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Abstract

Recent trends in intelligent manufacturing are transforming shop floor envi-

ronments into digital factories, thanks to a pervasive integration of informa-

tion and communication technologies in production lines. Industrial processes

become the source of high-volume heterogeneous data, paving the way to cre-

ate manufacturing intelligence by means of machine learning and data-driven

methodologies. In such settings, predictive diagnostics play a crucial role, as

they promise to predict future critical conditions in the production process.

Unfortunately, the diffusion of data-driven predictive maintenance methodolo-

gies is limited by (i) the absence of timely ground-truth knowledge (i.e., class

labels), required in the learning phase of data-driven supervised approaches,

and (ii) the limited availability of data-mining expertise among application-

domain experts, required to harness the power of machine learning techniques.

Innovative data-driven services are needed to support domain experts in (i)

applying powerful self-learning intelligent techniques with limited technical ex-

pertise and (ii) easily understanding results and choices operated by such in-
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telligent techniques, to increase trust by means of transparency. To this aim,

this paper presents UDaMP, an integrated platform to support manufactur-

ing intelligence by providing a transparent, self-tuning, unsupervised discovery

and assisted data labelling service for predictive maintenance, specifically tar-

geted at cyclic industrial processes. UDaMP includes (i) production-cycle-aware

feature engineering, (ii) unsupervised discovery of production-cycle categories,

(iii) self-tuning of the optimal number of categories, (iv) human-readable char-

acterisation of production-cycle categories, and (v) assisted data labelling for

domain experts. Scalable clustering algorithms automatically discover groups of

production cycles sharing common time-independent properties. A self-tuning

strategy is integrated to automatically configure the specific input parameter

and select the best approach for the data under analysis. Each cluster is then

locally characterised through the data distribution of the top 10 most relevant

features to support domain experts in uncovering its meaning. Experimental

evaluation of UDaMP has been performed on real-world data collected in two

different industrial settings.

Keywords: Cluster analysis, Self-tuning machine learning, Industry 4.0,

Predictive maintenance, Data Analytics.

1. Introduction

The advent of the fourth industrial revolution (Industry 4.0) has led to Man-

ufacturing Intelligence (Davis et al., 2012; Chien et al., 2013; Chen & Chien,

2011; Chien et al., 2010) thanks to a fully-integrated production environment

with Internet of Things. This new revolutionary model allows a continuous5

monitoring of production processes, thus generating high volumes of data col-

lected in real-time. Data-driven methodologies can bring to the surface a rich

spectrum of valuable items in the form of knowledge useful for adding intelli-

gence in production and industrial plants. For example, production managers

are able to better assess, analyse and therefore understand shop floor activities,10

and sometimes directly translate the extracted knowledge into actions. In this
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scenario the need for effective and efficient architectures capable of processing

large volumes of data and analysing them effectively is becoming increasingly

important. Predictive maintenance approaches represent a key asset to signifi-

cantly reduce maintenance costs and improve productivity. Unfortunately, the15

actual exploitation of the aforementioned data-driven approaches are limited by

the absence of standard ground-truth knowledge (i.e., class labels) on equip-

ment conditions and their characterisation during use. Innovative unsupervised

data-driven methods are needed to help the domain experts in the definition of

the production cycle classification.20

This paper presents UDaMP (Unsupervised Data-driven Methodology for

Production-cycles Characterisation) an integrated platform to provide self-tuning

semi-supervised data labelling to make predictive maintenance more valuable in

manufacturing even when ground truth is not available to train a model.

UDaMP has been tested on two different real-world industrial use cases: a25

robotic industry and a white goods company, where it supported domain experts

in discovering homogeneous groups of production cycles, understanding their

meaning, and consequently labelling production-cycle groups without standard

ground-truth knowledge (i.e., class labels).

The main research contributions of this work can be summarised in the30

following:

• The introduction of an automatic feature-engineering strategy tailored to

cycle-based signals coming from industrial production processes.

• A new strategy to characterise slowly-degrading industrial processes over

time by aggregating intra-cycle features.35

• A new semi-supervised data labelling process exploiting the evaluation of

a computationally-scalable silhouette-based unsupervised index.

• A new interpretable strategy for characterising the unsupervised partition-

ing process by exploiting an interpretable CART model and descriptive

statistics of the most relevant features.40
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This paper is organised as follows. Section 2 discusses existing literature

in manufacturing intelligence. Section 3 presents the main building blocks of

the proposed approach tailored to the Industry 4.0 and describes the proposed

data-driven methodology to support the domain expert in labelling production

cycles without ground-truth knowledge (i.e., class labels) on equipment condi-45

tions. Section 4 presents the technological architecture of UDaMP, and Section

5 reports the different case studies on which UDaMP has been tested and their

experimental results. Section 6 presents a discussion on experimental results,

impact and open issues related with the proposed approach and its applications.

Finally, section 7 draws conclusions and presents future research directions.50

2. Related works

With the advent of Industry 4.0, companies are able to increase productivity

and reliability by controlling and predicting maintenance interventions through

state-of-the-art smart systems. The adoption of Data Integration, Data Man-

agement, and Data-Driven algorithms in manufacturing environments has been55

recently recognised to belong to the concept of Manufacturing Intelligence, both

in industry and in the scientific literature (Davis et al., 2012; Chien et al., 2013;

Chen & Chien, 2011; Chien et al., 2010). Indeed, it has been highlighted that

modern data management and analytics pipelines applied to manufacturing-

related data can be used to extract valuable knowledge and derive decision60

rules, that can enhance production efficiency and effectiveness, bringing benefit

to business decisions as well.

In (Wang et al., 2016), the authors address the modern industrial scenario

which necessitates flexible tools and platforms to process great amounts of data

collected by production methods, by presenting a smart factory framework. To65

this aim, industrial IoT (Internet of Things) networks, cloud platforms, and su-

pervisory control terminals including smart machines, conveyors and products

are integrated and exploited. The result is a totally self-organised system man-

aging feedback data and coordinating the central control system to achieve high
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efficiency. In (Lee et al., 2014), the trend of manufacturing transformations in70

industry 4.0 environments is discussed. The paper analyses the level of prepa-

ration of IT tools in managing industrial Big Data and predicting maintenance

operations. In (Yan et al., 2017), a framework for structuring multi-source con-

trasted data is proposed, contemplating spatio-temporal properties and mod-

elling invisible factors. It is a step toward a totally transparent production75

process, which would allow prompt implementation of predictive maintenance

and provide remaining-life predictions of key components of machine apparatus.

As depicted in (Marques et al., 2019) many modern scenarios rely on complex

IoT platforms enabling new opportunities along with new challenges. In (D’silva

et al., 2017) and (Apiletti et al., 2018) examples of real-time data processing ar-80

chitectures are illustrated. Both papers present distributed architectures based

on open source state-of-the-art frameworks (i.e. Apache Kafka, Apache Spark,

and Apache Cassandra) which ensure reliability and scalability for IoT sensor

networks. While (D’silva et al., 2017) include an integrated visualisation tool,

(Apiletti et al., 2018) provide a self-tuning engine for predictive maintenance85

able to define possible equipment failure and intervention needs.

A multitude of attempts to cut down the necessity of domain experts and

lower the running costs of machine learning algorithms have been described in

(Ribeiro et al., 2015; Yao et al., 2017). Feasible machine-learning solutions are

based on an architecture able to create a flexible and scalable data-driven ser-90

vice, as proposed in (Ribeiro et al., 2015). It exploits an open-source solution

with real-world sensors and weather data, to analyse predictions of electricity

demand. In (Yao et al., 2017), an empirical comparison of MLaaS (Machine

Learning as a Service) platforms is presented. The authors evaluated the po-

tential of fully-automated systems, turnkey systems and fully-customizable sys-95

tems.

At last, unsupervised algorithms are powerful methodologies that found ap-

plications in a wide range of scenarios besides Industry 4.0 such as in (Park

et al., 2019) and in (Cerquitelli et al., 2018), and they are continuously evolving

with new approaches (Barak & Mokfi, 2019; Ünlü & Xanthopoulos, 2019). In100
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(Park et al., 2019), the authors propose an advanced clustering approach tai-

lored to textual data to exploit the syntactically and semantically meaningful

features that can be extracted from documents. In (Cerquitelli et al., 2018), an

analysis of residential consumers metered data has been carried out to identify

common consumption patterns leveraging an unsupervised analysis exploiting105

the extraction of duration curves to properly characterise the periodic consump-

tion of each customer. In (Barak & Mokfi, 2019), a new framework tailored to

the selection of the best clustering algorithm between a pool of algorithms to

provide the best partitioning for a specific task has been presented, leveraging

a multiple criteria decision-making strategy based on a multiple-indexes anal-110

ysis and tested on 4 datasets with different characteristics. Finally, authors in

(Ünlü & Xanthopoulos, 2019) propose a new strategy to automatically select the

best partitioning for a given clustering task, optimising the weighted consensus

between four different indexes calculated on a range of possible solutions.

Machine learning applications to cyclic manufacturing processes have been115

proposed in literature. (Kozjek et al., 2017) proposes a two phases data-analysis

workflow to identify faulty conditions for the cyclic production process by analysing

production signals along with their corresponding machine alarms, and the la-

bels describing if a cycle brought to faulty condition or not. Thus, a decision

tree is trained to extract the rules characterising failures. Then, a clustering120

analysis is used to identify the types of faulty conditions supporting operators in

understanding the main causes of malfunctioning. However, they do not provide

any general strategy on how to extract features from cycle based production pro-

cesses, focusing on one specific case study. Instead, we are proposing a general

feature engineering process to automatically characterise raw production signals125

independently from their nature and without any prior knowledge about the sta-

tus of the machinery, i.e. without ground-truth labels. Then, differently from

the state-of-the-art, we propose a new strategy to label each production cycles

in an unsupervised fashion, mining latent patterns of the production process,

and highlighting not only faulty conditions.130

To sum up, the solution proposed in this paper enhances the state-of-the-
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art methods by (i) introducing a production-cycle-aware feature engineering,

aimed at (ii) discovering unsupervised production-cycle categories. To this aim,

(iii) a self-tuning approach drives the automatic choice of optimal clustering

techniques and parameters, whose results (i.e., the production-cycle categories)135

are (iv) described by a human-readable characterisation, hence providing (v) an

assisted cluster-labelling process for domain experts without requiring machine-

learning specific skills.

3. The UDaMP’s architecture

Figure 1: The UDaMP architecture with the main conceptual building blocks.

The main components of the UDaMP’s engine and their functional connec-140

tions are shown in Figure 1. UDaMP (Unsupervised Data-driven Methodology

for Production-cycles Characterisation) provides semi-supervised data labelling

to feed predictive analytics algorithms when ground-truth knowledge is not

available. Currently, most of the predictive maintenance approaches rely on

supervised algorithms, requiring ground-truth knowledge (i.e., class labels) of145

the phenomenon under analysis, however, such labels are often unavailable, at

least in the short term. To address this issue, UDaMP includes a self-tuning

semi-supervised data labelling pipeline, which automatically identifies new un-

seen class labels, and allows domain experts to drastically reduce their manual

intervention by requiring the inspection of a very limited subset of represen-150

tative samples for each new category. Each cluster is locally characterised

through its own data statistics, to help domain experts in understanding its
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content separately. The few representative label assignments are then exploited

to automatically categorise the remaining samples. To this aim, an appropriate

data partitioning is built on historical data by means of clustering algorithms,155

to automatically discover groups of data sharing common properties without

requiring previous knowledge of their existence. Furthermore, UDaMP intro-

duces a self-tuning strategy to automatically configure and select an optimal

clustering algorithm, along with an automatic feature engineering technique.

To recap UDaMP consists of the following conceptual building blocks: (i)160

automatic feature engineering for manufacturing data events, (ii) unsupervised

clustering for detecting possible new categories of data, (iii) self-tuning of clus-

tering parameters, (iv) cluster characterization to provide explainability of the

models, and (v) semi-supervised labelling.

To perform such data analytics tasks, the data collection block of UDaMP,165

named event hub, is designed to reliably route a virtually unlimited number of

sensor measurements and log events from heterogeneous manufacturing-plant

data sources at different rates. The event hub routes data to the UDaMP’s

analytics blocks. Both the results of the analytics and the long-term storage of

the raw data are performed by a scalable high-performance NoSQL data store170

(implementation details are provided in Section 4). As an alternative, a scalable

high-performance relational database can be used as well.

Figure 2: Detailed steps of the specific data analytic pipeline in UDaMP.

Figure 2 shows the detailed building blocks of the analytic pipeline: the

data preparation steps (described in Section 3.1), the self-tuning cluster analysis

(described in Section 3.2), and the semi-supervised data labelling (described in175
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Section 3.3).

3.1. Data preparation

This component performs three steps on data collected from the production

plant. It includes preprocessing, smart data computation, and data aggregation,

as detailed in the following. Algorithm 1 shows the data preparation process180

in details. The process takes in input the historical set of production cycles

PC. Each pc ∈ PC is a numerical vector, representing the signal collected

in the manufacturing environment and describing one cycle of the production

process. Also, the algorithm can be configured by changing parameters like s,

that defines the number of splits in which the cycle has to be divided; w, the185

size of the aggregation window where patterns have to be analysed; thf , that is

the correlation threshold above which computed features would be discarded in

the next phases of the analytic pipeline. Further details about these parameters

will be provided in the next paragraphs. The output of the data preparation

process is a set of features f ∈ F characterising each production cycle over w.190

Preprocessing. This step performs (i) outliers detection and removal, and

(ii) missing value insertion. Specifically targeting cyclic manufacturing pro-

cesses, UDaMP analyses the deciles of cycle lengths, and removes cycles belong-

ing to the first and the last deciles, as they typically represent non-production or

test cycles, as supported by domain-expert evidence (lines 1 to 4). Additionally,195

a cycle alignment task is performed when needed: value padding, i.e., repeating

the value of the last cycle, is exploited until the cycle time slot is filled (line 5).

This ensures a smoother analysis, thanks to a fixed-time structure, by means of

the following feature engineering step.

Intra-cycle feature engineering. This step transforms raw time series, as200

collected from sensors in industrial plants, into time-independent feature sets.

This strategy significantly reduces the dimensionality of the data, while pre-

serving their informative content. the evolution in time of the considered time

series. Each manufacturing cycle is divided into s splits over the time domain,

with the goal of capturing intra-cycle data variability (line 6). An example of205
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Algorithm 1: Data prepatation (map-reduce syntax).

Input : Production Cycles PC; cycle splits s; aggregation window w;

correlation threshold thf ;

Output: Cycles’ features F ;

/* Preprocessing */

1 PC len← PC.map(pc→ length(pc));

2 q10← computeQuantile(PC len, 10%);

3 q90← computeQuantile(PC len, 90%);

4 PCF ← PC.filter(pc→ length(pc) ≥ q10 or length(pc) ≤ q90) ;

5 PCP ← PCF .map(c→ padCycle(c));

/* Intra-cycle feature engineering */

6 PCS ← PCP .map(pc→ splitCycle(pc, s));

7 F ← PCS.map(S → computeStatisticalFeatures(S));

8 F ← featureSelection(F , thf ) ;

/* Inter-cycle data aggregation */

9 if w > 1 then

10 F ← windowAggregation(F , w);

11 end

12 return F

split cycle is reported in Figure 3. Each split is then characterized by different

statistical features (e.g. mean, standard deviation, quartiles, kurtosis, skewness,

root mean squared error, sum of absolute values, number of elements over the

mean, absolute energy, mean absolute change) to capture data variability within

each split, with the split size being a customisable parameter (line 7). The fea-210

ture computation produces a matrix F composed by m cycles and n features:

each cycle is characterised by s splits, with each split being characterised by the

different descriptive statistics, i.e., in our case a cycle is characterised by s ∗ 10

features, since 10 different statistics are computed for each split. Having same-

size splits is a choice of simplicity that was proven to work in our trial case.215

However, feature engineering can be successfully applied to splits of different

sizes, since their purpose is to capture specific transient states and steady states
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Algorithm 2: Window aggregation

Input : Per-cycle Features F ; aggregation window w;

Output: Aggregated features AF ;

1 AF ← ∅;
2 FW ← groupByWindow(F , w);

3 foreach fw in FW do

4 AFC ← ∅;
5 foreach fwj in {fwi,j |1 ≤ i ≤ m} do
6 minfwj ← min fwj ;

7 maxfwj ← max fwj ;

8 meanfwj ← mean(fwj);

9 stdfwj ← std(fwj);

10 βfwj , intfwj ← linearRegression({1, . . . ,m}, fwj);

11 AFC ← AFC ∪ {minfwj ,maxfwj ,meanfwj , stdfwj , βfwj , intfwj}

12 end

13 AF ← AF ∪AFC;

14 end

15 return AF

in cyclic industrial processes, whose duration can vary over time. Finally, a fea-

ture selection phase is performed over (line 8). To this aim, UDaMP integrates

the correlation-based approach, which evaluates the correlation of each couple220

of attributes, and removes those that are correlated the most, on average over

all the (other) features, with the correlation threshold thf being customisable.

Inter-cycle data aggregation. Most industrial processes are character-

ized by slowly-degrading effects, where the single cycle is extremely short with

respect to the target degradation phenomena and its prediction horizon. Hence,225

predicting the condition of a specific cycle is not of interest to domain experts,

whereas the focus is on longer periods, from hours to days, spanning over many

production cycles. Thus, the aim of this step is to aggregate the intra-cycle

features over longer inter-cycle time windows. The window size w is expressed

as the number of cycles to be aggregated. If w > 1, then the cycle features are230

11Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
aggregated (Algorithm 1 line 10). Moreover, Algorithm 2 shows in detail how

the aggregation is performed. First, the features F are divided into sequential

groups fw ∈ FW , each of size w, assuming that the input data are ordered by

timestamp. Then, since intra-cycle features are related to each specific feature

of each split of each cycle, the inter-cycle aggregation is computed separately235

for each feature. In particular, among the other statistics, a linear regression on

the aggregation period fw is computed for each feature (Algorithm 2 line 10).

Thus, the aggregation phase stores the slope and intercept coefficients of the

regression, and the minimum, maximum, mean and standard deviation for each

feature in each window of analysis fw (Algorithm 2 lines 5 to 12). The output240

is the aggregate matrix of features AF composed by m̂ < m cycles, according

to the size of the window, and n̂ features, that correspond to the number of

selected features in F multiplied by the number of statistics computed during

the aggregation process. Please note that both the feature selection and the fea-

ture aggregation steps preserve human readability, hence keeping the approach245

transparent and its decisions easily accountable.

3.2. Self-tuning cluster analysis

The aim of this block is to automatically infer interesting, cohesive and well-

separated groups of production cycles from the unlabelled data collected in the

production plant. It integrates different state-of-the-art clustering algorithms250

and a self-tuning strategy. While the former block discovers a set of groups

of production cycles characterised by similar properties given a specific setting

of input parameters, the latter (i) automatically discovers the optimal input

parameter setting for each algorithm and (ii) selects the algorithm by finding

the optimal partition tailored to the data under analysis. Both contributions255

address popular challenges in applying machine learning techniques to real-world

settings under the supervision of application-domain experts.

UDaMP currently integrates three state-of-the-art partitional clustering al-

gorithms: (i) K-Means (Hartigan & Wong, 1979), (ii) Bisecting K-Means (Tan

et al., 2005), and (iii) Gaussian Mixture (Lindsay, 1995).260
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The K-Means algorithm subdivides production cycles into k groups, where

k is a user-specified parameter. Each group is represented by its centroid, com-

puted as the average of all samples in the cluster. Although K-Means has a bias

towards clusters with a spherical shape, it identifies a profitable data partition

in a limited computational time in many real-life settings.265

Bisecting K-Means applies the K-Means through a hierarchical and bisect-

ing strategy. Instead of searching a global solution, it repeatedly focuses on a

dataset portion to bisect it through the K-Means. The process is repeated until

the (user-defined) k desired groups are met.

The Gaussian Mixture is a general iterative procedure to find groups of270

data originated by the same distribution. To find a good data partition, the

algorithm estimates the mean and the standard deviation for each cluster and

the sampling probability of each group, i.e., the probability that one of the N

Gaussian distributions is used as a source of data. Similarly to the K-Means

and Bisecting, the Gaussian Mixture algorithm requires the desired number of275

groups as an input parameter.

UDaMP includes a self-tuning strategy to automatically discover for each

clustering algorithm an optimal input parameter setting It applies a well-known

quality metric, named the Silhouette index (Rousseeuw, 1987), measuring how

similar a production cycle is to its own cluster (cohesion) compared to other

clusters (separation), by evaluating the appropriateness of the assignment of a

production cycle to a cluster rather than to another one. Let C = {C1, . . . , Cn}
be a set of n clusters, each one representing a group of production cycles. The

Silhouette value for a given production cycle pci in a cluster Ck ∈ C, given a

distance measure d is computed as:

s(pci) =
b(pci)− a(pci)

max{a(pci), b(pci)}
, (1)

where a(pci) is the average distance of production cycle pci from all other cycles

in cluster Ck, i.e.,

a(pci) =
1

|Ck|
Σpcj∈Ck

d(pcj , pci) (2)
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and b(pci) is the lowest average distance from all other clusters, i.e.

b(pci) = min
Cl∈C

(
1

|Cl|
Σpcj∈Cl

d(pcj , pci)),∀Cl 6= Ck. (3)

The Silhouette ranges from -1 to +1, where a high value indicates that

the production cycle is well matched to its own cluster and poorly matched

to its neighbouring cluster. Negative and positive Silhouette values represent

wrong and good placements, respectively. Hence, the ideal clustering algorithm280

splits the data into a set of clusters with production cycles characterised by a

Silhouette value equal to 1. However, lower Silhouette values around 0.2-0.3

are already considered good values in real-life settings since real datasets are

usually characterised by variable data distributions.

To automatically identify a good configuration of the input parameter for

each clustering algorithm, UDaMP automatically analyses the trend of the har-

monic average of the average Silhouette index (ASI) and the global Silhouette

index (GSI) against the desired number of clusters K. ASI and GSI indexes

(Cerquitelli et al., 2018) are defined as follow:

ASI =
1

N

N∑

i

s(pci) (4)

GSI =
1

|C|
∑

Ck∈C

1

|Ck|
∑

pcl∈Ck

s(pcl) (5)

For both indicators (ASI and GSI), higher values correspond to better partition-285

ing. ASI is a measure of how appropriately data have been clustered overall, and

is calculated by averaging the Silhouettes over the entire cluster set of records

(N is the cardinality of the dataset), instead GSI takes into account the imbal-

ance of the number of elements in each cluster, by penalising clusters with a

large number of production cycles, which would otherwise have a predominant290

weight.

The harmonic average of ASI and GSI is exploited in UDaMP to take ad-

vantage of key aspects of both indicators.

The self-tuning step selects the value of K as the last value corresponding

to an increasing trend of the harmonic average of ASI and GSI. Such process295
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is performed separately for each algorithm, hence obtaining different values of

K and their corresponding Silhouette. The sorted Silhouette curves (i.e., the

sorted Silhouette values computed for each production cycle) are then compared.

The partition with the best overall Silhouette trend is selected as the clustering

result.300

To the best of our knowledge, the Silhouette index has never been exploited

to automatically configure the input parameter of any clustering algorithms due

to its high computational cost: all the pair distances among samples have to be

computed. However, since a scalable approach to evaluate the Silhouette index,

named Descriptor Silhouette (DS), has been recently proposed in (Ventura et al.,305

2019), it has been integrated into UDaMP to provide an innovative, efficient and

effective self-tuning service.

3.3. Semi-supervised data labelling

To support domain experts in inspecting a very limited subset of representa-

tive samples, hence effectively reducing the efforts of such manual process while310

enhancing the understanding of the data, each cluster is locally characterised

through:

(i) The top 10 intra-cycle features, to focus the domain-expert attention on

the most relevant characteristics modelling each cluster of production cycles. To

this aim, UDaMP uses a Classification and Regression Tree (CART) (Tan et al.,315

2005). The CART is built using the same inputs of the clustering algorithm.

The cluster identifier assigned by the clustering process is selected as target

label of the CART. The first 10 features used as splits in the CART tree nodes

represent the most relevant features characterising the paths from the tree root

to the leaves.320

(ii) Boxplot distribution of the top-10 features, separately for each cluster, to

characterise its content in terms of the most relevant properties. It represents

a visual support to help application-domain experts to easily derive a specific

meaning for each cluster. Few representative samples for each cluster are then

manually inspected by domain experts to apply a label and verify the correctness325
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of the assignment. Their label assignments are then used for the remaining

samples in each corresponding cluster.

4. The UDaMP technological solution

The design and development choices of UDaMP have been driven by an in-

depth analysis of Industry 4.0 requirements carried out with different leading330

companies, from mechanical to robotics, from automation to food supplement

production. Specifically, the following choices have been made to address the

needs of modern manufacturing industries:

Reliability, availability, scalability, and manageability have been provided

through the exploitation of state-of-the-practice technologies that reasonably335

pledge such properties. To provide the manageability, the UDaMP architecture

has been deployed in a containerised environment, which significantly reduces

the architectural management complexity. Furthermore, containerised blocks

are typically horizontally scalable, as they can be easily instantiated dynami-

cally by design, both on-premises and in cloud environments. In UDaMP each340

building block is encapsulated into a Docker container (Merkel, 2014), by pro-

viding a flexible loosely-coupled architecture.

To develop the event hub, Apache Kafka (Kreps et al., 2011) has been se-

lected to guarantee a horizontally scalable, fault-tolerant, advanced message

broker able to effectively deal with real-time applications requiring significant345

data throughput.

A specific challenge of Industry 4.0 data storage is to guarantee a good

scalability in writing operations. To this aim, UDaMP exploits Apache Cassan-

dra (Lakshman & Malik, 2010), a column-oriented NoSQL database, as data

storage.350

Finally, the self-tuning semi-supervised data labelling blocks are based on

Apache Spark (Zaharia et al., 2012), along with its streaming extensions and the

parallel machine learning library, MLlib (Meng et al., 2016). Spark Streaming is

a state-of-the-practice, horizontally-scalable, high-throughput and fault-tolerant
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framework for soft real-time Big Data analysis.355

5. Experimental results

The experimental section is organised as follows. Section 5.1 describes the

real-life Industry 4.0 case studies. Section 5.2 evaluates the benefits of the self-

tuning clustering analysis block along with the semi-supervised data labelling

task. Section 5.3 compares UDaMP to other state-of-the-art approaches.360

All the experiments have been performed on an Intel Core i7 machine with

32 GB of RAM running Ubuntu 16.04 and a cluster of two nodes configured with

Apache Kafka 1.0, Spark (and MLlib) 2.4.0, Docker 17.09, and Cassandra 3.11.

The clustering algorithm implementations are those available in the Apache

Spark MLlib (Meng et al., 2016) library, while to compute the Silhouette index365

UDaMP integrates Descriptor Silhouette (DS), as proposed in (Ventura et al.,

2019).

5.1. Real-life case studies

UDaMP has been validated in the following digital factories to evaluate its

effectiveness.370

International white-goods company (CS1). UDaMP has been evalu-

ated on data collected from sensors placed in a manufacturing plant of an inter-

national white-goods company. The production cycle involves using a nozzle to

inject isolating foam. The nozzle has been sensorised to monitor the process. A

predictive model of the overall system conditions is desired to predict possible375

alarms and future failures in the process. A variety of signals have been mon-

itored including the temperature of chemicals involved, pressure of the liquids

before injection, injection timing and quantity, ratio of the injected chemicals,

etc.

Ground-truth labels characterising each production cycle or set of production380

cycles are not available, since their definition and assignment would be very

time-consuming. To this aim, UDaMP has been used to support domain ex-

perts in quickly and easily defining class labels. The goal of CS1 is to predict
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if a given set of monitored production cycles (e.g., a few hours of data) will

trigger an unexpected event in a given time horizon (e.g., the next day). The385

foaming process is characterised by very slow degradation trends, hence, batches

of approximately 170 production cycles of few minutes each are aggregated into

one-day-long time windows, during the preprocessing step, as discussed in Sec-

tion 3.1.

International robotics industry (CS2). UDaMP has been validated on390

a set of data describing motor cycles collected in a robotics industry, where

a RobotBox has been executing a given cycle continuously. The goal is the

detection and prediction of the engine transmission belt degradation over time.

Electrical data of the engine were collected for 16,862 cycles to study the belt

tensioning level. Using a slider installed on the robot, different levels of the395

belt tensioning have been observed. Assessing the level of the belt tensioning

for each cycle is an extremely time-consuming task. Hence, UDaMP has been

exploited to support the domain experts in quickly and easily deriving class

labels for each cycle.

Figure 3 shows an example of the electricity consumption values for a given robot400

cycle lasting about 24 seconds with 11,967 sampled measurements (sampling

period of 0.02 seconds). The engine axis is parallel to the ground, and the engine

cycle has been set as follows. At the beginning the initial position of the motor

is -500 degrees; it slowly reaches +90 degrees (20% of the maximum speed) and

it maintains the position for 5 seconds; then it returns to -500 degrees at its405

maximum speed; finally it maintains the new position for 5 seconds. Figure 3

shows the current absorbed during an engine cycle in CS2. Highlighted splits

within the cycle are those identified by UDaMP as the most relevant ones in

the semi-supervised data labelling block. Segment 6 represents the slow descent

phase of the engine payload. Segments from 12 to 16 show the current absorbed410

when the motor reaches and maintains the +90 degrees. Segment 21 shows

the current absorbed at the end of the maximum speed phase to maintain the

position of -500 degrees.
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Figure 3: A production cycle sample for CS2. The most relevant splits identified by UDaMP

are highlighted.

5.2. Evaluation of the self-tuning strategy and the semi-supervised data labelling

Intra-cycle feature engineering. For CS1, each cycle has been divided415

into 8 splits, whereas for CS2 the splits are 24, depending on the total length

of the cycle. Then, intra-cycle features are computed as described in Section

3.1. The feature selection is applied with a 0.5 correlation threshold, which

yields to 40 and 222 selected features for CS1 and CS2 respectively. Then, the

aggregation step is executed for CS1, with 240 final features for each aggregated420

time window of 1 day. The data aggregation step is skipped for robot cycles in

CS2 since each cycle needs to be characterised independently from the others.

Self-tuning cluster analysis. As discussed in Section 3.2, to automatically

configure the cluster analysis, UDaMP examines the harmonic average of the

Average Silhouette Index (ASI) and the Global Silhouette Index (GSI), called425

Harmonic Descriptor Silhouette (HDS), for k in the range [2, 20].

Figure 4a and Figure 5a show the trend of HDS for each clustering algorithm

in CS1 and CS2, respectively.

The selected configuration (i.e., the best value for the number of desired

clusters) is highlighted with a coloured circle: CS1 yields to k = 5 for K-Means,430

k = 4 for Bisecting K-Means, and k = 8 for Gaussian Mixture; CS2 yields to

k = 6 for K-Means, k = 5 for Bisecting K-Means, and k = 7 for Gaussian

Mixture. To choose the best performing algorithm for the data under analysis

19Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
UDaMP compares the Descriptor Silhouette curves (Ventura et al., 2019) corre-

sponding to the selected configuration for each algorithm, as shown in Figure 4b435

for CS1, and in Figure 5b for CS2. The algorithm with the highest values of

Descriptor Silhouette is selected. For CS1 the best performing algorithm is K-

Means with k = 5, whereas for CS2 the best one is K-Means with k = 6.

(a) Descriptor Silhouette curves for the se-

lected k value for each algorithm.

(b) Descriptor Silhouette curves for the se-

lected k value for each algorithm.

Figure 4: CS1: UDaMP self-tuning cluster analysis results

(a) Harmonic Descriptor Silhouette by

varying k and clustering algorithms

(b) Descriptor Silhouette curves for the se-

lected k value for each algorithm

Figure 5: CS2: UDaMP self-tuning cluster analysis results

Semi-supervised data labelling. UDaMP provides domain experts with440
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an interpretable representation of the automatically identified clusters of man-

ufacturing cycles to help them in assigning a class label to each group. As

described in section 3.3, UDaMP selects the top 10 features (by exploiting a

CART) for better focusing on the most relevant characteristics under analysis.

Figure 6 shows the boxplot of the selected features (listed in the x axis of each445

box-plot), separately for each cluster discovered in CS2. The selected features

represent the most peculiar aspects of the manufacturing cycles.

From the box-plots in Figure 6 we observe that the first 5 clusters (from 0

to 4) are cohesive, well-separated, and well-balanced.

Cluster 5 instead, is characterised by a very sparse distribution of values,450

and it only includes 3 records. Indeed, we fixed the y axis range to keep all the

other clusters comparable, and cluster 5 values are so different that they fall

outside of the visible area.

Figure 6: CS2: Data distribution of the top-10 relevant features separately for each group. The

name of the features, reported on the x axis, include < feature name > < segment id >

After the analysis of the aforementioned data distribution, domain experts

from the involved companies confirmed that each group correctly models a spe-455
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cific belt tension level: (i) the selected segments (with ids 6, 12, 13, 14, 15, 16

and 21, also shown in Figure 3) correspond to the ones mainly affected by the

belt tension, and (ii) no overlapping boxes appear in different groups. Thus,

they are able to correctly understand the meaning of each group, i.e., link the

cluster to a specific aspect of the physical phenomenon, and easily define the460

corresponding class label.

The main outcome of the semi-supervised knowledge-discovery process is the

quick and informed class-label assignment for each cluster. It can be summarised

as follows. The robot consumes a different amount of current (1) when it stops

(split 12), (2) when it maintains the position of +90 degrees (splits 13-15), and465

(3) when it starts to move again at high speed (segment 16), based on the

different levels of belt tension. Furthermore, when the engine is stopped in a

position different than 0 degrees or starts to move, the effect of the level of belt

tension over the absorbed current is higher w.r.t. when the engine is moving

and the belt is held under tension. Then, in CS2, the clusters can be labelled by470

a domain expert as follows (from cluster 0 to 5, in order): (i) cluster 0 models

the consumption of high positive current, (ii) cluster 1 models the consumption

of medium positive current, (iii) cluster 2 models normal current consumption,

(iv) cluster 3 models high negative and (v) cluster 4 models medium negative

current consumption. Finally, (vi) cluster 5 collects outlier records.475

5.3. Comparison with the state-of-the-art approach

We consider the Elbow method (Satopaa et al., 2011), also known as knee

approach, as the current state-of-the-art approach. It identifies the best value for

the desired number of clusters by analysing the trend of a quality measure, such

as the Sum of Squared Errors (SSE), against k. The value of k corresponding480

to the local minimum (knee) in the SSE trend is then selected, meaning that

the gain from adding a new cluster is negligible, thus the reduction of the SSE

is no longer valuable. Figure 7 shows the SSE curves against k for the three

clustering algorithms in CS1 and CS2. The selected value of k for each algorithm

is highlighted with a coloured circle.485
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(a) CS1 (b) CS2

Figure 7: Elbow method, SSE trends against k for all clustering algorithms, selected values

of k are indicated by a filled circle.

(a) CS1 (b) CS2

Figure 8: Comparison of Descriptor Silhouette curves.

To compare the quality of the best clustering result found by UDaMP with

the ones produced by the state-of-the-art method, the Descriptor Silhouette

curves are exploited, as shown in Figure 8. Partitions selected by UDaMP

are characterised by generally higher silhouette values, meaning a better inner-

cohesiveness and a greater inter-separation, than the solutions found by the490

state-of-the-art method. In practice, UDaMP provides more reliable results,

since its clusters better group together similar production cycles, and vice versa

diverse production cycles are assigned to different clusters. We recall that the
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Figure 9: Descriptor Silhouette for ASI, GSI, and HDS against k: K-Means in CS2.

similarity is expressed on the basis of the features extracted in the data prepa-

ration step (Section 3.1).495

In Figure 8b, we note that the Descriptor Silhouette curve for CS2 with

k = 6 (value selected by UDaMP) is on average slightly lower than the one

computed with k = 7 (value selected by the Elbow method). This is mainly

due to UDaMP adopting the strategy of (i) taking into account the quality of

the overall partitions in the clustering result (through ASI) while (ii) penalising500

large clusters (through GSI). To better clarify this issue, in Figure 9 we report

the trends of the Average Silhouette Index (ASI), the Global Silhouette Index

(GSI), and the harmonic average of ASI and GSI (HDS), against k, with the

K-Means algorithm. Comparing the values for k = 6, selected analysing the

HDS curve and k = 7, selected by the Elbow method, we notice that the ASI505

value for k = 7 is slightly higher, whereas the GSI is definitely much higher

for k = 6. Thus, the clustering result with k = 6 provides more cohesive and

well-separated groups then the result with k = 7. This highlights the possibility

that a lower SSE might not represent better inner-cohesive and inter-separated

groups, making the Elbow method a less reliable approach.510

Moreover, the UDaMP architecture has been designed to be applied in indus-

trial settings, where domain experts (who are not expected to be data scientists)

require a clear vision of why a clustering result has been selected as the best
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one. The Elbow method is a suitable solution for problems where the clustering

reaches an evident knee in the SSE curve, which is not always the case: the515

SSE curve might slowly degrade without an evident knee. For example, the

reasons why k = 6 has been chosen as the best clustering parameter for CS2

are definitely clearer by reading Figure 5a w.r.t. inspecting the SSE curve in

Figure 7b.

6. Discussion520

In this section, we analyse UDaMP’s contributions and provide new horizons

opened by the proposed work.

Unsupervised labelling. Currently, a major challenge in manufacturing

intelligence is the absence of timely and precise class labels for training super-

vised predictive-maintenance classification techniques. The solution proposed525

by UDaMP provides assisted labelling of entire clusters of production cycles,

hence it drastically reduces the manual intervention required by domain experts,

since they inspect only a very limited subset of representative information. This

is an intermediate step towards a totally unsupervised labelling process, which

is part of the planned future works.530

Applicability and impact. Many manufacturing processes entail a se-

ries of cyclic procedures. The proposed approach is specifically designed to

exploit the cyclic characteristics during the feature engineering and aggregation

phases. We presented experimental results from two meaningful real-world use

cases. We deem them to be meaningful and general since they stem from a535

joint research project with leading international companies from different areas

of manufacturing (electronic appliances and robotic automation). Having de-

signed the proposed data pipeline based on such wide industrial settings makes

us confident of its broader applicability to other cycle-based processes, beyond

the two specific use cases, with a very limited effort. Furthermore, our frame-540

work attempts to put a step forward in the digitisation of the manufacturing

industry. Among the expected impacts we consider lowering the costs of extract-
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ing knowledge from the huge amount of data collected in modern production

systems, and increasing the awareness of the domain experts in understanding

the application of data analytics solutions to the manufacturing process.545

7. Conclusions

This paper presents UDaMP, an integrated platform to provide self-tuning

semi-supervised data labelling, enabling domain experts to capitalise on predic-

tive maintenance analytics by simplifying the cumbersome process of manual

data labelling. The proposed solution has been tested on two different real-life550

use cases, showing its effectiveness in automatically inferring knowledge from

data.

Future directions of this research work include: (i) the integration of anomaly-

detection techniques exploiting scalable one-class classifiers; (ii) combining concept-

drift detection techniques with one-class classifiers to automatically discover555

new types of production cycles, thus enriching the expertise of domain experts

through knowledge inference from collected data.
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M., González, A. M., & Santiago, A. V. (2018). Clustering-based assessment

of residential consumers from hourly-metered data. In 2018 International

Conference on Smart Energy Systems and Technologies (SEST) (pp. 1–6).

doi:10.1109/SEST.2018.8495863.

Chen, L.-F., & Chien, C.-F. (2011). Manufacturing intelligence for class pre-580

diction and rule generation to support human capital decisions for high-tech

industries. Flexible Services and Manufacturing Journal , 23 , 263–289.

Chien, C.-F., Chen, Y.-J., & Peng, J.-T. (2010). Manufacturing intelligence for

semiconductor demand forecast based on technology diffusion and product

life cycle. International Journal of Production Economics, 128 , 496–509.585

Chien, C.-F., Hsu, C.-Y., & Chen, P.-N. (2013). Semiconductor fault detec-

tion and classification for yield enhancement and manufacturing intelligence.

Flexible Services and Manufacturing Journal , 25 , 367–388.

Davis, J., Edgar, T., Porter, J., Bernaden, J., & Sarli, M. (2012). Smart

manufacturing, manufacturing intelligence and demand-dynamic perfor-590

mance. Computers & Chemical Engineering , 47 , 145 – 156. URL: http:

//www.sciencedirect.com/science/article/pii/S0098135412002219.

doi:https://doi.org/10.1016/j.compchemeng.2012.06.037. FOCAPO

2012.

D’silva, G. M., Khan, A., Gaurav, & Bari, S. (2017). Real-time processing595

of iot events with historic data using apache kafka and apache spark with

27Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
dashing framework. In 2017 2nd IEEE International Conference on Recent

Trends in Electronics, Information Communication Technology (RTEICT).

doi:10.1109/RTEICT.2017.8256910.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means clus-600

tering algorithm. Journal of the Royal Statistical Society. Series C (Applied

Statistics), 28 , 100–108.
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