∂ξ[ξΨt(ξ)]|
coshu

ξ
exp

(

−coshu

ξ

)

|hN
euξ/2(z)| dξ . t−3/2 coshu

eQu/2
,

|J3| ≤
∫ ∞

0

|∂ξ[ξ∂ξ[ξΨt(ξ)]]| exp
(

−coshu

ξ

)

|hN
euξ/2(z)| dξ . t−3/2e−Qu/2,

so

|X0(X0ht)
∗(z, u)| . t−3/2e−Qu/2 coshu

and we are done. �

4. Riesz transforms

4.1. Preliminaries on the definition of Riesz transforms. Let Y be a hori-
zontal vector field. We consider Y as a densely defined operator on L2(G), with
maximal domain (i.e., the set of the f ∈ L2(G) whose distributional derivative
Y f is in L2(G)). Then iY is self-adjoint and C∞

c (G) is dense in the domain of Y
with respect to the graph norm (see, e.g., [18]). Similarly, the sub-Laplacian ∆ is
self-adjoint, and moreover it has trivial L2 kernel, so via the spectral theorem we
can define its fractional powers ∆α (α ∈ R) as self-adjoint operators on L2(G).

Proposition 4.1. Let Y and Z be horizontal left-invariant vector fields.

(i) The domain of ∆1/2 is contained in the domain of Y .
(ii) The range of ∆−1/2 is contained in the domain of Y . The composition

Y∆−1/2, defined on the domain of ∆−1/2, extends to a bounded operator

Y∆−1/2 on L2(G) with norm at most |Y |g.
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(iii) The range of Y is contained in the domain of ∆−1/2. The composition

∆−1/2Y , defined on the domain of Y , extends to a bounded operator ∆−1/2Y
on L2(G) with norm at most |Y |g.

(iv) (∆−1/2Y )∗ = −Y∆−1/2 and (Y∆−1/2)∗ = −∆−1/2Y .
(v) If (Fn)n∈N is an increasing sequence of nonnegative bounded Borel functions

on (0,∞) converging pointwise to λ 7→ λ−1/2, then the range of Fn(∆) is con-

tained in the domain of Y , the operators Y Fn(∆) and Fn(∆)Y are bounded
on L2(G) with norm at most |Y |g, and

Y Fn(∆) → Y∆−1/2, Fn(∆)Y → ∆−1/2Y

in the strong operator topology.
(vi) If (Gn)n∈N is an increasing sequence of nonnegative bounded Borel functions

on (0,∞) converging pointwise to λ 7→ λ−1, then the range of Gn(∆)Z is

contained in the domain of Y , the operators Y Gn(∆)Z are bounded on L2(G)
with norm at most |Y |g|Z|g, and

Y Gn(∆)Z → Y∆−1/2 ∆−1/2Z

in the strong operator topology.

Proof. Part (i) is a consequence of the fact that

‖Y f‖2 ≤ |Y |g ‖|∇f |g‖2, ‖|∇f |g‖22 = 〈∆f, f〉 = ‖∆1/2f‖22
for all f ∈ C∞

c (G), and the density of C∞
c (G) in the domains of Y and ∆1/2 for

the respective graph norms. From this part (ii) follows immediately. Similarly, if
the sequence (Fn)n∈N is as in part (v) (note that such sequences do exist), then the
range of Fn(∆) is contained in the domain of Y and the composition Y Fn(∆) is
bounded with norm at most |Y |g. Note now that, for all f in the domain of ∆−1/2,

‖Y Fn(∆)f − Y∆−1/2f‖2 ≤ |Y |g‖∆1/2(Fn(∆)−∆−1/2)f‖2
and the right-hand side tends to 0 as n → ∞ by the properties of the Borel func-
tional calculus; this and the uniform boundedness of the Y Fn(∆) immediately imply

that Y Fn(∆) → Y∆−1/2 in the strong operator topology.
Note now that Fn(∆)Y is densely defined and (Fn(∆)Y )∗ = −Y Fn(∆), whence

Fn(∆)Y is also bounded with norm |Y |g. In addition ‖∆−1/2f‖2 = supn ‖Fn(∆)f‖2
for all f ∈ L2(G) (where ‖∆−1/2f‖2 = ∞ if f is not in the domain of ∆−1/2), so
the uniform boundedness of the operators Fn(∆)Y implies that the range of Y is
contained in the domain of ∆−1/2, and part (iii) follows.

Since both ∆−1/2Y and Y∆−1/2 are densely defined and bounded, part (iv)
follows immediately. Moreover, by functional calculus, Fn(∆)Y f → ∆−1/2Y f in
L2 for all f in the domain of Y , and this, together with the uniform boundedness

of the Fn(∆)Y , implies that Fn(∆)Y → ∆−1/2Y in the strong operator topology;
this proves part (v).

Finally, if (Gn)n∈N is as in part (vi), then the sequence (
√
Gn)n∈N satisfies the as-

sumptions of part (v), so the range of Gn(∆)1/2 is contained in the domain of Y , and

moreover Y Gn(∆)1/2 → Y∆−1/2 and Gn(∆)1/2Z → ∆−1/2Z in the strong operator
topology. From this it follows that the range of Gn(∆)Z = Gn(∆)1/2Gn(∆)1/2Z is
contained in the domain of Y ; moreover, for all f in the domain of Z,

Y Gn(∆)Zf = Y Gn(∆)1/2Gn(∆)1/2Zf → Y∆−1/2 ∆−1/2Zf,

and part (vi) follows. �

We can now define the first-order Riesz transforms we are interested in as the
L2-bounded operators RY = Y∆−1/2, for all horizontal left-invariant vector fields
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Y . Similarly we define the second-order Riesz transforms RY Z = −RY R
∗
Z =

Y∆−1/2 ∆−1/2Z for all horizontal left-invariant vector fields Y, Z. By a slight abuse
of notation, we write Y∆−1/2 and Y∆−1Z instead of RY and RY Z .

4.2. Proof of Theorem 1.1. We are finally able to prove our main result.

Proof of Theorem 1.1(i). Let Y be any horizontal left-invariant vector field. By
Proposition 4.1, Y∆−1/2 is L2-bounded and

Γ(1/2)Y∆−1/2 =
∑

n∈Z

∫ 2n+1

2n
t−1/2Y e−t∆ dt =

∑

n∈Z

Tn,

where the series converges in the strong L2 operator topology.
Let kn denote the convolution kernel of the operator Tn, which is given by

kn =

∫ 2n+1

2n
t−1/2Y ht dt.

For every n ∈ Z,

∇Hk∗n =

∫ 2n+1

2n
t−1/2∇H(Y ht)

∗ dt

=

∫ 2n+1

2n
t−1/2∇H(Y (ht/2 ∗ ht/2))

∗ dt

=

∫ 2n+1

2n
t−1/2(Y ht/2)

∗ ∗ ∇Hht/2 dt,

where the fact that ht = ht/2 ∗ ht/2 and h∗
t/2 = ht/2 was used. Hence

‖|∇Hk∗n|g‖1 ≤
∫ 2n+1

2n
t−1/2 ‖|∇Hht/2|g‖1 ‖Y ht/2‖1 dt

.

∫ 2n+1

2n
t−3/2 dt . 2−n/2,

where we have applied Proposition 3.5. Moreover, for every n ∈ Z,
∫

G

|kn(x)|
(

1 + 2−n/2|x|̺
)

dµ(x) ≤
∫ 2n+1

2n
t−1/2‖Y ht

(

1 + 2−n/2| · |̺
)

‖1 dt

.

∫ 2n+1

2n
t−1/2‖Y ht exp(t

−1/2| · |̺)‖1 dt

.

∫ 2n+1

2n
t−1 dt . 1.

by Proposition 3.5. The required boundedness properties of Y∆−1/2 then follow
from Theorem 2.3 and Remark 2.4. �

Proof of Theorem 1.1(ii). Notice that by linearity it suffices to prove the result
when Y = Xj and Z = Xl, for every j, l ∈ {0, . . . , q}.

By Proposition 4.1, the operator Xj∆
−1Xl is L2-bounded and its adjoint is

Xl∆
−1Xj. Hence it is enough to prove that Xj∆

−1Xl is of weak type (1, 1),
bounded on Lp(G) for p ∈ (1, 2], and bounded from H1(G) to L1(G). Moreover,
again by Proposition 4.1,

−Xj∆
−1Xl =

∫ ∞

1

Xj(Xle
−t∆)∗ dt+

∑

n<0

∫ 2n+1

2n
Xj(Xle

−t∆)∗ dt = T (∞) +
∑

n<0

Tn,
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where
∫∞
1 = limR→∞

∫ R

1 and both this limit and the convergence of the series are

meant in the strong L2 operator topology.
Let kn denote the convolution kernel of the operator Tn, which is given by

kn =

∫ 2n+1

2n
Xj(Xlht)

∗ dt =

∫ 2n+1

2n
(Xlht/2)

∗ ∗Xjht/2 dt,

and note that

∇Hk∗n =

∫ 2n+1

2n
(Xjht/2)

∗ ∗ ∇HXlht/2 dt.

We then have

‖|∇Hk∗n|g‖1 ≤
∫ 2n+1

2n
‖Xjht/2‖1‖|∇HXlht/2|g‖1 dt .

∫ 2n+1

2n
t−3/2 dt . 2−n/2,

by Proposition 3.1 (note that 2n+1 ≤ 1), while
∫

G

|kn(x)| (1 + 2−n/2|x|̺) dµ(x)

≤
∫ 2n+1

2n
‖Xjht/2 (1 + 2−n/2| · |̺)‖1 ‖Xlht/2 (1 + 2−n/2| · |̺)‖1 dt

.

∫ 2n+1

2n
‖Xjht/2 exp(t−1/2| · |̺)‖1 ‖Xlht/2 exp(t−1/2| · |̺)‖1 dt

.

∫ 2n+1

2n
t−1 dt . 1,

again by Proposition 3.1. By Theorem 2.3 and Remark 2.4, this proves that
∑∞

n<0 Tn is of weak-type (1, 1), bounded on Lp(G) for p ∈ (1, 2] and bounded

from H1(G) to L1(G).
In order to conclude, it is enough to show that the convolution kernel k(∞) of

T (∞) is in L1(G). Note that, similarly as above,

(4.1) k(∞) =

∫ ∞

1

Xj(Xlht)
∗ dt.

Thanks to Proposition 3.9, the above integral is absolutely convergent and the
convergence is uniform on compact subsets of G.

To prove that k(∞) is in L1(G) we need to distinguish different cases.

I. Case j, l ∈ {1, . . . , q}. By Proposition 3.7,

‖k(∞)‖1 ≤
∫ ∞

1

‖Xj(Xlht)
∗‖1 dt .

∫ ∞

1

t−3/2 dt . 1.

II. Case j ∈ {1, . . . , q}, l = 0. Recall from (3.13) the decomposition

Xj(X0ht)
∗(z, u) = I1 + I2.

By (4.1) it is enough to prove that
∫∞
1 I1 dt ∈ L1(G) and

∫∞
1 I2 dt ∈ L1(G).

The estimate ‖I1‖1 . t−3/2 for t ≥ 1 is obtained analogously as in the proof
of Proposition 3.7 (here Lemma 3.4 with α = 1/2 and β = 3/2 is used), whence
∫∞
1

I1 dt ∈ L1(G). As for the remaining summand,
∫ ∞

1

I2 dt = −
∫ ∞

0

∫ ∞

1

∂ξ[ξΨt(ξ)] dt exp

(

−coshu

ξ

)

euX̆jh
N
euξ/2(z) dξ

(the integral in ξ and t is absolutely convergent for fixed z and u due to (3.15),
thus changing the order of integration is justified by Fubini’s Theorem), whence,
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by Lemma 3.3(iii) and Proposition 3.2,

∥

∥

∥

∥

∫ ∞

1

I2 dt

∥

∥

∥

∥

1

.

∫ ∞

0

cosh θ exp

(

−θ2

4

)

×
∫

R

∫ ∞

0

eu/2

ξ2+1/2
exp

(

−cosh θ + coshu

ξ

)

dξ du dθ

.

∫ ∞

0

cosh θ

eθ
exp

(

−θ2

4

)

dθ . 1

(4.2)

(here Lemma 3.4 was applied with α = β = 1/2).

III. Case l ∈ {1, . . . , q}, j = 0. Notice that (k(∞))∗ =
∫∞
1

Xl(X0ht)
∗ dt and we

proved above that
∫∞
1 Xl(X0ht)

∗ dt is in L1(G). Thus k(∞) is integrable also in
this case.

IV. Case l = j = 0. Recall from (3.16) the decomposition

X0(X0ht)
∗(z, u) = J1 + 2J2 + J3.

Note now that, by (3.4) and Proposition 3.2, for t ≥ 1,

‖J1‖1 .

∫

R

∫ ∞

0

|Ψt(ξ)|
1

ξ2
exp

(

−coshu

ξ

)

dξ du

. t−1/2

∫ ∞

0

exp

(

−θ2

4t

)

sinh θ

∣

∣

∣

∣

sin
πθ

2t

∣

∣

∣

∣

×
∫

R

∫ ∞

0

1

ξ2+2
exp

(

−cosh θ + coshu

ξ

)

dξ du dθ

. t−1/2

∫ ∞

0

sinh θ

eθ
e−2θ(1 + θ)

θ

t
dθ . t−3/2

(here Lemma 3.4 with α = 0 and β = 2 was applied), whence
∫∞
1

J1 dt ∈ L1(G).
As for J2, note that

∫ ∞

1

J2 dt =

∫ ∞

0

∫ ∞

1

∂ξ[ξΨt(ξ)] dt
coshu

ξ
exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

(here the integral in ξ and t is absolutely convergent due to (3.17), so changing the
order of integration is justified). Hence, similarly as in (4.2), one can apply Lemma
3.3(iii) and Proposition 3.2, as well as Lemma 3.4 with α = β = 1, to obtain that
∫∞
1

J2 dt ∈ L1(G).
Finally,

∫ ∞

1

J3 dt =

∫ ∞

0

∫ ∞

1

∂ξ[ξ∂ξ[ξΨt(ξ)]] dt exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

(again, the integral in ξ and t is absolutely convergent due to (3.17)). Now, from
Lemma 3.3(ii) it is immediately obtained that

∫ ∞

1

∂ξ[ξ∂ξ[ξΨt(ξ)]] dt = ∂ξ

[

ξ

∫ ∞

1

∂ξ[ξΨt(ξ)] dt

]

=
ξ−2

√
4π3

∫ ∞

0

∫ π

0

cos
sθ

2
exp

(

s2 − θ2

4
− cosh θ

ξ

)

cosh θ

[

cosh θ

ξ
− 1

]

ds dθ
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and
∣

∣

∣

∣

∫ ∞

1

∂ξ[ξ∂ξ[ξΨt(ξ)]] dt

∣

∣

∣

∣

. ξ−2

∫ ∞

0

exp

(

−θ2

4
− cosh θ

ξ

)

cosh θ dθ

+ ξ−3

∫ ∞

0

exp

(

−θ2

4
− cosh θ

ξ

)

cosh2 θ dθ

= S′ + S′′.

Correspondingly
∣

∣

∣

∣

∫ ∞

1

J3 dt

∣

∣

∣

∣

≤
∫ ∞

0

∣

∣

∣

∣

∫ ∞

1

∂ξ[ξ∂ξ[ξΨt(ξ)]] dt

∣

∣

∣

∣

exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

.

∫ ∞

0

S′ exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

+

∫ ∞

0

S′′ exp

(

−coshu

ξ

)

hN
euξ/2(z) dξ

= J ′ + J ′′.

The fact that J ′ ∈ L1(G) is then proved similarly as in (4.2), by using Proposition
3.2 and Lemma 3.4 with α = β = 0. As for J ′′, a similar argument gives

‖J ′′‖1 .

∫ ∞

0

cosh2 θ exp

(

−θ2

4

)

×
∫

R

∫ ∞

0

1

ξ2+1
exp

(

−cosh θ + coshu

ξ

)

dξ du dθ

.

∫ ∞

0

cosh2 θ

e2θ
exp

(

−θ2

4

)

dθ . 1

(here Lemma 3.4 was applied with α = 0 and β = 1), and we are done. �

Remark 4.2. In view of the estimates of Propositions 3.7 and 3.8, one can prove
that, in the case j, l ∈ {1, . . . , q}, the operator T (∞) in the above proof satisfies the
size and smoothness assumptions (2.4) and (2.5) of Theorem 2.3 too.
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[7] G. I. Gaudry and P. Sjögren, Haar-like expansions and boundedness of a Riesz operator on

a solvable Lie group, Math. Z. 232 (1999), 241–256.
[8] M. Gnewuch, Differentiable Lp-functional calculus for certain sums of non-commuting op-

erators, Colloq. Math. 105 (2006), 105–125.
[9] W. Hebisch, Analysis of Laplacians on solvable Lie groups, Notes for the ICMS Instructional

Conference “Analysis on Lie Groups and Partial Differential Equations” (Edinburgh, April
1999). Available at http://www.math.uni.wroc.pl/~hebisch/.

[10] W. Hebisch and T. Steger, Multipliers and singular integrals on exponential growth groups,
Math. Z. 245 (2003), 37–61.
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[21] P. Sjögren and M. Vallarino, Boundedness from H1 to L1 of Riesz transforms on a Lie group

of exponential growth, Ann. Inst. Fourier (Grenoble) 58 (2008), 1117–1151.
[22] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory inte-

grals, Princeton University Press, Princeton, N.J., 1993.

[23] A. F. M. ter Elst and D. W. Robinson, Weighted subcoercive operators on Lie groups, J.
Funct. Anal. 157 (1998), 88–163.

[24] M. Vallarino, Analysis on harmonic extensions of H-type groups, PhD Thesis, Università
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