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Abstract

The Cohesive/Overlapping Crack Model is able to describe the transition

between cracking and crushing failures occurring in reinforced concrete beams

by increasing beam depth and/or steel percentage. Within this Nonlinear Frac-

ture Mechanics model, the tensile and compressive ultimate behaviors of the con-

crete matrix are modeled through two different process zones that advance

independently one of another. Moreover, this model is able to investigate local

mechanical instabilities occurring in the structural behavior of reinforced con-

crete structures: tensile snap-back and snap-through, which are due to concrete

cracking or steel fracture, and the compressive snap-back occurring at the end of

the plastic plateau, which is generated by the unstable growth of the crushing

zone. In this context, the application of the Cohesive/Overlapping Crack Model

highlights that the ductility, which is represented by the plastic rotation capacity

of a reinforced concrete element subjected to bending, decreases as reinforcement

percentage and/or beam depth increase. Thus, a scale-dependent maximum rein-

forcement percentage beyond which concrete crushing occurs prior to steel yield-

ing is demonstrated to exist. In particular, the maximum steel percentage results

to be inversely proportional to h0.25, h being the beam depth. In this way, a ratio-

nal and quantitative definition of over-reinforcement is provided as a steel per-

centage depending on the beam depth.

KEYWORD S

concrete crushing, ductile-to-brittle transition, maximum reinforcement, nonlinear
fracture mechanics, reinforced concrete, scale effects

1 | INTRODUCTION

The flexural behavior of a reinforced concrete (RC) beam
is heavily influenced by nonlinear phenomena that are
usually observed during laboratory tests (Figure 1),
although not properly taken into account during the RC
design process. More precisely, after the first cracking
load, Pcr, is reached, a loss of stability is revealed due to a
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local reduction in the resistance capacity of the beam.
This unstable branch represents a snap-back instability,1–
6 and its severity has been proved to be a function of the
mechanical and geometrical characteristics of the struc-
ture, as demonstrated by Carpinteri2,3,7 by means of the
brittleness number sE. After concrete cracking, an
ascending branch generated by the steel reinforcement
activation is registered. Then, at the end of the plastic
plateau (Figure 1), a second snap-back can be revealed,
due to the unstable propagation of the crushing zone in
the concrete matrix.

In the study of RC fracturing process, the Bridged
Crack Model5,7–10 proved to be able to capture the load-
ing drops due to cracking, particularly in the case of
lightly reinforced or high-performance concrete ele-
ments. More recently, an extended version of the Bridged
Crack Model11,12 was applied to investigate the scale-
transitional role of the shearing failure in RC beams.

Extensive experimental tests have demonstrated that
the parameters influencing the ductility of RC elements
may be summarized into three main groups: construction
material; structural geometry; static system.13 In this
framework, a decrease in the plastic rotation capacity
together with an increase in specimen depth and/or rein-
forcement percentage has been recognized.14–16 Never-
theless, a large scatter in experimental data has been
observed and a comprehensive theory that is able to pre-
dict thoroughly the plastic rotation capacity developed by
RC members has not been still provided.17,18

On the other hand, the Cohesive/Overlapping Crack
Model is a Nonlinear Fracture Mechanics application
that is able to describe the transition between cracking
and crushing failure in RC beams, highlighting a strong
correlation between structural behavior, scale, and rein-
forcement percentage.6,19–21 In the present paper, the
Cohesive/Overlapping Crack Model together with a
dimensional analysis approach are adopted in order to
define an effective scale-dependent maximum reinforce-
ment percentage for RC beams in flexure.

2 | THE COHESIVE/
OVERLAPPING CRACK MODEL

The Cohesive Crack Model has been widely applied to sim-
ulate the damage process zone ahead of the crack tip in
concrete structures.1–3,22–24 According to this model, the
material behaves elastically during the first loading stage
(Figure 2(a)), whereas in the zone where the principal
stress reaches the tensile strength, σt, the process zone
starts developing.25 Within this zone, a cohesive law
(Figure 2(b)) in the form σ-wt, σ being the applied stress
and wt the crack opening, is adopted. Stresses apply until

the critical value of crack opening, wt
cr, is reached: beyond

this limit, the crack faces assume a stress-free condition.
In the present paper, a cohesive constitutive law in

the form:

σ¼ σt 1� wt

wt
cr

� �
ð1Þ

is assumed. The area subtended by the σ-wt curve repre-
sents the fracture energy, GF (Figure 2(b)).

Different experimental investigations carried out by
Kotsovos,26 van Mier,27 Vonk et al.28 pointed out that con-
crete exhibits strain localization in compression in a similar
way as in tension. In 1997, the RILEM Committee
148-SSC29 developed an effective standard test for the
assessment of the strain softening behavior of concrete
under uniaxial compression. The test program, organized
by this Committee, involved two different loading condi-
tions and several specimen geometries with different con-
crete grades were investigated. It was demonstrated that
the maximum compressive load in the σ-ε diagram can
represent a bifurcation point for the equilibrium path
depending on the specimen size and slenderness: an incre-
ment in the global ductility was observed with a decrement
in the specimen slenderness. Thus, it was concluded that a
single σ-ε relationship may not be assumed as an effective
constitutive law for concrete in compression in the post-
peak regime. On the other hand, it emerged that, if an
overlapping relative displacement, wc, is considered rather
than the compressive strain, all the curves converge within
a narrow band.30 The main conclusion of the RILEM
round-robin was that two different constitutive laws must
be adopted for concrete in compression. In the uncracked
stage, the material behavior is described appropriately by a

FIGURE 1 Structural behavior of a reinforced concrete beam

subjected to bending
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σ-ε constitutive law (Figure 3(a)) up to the compressive
strength σc. Beyond that limit, a σ-wc law must be adopted.
The area subtended by the σ-wc curve (Figure 3(b)) may be
interpreted, in close analogy to Figure 2(b), as the crushing
energy, Gc, i.e., a compressive fracture energy.31

In such a context, Akiyama et al.32 and Suzuki et al.33

conducted several tests on plain and laterally-confined
concrete specimens, proposing a formula for the determi-
nation of Gc. In the case of plain concrete, they suggested
the following expression:

Gc ¼ 80�50kb ð2Þ

with kb = 40/σc<1.
Based on these experimental evidence, Carpinteri

et al.34 introduced the Overlapping Crack Model to simu-
late the post-peak compressive behavior of RC beams in
bending. Such model is analogous to the Cohesive Crack
Model in tension, since in the elastic stage the concrete
behavior is described by a σ-ε constitutive law (Figure 3
(a)), whereas, beyond the peak load, a stress versus ficti-
tious overlapping relationship, σ-wc, is adopted. This
post-peak softening law can thoroughly describe concrete
crushing and material expulsion by a fictitious
interpenetration.31

In the present paper, a linear overlapping law in the form:

σ¼ σc 1� wc

wc
cr

� �
ð3Þ

is adopted.
Within the Cohesive/Overlapping Crack Model21,35–37

the cracking process zone (Figure 4(a)) tends to propa-
gate from the intrados to the extrados of the beam,
whereas, vice-versa, the crushing process zone tends to
propagate from the extrados to the intrados of the beam
(Figure 4(b)). Thus, cracking and crushing failures are
modeled as two separate mechanisms, independently
evolving and mutually competing.

By means of this Nonlinear Fracture Mechanics
Model, the RC beam cross-section is discretized into
n different nodal points, being n = 161 in order to avoid
numerical instabilities, as suggested by Carpinteri et al.38

For these nodes, the following equation applies:

wf g¼ KF½ � Ff gþ KMf gM ð4Þ

{w} being the vector containing the crack opening/
overlapping displacements, [KF] the matrix containing
the coefficients of influence for the nodal displacements
generated by the unit nodal forces, {KM} the vector con-
taining the nodal displacements generated by a unit
bending moment, and M the value of the applied bending
moment. The number of the unknowns in Equation 4 is
equal to (2n + 1): n crack opening/overlapping displace-
ments, n nodal forces, and the applied bending moment,
M (Figure 5). In addition to Equation 4, the following
conditions should be taken into account to describe the
RC beam cross-section behavior:

F i ¼ 0 for i¼ 1, :::, j�1ð Þ, i≠ r ð5aÞ

F i ¼Ft 1� wi

wt
cr

� �
for i¼ j, :::, m�1ð Þ ð5bÞ

(a) (b)

FIGURE 2 Cohesive Crack Model for concrete in tension: (a)

linear elastic stress–strain law; (b) post-peak σ-wt relationship

(a) (b)

FIGURE 3 Overlapping Crack Model for concrete in

compression: (a) linear elastic stress–strain law; (b) post-peak stress

versus fictitious interpenetration relationship

(a) (b)

FIGURE 4 Cohesive/Overlapping crack model: (a) Cohesive

Crack Model in tension; (b) Overlapping Crack Model in

compression
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wi¼ 0 for i¼m, :::,p ð5cÞ

F i¼Fc 1� wi

wc
cr

� �
for i¼ pþ1ð Þ, :::,q ð5dÞ

F i ¼ 0 for i¼ qþ1ð Þ, :::,n ð5eÞ

F i ¼ f wið Þ for i¼ r ð5fÞ

j being the real crack tip, m the fictitious crack tip,
p the fictitious overlapping crack tip, q the real over-
lapping crack tip, and r the node where the reinforce-
ment layer is located.

Equation 5f correlates the crack opening at the level
of reinforcement with the force exerted by the steel
bar. This equation can be calibrated according to a
bond-slip law proposed in Ruiz and Planas24, Ruiz23,
Model Code 201039. In Figure 6 it is possible to recog-
nize the length 2Lτ, along which concrete and steel
mutually transfer the shearing stress τ(x). The value of
Lτ may be calculated by means of the equilibrium con-
dition of the steel bar. Thus, in the case of over-
reinforced concrete beams and neglecting the tension
stiffening effect, we have:40,41

σsAs ¼
ðLτ
0
πϕτ xð Þdx ð6Þ

FIGURE 5 Cohesive/overlapping crack model

FIGURE 6 Steel-concrete

interaction
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The variation of τ along Lτ depends on concrete
strength, steel surface condition, and slippage between
these two materials. Thus, in order to simplify Equation 6,

it is possible to consider the mean value of the shearing
stresses, τm, leading to:

Lτ ¼ σSAS

πϕτm
≤ℓ=2 ð7Þ

where ℓ is the beam span.
Then, the value of the crack opening, wt, may be

obtained as:

wt ¼ 2
ðLτ
0

εS xð Þ� εCS xð Þ½ �dx ð8Þ

Neglecting the concrete contribution and referring to
a linear variation in the steel stress along Lτ (Figure 6), it
is possible to find:

wt ¼ σ2SAS

πϕτmES
ð9Þ

In the present paper, Equation 9 is used to calculate
the crack opening that generates steel yielding, wt

y,FIGURE 7 Steel constitutive law

(d)(c)

(b)(a)

FIGURE 8 Dimensionless load versus rotation curves for RC beams: (a) ρ = 0.5%, (b) ρ = 1.0%, (c) ρ = 2.0%, (d) ρ = 3.0%
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considering the following simplified elastic-perfectly plas-
tic constitutive law for the steel reinforcement:

σs¼ σy
wt

wt
y

ð10Þ

σy being the yield strength of steel.
Furthermore, it is possible to evaluate the crack open-

ing that generates steel fracture as:

wt
u ¼

εuσyAs

πϕτm
ð11Þ

Equation 10 and Equation 11 describe the steel con-
stitutive law as depicted in Figure 7. It is important to
note that Equation 5f coincides with Equation 10 only if
the node r lies within the real crack length and if
wr < wt

y

Within the Cohesive/Overlapping Crack Model
numerical procedure, at each calculation step, the value
of M is set as the minimum value of the bending moment

that is able to generate the ultimate tensile force, Ft, in
the fictitious tensile crack tip, m, or the ultimate com-
pressive force, Fc, in the fictitious overlapping crack tip,
p. Only the tip that firstly reaches the ultimate condition
is moved to the following nodal point and calculation
step, allowing the propagation of the cracking or
crushing zone.

Then, the RC beam rotation is computed as:

ϑ¼ KMf gT Ff gþDMM ð12Þ

{KM} being the vector containing the nodal displace-
ments generated by a unit bending moment (Betti's Theo-
rem) and DM the coefficient of influence for M = 1.

3 | NUMERICAL VERSUS
EXPERIMENTAL COMPARISON

In Figure 8, numerical curves obtained through the appli-
cation of the Cohesive/Overlapping Crack Model to RC

(d)(c)

(b)(a)

FIGURE 9 Numerical versus experimental comparison: (a) ρ = 0.25%, (b) ρ = 0.50%, (c) ρ = 1.13%, (d) ρ = 3.14%
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beams in bending are presented. The curves describe the
structural behavior of beams with thickness, b, equal to
0.2 m, and depth, h, varying between 0.1 and 2.0 m. The
concrete matrix is assumed to have a compressive
strength σc = 40 MPa, and a tensile strength σt = 4 MPa,
whereas the fracture energy, GF, and the crushing energy,
Gc, are assumed equal to 0.08 and 30 N/mm, respectively.
The steel yield strength σy = 400 MPa and the crack
opening that generates steel yielding wt

y = 0.4 mm have
been assumed. On the other hand, the critical value gen-
erating steel fracture wt

u = 18.5 mm has been calculated
for a class B reinforcement (Eurocode 2).42 In the numer-
ical study of Figure 8, the reinforcement ratio, ρ, varies
between 0.5% and 3.0%, and, for each reinforcement per-
centage, the ratio of the effective beam depth to the beam
depth, d/h, is set equal to 0.9.

Figure 8(a) shows the curves obtained for ρ = 0.5%. It
is possible to observe that the rotational capacity, repre-
sented by the extension of the plastic plateau, decreases
as the beam depth increases. For large beam depths, at
the end of the plastic plateau it is possible to observe a
catastrophic drop in the bearing capacity, generated by
unstable propagation of the concrete crushing zone
(snap-back), as it is also described in Figure 1. In
Figure 8(b), the curves obtained for ρ = 1.0% are
reported. This figure reveals a severe reduction in the
extension of the plastic plateau for all the considered
geometries, as well as a transition towards a more brittle
behavior. The beams having h = 1.5 m and 2.0 m present
a completely unstable behavior, since, once the maxi-
mum load is reached, a catastrophic loss in the bearing
capacity occurs without steel yielding.

The reduction in the rotational capacity is also evi-
dent in Figure 8(c), where beams with ρ = 2.0% are ana-
lyzed: only the curves A-D present a plastic plateau. In
Figure 8(d), all the curves present an unstable crushing
behavior, a short plastic plateau being present only
for h = 0.1 m.

In order to validate the abovementioned results, a
numerical versus experimental comparison is performed
by means of the Cohesive/Overlapping Crack Model. The

experimental tests carried out by Carpinteri et al.12 in
order to investigate the ductile-to-brittle transition in RC
beams are considered. These tests were performed on
specimens having a cross-section of 100 � 200 mm2 and
a span of 1400 mm. The beams were casted using a con-
crete matrix characterized by σc = 36.75 MPa,
E = 33,058 MPa, and GF = 0.112 N/mm. Four different
reinforcement percentages were investigated in the range
ρ = 0.25–3.14%.

The numerical versus experimental comparison is
presented in Figure 9. In Figure 9(a) and (b), the case-
studies with ρ = 0.25% and ρ = 0.50% are analyzed,
suggesting that the Cohesive/Overlapping Crack Model
has a high capability in predicting concrete cracking,
local snap-back instabilities, as well as steel yielding.
Moreover, for large reinforcement percentages (Figure 9
(c) and (d)), a clear ductile-to-brittle transition is
predicted by this Fracture Mechanics model.43

4 | SCALE-DEPENDENCY OF THE
MAXIMUM REINFORCEMENT
PERCENTAGE

The numerical and experimental studies described in the
previous section make evident the existence of an upper
bound to the steel percentage, which is intended to avoid
crushing and over-reinforcement. Such a steel percentage
results to be scale-dependent (Carpinteri and Corrado21;
Carpinteri et al.35). Currently, within the international
standard requirements, a lack of knowledge exists about
scale effects on RC maximum reinforcement conditions,
since the maximum reinforcement percentage (also called
“balanced reinforcement percentage”) is trivially identified
through the simplified Stress-block Model (Figure 10).

Hence, defining εc as the maximum deformation in
concrete, and εy the deformation in steel at yielding, it is
possible to find the neutral axis position in the
section (Figure 10) as:

x¼ εcd
εcþ εy

ð13Þ

Indicating the depth of the stress block with βx, and
imposing the equilibrium, it is possible to identify the
maximum, or balanced, reinforcement percentage
(Stress-block Model):

ρmax ¼
σcβ

σyh
εcd

εcþ εy
ð14Þ

On the other hand, for a more thorough vision of the
problem, it is possible to perform a dimensional analysis

FIGURE 10 RC beam cross-section with balanced

reinforcement percentage (Euler-Bernoulli theory)
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through Buckingham's Theorem (Carpinteri and
Accornero).44 The resistance moment M developed by RC
beams may be written as a function of several variables:

M¼Φ σt,GF,σc,Gc,E,σy,ρ,h;b=h,ℓ=h,ϑ
� � ð15Þ

E being the concrete elastic modulus and ℓ the
beam span.

If we intend to avoid over-reinforced concrete beams,
it is possible to neglect the variables GF and σt, since the
mechanical behavior of the abovementioned elements is
mainly governed by the compressive strength and by the
crushing energy of concrete. Thus, Equation 15 may be
simplified as follows:

M¼Φ σc,Gc,E,σy,ρ,h;b=h,ℓ=h,ϑ
� � ð16Þ

Assuming (GcE)
0.5 and h as the independent vari-

ables, it is possible to rewrite Equation 16 as:

Mffiffiffiffiffiffiffiffiffi
GcE

p
h2:5

¼Φ1

ffiffiffiffiffiffiffiffiffi
GcE

p

σch
0:5 ,ρ

σyh
0:5ffiffiffiffiffiffiffiffiffi

GcE
p ,ϑ

ffiffiffiffiffiffiffiffiffi
GcE

p

Eh0:5

� �
ð17Þ

where it is possible to recognize the Matrix Brittleness
Number, sc = (GcE)

0.5/σch
0.5, and the Reinforcement Brit-

tleness Number, NU
P = ρσyh

0.5/(GcE)
0.5.

Hence, through the application of the Cohesive/Over-
lapping Crack Model, it is possible to set up a parametric
analysis in order to find the maximum reinforcement

TABLE 1 Mechanical and

geometrical parameters of the beams

considered in the parametric study

σc σt GF Gc E h ρ sc Nu
P

(MPa) (MPa) (N/mm) (N/mm) (GPa) (mm) (%) (�) (�)

20 2.2 0.133 30 30 100 1.953 4.743 0.093

200 1.841 3.354 0.123

400 1.634 2.372 0.155

800 1.360 1.677 0.182

1600 1.114 1.186 0.211

3200 0.917 0.839 0.246

35 3.2 0.144 30 34 100 2.828 2.886 0.126

200 2.501 2.040 0.158

400 2.112 1.443 0.188

800 1.742 1.020 0.220

1600 1.475 0.721 0.263

3200 1.293 0.510 0.326

50 4.1 0.152 40 37 100 3.791 2.433 0.140

200 3.280 1.720 0.172

400 2.738 1.217 0.203

800 2.259 0.860 0.236

1600 1.961 0.608 0.290

3200 1.754 0.430 0.367

65 4.5 0.158 49 40 100 4.672 2.154 0.150

200 3.992 1.523 0.181

400 3.315 1.077 0.213

800 2.787 0.761 0.253

1600 2.436 0.538 0.313

3200 2.203 0.381 0.401

80 4.8 0.163 55 42 100 5.393 1.900 0.160

200 4.568 1.343 0.191

400 3.665 0.950 0.217

800 3.242 0.672 0.271

1600 2.873 0.475 0.340

3200 2.626 0.336 0.440

8 CARPINTERI ET AL.



condition in the diagram sc-N
U
P. The mechanical and geo-

metrical parameters of the RC beams investigated in the pre-
sent paper are reported in Table 1. Five different concrete
grades were considered, and several beam depths were ana-
lyzed, spanning from h = 0.1 m to h = 3.2 m. For each RC
beam, the ratio d/h is fixed at the value 0.9, whereas the steel
yield strength is σy = 450 MPa. The fracture energy, GF, was
estimated through Model Code 201039, whereas the crushing
energy,Gc, was calculated through Equation 2.

The calculated values of sc and NU
P are reported in

Figure 11, where a best-fitting relationship provides:

NU
P ¼ 0:23s�0:5

c ð18Þ

Considering the definitions of sc and NU
P, it is possi-

ble to find:

ρmax ¼ 0:23
σ0:5c

ffiffiffiffiffiffiffiffiffi
GcE

p� �0:5
σyh

0:25 ð19Þ

where an evident scale effect on the maximum rein-
forcement percentage is defined through the h�0.25

power-law.
In Table 2, the β parameters and the ultimate strain

of concrete, εc, provided by different international codes
of practice are reported. It is possible to observe that all
the considered provisions are rather similar, except for
IS456:200045, which provides a smaller equivalent stress-
block at Ultimate Limit State. Accordingly, in Figure 12 a
comparison between the maximum reinforcement per-
centages provided by the above-mentioned standards and
by Equation 19 are reported. This diagram clearly shows
that all the current international codes do not take into
account the scale effects on RC beams, providing a maxi-
mum reinforcement percentage far from that predicted
by the Cohesive/Overlapping Crack Model and leading to
a wrong assessment of the RC ductility.

5 | CONCLUSIONS

The application of the Cohesive/Overlapping Crack
Model to the study of the maximum reinforcement per-
centage in RC beams provides a power law proportional
to h�0.25, being h the beam depth. The proposed formula
for the assessment of an effective scale-dependent maxi-
mum reinforcement condition is compared to the current
provisions given by several international standards,

FIGURE 11 Upper bound ductile-to-brittle transition in RCbeams

TABLE 2 Coefficients β and εc for the flexural resistance of RC

beams

β (�) εc (�)

ACI 318–1946 0.85 0.003

Model Code
201039

0.8 0.0035

Eurocode 242 0.8 0.0035

BS8110-1:199747 0.9
- applied stress in concrete 0.67
σc -

0.0035

AS3600-201848 0.65 < 0.85–0.007(σc-28) < 0.85
- applied stress in concrete 0.85
σc -

0.003

IS456:200045 0.36 0.0035

FIGURE 12 Comparison between different maximum

reinforcement provisions
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outlining a clear shortcoming in the actual regulations
concerning RC beams ductility. In such a framework, the
Cohesive/Overlapping Crack Model may represent a
powerful tool in the development of new design guide-
lines, which should reflect the real nature of concrete in
a more rational and quantitative way, as also recently
acknowledged by the American Association of State
Highway and Transportation Officials.49

NOTATION

sc Matrix Brittleness Number
NU

P Reinforcement Brittleness Number
σt tensile strength of concrete
εt ultimate tensile strain of concrete
wt crack opening
wt

cr critical value of crack opening
GF fracture energy
σc compressive strength of concrete
εc ultimate compressive strain of concrete
wc fictitious interpenetration
wc

cr critical value of fictitious interpenetration
Gc crushing energy
εcs strain in concrete
εs strain in steel
n number of nodes
{w} vector of nodal displacements
[KF] matrix of nodal displacements generated by unit

forces
{F} vector of nodal forces
{KM} vector of nodal displacements generated by unit

bending moment
M bending moment
ϑ rotation
DM coefficient of influence for M = 1
h beam depth
b beam thickness
d effective beam depth
ℓ beam span
As steel area
ρ reinforcement percentage (As/bh)
ρmax maximum reinforcement percentage
σs stress in steel
Lτ transferring length
τ(x) shearing stress exchanged between steel and

concrete
τm mean value of the shearing stress exchanged

between steel and concrete
Φ bar diameter
Es steel elastic modulus
σy steel yield strength

wt
y crack opening generating steel yielding

wt
u crack opening generating steel failure

x depth of the neutral axis
β ratio between stress block depth and neutral axis

depth
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