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ARTICLE

Living supramolecular polymerization of fluorinated
cyclohexanes
Oleksandr Shyshov1, Shyamkumar Vadakket Haridas1, Luca Pesce 2, Haoyuan Qi 3,4, Andrea Gardin5,

Davide Bochicchio 2,6, Ute Kaiser 3, Giovanni M. Pavan 2,5✉ & Max von Delius 1✉

The development of powerful methods for living covalent polymerization has been a key

driver of progress in organic materials science. While there have been remarkable reports on

living supramolecular polymerization recently, the scope of monomers is still narrow and a

simple solution to the problem is elusive. Here we report a minimalistic molecular platform

for living supramolecular polymerization that is based on the unique structure of all-cis

1,2,3,4,5,6-hexafluorocyclohexane, the most polar aliphatic compound reported to date. We

use this large dipole moment (6.2 Debye) not only to thermodynamically drive the self-

assembly of supramolecular polymers, but also to generate kinetically trapped monomeric

states. Upon addition of well-defined seeds, we observed that the dormant monomers engage

in a kinetically controlled supramolecular polymerization. The obtained nanofibers have an

unusual double helical structure and their length can be controlled by the ratio between seeds

and monomers. The successful preparation of supramolecular block copolymers demon-

strates the versatility of the approach.
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Controlled polymerization methods such as atom transfer
radical polymerization1 have revolutionized polymer
chemistry by endowing artificial macromolecules with a

degree of structural precision that is only surpassed by
biopolymers2. By providing facile access to homo- and block
copolymers of various composition and topology, living poly-
merization (LP)3 has paved the way toward diverse applications
in solar cell manufacturing4, nanophotonics5 and biomedicine6.
A similar transformation toward precision materials is currently
underway in supramolecular polymer chemistry, a field that is
only three decades old7–9 and increasingly finds applications10–12.
In 2014, Takeuchi and Sugiyasu reported the first example of
living supramolecular polymerization (LSP) based on the aggre-
gation of a porphyrin derivative into metastable nanoparticles
that could be converted into thermodynamically more stable
nanofibers of relatively precise length by the addition of nanofiber
seeds and subsequent kinetically controlled chain-growth13.
Many recent examples of LSP are based on a similar use of off-
pathway aggregates14, which can be self-assembled from diverse
building blocks such as rylene dyes15–21, (aza)-BODIPY dyes22,23,
N-heteroangulenes24 and amphiphilic PtII complexes25. Further
examples make use of the counter-anion modulated aggregation
of PtII and PdII pincer-type complexes26, the coupling of SP with
a chemical fuel or light27–30, the trapping of an active monomer
using “dummy” monomers incapable of 1D supramolecular
polymerization31 and the amplification of macrocycles from
dynamic combinatorial libraries32. Moreover, supramolecular
precision materials with remarkable complexity have been
obtained via living epitaxial growth33–44.

However, for LSP to become a general and versatile synthetic
method, a simple and minimalistic molecular platform should be
developed that is easily functionalized and allows a predictable
fine-tuning of LSP characteristics. Arguably, the most important
step in this direction would be to avoid off-pathway aggregates
and use instead the predictable folding of a monomeric core
fragment into a metastable state45–49. A breakthrough to this end
was recently reported by Aida et al. who have designed a
sophisticated C5-symmetric corannulene derivative that is pre-
vented from spontaneous polymerization by the formation of a
network of intramolecular hydrogen bonds within the amide
groups of the five side chains50. By addition of a molecularly
dissolved, N-methylated corannulene derivative, the authors were
able to initiate LSP and demonstrate control over the length of the
formed fibers51. When analyzing the design aspects behind this
groundbreaking study, one cannot help but notice that the crucial
role of the concave corannulene motif, namely to impart direc-
tionality to the growing fibers, could perhaps be realized based on
a simpler molecular platform. Specifically, it occurred to us that
all-cis 1,2,3,4,5,6-hexafluorocyclohexane (C6H6F6) with its enor-
mous dipole moment52, straightforward synthesis53 and emerging
potential as a supramolecular host54 would be an excellent can-
didate. Furthermore, theoretical studies predict a large and
cooperative enhancement of the dipole moment during aggre-
gation of all-cis C6H6F6 into one-dimensional stacks55. We
wondered whether this cooperativity could be used to drive the
formation of thermodynamically stable supramolecular polymers,
while the large dipole moment of all-cis C6H6F6 (6.2 Debye)
could lead to folded, metastable states that would allow us to
perform LSP.

In this work we demonstrate that simple derivatives of all-cis
1,2,3,4,5,6-hexafluorocyclohexane (Fig. 1) indeed give rise to LSP
and that supramolecular block copolymers can be prepared using
this approach. We show that the key monomer is kinetically
trapped due to folding and that well-defined seeds initiate the
growth of fibers, whose average length can be controlled by the
ratio of seeds to monomer (Fig. 1).

Results and discussion
Molecular design and synthesis. Our monomer design is based
on all-cis 2,3,4,5,6-pentafluorocyclohexan-1-ol, which is linked
via an ester bond, a short alkyl chain and an amide bond to an
alkylated derivative of gallic acid that imparts solubility (Fig. 2).
Monomer M1 is achiral, whereas monomers M2–M5 bear ste-
reogenic centers (for their synthesis and characterization, see
Supplementary Methods), allowing the use of circular dichroism
(CD) spectroscopy to study the kinetics of self-assembly.

The synthesis of monomers starts from commercially available
pentafluoroanisol, which was hydrogenated according to a
procedure reported by Glorius53 and deprotected to furnish all-
cis 2,3,4,5,6-pentafluorocyclohexan-1-ol (Fig. 2). Esterification
furnished compounds 2–4 quantitatively by reaction with
pentafluorophenol-based active esters. The single-crystal X-ray
structure of all-cis 2,3,4,5,6-pentafluorocyclohexyl acetate (Ref1)
confirms the equatorial position of the ester group and the all-cis
arrangement of the fluorine atoms in compounds of this general
structure. Straightforward deprotection and coupling steps gave
the desired monomers in good to excellent yields. All reactions
were found to be scalable and reproducible, allowing gram-scale
syntheses of all monomers reported herein.

During column chromatography of M1, we observed the
formation of thick crystalline fibers on the liquid/air interface
(Supplementary Figs. 5–7) inside a test tube. Propagation from
the interface into the bulk solution led to complete gelation
within 10–15 min (Supplementary Figs. 5, 8), while fiber
formation appeared to be initially absent in the bulk solution.
This unusual gelation behavior of achiral monomer M1 was a
promising lead result that convinced us to prepare its more
soluble, chiral analogue M3 to study its self-assembly in greater
detail.

Monomer folding inhibits spontaneous supramolecular poly-
merization. Our initial studies on supramolecular polymerization
were carried out in a mixture of cyclohexane and chloroform
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(84:16 v/v, standard solvent) because time-dependent CD mea-
surements of a 1.2 mM solution of M3 at 293K, revealed that in
this medium, M3 is remarkably kinetically persistent and remains
molecularly dissolved for hours. However, ultrasonication for 45 s
induces polymerization (Fig. 3a), forming a clear viscous solution.

Slow cooling (0.5 Kmin−1) of a 1.2 mM solution of M3 resulted
in a pronounced negative Cotton effect with an absorption
maximum at 260 nm, indicating the formation of chiral supra-
molecular aggregates (Fig. 3b). The transition from the dissolved
to the polymerized state occurs abruptly with an elongation
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temperate (Te) of 282K. The AFM height image of a cooled
(275K) solution of M3 spin-coated on a silicon wafer reveals a
dense fibrous network (Supplementary Fig. 7). No evidence for
supramolecular aggregates was observed when an analogous
study was carried out with reference compounds Ref2 (conven-
tional cyclohexane) and MeM3 (methylated amide), indicating
that both the all-cis C6H6F5 motif and the amide bond are crucial
for supramolecular polymerization (Supplementary Fig. 9).

Variable temperature CD measurements of M3 at slow cooling
and heating rates (0.5 Kmin−1) revealed pronounced hysteresis
(Fig. 3c). For monomer M2, in which only two methylene groups
separate all-cis C6H6F5 and the amide bond, hysteresis was also
observed but the Te during cooling was 11 K higher (Supple-
mentary Fig. 10), while for monomer M4 hysteresis was negligible
and oligomeric species were observed already at 328 K (Supple-
mentary Fig. 10). The observation of hysteresis and the distinct
differences observed for M2, M3, and M4 can be explained by the
varying ability of these monomers to form intramolecular
interactions such as hydrogen bonds56, whose strength should
heavily depend on the length of the spacer.

We therefore proceeded to gather experimental and computa-
tional evidence for monomer folding. First, we investigated
whether the kinetic stability of M3 (Fig. 3a) may be a result of
intramolecular interactions by studying the kinetics of the
polymerization at different concentrations at a constant tem-
perature of 293 K. At all concentrations studied, we observed
sigmoidal kinetic curves with lag times decreasing upon
increasing concentration of M3 (Supplementary Fig. 11). DLS
analyses performed on 1.2 mM solution of M3 in the solvent
mixture used for kinetic studies (cyclohexane/chloroform 84:16 v/
v) displayed a unimodal scattering peak with a hydrodynamic
diameter of ~ 1.1 nm (Supplementary Fig. 12). The diffusion-
ordered spectroscopy (DOSY) of M3 (1.2 mM in C6D12/CDCl3
84:16 v/v at 295 K) provided a diffusion coefficient similar to non-
assembling and non-folding reference compound Ref2 (Supple-
mentary Figs. 13, 14). While these results clearly indicate that no
off-pathway aggregates are involved, we also attempted to study
folding more directly by variable temperature 1H NMR spectro-
scopy. To this end, a 1.2 mM solution of M3 in C6D12/CDCl3
(84:16 v/v) was cooled from 333 to 283 K, revealing a strong
temperature-dependence of the chemical shift of the amide and
aromatic protons, which is in agreement with the expected
temperature-dependence of the equilibrium between unfolded
and folded states (Supplementary Figs. 15, 16). In a 19F/1H-
HOESY NMR experiment on M1 in 30 mM solution (CDCl3), we
observed weak 19F/1H NOE of two fluorine atoms in all-cis
C6H6F5 with both amide and aromatic protons (Supplementary
Fig. 18). Fourier-transform infrared spectral measurement (FT-
IR) performed with 1.2 mM solution of M3 C6H12/CHCl3 (84:16
v/v) revealed no presence of stretching frequency corresponding
to hydrogen-bonded amide hydrogens but small shifts of amide I
band which could be attributed to the formation of CH···π
interactions between all-cis C6H6F5 and aromatic ring (Supple-
mentary Figs. 23, 24). Combined HOESY and FTIR results
confirm that folding is indeed present but likely not limited to a
single structure and conventional C=O···H–N intramolecular
hydrogen bond.

To gain a deeper understanding of monomer folding, we
carried out all-atom well-tempered metadynamics (WT-
MetaD)57 simulations of M3 in explicit solvent molecules
(C6H12/CHCl3 in the ratio of 84:16 v/v; see Supplementary
Methods for more details). These simulations allowed us to
compute the free energy surface (FES) of the monomer folding/
unfolding (Fig. 3d). The conformations accessible to the
monomer are identified in the FES as a function of the two
collective variables (CV1 and CV2) used during the WT-MetaD:

CV1 represents the orientation of pentafluorocyclohexyl with
respect to the amide-carbonyl group (Supplementary Fig. 25c),
and CV2 is indicative of the opening of the monomer “core”
(Supplementary Fig. 25b). The FES shows that the monomer M3

tends to assume a folded conformation (Fig. 3d: dark blue region
characterized by low CV2 values), in which the hydrogen atoms
of pentafluorocyclohexyl are close to the benzene moiety (Fig. 3d:
IV conformer)58. Other (less) energetically accessible conforma-
tions (within ~5 kJ/mol from the global free energy minimum)
are favored either by the interaction of the fluorine atoms with
the amide-H (Fig. 3d: I conformer) or by the formation of a
hydrogen bond with the carbonyl group (II conformer). Similar
analyses were performed on M2, M4 and MeM3 (Supplementary
Fig. 26), showing that for M2 and MeM3 the opening of the
monomer is much more likely than for M3 and M4.

Living supramolecular polymerization. Having gained an
understanding of the folding of monomer M3 into kinetically
trapped states, we proceeded to test whether we could use this
molecular property to facilitate LSP. Initially, we attempted to use
the N-methylated analogue MeM3 as a molecular initiator based
on the assumption that it is less prone to folding, but could
interact with M3 in a way that triggers unidirectional
polymerization51. While this initiation mode was not successful,
we were able to develop a protocol that makes use of well-defined
seeds to trigger LSP. M3

Seed was prepared by sonication of a
mixture of M3 and MeM3 (ctot= 1.2 mM, M3/MeM3= 3:1 mol/
mol) in standard solvent at 273 K for 20 min (Fig. 4b). In the
absence of MeM3, we obtained longer, non-uniform fibers
(Supplementary Fig. 27) that have a higher tendency to bundle
and which induce polymerization with decreased reproducibility
and higher polydispersity (Supplementary Fig. 30). Based on the
effect that the M3/MeM3 ratio has on the size of seeds (Supple-
mentary Figs. 27, 28) we propose that MeM3 acts as a
sequestrator59 that competitively interacts with M3 and therefore
reduces the available amount of M3 that can be incorporated into
polymer chains. The sequestrator MeM3 thus lowers the degree of
polymerization, which results in a more effective size control
during seed formation (Supplementary Discussion). This opti-
mized procedure allowed us to prepare M3

Seed fibers with a
weight-averaged length (Lw) of 83 nm and a polydispersity index
(PDI) of ca. 1.2 (Fig. 4b, c). When we added different volumes of
the M3

Seed solution ([M3]/[M3
Seed]: 50:1, 100:1, 150:1 and 200:1

volume ratios) to a solution of M3 (1.2 mM, 293 K), poly-
merization started without lag time and was complete within
2–15 min (Fig. 4d). The crucial plot shown in Fig. 4e confirms
that the logarithm of the apparent polymerization rate (log
(-dθ/dt)) is directly proportional to the logarithmic amount of
M3

Seed initiator, which is expected for a well-behaved chain-
growth polymerization.

The size distributions of supramolecular polymers prepared by
seeded LSP were determined by atomic force microscopy (AFM)
under carefully optimized conditions (Fig. 4f). The obtained AFM
images revealed individual, uniform, separate fibers, alongside
bundles, which could however clearly be distinguished based on
image contrast and AFM height profile (Fig. 3g). Weight-
averaged lengths (Lw) of 955, 665, 499, and 317 nm, could be
determined for individual fibers prepared from [M3]/[M3

Seed]
ratios of 3:1, 5:1, 7:1 and 10:1 (v/v), respectively (Fig. 4g, h and
Supplementary Fig. 33). The linearity of the plot of fiber length
versus [M3]/[M3

Seed] (Fig. 4f) provides further evidence for the
living nature of the observed polymerization. When using a [M3]/
[M3

Seed] ratio of 20:1 we observed polymers with a length of ca.
1–3 µm, whose bundling precluded reliable statistical AFM
analyses (Supplementary Fig. 34). Further increase of M3/M3

Seed
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to 50:1 led to the formation of even longer fibers (Fig. 4i). In all
cases that allowed reliable statistical analyses, the PDI was below
1.2 (Supplementary Fig. 35 and Supplementary Table 1). Polymer
chains remain active and continue to elongate upon addition of
M3, as was demonstrated in multicycle dilution CD experiments.

Supramolecular block copolymers. We wondered whether it
would be possible to carry out kinetically controlled LSP of
monomers with different side chains. This approach would be
reminiscent of the living chain-growth polymerization of acry-
lates, where a molecule of interest is attached to an acrylate or
acrylamide that undergoes living covalent polymerization. Instead
of acrylates we would rely on all-cis 2,3,4,5,6-penta-
fluorocyclohexyl 4-amidobutanoates, which represent the core
structure facilitating LSP, as was demonstrated above.

While there has been remarkable progress recently with
preparing supramolecular block copolymers under thermody-
namic control60–62 or by slow cooling of monomer mixtures63–65,
a growing number of such precision polymers has been prepared

by LSP, which can provide superior structural and sequence
control. However to date, these LSP approaches either rely on the
modification of the polymerizable core, e.g., substituents are
attached to the core of rylene dyes16,66 or the complexation of
different metal ions to identical ligands67,68. A modular approach
based on the variation of the side chain, as pioneered by Otto,
Faul, Manners and Sugiyasu19,32,69, would be complementary to
these methods and could offer distinct advantages for applica-
tions in organic materials science. For obtaining a proof of
principle, we decided to introduce a structural change to the
aliphatic side chains in M3. Keeping the crucial design elements
for LSP as well as the aromatic core and the stereogenic centres in
place should allow us to use the same analytical techniques and
correlate the observed data with M3

Polymer. Based on this
reasoning, we prepared monomer M5, which contains three
thiobutyl group instead of isopropyl groups (Fig. 2). When
performing LSP with this monomer, we were delighted to find
that this considerable structural change (insertion of a heteroa-
tom, side chain elongation and removal of a branching point) did
not significantly affect the polymerization behavior. In general,
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(blue curve), 200:1 (yellow curve) v/v). e Log-log plot of the rate of polymerization as a function of M3

Seed concentration. Error bars correspond to one
standard deviation of a triplicate measurement. Solid line – linear fit with slope 0.97 (correlation coefficient 0.998). f Weight-average length (Lw), number-
average length (Ln) and PDI (Lw/Ln) obtained by measuring AFM length of supramolecular polymers obtained with different [M3]/[M3

Seed] ratios (3:1, 5:1,
7:1, 10:1 v/v) plotted against [M3]/[M3

Seed] v/v. Solid lines represent linear fit (correlation coefficients 0.995) indicating linear dependence of the size of
supramolecular polymers on the amount of M3

Seed added. Dashed line serves as guide for the eye. g–i Representative AFM height images of
supramolecular polymers obtained with different [M3]/[M3

Seed] ratios ((g) 5:1, (h) 10:1, (i) 50:1 v/v) spin-coated on silicon wafer.
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M5 behaved similarly to M3, while it is kinetically more stable,
such that a solution of M5 (1.2 mM, C6H12/CHCl3 84:16 v/v)
starts to polymerize only after prolonged ultrasonication (>7 min
at RT). Therefore, we decided to decrease the polarity of our
solvent mixture for the following block copolymer syntheses by
increasing the volume fraction of cyclohexane to 93% (Supple-
mentary Fig. 37).

To prepare an ABA type block copolymer we used M3
Seed

polymer (golden, Fig. 5a) to initiate the supramolecular
polymerization of the sulfur-containing monomer M5 (pink,
Fig. 5a). CD spectroscopy revealed polymerization kinetics
similar to those observed for LSP of M3 (Fig. 5b). Polymerization
of M5 starts without lag time with rates proportional to the
amount of M3

Seed added (Fig. 5b, inset), indicating that the
chain-growth mechanism is preserved. The average length of
fibers observed by AFM and the calculated PDI of M5-M3-M5

supramolecular polymers obtained with 3:1 and 5:1 [M5]/
[M3

Seed] ratios perfectly matched the results observed for the
corresponding M3 homopolymer (Supplementary Fig. 35).

To demonstrate that chain fragmentation does not occur
during copolymerization, which is a prerequisite for sequence
control in the block copolymer, we performed a multicycle kinetic
experiment (Fig. 5c)70. First, we prepared an M5-M3-M5 block
copolymer using a [M5]/[M3

Seed] ratio of 25:1 and followed the

time-course of polymerization by CD spectroscopy. We then took
half of the obtained solution and added an identical volume ofM5

(1.2 mM, C6H12/CHCl3 93:7 v/v) (Fig. 5a). As expected, the
“living” supramolecular block copolymer resumed elongation
after the addition of fresh monomer. To be able to draw
conclusions from the reaction kinetics, we repeated this combined
monomer addition and dilution experiment for three more cycles.
We found that after each dilution cycle the rate of polymerization
was reduced by half, which is consistent with the fact that the
initial concentration of active termini M3

Seed was decreased by a
factor of two after each dilution cycle. The initial slopes of the
polymerization kinetics could be fitted according to the equation
y= 0.7(1/2)n−1, where n is the number of cycles (Fig. 4d),
providing a solid confirmation for the absence of fragmentation
during LSP. Importantly, AFM analyses revealed elongation of
M5-M3-M5 block copolymer upon addition of fresh feed of M3

further corroborating the “living” nature of supramolecular
polymerization (Supplementary Figs. 40, 41). Finally, we were
able to directly visualize supramolecular block copolymers by
AFM. Height profiles along the fibers of M5-M3-M5 supramole-
cular copolymers revealed the presence of thinner middle parts
with z-displacement of ca. 3.0–3.4 nm (Fig. 5f, g), which is in
excellent agreement for the observed fiber width observed for the
M3 homopolymer. The thicker termini, on the other hand,
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displayed a z-displacement of ca. 4.1–4.5 nm, which corresponds
to the average fiber width observed for the M5 homopolymer
(Supplementary Figs. 42, 43).

Structure of the fibers. Having demonstrated how LSP allows us
to control the length of well-defined fibers, we set out to under-
stand the structure of these self-assemblies. In AFM images of
M3

Polymer (Fig. 4b, g, h, i) we observed individual fibers with a
height profile of ca. 3.1 nm. The diameter of the fibers is therefore
significantly larger than the calculated length of monomerM3 (ca.
2.3 nm), suggesting that several one-dimensional filaments com-
bine to form the final structure. In the ATR-IR spectrum of
M3

Polymer, we observed characteristic stretching frequencies for
hydrogen-bonded amides at 3302 cm−1 and 1633 cm−1 as well as
an intense C− F stretching band at 1018 cm−1, that is not pre-
sent in non-polymerizable MeM3 (Supplementary Figs. 44, 45).
Analysis of the crystal structure of precursor compound 2
revealed that in the solid state this compound class stacks via
dipole-dipole interactions between all-cis C6H6F5 groups, and
hydrogen bonding between carbamates (Supplementary Fig. 57).
Most importantly, the crystal packing features pairs of neigh-
boring stacks, which are arranged in an antiparallel fashion,
which presumably serves to cancel the large macrodipoles. Taken

together, we conclude from this data that the polymer contains
separate stacks of the self-complementary all-cis C6H6F5 (dipole-
dipole) and amide (H bonding) motifs.

To probe the crystallinity of the organic fibers, we performed
electron diffraction using transmission electron microscopy
(TEM) on a circular region with a diameter of ca. 5 μm. A
diffraction ring is clearly visible (Fig. 6a), unambiguously
demonstrating the long-range order within the organic fibers.
The radial-integrated intensity profile of the diffraction pattern
(Supplementary Fig. 46) reveals a lattice distance of 4.8 Å. By
correlating the fiber morphology (Fig. 6b) with the selected-area
electron diffraction pattern (Fig. 6c), we found that the direction
of the Bragg reflections coincides with the long axis of the organic
fibers; the molecular stacking direction is parallel to the fiber
elongation direction, leading to the significant size anisotropy of
the organic fibers. The too high sensitivity toward electron
irradiation precluded further structural elucidation via high-
resolution TEM imaging (Supplementary Fig. 47).

As experimentally observed, the formation of fibers is a
complex process, which is challenging to investigate in silico at
the molecular level. By running MD simulations of a molecular
system containing 150 initially disassembled M3 monomers, we
could observe that the free energy barrier for M3 folding-
unfolding can be effectively crossed (unfolding), while this event
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Fig. 6 Structure of the fibers. a Electron diffraction pattern of the organic fibers under low-dose conditions (electron dose: 0.45 e−/Å2). The diameter of
the illuminated area was c.a. 5 μm. The diffraction ring is located at 2.1 nm−1, corresponding to a lattice spacing of 4.8 Å. b Bright-field TEM image showing
several bundles of the organic fibers. The circle indicates the position of the selected-area aperture with a diameter of 0.7 μm. c Selected-area electron
diffraction pattern acquired from the circular region in (b) with an electron dose of 0.12 e−/Å2. d Atomistic detail of the monomer arrangement in the helix
structure—blue and cyan arrows connecting the benzene (tail) to the pentafluorocyclohexyl groups (head). Color code: green: F; red: O; blue: N; gray: C. e
Details of the side (left) and the top (right) views of the arrangement of fourM3 in the helix (monomers within the black rectangle in d). H-bonds between
the monomers are shown as dashed black lines. f Top: equilibrated snapshot of a M3 pre-assembled fiber after 1 μs of MD simulation. The system
corresponds to a full helical turn with a pitch of ~12 nm (opaque), forming an infinite helicoidal fiber through the periodic boundaries (periodic images
shown in transparency). Bottom: space-filling model of M3 polymer demonstrating relative arrangement of two monomer stacks (gray and blue).
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may be facilitated when several monomers interact non-
covalently. This indicates that the monomers can efficiently
explore the previously discussed FES (Fig. 3d) during self-
assembly (Supplementary Fig. 48a). Although the formation of
persistent ordered assemblies could not be observed during
classical MD simulations, we could obtain important qualitative
insights into the key monomer-monomer interactions during the
polymerization process. Especially, the inter-monomer H-bond-
ing between amide-carbonyl groups and the stacking of the
pentafluorocyclohexanes emerge as dominant interactions (Sup-
plementary Fig. 48b). In order to study the assembly of
(unfolded) M3 into fibers, we tested two possible self-assembled
configurations, where the M3 monomers are respectively
arranged into stacks in parallel or antiparallel fashion. We then
compared these fibers’ structures from the point of view of their
dynamic stability. A parallel axial M3 stacking is stabilized by the
H-bonds between the monomers and the dipole-dipole interac-
tions between the pentafluorocyclohexane dipoles. However, the
solvophilic properties of such a parallel stack are not well
balanced, because the resulting assembly has an implicit
amphiphilic character, with all solvophilic tails oriented on one
side and all solvophobic heads on the other side. An antiparallel
axial M3 stacking still allows for a favorable hydrogen-bonding
between the monomers while at the same time it guarantees a
more uniform solvophilicity of the fiber. In both cases, single
filaments were found unstable in the solvent during MD
simulations. This suggested that higher scale self-assembly of
these into hierarchical fibers composed of multiple filaments is a
likely event, consistent with experimental evidence obtained by
AFM (vide supra).

We investigated various possible hierarchical arrangements of
M3 stacks. The configuration that demonstrated the highest
stability is that reported in Fig. 6, where two antiparallel M3

stacks (blue and cyan arrows in Fig. 6d) combine to form a helical
superstructure. This proposed structure for the assembly is
stabilized via H-bonds between the amides and stacking of
pentafluorocyclohexane dipoles (Fig. 6e), while at the same time
providing an optimized interaction with the solvent (and
conceptually the cancellation of the two macrodipole moments).
Preformed antiparallel M3 stacks were seen to torque sponta-
neously during MD simulations in the solvent. Deeper modeling
studies demonstrated that the most favorable tilting angle
corresponds to a helical pitch of ~10–15 nm. Such M3 helices
were found stable for over 1 μs of MD simulation (Supplementary
Fig. 49b–d). The equilibrated helix structure has an average
diameter consistent with that measured experimentally (Supple-
mentary Fig. 50: ~3.1 nm). Within the equilibrated helix, the
stacking distance between the antiparallel M3 dimers is ~5 Å,
which is in very good agreement with the ~4.8 Å determined
experimentally (Fig. 6a, c).

Starting from our M3 fiber model, we conducted an analogous
investigation on a M5 homopolymer model (Supplementary
Fig. 51). Also in this case, the M5 fiber model showed high
stability during 1 μs of MD simulation. The equilibrated M5 fiber
model showed a helical pitch of ~10–15 nm, and overall similar
structure to that of M3 fiber. Next, we built M3-M5 copolymer
models that we compared between them, and with theM3 andM5

homopolymers. In particular, we compared three copolymer
models starting from a helical conformation with 12 nm of pitch,
where 48 monomers of M3 and 48 monomers of M5 are arranged
into segregated Blocks (Fig. 7a, top), into segregated intertwining
Columns (Fig. 7a, middle), or are distributed in Random fashion
in the copolymer (Fig. 7a, bottom). All three copolymer models
were pre-equilibrated and simulated via 1 μs of MD. We
calculated the monomer-monomer interaction energies between
the monomers in the copolymer structures, and compared these

with the energy of the same number of M3 and M5 monomers
separated into two M3 and M5 homopolymers. While ΔE > 0
values indicate that from an energetic point of view the
intermixing of monomers is unfavored, such event is favored
entropically in the real system. In particular, monomer mixing in
Blocks configuration shows a very similar energy than two
separated M3 and M5 homopolymers (ΔE=+ 0.34 kcal/mol),
while mixing them in Columns or Random fashion appears to be
more energetically unfavorable (ΔE of + 1.84 and +2.72 kcal/mol
respectively). However, it is worth noting that these ΔE values
(expressed per M3-M5 couple) are quite small. This suggests that
in this case the entropic tendency to M3-M5 mixing is dominant
during self-assembly, and that in the real systems the monomers
likely intermix in the fibers in a more/less blocky/random fashion.
On the contrary, a complete segregation in separated M3 and M5

homopolymers, as well as a homogeneous 1:1M3:M5 intermixing
in the fibers appear to be unfavorable from the entropic point of
view.

From a structural point of view, comparing the behavior of the
fibers during the MD runs we observed that the Blocks model is
more persistent than the Columns and Random models. Shown
in Fig. 7b, the Blocks preserves the starting fiber length (green),
while the random fiber evolves toward a more distorted/bent
conformation (purple). To gain a deeper knowledge on the
internal structural dynamics of these assemblies, we used a high-
dimensional analysis based on the Smooth Overlap of Atomic
Position (SOAP) vectors71, as agnostic fingerprints capable of
capturing structural and dynamic differences/similarities in the
atomic environments in supramolecular polymers72,73 and soft
complex molecular systems74. We use a set of five SOAP centers
in the M3 and M5 monomers in the fiber models (Supplementary
Fig. 52), one in the center of the fluorinated ring, one in the
amide, and three in the terminal alkyl groups of the monomers
(details in Supplementary Information). The SOAP analysis
allowed us to classify the local environments that surround these
sites based on their local structural and dynamic features. We use
a Principal Component Analysis (PCA) to reduce the dimension-
ality of the SOAP vectors (Fig. 7d: PCA projections along the first
two PCA components, PC1 and PC2, for all simulated systems).
In particular, the first three components of the PCA retain up to
86% of the system fluctuations/complexity, and were used for the
analyses.). We used the Probabilistic Analysis of Molecular Motifs
(PAMM)72,75 unsupervised clustering method to identify
the dominant macroclusters in the systems: different colors in
the PCAs of Fig. 7e indicate structurally/dynamically different
domains/motifs within the assembly as identified by the PAMM-
SOAP analysis. By coloring the beads accounted in the SOAP
analysis based on the clusters to which these belong (Fig. 7e), we
can observe that the red and blue colored clusters correspond to
the cyclohexane ring and to the amide respectively (see also
Fig. 7c). The other three clusters (Fig. 7e: gray, cyan and green)
correspond to the tails of the monomers, and to the surface of the
fibers (see Fig. 7c). Performing the SOAP-PAMM analysis on the
second half of the MD trajectories sampled every 100 ps allows us
monitor the transitions of the sites between different clusters
(dynamic change of colors). From the frequency of these
transitions, we can then estimate transition probabilities (Fig. 7f:
which divided by the time-lapse between the analyzed MD
snapshots, provide the transition rates), which are indicative of
the dynamics of the different domains within the fibers. This
analysis demonstrates how in the time explored by the MD
simulations the core of the fibers is substantially static compared
to the fibers’ surface. In fact, the absence of arrows between the
red and blue macroclusters of Fig. 7f indicates that the domains of
the stacked fluorinated cyclohexanes and of the amide groups is
very persistent and quite static. On the other hand, the dynamic
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interconnection between gray, cyan and green clusters (Fig. 7f)
shows that in the same time-lapse there is dynamics on the
surface of these fibers. The rich dynamic nature of these fibers is
reminiscent of the innate dynamic diversity seen for also in other
supramolecular polymers in solution72,76. Also, the growing
interconnection between gray, cyan and green clusters going from
left-to-right in Fig. 7f indicate that the surface of the fibers
becomes more dynamic and disordered going from homopoly-
mers to increased M3- M5 mixing within the copolymers.

In conclusion, we describe a new type of building block for
supramolecular polymerization. We were able to demonstrate
that monomers comprising facially polarized fluorocyclohexanes
engage in intramolecular hydrogen bonding, dipole-dipole and
CH···π interactions, leading to dormant states, which enable
seeded LSP. We were able to make use of this kinetically
controlled process to prepare self-assembled nanofibers of
controlled length as well as supramolecular A-B-A block
copolymers. To the best of our knowledge, this is the first report

Fig. 7 Structure and dynamics of supramolecular block copolymers. a Equilibrated MD snapshots ofM3-M5 copolymers models where theM3 (in orange)
and M5 monomers (violet) are arranged in blocks (top), into segregated M3 and M5 intertwining columns (middle), or randomly mixed in the fiber
(bottom). The arrangements of the fluorinated cyclohexane centers are shown below the MD fibers’ snapshots. The energies of the differentM3-M5 mixing
schemes relative to completely segregatedM3 andM5 homopolymers (ΔE) are reported beside each equilibrated copolymer model. b Length of the Blocks
(in green), Columns (red) and Random (violet) copolymer models as a function of MD simulation time. c Structure of the Blocks fiber colored based on the
clusters (molecular motifs) identified by the SOAP-PAMM analysis: fluorinated cyclohexane and amide groups in blue and red, the alkyl side chains of the
monomers in gray, green and cyan66,67. d PCAs of the SOAP vectors for M3 and M5 homopolymers, and for Blocks, Columns and Random copolymers
(left-to-right). e Unsupervised PAMM clustering of the PCA data (d): different colored clusters indicate different local structural/dynamic motifs in the
fibers. The closer and more interconnected are the colors (e.g., gray, cyan, green surface sites), the more dynamic is the interconnection between them
(e.g., indicative of a dynamic surface). Separated clusters identify static, ordered, and persistent domains in the fiber (e.g., red and blue clusters, indicative
of a relatively static fiber backbone). f Schematic representation of the dynamic transitions between the clusters estimated from the MD: the higher are the
transition probabilities (numbers associated to the transition arrows), the more dynamic is the exchange between the clusters. No arrows indicate no
exchange. The results show that these fibers have an intrinsic dynamic diversity: with a dynamic surface, and a static and ordered backbone.
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on supramolecular block copolymers synthesized from kinetically
trapped monomers rather than off-pathway aggregates. The
monomers reported herein differ from the state-of-the art in LSP
by their simplicity, the lack of extended π-systems or metal
centres, and the facile variation of side chains. For this reason, we
envisage that fluorinated cyclohexanes may play a vital role in
progress on LSP. Future work will focus on the synthesis of more
complex block copolymers and an exploration of ferroelectric
properties77.

Data availability
All data generated and analyzed during this study are included in this article and its
Supplementary Information files. Crystallographic data have been deposited at the
Cambridge Crystallographic Data Centre (CCDC) as CCDC 2010482 and CCDC 2071404
and can be obtained free of charge from the CCDC via https://www.ccdc.cam.ac.uk/.
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