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Abstract: The use of naturally occurring materials in biomedicine has been increasingly attracting
the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise
as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT
can be easily extracted from the stems and branches of various species of Astragalus. This anionic
polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material.
The stability against microbial, heat and acid degradation has made GT an attractive material not only
in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery).
Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal
nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also
been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft
tissue healing strategies. However, more research is needed for defining GT applicability in the
future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art
overview of GT in biomedicine and tries to open new horizons in the field based on its inherent
characteristics.

Keywords: gum tragacanth; biomaterials; natural polymers; green chemistry; biomedical engineer-
ing; tissue engineering; wound healing

1. Introduction

Gums are known to be pathological products generated after plant injuries or due to
unfavorable conditions (e.g., drought) through the breakdown of cell walls (extracellular
formation; gummosis). Polysaccharide gums are ones of the most abundant raw materials
in nature. Besides being renewable sources, they are easily accessible, relatively affordable,
non-toxic, and environmentally friendly, causing their worldwide usage from the food
industry to health care systems. Among different well-characterized gums, gum tragacanth
(GT) is recognized as a versatile material in biomedicine. Generally, GT, also known as
Katira, is sourced from Central Asia and Eastern countries, and Iran is the largest producer
and exporter of this natural gum [1,2].

Structurally, there are two general types of GT, ribbon (the best grades) and flake
(or harmony). After collection, Iranian tragacanth ribbons are sorted into five grades,
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while flakes are provided in seven different grades [3,4]. Based on the literature, physico-
chemical properties and compositional variations of GT depend on its sources, i.e., different
types of Astragalus species [5]. Astragalus gummifer has been previously the primary
source of GT, while Astragalus microcephalus is currently considered as the major source [6].
Other valuable sources to supply GT are Astragalus gummifer Labill., Astragalus verus
Olivier, Astragalus microcephalus Willd., Astragalus brachycalyx Fisch. ex Boiss., Astragalus
myriacanthus Boiss., Astragalus echidna Bunge and Astragalus kurdicus Boiss [7].

GT has been found a useful plant-derived molecule in a wide range of healthcare-
related applications, such as lotions applied for external applications (hair and hand
creams) [8,9]. Due to its remarkable stability in wide ranges of pH and temperatures, GT is
commonly used as an emulsifier in food, drugs and related industries with exceptionally
long shelf life [10]. For instance, GT is being applied as an emulsifying/suspending agent in
pharmacological industries. Moreover, GT has been historically used as an analgesic as well
as a conventional therapy in the curing of cough and lip fissures [8]. In modern medicine
concepts, GT could be utilized for preparing tissue-engineered (TE) constructs (scaffolds)
as well as in the fabrication of drug delivery platforms [11] thanks to its excellent inherent
features, including non-mutagenicity, non-teratogenicity, non-immunogenicity, and non-
toxicity [12]. Accordingly, GT has been generally recognized as a safe (GRAS) substance
by the Food and Drug Administration (FDA). Degradability in the living systems also
makes GT a highly interesting material in tissue engineering and regenerative medicine
strategies [13]. Therefore, several experimental studies can take benefit from GT for
fabricating wound dressings [14,15]. In addition to soft tissue healing applications, GT
has been using in the reconstruction of hard tissues either alone or embedded within
composites [16,17]. For instance, Haeri et al. in 2017 reported that GT could serve as a
suitable substrate for promoting the adhesion, proliferation, and osteogenic differentiation
of adipose-derived mesenchymal stem cells (Ad-MSCs) [16].

In the present review, we aim to highlight the biological benefits of GT in biomedicine
(see Figure 1) and critically analyze the limitations on the way of the extensive usage of
this natural biomaterial in tissue engineering and regenerative medicine applications. For
this purpose, physico-chemical and biological properties of GT are first summarized, and
then the results of in vitro and in vivo evaluations of GT, either alone or in combination
with other materials, will be discussed.
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2. Research Methodology

The relevant information on the GT was obtained from scientific databases, including
Web of Science, Scopus, and PubMed. The search was performed by using the following
keywords: gum tragacanth, tissue engineering, hard tissue engineering, soft tissue engi-
neering, bone tissue engineering, skin regeneration, and wound healing. In this study,
scientific and author names of plant species are reported according to the most recent
monograph of the genus [18].

3. Physico-Chemical Properties of GT
3.1. Chemical Composition and Structure of GT

As mentioned in the Introduction, the composition of GT strongly depends on the
Astragalus species used as a source (Figure 2A). For instance, the chemical composition of
the commercial GTs attained from different species shows significant differences, which
are directly resulted from seasonal and geographical variations [4]. GT has a slightly acidic
nature with a molecular weight (MW) of up to 850 kDa. Experimental research showed that
GT could be notably efficient as a viscosity enhancer and stabilizer in acidic solutions [19].
Its moisture content for different species is in the range of 8.79–12.94 g/100 g of product
and generates highly viscous solutions when dispersed in water. The protein content also
shows different values depending on the species; for example, A. fluccosus, A. microcephalus,
and A. compactus may typically contain 1.65–2.59% protein in their composition. In addition,
the carbohydrate content of different species varied in the range of 83.81–86.52%. Although
there are variations in the mineral content of GT species, calcium and potassium are the
main inorganic elements for all species [20].

Tragacanthin and bassorin are recognized as the two main fractions in GT, and their
different ratios lead to diverse physico-chemical and rheological properties of GT [21].
In more detail, tragacanthin is composed of tragacanthic acid containing residues of D-
galacturonic acid, D-xylose, L-fucose, and D-galactose and an arabinogalactan (containing
residues of L-arabinose, D-galactose, and D-galacturonic acid) (see Figure 2B) [22].
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By adding to water, the soluble fractions of GT (i.e., tragacanthin or tragacanthic
acid) dissolve and yield the formation of a viscous colloidal hydrosol, while bassorin
(60–70%) is formed as an insoluble fraction of the gel [24]. The chemical structures of these
fractions have been extensively studied [25–27]. Under the same conditions, the viscosity
of bassorin is higher than that recorded for tragacanthic acid, and the viscosity of GT is
between the values of the two components. GT is considered as a pseudoplastic material
that shows a non-Newtonian fluid behavior as its viscosity decreases under the shear
strain (shear thinning) [19,28]. The aqueous solution of GT is the most viscous substance
among the natural plant gums, with excellent heat stability [29]. The viscosity of GT
differs along with changing ionic strength as well as pH and temperature values due to
many carboxylic groups in its structure (ranging from 0.002 up to near 4 Pa·s); the highest
viscosity recorded is between pH 5 to 6. The viscosity of GT solutions decreases with a
decrease in pH due to the reduction in ionic dissociation of the carboxylic groups [30].
Investigation of the water absorption properties of different gums from 20 to 65 ◦C has
revealed that GT has higher water absorption compared to guar gum and locust bean
gum [31]. It has been well-documented that differences in hygroscopic properties of gums
result from the presence of various acidic and ionic units in their structure [31]. The type
of initiator, monomer, and crosslinking agent applied in the synthesis were identified as
the main determinants in the water absorbance property of a GT-based superabsorbent
(water-absorbent equivalent to 864 g/20 mL of water/absorbent) [32]. The gel content of a
tyramine-conjugated GT hydrogel synthesized by electron beam irradiation was found to
be 75–85% in another study [33,34]. GT is currently being used in different areas of science
and technology, including food processing, cosmetics, and the pharmaceutical industry,
thanks to its emulsifying ability, excellent thermal stability, long shelf life, as well as
excellent solubility and rheological behavior [35]. This polysaccharide is long-lasting over
a wide range of pH and absorbs water well due to its hydrophilicity. It is biocompatible
and safe for oral intake [36,37]. GT also exhibits nephron protective properties against
possible nephrotoxic substances [38]. Solution properties of the water-soluble part of
GT were studied by gel permeation chromatography (GPC) combined with multi-angle
light scattering and viscosimetry at 25 ◦C. The results obtained showed that bassorin and
tragacanthin exhibited quite different rheological properties. A 1% bassorin solution at
25 ◦C shows a high viscosity with a gel-like structure; however, the tragacanthin solution
behaves like semidilute to a concentrated solution of entangled, random coil polymers.

3.2. Degradation of GT

Possible degradation mechanisms for GT include enzymatic degradation as well as
ultrasonic waves [39,40]. Gavlighi et al. could successfully depolymerize GT by using A.
niger pectinases and divided it into three molecular weight (MW) fractions, including HAG1
(MW < 2 kDa); HAG2 (2 kDa < MW < 10 kDa) and HAG3 (MW > 10 kDa) [41]. The authors
showed that these fractions did not exert any significant effect on viscosity and could
be used as natural functional food ingredients. In 2019, Raoufi et al. applied ultrasonic
treatment for the degradation of GT and evaluated its impact on chain conformation and
molecular properties of GT [40]. They were able to solubilize GT without any undesirable
change in the primary structure or the building repeating blocks. In addition to ultrasonic
treatment, the use of gamma rays has also been effective in terms of GT degradation,
with no significant alteration in its chemical structure [42]. In the concept of biomedical
engineering, it is necessary to determine the exact molecular mechanisms behind the
degradation of GT, especially in the human body; therefore, more research is required to
address this important but still ignored issue in the field.

3.3. Modification of GT

Generally, the inherent properties of GT can be improved via a series of modification
approaches, either physical (e.g., thermal treatments) or chemical (e.g., crosslinking by Ca2+

and Ba2+ ions) methods [43]. Having carboxylic and hydroxyl groups, GT is mentioned
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as a desirable substance for creating linkages with various functional groups including
amino, carboxyl, hydroxyl, and sulfonic acids [44]. On this point, ionic crosslinkers and
organic monomers have been applied to make the ionic linkage with the COOH groups
available in the GT structure [45,46]. In addition, chemical reagents, including glycerin,
ethylene glycol, triethylene glycol, and glutaraldehyde, have also been used as crosslinking
agents [47]. It should be stated that other processes for GT functionalization are available,
including grafting, interpenetrating network formation, and blending [33,48,49].

4. GT in Green Chemistry

Green chemistry utilizes a set of “sustainable” principles with the goal of reducing
or eliminating hazardous substances in the design, synthesis, and application of chemical
products. GT has been previously proposed as a suitable substance in green synthesis
strategies owing to its renewable and safe nature, availability, as well as capability of
acting as a reductive agent in metal nanoparticle synthesis [50–52]. As an illustration,
Ghayempour et al. took benefits from GT as a reductant and stabilizer to prepare urchin-
like ZnO nanorod arrays (diameter and length of 55–80 nm and 240 nm, respectively) at
low-temperature by applying ultrasonic treatment [53]. It was demonstrated that hydroxyl
and carboxyl groups of GT were oxidized. In another study, Darroudi et al. could suc-
cessfully synthesize mono-dispersed nanoceria particles with a small size (20 to 40 nm)
by using GT [54]. The authors introduced GT as a proper stabilizing substance for the
green biosynthesis of nanoparticles, which shows comparable efficiency to conventional
reduction methods using hazardous polymers or surfactants (Figure 3).

Molecules 2021, 26, x FOR PEER REVIEW 6 of 18 
 

COOH groups available in the GT structure [45,46]. In addition, chemical reagents, in-
cluding glycerin, ethylene glycol, triethylene glycol, and glutaraldehyde, have also been 
used as crosslinking agents [47]. It should be stated that other processes for GT function-
alization are available, including grafting, interpenetrating network formation, and 
blending [33,48,49]. 

4. GT in Green Chemistry 
Green chemistry utilizes a set of “sustainable” principles with the goal of reducing 

or eliminating hazardous substances in the design, synthesis, and application of chemi-
cal products. GT has been previously proposed as a suitable substance in green synthesis 
strategies owing to its renewable and safe nature, availability, as well as capability of 
acting as a reductive agent in metal nanoparticle synthesis [50–52]. As an illustration, 
Ghayempour et al. took benefits from GT as a reductant and stabilizer to prepare urchin-
like ZnO nanorod arrays (diameter and length of 55–80 nm and 240 nm, respectively) at 
low-temperature by applying ultrasonic treatment [53]. It was demonstrated that hy-
droxyl and carboxyl groups of GT were oxidized. In another study, Darroudi et al. could 
successfully synthesize mono-dispersed nanoceria particles with a small size (20 to 40 
nm) by using GT [54]. The authors introduced GT as a proper stabilizing substance for 
the green biosynthesis of nanoparticles, which shows comparable efficiency to conven-
tional reduction methods using hazardous polymers or surfactants (Figure 3). 

 
Figure 3. Schematic representation showing the usability of GT in the green synthesis of nanoceria 
particles (NCs): (a) α-L-fucose, (b) L-arabinose, (c) β-D-galactose, (d) β-D-xylose, (e) α-D-
Galacturonic acid methyl ester, and (f) α-D-galacturonic. Reproduced from ref [54], Copyright 
2014, Elsevier. 

5. GT for Wastewater Treatment 

Figure 3. Schematic representation showing the usability of GT in the green synthesis of nanoceria par-
ticles (NCs): (a) α-L-fucose, (b) L-arabinose, (c) β-D-galactose, (d) β-D-xylose, (e) α-D-Galacturonic
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5. GT for Wastewater Treatment

In recent years, industrial development has led to the overproduction of industrial
wastewater and environmental pollution. Materials with natural origins (e.g., plants) are
commonly used for the removal of heavy metal ions and dyes from different wastewaters.
The main advantages of plant-derived substances for such applications are stated as their
relative safety, low cost, free supply, and relatively simple technological processing [55–58].
GT with primary and secondary hydroxyl, carboxylic acid, and epoxy groups in its structure
provides a desirable platform for reactions with different reagents bearing specific functional
groups [59,60]. As an eco-friendly substance, GT seems a suitable candidate for waste removal
applications [61]. However, some physico-chemical properties of GT (e.g., high solubility in
water) should be improved; hence, various approaches for the modification and fabrication of
GT-based composites have been proposed to overcome such limitations [62,63]. For instance,
Shojaipour et al. developed bioadsorbent hydrogels made of GT and trimethoxysilane
quaternary ammonium (TMSQA) (as cross-linker) to remove NO3

− ions from water [64]. This
system showed the capability of removing 98.26% of NO3

− ions under an optimal adsorption
condition (contact time = 20 min, adsorbent dosage = 30 mg, pH = 7, and initial nitrate
concentration = 30 mg/L) and the maximum monolayer adsorption capacity was recorded
as 21 mg/g at 298 K. The authors stated that the adsorption process is spontaneous and
exothermic (∆Gº = −89.1 kJ mol−1) in nature, which follows the pseudo-second-order rate
kinetic and the obtained data are fitted with the Langmuir isotherm. It should be mentioned
that the composites made of GT are also prepared for potential usage in waste removal
strategies [65,66]. Recently, a new eco-friendly nanocomposite of CoFe2O4 modified with GT
was successfully prepared to remove acid dyes from aqueous solutions; GT could significantly
improve the adsorption properties and surface morphology of the sorbent [67].

6. GT for Drug Delivery Strategies

In recent years, plant-derived polymers have evoked tremendous interest in the
pharmaceutical setting, such as drug delivery approaches [68]. GT possesses the neces-
sary criteria of an appropriate drug release vehicle due to its excellent biocompatibility,
biodegradability, and the potential of loading wide ranges of natural and synthetic bioactive
molecules [69]. Accordingly, a variety of chemicals and drugs were loaded into different
GT-based constructs (e.g., nanogels, hydrogels, and nanofibers) and relevant composites to
be delivered to desirable sites via oral or other administration routes [70]. Antibacterial,
anti-cancer, anti-inflammatory, and antioxidant agents are among the most delivered thera-
peutics by GT and its composites [49,71,72]. For antibacterial applications, GT in the form
of hydrogels and nanogels has been widely used as a delivery platform for organic (e.g.,
plant extracts) and inorganic (silver nanoparticles) substances [73,74]. As an illustration,
Rao et al. added silver nanoparticles to GT hydrogels to impart the antibacterial ability
to the construct [75]. They prepared GT/acrylamide (AAm) hydrogels via the standard
redox polymerization method and then synthesized silver nanoparticles (Ag-NPs) in GT
hydrogels (Figure 4). The results showed an increment in the swelling ratio of the hydrogels
along with increasing the amount of GT. Moreover, embedding Ag-NPs into the hydrogels
caused a small increase in the swelling capacity in comparison to pure counterparts. As
shown in Figure 4, the saturation of all the hydrogels happened within 3 days. The au-
thors reported that this composite hydrogel, being able to effectively inhibit Gram-positive
(Bacillus subtilis (B. subtilis)) and Gram-negative bacteria (Escherichia coli (E. coli)), could be
a suitable candidate for wound healing as well as water purification applications.
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networks. (B) Graphs a and b exhibiting swelling and equilibrium swelling ratio Q (g/g) of the TG hydrogels (TG0,
TG1, TG2, and TG3) and their Ag-NPs embedded counterparts (TG0-Ag, TG1-Ag, TG2-Ag, and TG3-Ag), respectively.
(C) The results of the antibacterial activity of the Ag-NPs containing TG0, TG1 TG2, and TG3 hydrogels and the pristine TG
hydrogels on (a/a1) E. coli, and (b/b1) B. subtilis [Gentamicin (GM) antibiotic is as the positive control]. Note: TG0, TG1, TG2,
and TG3 contain 0, 100, 200, and 400 mg of GT. Reproduced with permission from [75], Copyright 2017, Springer Nature.
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For delivery of the anti-cancer drug cisplatin (CP), composite nanogels (size = 58–70 nm)
of GT and lecithin (LC) were previously proposed in which the drug was embedded in the
GT core and remained covered by LC as shell [76]. It has been reported that adding GT to
polymeric drug delivery systems may improve their physico-mechanical properties and
sustained release profile. In this regard, Apoorva et al. incorporated GT into pH-sensitive
sodium alginate (SA) hydrogels and evaluated its effects on the release profile of the loaded
drug, i.e., phenolic compounds extracted from Basella sps [77]. Indeed, they added GT
to SA to overcome one of the limitations of pure alginate beads, i.e., the low entrapment
efficiency. A series of SA-GT beads were prepared using an ionic gelation method in which
different ratios of SA and GT (AT0 = only SA, AT11 = 1:1, AT12 = 1:2, and AT21 = 2:1)
were poured into distilled water. The resulted droplets were mixed with calcium chloride
hardening solution (2% w/v) to make the beads with a size ranging from 638 µm to
798 µm. The obtained results revealed higher swelling behavior of SA formulations in
simulated intestinal fluid (SIF) after the incorporation of increasing GT content. This could
be due to the hydrophilic nature (i.e., OH and COOH groups) of GT that interact with water
molecules leading to promoted swelling behavior [43]. A significantly higher encapsulation
efficiency (ranging from 62% to 78%) was also documented for the phenolic compounds
in the SA-GT beads. This might be affected by large vacant space between the polymeric
chains to incorporate phenolic agents inside the loop structures and subsequent hydrogen
bonds formation with the OH groups of GT. In addition, the sequential and controlled
release of the phenolics in the simulated intestinal environment (SIE) was recorded in the
groups AT21, AT11, and AT12, leading to the high absorption (99%) of the extracts in an
in vitro model of the small intestine. GT nanofibers were recently produced by using a
sonochemical/microemulsion method for the controlled delivery of peppermint oil [78].
The prepared GT nanofibers, having one-dimensional shape (58 nm thickness and 1 µm
length), showed the ability to allow the controlled release of peppermint oil (92.38% of the
drug after 18 h), rendering antibacterial activities against E. coli and S. aureus without no
significant toxicity over human fibroblast cells. The usefulness of GT nanofibers in drug
delivery approaches is also documented elsewhere [79].

7. GT in Tissue Engineering and Regenerative Medicine

Tissue engineering and regenerative medicine (TERM) is a multidisciplinary field,
which comprises molecular and cellular biology, chemistry, and materials science with the
aim of regenerating a damaged tissue both structurally and functionally. The extracellular
matrix (ECM) is recognized as a key player in the regenerative process of a broad range of
human tissues as to its ability to provide a suitable biological substrate for improving cell
adhesion, proliferation, migration, and differentiation. As the ECM is mainly composed of
proteoglycans, glycosaminoglycans, glycoproteins, and glycolipids, polysaccharides have
been considered as promising materials for generating biomimetic scaffolds [80–83]. Natu-
ral polysaccharides (e.g., GT and alginates) are being extensively used in TERM strategies
thanks to their biocompatibility and biodegradability, structural and functional diversity,
as well as their availability and renewability as compared to synthetic polymers [84]. Still,
some drawbacks are mentioned with natural polysaccharides, such as their rapid degrada-
tion that can endanger the mechanical and biological properties of the scaffold. Current
research has focused on these limitations and brought innovative approaches, including
their reinforcement by copolymerization with other biomaterials and physicochemical
crosslinking [85]. It is worth mentioning that improved physico-mechanical properties
(e.g., structural stability) of polysaccharide-based scaffolds may also lead to an accelerated
tissue regeneration [86].

It is possible to fabricate several tissue-engineered constructs containing GT, which
could be useful in the acceleration of the tissue healing process. In the following sections, we
summarize the potential applications of different GT-containing structures (e.g., nanofibers,
hydrogels) in the concept of TERM.
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7.1. In Vitro Cell Interactions

The evaluation of the biocompatibility of GT has a long history; Hagiwara et al. re-
ported GT as a non-carcinogenic substance in 1992 [87]. Recent studies have also confirmed
the compatibility of GT with living systems, including different mammalian cells. For
example, Singh et al. presented GT hydrogels as non-thrombogenic and haemo-compatible
materials with the ability to deliver the anti-cancer drug methotrexate in a controlled and
sustained manner [88]. In another study, Fattahi et al. investigated the cytotoxicity of the
soluble modified fraction of A. gossipinuson-derived GT on Hela and HepG2 cancer cell
lines as well as L929 fibroblast cell line. Their obtained results showed no adverse effects of
GT on two cancer cells, while a slight improvement in cell viability was observed for the
L929 cell line [47]. In a recently published study, bacterial cellulose/keratin electrospun
nanofibers were reinforced by GT for generating a suitable substrate for mammalian cell
culture. The experimental data showed an improvement in tensile properties and wettabil-
ity of the polymeric fibers, as well as better attachment and proliferation of L929 fibroblast
cells onto the modified scaffolds [89]. It is worth noting that the anionic nature of GT may
play a critical role in its biocompatibility and targeted delivery of therapeutic agents, as it
has been shown by synthetic anionic polymers [90–92].

7.2. Hard Tissue Regeneration

Bone tissue plays a critical role in the human body from both structural and functional
aspects. The high rate of bone injuries and damages resulted from traumas, cancers, and
genetic abnormalities is a big challenge in the clinic and demand tissue substitutes. Up to
now, huge numbers of cells, materials, and bioactive molecules have been used to prepare
suitable constructs for the replacement of injured bones [93–96]. In the case of bioactive
molecules, several studies have shown the effectiveness of a variety of naturally-derived
substances (e.g., curcumin) [97,98]. On this object, the use of GT in BTE applications has
gradually grown; however, more research is needed to reveal details about the cellular
and molecular mechanisms regulated by GT in the bone regeneration process [99,100].
In a pioneering study, Kulanthaivel et al. prepared GT calcium alginate beads as a cell
encapsulation system and evaluated their proangiogenic and osteogenic properties [17].
The GT-incorporated beads were produced by the ionic gelation method in which GT
was added to the alginate solution in a concentration of 0, 25, 35, and 50 (w/v). They
reported that the incorporation of GT in the calcium alginate bead yielded an improvement
in transport, swelling, and degradation properties. Moreover, cell experiments revealed
improved viability, growth, and differentiation of bone cells (MG-63 cells) encapsulated
in the GT-containing samples as compared to GT-free control. As a reliable marker of
angiogenesis, the expression of the HIF-1α was up-regulated to 1.45, 1.40, and 1.23 folds in
GT25, GT35, and GT50 samples as compared to the GT0, respectively. In another study,
Haeri et al. evaluated the osteogenic potential of GT (25 mg/mL)-containing collagen
hydrogels on human adipose-derived mesenchymal stem cells (h-ASCs) [16]. In vitro
assessments showed that GT-containing samples had no cytotoxic effect and could improve
alkaline phosphatase (ALP) activity as well as mineralization in the cells in comparison
to controls (see Figure 5). Based on this evidence, the authors claimed that GT-containing
hydrogels could be a useful scaffold for orthopedic applications.

Recently, GT has also been used as a natural binder for the fabrication of hydroxyap-
atite (HAp) scaffolds by using a polymer replication method [101]. The binding ability of
GT and its effects on the mechanical properties and porosity of HAp scaffolds were evalu-
ated. The obtained data demonstrated the possibility of fabricating scaffolds with highly
interconnected macropores along with smaller micropores (400–600 µm and 2–10 µm,
respectively) and appropriate compressive strength (0.036 MPa to 2.954 MPa), which
are favorable for non-load-bearing applications. Also, in vitro studies using Vero cells
demonstrated cytocompatibility of the samples during culturing for 24 h.
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Figure 5. (A) Microscopic photographs of differentiated human adipose-derived mesenchymal stem cells cultured on tissue
culture polystyrene (TCPS) (a), collagen (b), and gum tragacanth (GT) (c) stained with Alizarin Red S after 21 days of
culturing in the osteogenic induction medium (Magnification × 40), as well as the graph (d) showing the quantified values
for calcium deposition of different groups. (B) Alkaline phosphatase (ALP) activity of (a) and calcium content (b) of the
stem cells cultured on TCPS, collagen, and GT after 7, 14, and 21 days of culturing in the osteogenic differentiation medium
(asterisks significant difference between the groups at p < 0.05). (C) Real-time PCR data exhibiting relative expression of
osteogenic-related genes including Runx2, collagen type 1, osteonectin, and osteocalcin in the stem cells cultured on TCPS,
collagen, and GT at day 7, 14, and 21 (* refers to the significant difference between the groups at p < 0.05). Reproduced with
permission from [16], Copyright 2016, Elsevier.
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Furthermore, poly(lactic-co-glycolic acid) (PLGA)/GT core-shell electrospun nanofibers
have been proposed for periodontal regeneration as they could serve as a suitable platform
for antibiotic loading and delivery [102].

7.3. Soft Tissue Healing

Apart from being proposed for hard tissue regeneration, GT has recently attracted much
attention in the repair and restoration of soft tissues, including skin and nerve [103,104].
It has been shown that topical administration of GT could accelerate the closure of full-
thickness skin wounds in rats [105]. Therefore, several attempts have been made to take
benefit of GT in this sense; for example, Zarekhalili et al. suggested the use of poly(vinyl
alcohol) (PVA)/GT/polycaprolactone (PCL) hybrid nanofibrous scaffolds as suitable skin
substitutes [106]. They showed that the introduction of PVA and PCL in the formulation
not only facilitated the electrospinning process of the GT solution but also improved the
mechanical properties of the electrospun nanofibers. Moreover, the prepared scaffolds could
support the growth and proliferation of NIH 3T3 fibroblast cells.

Since GT is recognized as an appropriate drug delivery system, a variety of natural
and synthetic substances have been loaded into scaffolds made of GT combined with
other polymers. In this regard, Ranjbar-Mohammadi and Bahrami presented PCL/GT
nanofibers as promising vehicles for the efficient and sustained delivery of curcumin (Cur),
which could improve fibroblast cell growth in vitro and may have significant therapeutic
potential as a wound dressing [107]. These electrospun nanofibrous scaffolds (2:1 PCL/GT
mass ratio) containing 3% Cur were further implanted in diabetic rats to evaluate their
skin wound healing capacity in vivo; the results confirmed both their biocompatibility and
regenerative potential (Figure 6) [108].

In another study, GT was used as a novel “green-wound-healing” product for encapsu-
lation and delivery of Aloe Vera extract [53]. As inhibiting bacterial infections and reducing
the pain are of great importance in wound injuries, GT/PVA/PVP-based hydrogels were
loaded with gentamicin and lidocaine as antibiotic and analgesic drugs, respectively [14].
Based on the reported results, the hydrogels showed the capability of wound fluid absorp-
tion and slow drug release. In addition to blood compatibility, the samples showed an
excellent permeability to water vapor and O2 while were impermeable to microorganisms.

Some researchers have also proposed the application and usability of GT in peripheral
nerve regeneration strategies. In 2016, Ranjbar-Mohammadi et al. fabricated GT/poly(L-
lactic acid) (PLLA) electrospun nanofibrous scaffolds. For this purpose, they mixed various
ratios (w/w) of GT and PLLA as 0:100, 25:75, and 50:50 to prepare aligned and random
constructs [104]. The cell experiments showed that aligned GT/PLLA 25:75 was the best
composition for nerve cells (PC12 cell line) growth and supported the expression of bi-polar
neurite extensions and the orientation of the cells.
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Figure 6. (A) Macroscopic observation of the wound closure in un-treated diabetic rats and the animals treated with gum
tragacanth (GT)/poly vinyl alcohol (PVA) electrospun nanofibers containing 3% curcumin (Cur) at 5, 10, 15 days post-
surgery. (B) Microscopic observations of H&E stained slides of the untreated skin wounds (a1,a2) and those treated with the
PCL/GT/Cur nanofibers (b1,b2) and the PCL/GT/Cur loaded with umbilical cord Wharton jelly-derived mesenchymal
stem cells (c1,c2) after 15 days of surgery. Note that granulation tissue, epithelial regeneration, angiogenesis, and collagen
fibers were indicated by blue, yellow, red, and green arrows, respectively. Magnification of a1, b1, c1 is 100×, and a2, b2, c2
is 400×. Reproduced with permission from [108], Copyright 2016, Elsevier.

8. Concluding Remarks and Future Perspectives

GT is known as a versatile natural substance derived from different species of the
genus Astragalus. GT has a long successful history in food and pharmaceutical formu-
lation; furthermore, it has been gradually found to be a useful material in other areas of
biomedicine, including waste management, green synthesis of nanoparticles, drug delivery
strategies, and tissue engineering and regenerative medicine [11]. The main reasons for the
extended usage of GT could be summarized as its biocompatibility and ease of chemical
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modifications [88,109]. However, the high cost and availability of xanthan gum (mostly
found in Iran and Turkey) as a cheaper competitor limit the demand of GT as regards use in
pharmaceutical and industrial settings [6,110]. Recently, GT has attracted much interest in
tissue engineering strategies addressed to both hard (e.g., the bone) and soft (e.g., the skin)
tissues. Although not many studies on GT-based therapies for tissue reconstruction have
been reported so far, there is convincing evidence that supports the suitability of GT-based
constructs (e.g., hydrogels and nanofibers) for accelerating the wound healing process. In
this sense, the capability of GT in the loading and delivery of bioactive molecules, as well
as the possibility of easily making composites, may be considered as promising points for
boosting the regeneration of damaged tissues [111]. Another important issue deserving
investigation concerns the critical comparison between GT and other polysaccharides
used in tissue engineering and regenerative medicine, in order to elucidate whether GT,
besides being a valuable alternative, is truly superior to the other existing options. Such a
comparison should involve not only direct biological effects but also indirect effects like
those mediated by physical and mechanical properties of GT. It has been shown that, for
example, biomaterial elasticity can guide stem cell differentiation [112] and cell activity can
be affected by stiffness gradients of the substrate [113]. The understanding of all the aspects
through which cells can “sense” biomaterials, which in turn influence cell metabolism, is
the key to developing new and truly functional tissue-engineering approaches.
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