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Introducing Load Aware Neural Networks for
Accurate Predictions of Raman Amplifiers

A. Margareth Rosa Brusin, Uiara C. de Moura, Vittorio Curri, Darko Zibar, and Andrea Carena

Abstract—An ultra-fast machine learning based method
for accurate predictions of gain and amplified spontaneous
emission (ASE) noise profiles of Raman amplifiers is
introduced. It is an alternative to high-complexity and
time-consuming standard approaches, which are based on
the numerical solution of sets of nonlinear differential
equations. Main relevance resides on its possible application
in real-time network controllers for future multi-band
optical line systems where Raman amplification will be
required to cope with capacities beyond the standard C–
band. Here we consider as an example the C+L–band
scenario with different input load conditions: full load and
partial loads. For the case of full load it has been recently
shown a neural network (NN) capable of highly accurate
predictions. Real optical networks are not usually operated
only in full load conditions: the load can dynamically vary
over time and the behavior of the Raman amplifier depends
on it. In this paper we introduce a new NN model and we
show its higher accuracy when the line system is not fully
loaded: we define it as the load aware neural network.
Applying this new approach we can predict both gain and
ASE noise profiles in Raman amplifiers with high accuracy
under any load conditions: we demonstrate almost 100%
of maximum prediction errors to be lower than 0.5 dB.

Index Terms—optical communication, optical amplifiers,
machine learning, neural networks.

I. INTRODUCTION

RECENTLY, machine learning (ML) has gained
large attention in the optical communication com-

munity. In general, it allows to solve highly complex
problems through low complexity approaches, therefore
several applications have been already proposed. Mostly
known for its use at network operation level, such
as in software-defined networking (SDN) [1], ML has
also been successfully applied in different fields of
optical communications. It has been proposed for non-
linear compensation [2], optical performance monitoring
(OPM) and modeling [3], fault detection/prevention [4]
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and control of Erbium Doped Fiber Amplifiers (ED-
FAs) [5].

Due to the fast increase in capacity demand, the need
of moving towards multi-band systems, with occupa-
tion up to O+E+S+C+L [6], led to the resorting of
stimulated Raman scattering (SRS) based amplification
schemes [7]. In particular, by increasing the number
of pumps and properly tuning the pump powers and
wavelengths, distributed Raman amplifiers (RAs) are
able to provide gains over such large bands with low
noise, an advantage with respect to other possible ampli-
fication solutions, as Semi-conductor Optical Amplifiers
(SOAs) [8] and EDFAs [9].

The physical behavior of Raman amplifiers is modeled
with good accuracy by a set of nonlinear ordinary
differential equations (ODEs) [10]. The only drawback
of this approach is the complexity of the model, for
which the determination of the numerical solution is
quite time consuming. Moreover, the time needed for
the convergence to an accurate solution increases when
considering broadband systems requiring a large num-
ber of pumps. In this scenario, the proper setting of
RA pump powers and wavelengths for a specific gain
profile, also known as the RA design, is commonly done
using standard multi-variable optimization process or by
genetic algorithms [11]. Both these approaches rely on
the iterated numerical solution of the ODEs by means of
a solver: every new design requires to start the process
from the beginning.

Lately, new approaches based on machine learning
has been presented to determine the optimal pumps
allocation for a target Raman gain profile [12]–[14].
In [12], a first proof–of–principle of the inverse model
for a pure RA is shown on synthetic data, whilst in [13]
the complete and extensive ML framework is reported
and experimentally demonstrated. In addition, a fine
tuning of pump powers and wavelengths is implemented
exploiting the so called ML-based forward model over
both synthetic and experimental data. In this application
the forward model is used instead of the numerical solver
to instantaneously predict gain profiles for the gradient
descent algorithm that adjusts the pumps. A similar goal



was targeted in [15] where they also developed a forward
model for the RA in order to avoid time consuming
numerical solutions of model equations.

In the first part of this paper we present an extension
of [16], where we introduced the forward model for the
prediction of both gain and noise profiles for Raman am-
plifier covering the C+L–band, using a fully ML-based
approach with hyper-parameters optimization. Recently
another experimental validation both for the inverse and
forward model have been published [17] confirming the
effectiveness of the ML approach and the interest of the
community for a practical tool to design RA. All studies
published up to now [12]–[17] have considered only the
full load input condition: this limits the applicability of
this approach to real networks where traffic patterns can
vary over time and rarely reach the full-load condition.

In the second part of this paper we extend the results
first introduced in [18] for the gain prediction only:
we consider Load-Aware neural networks capable of
accurate gain and ASE noise profiles predictions of
Raman amplifiers under any load conditions. In partic-
ular, the main principle adopted to reduce the data-set
dimensionality is to split the 11 THz overall C+L–band
between 185 THz and 196 THz into Nsb = 22 sub-bands
of 500 GHz, each of them carrying ten 50 GHz slots.
The input load of the RA is considered on a sub-band
basis to reduce the number of conditions to be analyzed.

The major relevance of this work that defines a highly
accurate forward model for the prediction of gain and
noise behavior in a Raman amplifier with variable loads
resides on its possible application in real-time network
controllers. With the introduction of multi-band optical
line systems where Raman amplification is required to
extend the gain window beyond the C–band, having a
fast tool for describing the behavior of a RA will be a
requirement.

In the following, we present the paper structure.
In section II, the machine learning framework for the
forward model, the generation of the data–sets and the
neural network (NN) models are described. In section III,
the application of the proposed Load-Aware approach is
shown and a statistical analysis of its performance is
presented. Finally, conclusions are discussed in section
IV.

II. MACHINE LEARNING FRAMEWORK, DATA-SETS
GENERATION & NEURAL NETWORK MODELS

A. Machine Learning Framework

Our goal is to design a NN able to substitute the
forward model that relates output Y (gain or noise
profiles) to input X (pumps powers and in some cases

input load). Generalizing the problem, we target the
forward mapping function Y = f(X) that in this case is
a complex relationship described by a set of ODE, with
X = [x1, . . . , xM]T and Y = [y1, . . . , yN]

T being the
transpose input and output vectors, respectively. M and
N are their respective length. Given a training data–set
DK×(N+M) = {YT

k ,X
T
k |k = 1, ...,K}, where K is the

data–set size, we train a multi-layer neural network to
learn an approximation of the mapping function f(·).
Particularly, the training determines the set of neural
network weights W = [W(1), ...,W(NHL)], where NHL

is the number of hidden layers of the NN. Then, once
the mapping has been learned, the NN can be used to
predict Y given a new value of X. We consider the NN
introduced in [16] assuming the full-load input condition
as Load-Unaware (LU) and we introduce a new model
that we define as Load-Aware (LA). Depending on the
parameters at the input X of the neural network, we
analyze the performance of two models, as shown in
Fig. 1:

• LU-NN, a Load-Unaware Neural Network taking as
input X the pump powers P = [P1, . . . , PNp], see
Fig. 1(a);

• LA-NN, a Load-Aware Neural Network taking as
input X the pump powers P = [P1, . . . , PNp]
and the load information S = [S1, . . . , SNsb], see
Fig. 1(b).

Np is the number of pumps used in the RA: in our study
it is set to 5. Nsb is the number of sub-bands in which
we split the input: in our study it is set to 22.

The output Y can be associated either to the gain
profile or the amplified spontaneous emission (ASE)
noise profile of the Raman amplifier under analysis.

Based on the results presented in [16], showing a
comparison between two training methods, the Back-
propagation (BP) [19] and the Random Projection (RP),
also known as extreme learning machine (ELM) [20],
in this work we consider the RP only. In fact, unlike
the most known BP method, in RP the learning of
the input-output mapping does not rely on gradient
descent algorithms. Indeed, in the RP method, after a
random initialization, the NN weigths are not iteratively
optimized, but they are fixed and the learning relies
on matrix inversion and multiplication only at the last
layer of the NN. This results in a reduced computational
complexity required to train the network, much lower
than in the BP case, making the RP a method with an
ultra-fast training phase. Moreover, its high prediction
accuracy is guaranteed by a proper initialization of two
key parameters, the standard deviation of the weights
and the regularization parameter [20].
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Fig. 1. Neural network models considered in the paper: (a) LU-NN and (b) LA-NN.

To improve the accuracy of predictions obtained with
neural networks, an extensive hyper-parameters opti-
mization has been performed over the number of hidden
layers, the number of hidden nodes and the activation
function. To reduce the impact of the randomly initial-
ized weights, NNN parallel and independent NNs are
trained. Thus, the predictions are the result of a model
averaging, i.e. they are the average of the outputs of all
the NNN networks.

To determine the goodness of the predictions, each
predicted profile Ypred is compared to its correspond-
ing target profile Ytarg determined by the numerical
solver. The selected metrics are the root-mean-square-
error (RMSE) and the maximum error (ErrorMAX ),
defined as

RMSE =

√√√√ 1

Nsb

Nsb∑
n=1

(Y pred
n − Y targ

n )2 (1)

ErrorMAX = max
n∈{1,...,Nsb}

|Y pred
n − Y targ

n | (2)

respectively.

B. Data-sets generation

In this section we describe the generation of the
synthetic data-sets used to train and validate the NNs
under analysis. A numerical solver, available within
the open source library GNPy [21], solving the ODEs
describing the Raman effect [10], is used to generate the
data–sets.

As shown in Fig. 2, we consider a distributed Ra-
man amplifier with Np = 5 counter-propagating pumps
over a span of single mode fiber (SMF) of length
Lspan = 100 km. Here we analyze a single span,
but it is possible to consider more cascaded spans
and also a combination of RA with Erbium Doped
Fiber Amplifiers (EDFAs) to form a hybrid amplifica-
tion scheme (hybrid EDFA+RA). Fiber parameters are

the following: the attenuation coefficients for the input
signal and for the pumps are αs = 0.21 dB/km and
αp = 0.25 dB/km, respectively. Pumps power values are
drawn from a uniform distribution Pi ∼ U [0, 250] mW
with i ∈ {1, . . . , 5}. On the opposite, pump frequencies
are fixed, as usual in standard commercial modules. We
set them at the following values: f1 = 210.37 THz,
f2 = 207.14 THz, f3 = 204.01 THz, f4 = 200.97 THz
and f5 = 198.03 THz.
These values have been selected to enable gains over
the 11 THz C+L–band, defined between 185 THz and
196 THz. At the input of the optical system we con-
sider a Wavelength Division Multiplexed (WDM) comb
composed of up to Nch = 220 Nyquist-shaped channels,
sitting in a 50 GHz grid.

To generate the data–set for the partial input load
case, we face a problem of complexity because of the
huge dimension of the space to be analyzed. Considering
input channels all at the same power level (1 mW) but
assuming they can be ON or OFF, we have a total of
2220 conditions. Moreover such cases must be combined
together with random pumps. Approaching the problem
in this form gives poor results because only a limited
number of cases can be generated for the data–set, due to
the complexity of the numerical evaluation of the model
describing the RA. To reduce the dimension of the input
load space we approach the data–set generation on a
sub-band basis instead of on a channel basis. Thus, 10
adjacent slots identify a 500 GHz sub-band, for a total
of Nsb = 22 sub-bands over the whole C+L–band. We
then associate 10 slots to the C–band and 12 slots to the
L–band.

Consider that our approach based on channels grouped
in sub-bands can also be interpreted as a direct mapping
of the concept of Super-Channels, that has been proposed
and extensively studied in literature [22], [23]. In the
following we do not refer specifically to a Super-Channel
based systems because our approach can have a more
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Fig. 2. Schematic representation of the optical system considered in our analysis.

TABLE I
OPTIMAL HYPER-PARAMETERS VALUES FOR THE LU-NN

TRAINED USING THE FULL-LOAD DATA-SET

Profile type Gain ASE noise
Activation function (actFun) tanh tanh

# hidden nodes (NHN) 1980 1900

TABLE II
OPTIMAL HYPER-PARAMETERS VALUES FOR THE LU-NN

TRAINED USING THE PARTIAL-LOAD DATA-SET

Profile type Gain ASE noise
Activation function (actFun) logsig logsig

# hidden nodes (NHN) 640 1920

general application.
Each sub-band can assume two states with same prob-

ability: ON, which means that the sub-band is carrying
10 mW power (1 mW per slot), and OFF, which means
that the sub-band is not carrying any power. Depending
on the load, three classes of data–set can be identified:
i) class C, for which only sub-bands in C–band are
considered, ii) class L, for which only sub-bands in L–
band are considered, and iii) class C+L, where the entire
C+L–band can be used. The left-hand side of Fig. 2
offers a pictorial representation of the classes showing a
single partial load condition for every class.

A further classification within each class can be made
based on the number of sub-bands which is ON. For each
class, a fixed number of sub-bands turned ON is drawn
with a randomly selected frequency position, forming a
sub-class. In particular, to further reduce the number of
cases, we consider only even numbers of sub-bands ON,
For class C, the sub-classes correspond to a number of
sub-bands which is ON from 2 to 10, for class L from
2 to 12, and for class C+L from 2 to 22. The last case,
i.e. class C+L with 22 sub-bands ON, is the full load
condition considered in [12]–[14], [16].

TABLE III
OPTIMAL HYPER-PARAMETERS VALUES FOR THE LA-NN

Profile type Gain ASE noise
Activation function (actFun) tanh tanh

# hidden nodes (NHN) 1980 1980

To summarize, depending on the load type (full or
partial), we generate two families of data–sets:
• Full-load, consisting in a 5000-cases data–set gene-

rated with a full load input (class C+L and all 22
sub-bands turned ON), random pump powers Pi ∼
U [0, 250] mW, with i ∈ {1, . . . , 5};

• Partial-load, for each class and sub-class 500-cases
data–sets are generated considering random pump
powers Pi ∼ U [0, 250] mW, with i ∈ {1, . . . , 5},
and fixed pump frequencies. Then, they are merged
together to form an 11000-cases partial load data–
set.

For each of the two data-sets, a completely indepen-
dent and uncorrelated validation data-set is also genera-
ted in the same way, with an identical number of cases.

C. LU-NN and LA-NN models

In this sub-section, we study the application of Raman
amplifiers in practical conditions: we do not consider
only the full load condition but we assume that the load
can be partial. Our goal is to design a NN capable of
providing accurate gain and noise profile predictions also
when the input load of the RA changes.

First, the LU-NN is trained using a full-load data–
set. Then, to see if it is able to handle different input
conditions, even if it is completely load-agnostic, it
is re-trained with the partial-load data-set. Finally, we
consider the newly proposed LA-NN that having as input
the load conditions can better adapt to them.
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In all cases we consider single hidden layer feedfor-
ward neural networks (SLFNs) [16], i.e. NHL = 1, and
we perform hyper-parameters optimization, testing three
different activation functions: sine, hyperbolic tangent
(tanh) and logistic sigmoid (logsig). The search of the
optimum number of hidden nodes is done sweeping such
value from 20 to 2000 in step of 20. We also optimize the
values of the standard deviation for the random weights
initialization and the regularization parameter. Then,
to reduce the dependence on the randomly generated
weights, we perform a model averaging over NNN= 20
independent NNs. The optimal model is selected as the
one providing the smallest prediction errors.

For the LU-NN trained with full-load data-set, opti-
mized hyper-parameters values are reported in Table I
for both RA gain and ASE noise profiles predictions.
The activation function providing the smallest prediction
errors is the hyperbolic tangent for both Raman gain
and ASE noise predictions. In particular, the optimal NN
requires 1980 and 1900 HNs for the gain and the ASE
noise predictions, respectively.

Instead, Table II shows the optimized hyper-
parameters obtained for the LU-NN trained with a
partial-load data-set for both Raman gain and ASE
noise predictions. The optimal activation function is the
logistic sigmoid for both cases, with optimal number of
HNs being 640 and 1920 for gain and noise predictions,
respectively.

Finally, Table III contains the optimized hyper-
parameters values for both Raman gain and ASE noise
predictions in case of LA-NN. In this case, the optimized
values are the same for the gain and noise predictions:
both cases need 1980 HNs and the hyperbolic tangent
as activation function.

III. SIMULATION RESULTS AND VALIDATIONS

In this section, the validation results are shown:
prediction performances in terms of RMSE and
ErrorMAX are evaluated considering the optimal NN
models resulting from Section II.C. First, the LU-NN is
discussed and its limited performance with a partial input
load is demonstrated. Then, the novel LA-NN approach
is analyzed and its resilience in case of partial load
conditions is shown. When performing the validation,
the data–sets are pruned such that all gain profiles with
points outside the interval [4;21] dB are discarded. Gains
below the 4 dB threshold are too low and not useful in
practical cases, while gains above 21 dB are not needed
because they over-compensate the loss of the 100 km
fiber span considered in this analysis.

The comprehensive statistical analysis of the predic-
tion accuracy for the three evaluated models is reported

in Figs. 3 and 4 for gain and ASE noise profiles
prediction of the Raman amplifier, respectively. Fig. 3(a)
shows the validation results of the LU-NN carried out
considering only full-load conditions: full-load data–set
is used both in training and in validation. With an aver-
age RMSE of 0.0039 dB and an average ErrorMAX

of 0.015 dB, the LU-NN trained in full-load condition
is able to provide highly accurate predictions, with very
low errors. For the ASE noise prediction the accuracy of
the LU-NN trained with the full-load data-set is similar,
as the average errors are 0.0052 dB and 0.0027 dB for
ErrorMAX and RMSE, respectively (Fig. 4(a)).

Afterwards, we consider the more realistic condition
given of partial-load and we use such data-set to validate
the LU-NN trained using the full-load data-set. Since this
neural network is Load Unaware, we can not feed the
load information as input, but only the pumps powers.
Validation results are reported in Fig. 3(b) and show a
dramatic worsening of the accuracy of predictions: mean
values of ErrorMAX and RMSE increase to 0.47 dB
and 0.41 dB, respectively, with ErrorMAX pdf reaching
up to more than 2 dB. This means that the LU-NN
trained with the full-load data-set is not able to provide
accurate predictions of gain profiles when applied in
partial load conditions. In Fig. 4(b) it can be observed a
similar result also for ASE noise profile predictions, even
if the accuracy is slightly better than for the gain case.
In fact, the mean value of the ErrorMAX is 0.26 dB
and the mean value of the RMSE is 0.17 dB, showing
that the noise profile is less dependent on the input load
condition compared to gain profiles.

Before analyzing the prediction performance of the
LA-NN, we test a second version of the LU-NN, trainin
it with a partial-load data-set, to see if it can adapt to
variable load conditions even if it is intrinsically load-
agnostic. The LU-NN can not receive the load condition
as input, but since a change in the input load determines
a change in the gain profile, the NN learns an average
behavior of different loads: this behaviour could improve
predictions. The validation results are shown in Fig. 3(c)
and we can observe a slight improvement in performance
with the average RMSE and the average ErrorMAX

reducing to 0.19 dB and 0.22 dB, respectively. And also
the pdf of ErrorMAX now extends only to about 1.5 dB.

Similarly, in Fig. 4(c) we have the validation results
for the ASE noise predictions. Also in this case, as
for the gain case, there is a reduction in the prediction
errors with average RMSE and average ErrorMAX

decreasing to 0.095 dB and 0.15 dB, respectively. Com-
pared to the results obtained for gain predictions, the
performance for the noise are better, still confirming
a reduced dependence of the noise profile on different
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(a) (b)

(c) (d)

Fig. 3. Probability density functions of Raman gain prediction RMSE and ErrorMAX for: (a) LU-NN trained and validated over full-load
cases only, (b) LU-NN trained over full-load cases and validated over partial-load cases, (c) LU-NN trained and validated over partial-load cases
and (d) LA-NN trained and validated over partial-load cases.

(a) (b)

(c) (d)

Fig. 4. Probability density functions of ASE noise prediction RMSE and ErrorMAX for: (a) LU-NN trained and validated over full-load
cases only, (b) LU-NN trained over full-load cases and validated over partial-load cases, (c) LU-NN trained and validated over partial-load cases
and (d) LA-NN trained and validated over partial-load cases.

input loads.
From results discussed so far, it is clear that to fully

recover the accuracy level in case of partial-load, in
particular for the Raman gain prediction, a new NN
model taking into account the information about the

input load condition is needed: we call this new model
the Load Aware NN (LA-NN). After having trained the
LA-NN using the partial-load data–set, we performed a
comprehensive validation using the same type of data.
In Fig. 3(d), we report the pdfs of both ErrorMAX and
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Fig. 5. Mean value of the ErrorMAX in dB with respect to the number of sub-bands turned ON for gain (on the left) and ASE noise (on
the right) predictions. Each row corresponds to a load class: class C, class L and class C+L (from top to bottom). The comparison between the
LU-NN trained with the full-load data-set, the LU-NN trained with the partial-load data-set and the LA-NN is shown.

RMSE for the LA-NN in case of Raman gain prediction
using the best NN model. The average ErrorMAX is
0.095 dB, and most of the values are below 0.5 dB.

Similar results are obtained validating the best model
for the prediction of ASE noise profiles: see Fig. 4(d).
The average values of ErrorMAX and RMSE are
0.18 dB and 0.1 dB, respectively. Moreover, we can also
observe that the performance of the LU-NN trained with
the partial-load data-set and the LA-NN are similar. This
means that the load information is not fundamental for
the ASE noise prediction when operating in partial load
condition.

In general, we can observe that when using the LA-
NN it was not possible to achieve the same performance
as the LU-NN trained and validated with full load only

(Figs. 3(a) and 3(d) for the gain and Figs. 4(a) and
4(d) for the noise) because when the load variations are
considered, the dimension of the input space increases,
thus the mapping is more complex.

At this point, we carried out a comprehensive statis-
tical investigation on how the errors are distributed over
each class (C, L and C+L) and sub-class (from 2 to
22 sub-bands ON) when we consider the partial load
condition. Therefore, for all the three NN models studied
(LU-NN trained with full-load data-set, LU-NN trained
with partial-load data-set and LA-NN), the validation is
carried out considering the partial-load data–set, properly
pruned excluding all cases that at least for one sub-band
present gains below 4 and above 21 dB, as already done
in a previous section. Fig. 5 shows the mean value of
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Fig. 6. Percentage of cases with ErrorMAX under 0.5 dB with respect to the number of sub-bands turned ON for gain prediction (on the
left) and ASE noise prediction (on the right). Each row corresponds to a load class: class C, class L and class C+L (from top to bottom). The
comparison between the LU-NN trained with the full-load data-set, the LU-NN trained with the partial-load data-set and the LA-NN is shown.

the ErrorMAX with respect to the number of sub-bands
turned ON for the three load classes (class C, L and C+L,
from top to bottom), for both gain (left column) and ASE
noise profiles prediction (right column).

From Fig. 5(a) we can see that considering only sub-
bands in C-band the average ErrorMAX is always larger
than 0.5 dB when the LU-NN trained with the full-
load data-set is used: it shows poor performance when
working with input conditions different from full-load.
Increasing the number of sub-bands turned ON from 2
to 10 sub-bands, the error reduces of just about 0.1 dB,
because of the increased load. Instead, in case of LU-NN
trained with partial-load data-set, as expected, the results
improve with the mean of the ErrorMAX assuming
values between 0.25 dB (when 2 sub-bands are ON)

and 0.14 dB (when 10 sub-bands are ON). Even better
results are obtained with the LA-NN, for which the
average ErrorMAX is always below 0.1 dB confirming
the higher accuracy of this NN model.

For the ASE noise prediction in same condition
(Fig. 5(b)), the accuracy of the LU-NN trained with full-
load data-set is slightly better, as the average ErrorMAX

is always lower than 0.5 dB, but it does not improve
increasing the number of sub-bands ON. The LU-NN
trained with the partial-load data-set and the LA-NN
have similar performance, with the first one getting
slightly worse with an increasing number of sub-bands
turned ON.

Analyzing the gain prediction for the other two classes
(Figs. 5(c) and 5(e)), we can see that in general, when
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the LA-NN is used, the average ErrorMAX is always
below 0.2 dB, clear sign of the capability of the LA-NN
to adapt to partial loads. On the other hand, the LU-NN
trained with full-load data-set shows poorer performance
and it is characterized by the trend already discussed
for class C: a reduction of errors when increasing the
number of sub-bands ON. In fact, as we expect, the
larger is the number of sub-bands turned ON, the condi-
tion is closer to the full-load case, and consequently we
have a lower mean value of the ErrorMAX . For full-
load the LU-NN trained with full-load data-set is able
to overcome the performance of the LA-NN showing
an almost negligible error. Instead, the LU-NN trained
with partial-load data-set shows a particular trend. In
general, for low loads (2 and 4 sub-bands ON in case
of Class L and 2, 4 and 6 in case of Class C+L)
the average ErrorMAX assumes values pretty close
to those provided by the LA-NN. Then, it increases
dramatically when increasing the number of sub-bands
ON. In particular for Class C+L, the average ErrorMAX

reaches values of more than 0.5 dB. This means that
the LU-NN trained with partial-load data-set is able to
learn only the average effect of different loads on Raman
gains and not all the variability. Only the LA-NN can
effectively learn the actual dependence on input load and
adapt to it.

Similar results are shown in (Figs. 5(d) and 5(f))
for ASE noise profiles predictions: now the average
ErrorMAX is always under 0.4 dB for LU-NN trained
with full-load data-set as well, but LA-NN is able to
maintain such error almost below 0.2 dB. The LU-NN
trained with partial-load data-set has similar performance
to the LA-NN, with a slightly increase of the average
ErrorMAX for increasing number of sub-bands turned
ON. For both class L and C+L (Fig. 5(d) and Fig. 5(f)
respectively), as already observed in case of gain profiles
prediction, the average ErrorMAX decreases when the
number of sub-bands ON increase when the LU-NN
trained with full-load data-set is considered. In fact for
the class L, from almost 0.4 dB, when only 2 sub-bands
are ON, the mean ErrorMAX reduces to a about 0.1 dB.
Instead, when using the LA-NN model, this value is
almost constant and always below 0.2 dB. When more
than half the total number of sub-bands are turned ON
(from 12 to 22), the LU-NN trained with full-load data-
set shows better accuracy than the LA-NN. This might
be explained by the use of an almost error-free LU-NN
model obtained from the hyper-parameters optimization
and the simpler mapping. In fact, this model is able to
provide such small errors when predicting noise profiles
generated in a full load condition. And for ASE noise
profiles such errors do not significantly increase even if

we reduce the number of sub-bands ON. In addition,
we can observe that there is not such a big difference
in the values assumed by the average ErrorMAX when
we consider the three different NN models. As already
said before, the ASE noise profiles does not significantly
change with different input loads.

Besides looking only at the average ErrorMAX , it
is important to consider also how errors are distributed
and in particular if there are substantial portions of the
population in the tails of the pdfs. For this purpose,
in Fig. 6 we evaluate the percentage of the cases of
ErrorMAX below 0.5 dB, a reasonable threshold to
guarantee accurate predictions. This analysis is per-
formed on a class and sub-class basis, as previously
done.

As expected, for Raman gain predictions, shown in
Figs. 6(a), 6(c) and 6(e), the percentage of ErrorMAX

cases below 0.5 dB increases with an increasing input
load for the LU-NN trained with full-load data-set. For
class C, it starts at 39% and it reaches about 52% when
all 10 C-band sub-bands are ON, showing once again the
limited performance of the LU-NN trained with full-load
data-set.

Instead for classes L and C+L, it starts from about
30% of the cases increasing up to 97% of the cases
for L-class and even reaching 100% for C+L class. In
particular, the LU-NN trained with full-load data-set is
able to provide predictions with all ErrorMAX cases
below 0.5 dB even when the input WDM comb is not
fully loaded, but only in case of 18 and 20 sub-bands
ON. In general, the LU-NN trained with partial-load
data-set instead is able to always provide more than 90%
of cases with ErrorMAX lower than 0.5 dB, except for
class C+L when the number of sub-bands ON is 16 or
more. In this case, the percentage dramatically decreases
down to 53% of cases when the full-load condition
is met. On the other hand, the LA-NN model always
guarantees high accuracy in predictions: in all three
classes and for any load conditions it reaches almost
100% of the cases having an ErrorMAX lower than
0.5 dB, with very few cases with ErrorMAX larger
than 0.5 dB. This means that most of the population
experiences very small errors.

Considering the results related to the ASE noise
prediction (Figs. 6(b), 6(d) and 6(f)), we observe that,
the percentage of cases of ErrorMAX under 0.5 dB is
always above 60% also for the LU-NN trained with full-
load data-set. Although this is a higher value compared
to the one obtained in case of gain predictions, there is a
non negligible section of the cases experiencing large (≥
0.5 dB) errors. Similarly to the case of gain predictions,
using the LA-NN model we have a higher accuracy that
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Fig. 7. Distribution of the Raman gain prediction errors of the 11000-cases partial-load data–set with respect to the sub-bands position when
using (a) the LU-NN trained with full-load data-set, (b) the LU-NN trained with partial-load data-set and (c) the LA-NN. Sub-bands are ordered
in wavelengths. Boxes and whiskers contain 50% and 90% of the cases, respectively. The remainder of the cases are plotted as individual
markers.

allows to reach almost the 100% of cases having an
ErrorMAX lower than 0.5 dB. Also the LU-NN trained
with partial-load data-set is able to provide pretty good
performance over the three classes, as the percentage of
cases with ErrorMAX < 0.5 dB is always grater than
89%.

After the analysis of the trend of the ErrorMAX with
respect to the load, i.e. number of sub-bands turned
ON, we study the spectral distribution of prediction
errors. Defining such errors as the difference between
the predicted profile and the target one, we perform a
comprehensive statistical analysis considering all 11000-
cases of the partial load data–set, i.e. the data–set ob-
tained by merging the 500-cases data–set of each class
and sub-class (transmission band and number of sub-
bands turned ON for each class).

In Figs. 7(a), 7(b) and 7(c), we report the spectral
distribution for gain prediction errors when the LU-NN
trained with full-load data-set, the LU-NN trained with
partial-load and the LA-NN are used, respectively. The
figures show the prediction error distribution for the 22
sub-bands: sub-bands are identified by an index from
1 to 22, ordered in the wavelength domain from C to
L band. This means that the sub-band with index 1
is the one at lowest wavelength (center at 1532.6 nm)

and the sub-band with index 22 is the one at highest
wavelength (center at 1619.4 nm). For each sub-band the
box captures 50% of the cases in the data–set, between
25% and 75% of the cdf of errors. Whiskers capture 90%
of the cases, going from the 5% to the 95% of the cdf.
The marker inside the box indicates the median value.
Outside black dots markers correspond to outliers, i.e.
predictions in the tails of the pdf of errors exceeding the
90% of cases captured by whiskers.

Analyzing results for the LU-NN trained with full-
load data-set (Fig. 7(a)), we can observe that most of the
errors are negative. In fact, such NN has been trained in a
full load condition, with a fixed input power level. In case
of partial loads, the input power level is usually lower
than the state considered in training, because not all
the sub-bands are ON. A lower input only maintains or
increases the gain. Consequently, most of the predicted
gains are lower than the target gains, and the errors are
negative. Moreover, we also observe that the tails of
the errors are larger in the upper region of the L-band,
at longer wavelengths. Median values range between -
0.26 dB and -0.17 dB without a clear dependence on
wavelength. Box sizes have an extension ranging from
0.27 dB in sub-band 22 to 0.40 dB in sub-band 10, and
whiskers range is between 0.73 dB in sub-band 2 and
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Fig. 8. Distribution of the ASE noise profile prediction errors of the 11000-cases partial-load data–set with respect to the sub-bands position
when using (a) the LU-NN trained with full-load data-set, (b) the LU-NN trained with partial-load data-set and (c) the LA-NN. Sub-bands
are ordered in wavelengths. Boxes and whiskers contain 50% and 90% of the cases, respectively. The remainder of the cases are plotted as
individual markers.

0.92 dB in sub-band 10. Outliers extend almost only in
the bottom part, reaching a maximum error of -2.25 dB
in sub-band 21.

Considering the LU-NN trained with partial-load data-
set (Fig. 7(b)), the prediction errors are no longer mainly
negative, as the median assumes values between 0.05 dB
and 0.18 dB. Similarly to the LU-NN trained with full-
load condition, the box sizes range from 0.25 dB in sub-
band 22 to 0.37 dB in sub-band 10, the whiskers range
from 0.66 dB in sub-band 1 to 0.87 dB in sub-band 19.
The outliers do not exceed -0.92 dB and 1.50 dB, in
sub-bands 2 and 20 respectively.

Moving to Fig. 7(c) where we report the gain pre-
diction errors for the LA-NN, at a glance we have a
further proof of the higher accuracy of this new NN
when dealing with partial loads compared to both the
LU-NNs analyzed. In this case, the median values are
all almost equal to 0 dB, and most significantly, the
size of the boxes and whiskers is much reduced with
respect to the LU-NN case, being the maximum 0.14 dB
and 0.39 dB, respectively. In this case, errors for most
of the cases does not show a spectral dependence and
distributions are not biased. Only for the outliers we
observe a slight spectral dependence: their top range
has a broader extension in the upper portion of the

L-band. For the LA-NN almost all outliers fall in the
range ±1 dB, again indicating an improved adaption to
partial load of this NN compared to the LU-NN where
maximum errors extend beyond -2 dB.

In general, for all the three NN models, we can see
that prediction errors tend to be larger in the L–band,
especially for long wavelengths (high sub-band indices).
This might be related to higher order interactions be-
tween signal and pumps due to SRS.

Similar considerations can be drawn observing plots
for the case of the ASE noise prediction errors reported
in Figs. 8(a), 8(b) and 8(c), for LU-NN trained with
full-load data-set, LU-NN trained with partial-load data-
set and LA-NN models, respectively. Nevertheless, as
already observed in previous analysis, unlike the pre-
diction of the Raman gain profiles, the errors in the
prediction of the ASE noise profiles are usually smaller,
specially for the C-band, even when using the LU-NN
trained with full-load data-set. This is again the sign of
a reduced dependence of the noise profiles with respect
to the input load conditions. In fact, as it can be seen in
Fig. 8(a) for the LU-NN trained with full-load data-set,
the median values vary from -0.15 dB and -0.01 dB, and
the maximum box size and whisker range are reduced to
0.28 dB and 0.82 dB. Similar results are observed for the
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LU-NN trained with partial-load data-set, for which the
errors extend in the positive region as well. In this case
the median value is almost equal to 0 dB, the maximum
box size and whisker range are 0.19 dB and 0.60 dB
and the outliers assume values from -1 dB to 1.66 dB in
sub-bands 17 and 19, respectively. Also for ASE noise
predictions the errors are higher in the upper part of the
L–band and show a bias toward negative values, for the
same reason discussed above for gains.

On the contrary, in Fig. 8(c) when the LA-NN is used,
the trend is very similar to the one observed for the case
of gain prediction, with errors more uniformly distributed
over each sub-band. Also in this case, just the outliers
in the upper portion of the L–band are showing slightly
larger errors with respect to those in the other spectral
regions, but they again fall almost all in the range ±1 dB.

As already discussed in previous section, for ASE
noise prediction, the performance of the LU-NN trained
with partial-load data-set and of the LA-NN are quite
similar.

IV. CONCLUSION

We have introduced a machine learning based frame-
work for ultra-fast and accurate predictions of gain and
ASE noise profiles of a C+L–band Raman amplifier with
any load conditions. The proposed technique is faster
compared to standard approaches based on the numerical
solution of ODEs describing the physical effect because
NNs have a lower complexity.

Starting with the analysis of the Load Unaware model
(LU-NN) trained with full-load data-set we have val-
idated it with a data-set of the same type, obtaining
both average ErrorMAX and standard deviation below
0.03 dB. Similar results have been demonstrated for the
prediction of the ASE noise profiles.

At the same time, we have shown how LU-NNs are
not able to deliver high accuracy when we assume a par-
tial load data–set in validation: the average ErrorMAX

is increased to 0.47 dB and 0.26 dB, for gain and
ASE noise profiles, respectively. For this reason we
have trained this LU-NN with the partial-load data-set,
but also in this case it was not able to predict Raman
gains with high accuracy when the input load condition
changes, as the average ErrorMAX is 0.22 dB. Instead,
better results have been found for the ASE noise pre-
dictions, showing a smaller dependency with respect to
different loads.

Finally, we have introduced an advanced model, the
Load Aware NN (LA-NN), a neural network model that
takes into account the arbitrariness of the input load as
well, to be able to deliver highly accurate predictions
also under partial load. Specifically, for the prediction

of Raman amplification gains, we have obtained an
average ErrorMAX always lower than 0.2 dB and in
almost 100% of cases the ErrorMAX is under 0.5 dB.
Comparable trends have been found also for ASE noise
predictions, even if in this case the LU-NN trained with
full-load data-set and partial-load data-set suffer less
from partial load conditions showing reduced errors.

Analyzing the gain prediction error distributions as a
function of sub-bands location, we have found that, when
using the LA-NN, the errors are small independently on
the spectral positioning. Only the distribution tails show
slightly larger errors in the L–band. Similar trends are
observed for the prediction of ASE noise profiles, for
which we have found very low errors in the C–band
using the LU-NN as well (trained both with full-load
and partial-load data-sets).

Due to the reduced complexity of the RP approach,
only a few seconds are needed for training a single NN
and less than one second is required for testing.

This tool will be required in the control-plane of
future multi-band networks to allow real-time analysis of
Raman amplifiers. Our approach is a viable solution for
practical implementation in network controllers. Other
applications can be in the design and optimization of
multi-band Raman amplifiers, as support for fine tuning
design achieved through machine learning inverse design
or as a fast solver for standard optimization methods.

ACKNOWLEDGMENT

This project has received funding from the Euro-
pean Research Council through the ERC-CoG FRECOM
project (grant agreement no. 771878) and by the Eu-
ropean Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant
agreement No 754462.

REFERENCES

[1] D. Rafique and L. Velasco, “Machine learning for network
automation: overview, architecture, and applications [Invited
Tutorial],” IEEE/OSA Journal of Optical Communications and
Networking, vol. 10, no. 10, pp. D126–D143, October 2018.

[2] S. Zhang, F. Yaman, K. Nakamura, T. Inoue, V. Kamalov, L. Jo-
vanovski, V. Vusirikala, E. Mateo, Y. Inada, and T. Wang, “Field
and lab experimental demonstration of nonlinear impairment
compensation using neural networks,” Nature Communications,
vol. 10, no. 1, 2019.

[3] X. Liu, H. Lun, M. Fu, Y. Fan, L. Yi, W. Hu, and Q. Zhuge,
“AI-Based Modeling and Monitoring Techniques for Future
Intelligent Elastic Optical Networks,” Applied Sciences, vol. 10,
no. 1, 2020.

[4] F. N. Khan, Q. Fan, C. Lu, and A. P. T. Lau, “An Optical
Communication’s Perspective on Machine Learning and Its Ap-
plications,” Journal of Lightwave Technology, vol. 37, no. 2, pp.
493–516, January 2019.

12



[5] A. D’Amico, S. Straullu, A. Nespola, I. Khan, E. London, E. Vir-
gillito, S. Piciaccia, A. Tanzi, G. Galimberti, and V. Curri, “Using
machine learning in an open optical line system controller,”
Journal of Optical Communications and Networking, vol. 12,
no. 6, pp. C1–C11, June 2020.

[6] A. Napoli, N. Costa, J. K. Fischer, J. Pedro, S. Abrate, N. Cal-
abretta, W. Forysiak, E. Pincemin, J. P.-P. Gimenez, C. Ma-
trakidis, G. Roelkens, and V. Curri, “Towards multiband optical
systems,” in Advanced Photonics, 2018, p. NeTu3E.1.

[7] M. N. Islam, Raman amplifiers for telecommunications 1:
physical principles. Springer-Verlag, 2004.

[8] J. Renaudier, A. Arnould, A. Ghazisaeidi, D. L. Gac,
P. Brindel, E. Awwad, M. Makhsiyan, K. Mekhazni, F. Blache,
A. Boutin, L. Letteron, Y. Frignac, N. Fontaine, D. Neilson, and
M. Achouche, “Recent Advances in 100+nm Ultra-Wideband
Fiber-Optic Transmission Systems Using Semiconductor Optical
Amplifiers,” Journal of Lightwave Technology, vol. 38, no. 5, pp.
1071–1079, 2020.

[9] E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain
erbium-doped traveling-wave fiber amplifier,” Optics Letters,
vol. 12, no. 11, pp. 888–890, 1987.

[10] J. Bromage, “Raman Amplification for Fiber Communications
Systems,” Journal of Lightwave Technology, vol. 22, no. 1, pp.
79–93, January 2004.

[11] B. Neto, A. L. J. Teixeira, N. Wada, and P. S. Andre, “Efficient
use of hybrid Genetic Algorithms in the gain optimization of
distributed Raman amplifiers.” Optics express, vol. 15, no. 26,
pp. 17 520–17 528, 2007.

[12] D. Zibar, A. Ferrari, V. Curri, and A. Carena, “Machine learning-
based Raman amplifier design,” in Optical Fiber Communication
Conference (OFC) 2019. Optical Society of America, 2019, p.
M1J.1.

[13] D. Zibar, A. M. Rosa Brusin, U. C. de Moura, F. Da Ros, V. Curri,
and A. Carena, “Inverse System Design Using Machine Learning:
The Raman Amplifier Case,” Journal of Lightwave Technology,
vol. 38, no. 4, pp. 736–753, 2020.

[14] M. Ionescu, “Machine learning for ultrawide bandwidth ampli-
fier configuration,” in International Conference on Transparent
Optical Networks, ICTON, 2019, p. We.B7.3.

[15] J. Chen and H. Jiang, “Optimal Design of Gain-Flattened Raman
Fiber Amplifiers Using a Hybrid Approach Combining Random-
ized Neural Networks and Differential Evolution Algorithm,”
IEEE Photonics Journal, vol. 10, no. 2, pp. 1–15, 2018.

[16] A. M. Rosa Brusin, V. Curri, D. Zibar, and A. Carena, “An ultra-
fast method for gain and noise prediction of Raman amplifiers,” in
European Conference on Optical Communication, ECOC, 2019,
p. Th.1.C.3.

[17] X. Ye, A. Arnould, A. Ghazisaeidi, D. L. Gac, and J. R. and, “Ex-
perimental prediction and design of ultra-wideband Raman am-
plifiers using neural networks,” in Optical Fiber Communication
Conference (OFC) 2020. Optical Society of America, 2020, p.
W1K.3.

[18] A. M. Rosa Brusin, U. C. de Moura, A. D’Amico, V. Curri,
D. Zibar, and A. Carena, “Load aware Raman gain profile
prediction in dynamic multi-band optical networks,” in Optical
Fiber Communication Conference (OFC) 2020. Optical Society
of America, 2020, p. T4B.3.

[19] C. M. Bishop, Pattern recognition and machine learning.
Springer, 2006.

[20] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: Theory and applications,” Neurocomputing, vol. 70, no.
1-3, pp. 489–501, December 2006.

[21] GNPy. [Online]. Available: DOI: 10.5281/zenodo.3458320,
https://github.com/Telecominfraproject/oopt-gnpy

[22] G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri,
“On the performance of Nyquist-WDM Terabit Superchannels
based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM
subcarriers,” Journal of Lightwave Technology, vol. 29, no. 2,
pp. 53–61, January 2011.

[23] T. Zami, “Co-Optimizing Allocation of Nyquist Superchannels
and Physical Impairments Aware Placement of Regenerators in
Elastic WDM Networks,” Journal of Lightwave Technology,
vol. 32, no. 16, pp. 2830–2840, January 2014.

13


