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Abstract
Real-time object tracking is an important step of many modern image processing applications. The efficient hardware design 
of real-time object tracker must achieve the desired accuracy while satisfying the frame rate requirements for a variety of 
image sizes. The existing methods of visual tracking employ sophisticated algorithms and challenge the capabilities of most 
embedded architectures. Discriminative scale space tracking is one algorithm that is capable of demonstrating good perfor-
mance with affordable complexity. It has a high degree of parallelism which can be exploited for efficient implementation 
of reconfigurable hardware architectures. This paper proposes a real-time implementation of the discriminative scale-space 
tracker on FPGA for the major blocks. A careful design exploration of core mathematical operations of the tracking algorithm 
is performed to improve their hardware utilization and timing performance. Among the core functional units optimized in 
this work, the discrete Fourier transform achieves a computational time improvement of 92% relative to existing works, QR 
factorization achieves a 2.3× reduction in resource utilization, and singular value decomposition yields a 3.8× improvement 
in processing time. The proposed data path architecture is designed using Vivado HLS tool set and implemented for Zync 
Zed Board (xc7z020clg484-1). For an input image size of 320 × 240, the proposed architecture achieves a mean 25.38 fps.

Keywords Discriminative correlation filter · DSST · Real time · FPGA · QR · SVD · DFT

1 Introduction

Visual object tracking has got significant research interest 
in recent years. The purpose of visual tracking is to iden-
tify the updated location of the target object in the incom-
ing video sequence, given an initial target location in one 
frame. It finds its application in several exciting scenarios, 
including, but not limited to, computer vision, smart video 
surveillance, robotics, automation. Real-time object track-
ing is a challenging task whose performance is influenced 

by various factors, including camera motion, background 
variations of the scene, and complex motion of the object. 
To deal with these challenges, sophisticated algorithms with 
an optimal set of parameters are required to achieve a good 
degree of accuracy. Moreover, the use of high-resolution 
cameras further increases the computations required for suc-
cessful tracking.

At present, visual tracking is mostly performed using 
software-based platforms, including PCs and embedded pro-
cessors. However, the frame rate performance of software 
systems is mostly not enough to support several real-time, 
mission-critical applications such as tracking for accident 
prevention, security and defence, etc. Moreover, scale vari-
ations and requirements of multi-target tracking limit the use 
of the serial approach for data-centric applications. There-
fore, significant improvement is required at algorithmic 
and implementation levels to build a real-time, stand-alone 
object tracking devices for most mission-critical systems. 
Field programmable gate array (FPGA) is a kind of hardware 
inherently suited for such applications, thanks to its paral-
lel processing structure, large data throughput interfaces, 
and integration capability. Existing works on object tracking 
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are either based on discriminative [1–3] or generative [4, 
5] approaches. The discriminative approaches use machine 
learning methods to learn the target location employing a 
filter, which is later used to estimate the target location. 
The generative approaches deal with creating the statistical 
model of the target. Studies have shown that discrimina-
tive approaches show better performance and require less 
computation [6–8]. An emerging approach is a multi-aspect 
detection, which considers both the size and location of the 
target. In this context, two techniques are proposed. The first 
approach is named as joint scale space tracking and utilizes 
a 3D correlation filter. The second approach, named multi-
resolution tracking, utilizes a 2D filter at multiple resolu-
tions, creating a 3D pyramid for detection. Both approaches 
are computationally intensive and not suitable for efficient 
hardware implementation. Recently, in [9], the authors pro-
posed a technique named as discriminative scale space track-
ing (DSST), which demonstrates a good performance with 
reasonable complexity. The DSST algorithm achieves better 
performance using separate filters for translation and scale 
estimation [9, 10]. At first, the change in the target loca-
tion is estimated using a translation filter. Next, the updated 
location is fed to the scale filter to estimate the target size. 
Finally, both filters are updated for the image frame. The 
method continues iteratively for the video sequence. The 
high degree of parallelism of the DSST algorithm makes 
it a suitable candidate for hardware implementation. The 
major mathematical operations involved in DSST are sin-
gular value decomposition (SVD), QR factorization, two-
dimensional discrete Fourier transform (DFT2), and histo-
gram of gradients (HOG). The filter is applied to an image 
by performing pointwise multiplication with all the pixels. 
This process is called windowing, which is the most critical 
minor operation in terms of resources.

The majority of existing works are based on software 
implementation of these mathematical operators, mainly 
focusing on the performance rather than hardware resources 
for higher dimensions. Therefore, there is a substantial 
requirement for hardware implementation of these opera-
tions targeting a complete visual tracking system on a stand-
alone device. A survey on hardware implementations on 
visual object trackers is also provided in [11]. This work 
deals with the FPGA implementation of major blocks of a 
real-time DSST algorithm. We propose suitable implemen-
tation strategies for the core operations of the DSST algo-
rithm. The implementation of the DSST is carried out using 
Xilinx Vivado HLS 2016.1 tool with Zedboard with Xilinx 
Zynq xc7z020clg484-1 System on Chip as target device. The 
proposed architecture is able to operate at 100 MHz clock 
frequency for an image of dimensions 320 × 240 pixels. It 
is able to achieve an estimated mean frame rate of 25.38 
fps. The proposed system is fully scalable for higher image 
dimensions.

The rest of this paper is organized as follows. Section 2 
deals with the description of the algorithm and state of the 
art regarding mathematical operations. Section 3 describes 
the proposed architecture of these operations. Section 4 
deals with the implementation strategies and results. Finally, 
Sect. 5 concludes the paper.

2  Introduction to discriminative scale space 
tracking (DSST) algorithm

This section deals with the details of the DSST algorithm 
[9] and discusses the state-of-the-art implementations for 
the mathematical operations involved. Algorithm 1 demon-
strates the main computation steps of fast DSST (FDSST). 
The algorithm receives an image and the initial target loca-
tion as input. An image patch f centered around an initial 
target location I is extracted using a HOG extractor. These 
image features are utilized for learning the target transla-
tion Discriminative Correlation Filter (DCF). As the domain 
dimension of f is arbitrary, this can also be used for the scale 
translation DCF. Hl refers to a filter under which the cor-
relation error between the extracted image patch and the 
desired output is minimum. The detailed derivation of (1) is 
provided in [9]. The filter equations are given as

The capital letters denote the Fourier transform of the 
quantities. All quantities are described in Table 1. Equa-
tion (2) is the final equation of the correlation filter. As the 
approach is iterative, for each new frame the filter is updated. 
The numerator Ãl

t
 in (2) is updated according to (3) while 

the denominator B̃t in (2) is updated according to (4). The 
dimensions are compressed using standard principal compo-
nent analysis (PCA) to reduce the size of DFTs considering 
the compression suggested in [9] to realize a fast DSST. 
Mathematically, it is performed by exploiting a template 
ut = (1 − �)ut + �ft . The tilde terms are obtained by window-
ing the quantities with P, which is a low-dimension subspace 
of the features. The compressed dimensions are obtained 
using the eigenvalue decomposition of the autocorrelation 

(1)Hl
=

GFl

∑d

k=1
FkFk + �

, l = 1,… , d

(2)Yt =

∑d̃

l=1
Ãl
t−1

◦Z̃l
t

B̃t−1 + 𝜆
, ∀t

(3)Ãl
t
= G◦Ũl

t
, l = 1,… , d̃

(4)B̃t = (1 − 𝜂)B̃t−1 + 𝜂
∑d̃

k=1
F̃k
t ◦F̃

k
t
, ∀t.
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matrix of ut . As shown in Algorithm 1, the compression 
step is achieved with SVD and QR decomposition. This 
step is the training or learning step. The filter application 
or detection part is implemented by (2), which calculates 
the correlation scores. zt is a new extracted sample from the 
estimated 2D target location using HOG extractor. By taking 
the inverse DFT of Yt and maximizing the correlation scores, 
the new target estimation is obtained. This step completes 
the translation estimation. The scale estimation is obtained 
by repeating the above steps for scale one-dimensional filter, 
using the updated target location from translation estimation. 
This way, searching the scale in the updated location saves 
a lot of computations. The algorithm performs the scaling, 
translation, filter estimation and update process, as described 
in (1), (2), (3) and (4). They involve the scale and translation 
filter estimation and update equations. As mentioned earlier, 
the core mathematical operations of DSST algorithm involve 
DFT2, QR, SVD and HOGs. These operations are discussed 
as follows.

2.1  DFT and DFT2

The synthesis and analysis equations of discrete Fourier trans-
form (DFT) are given, respectively, as

respectively, where Wnk
N

 = e−
j2�

N
kn is the twiddle factor, Xn 

and xn are complex numbers. The twiddle factor can also 
be expressed as Wnk

N
= cos(

2�n

N
) − j ⋅ sin(

2�n

N
) using Euler’s 

identity.

(5)Xk =

∑N−1

n=0
xne

−
j2�

N
kn
xk =

1

N

∑N−1

n=0
Xne

j2�

N
kn
,

Algorithm 1 FDSST algorithm [9]
Inputs: Image It, Prior target position pt−1 and scale st−1,

Translation model At−1,trans, Bt−1,trans,
Scale model At−1,scale, Bt−1,scale

Outputs: Estimated target position pt and scale st,
Updated translation model At,trans, Bt,trans,
Updated scale model At,scale, Bt,scale

1: for all frames t do
2: if t = 1 then
3: Translation estimation:
4: Extract zt,trans ← It at {pt−1, st−1} using HOG
5: Zt,trans ← zt,trans using DFT2 and compute

correlation scores yt,trans using (2)
6: Set pt = max{yt,trans}
7: Scale estimation:
8: Extract zt,scale ← It at {pt, st−1} using HOG
9: Zt,scale ← zt,scale using DFT2 and compute cor-

relation scores yt,scale using (2)
10: Set st = max{yt,scale}
11: end if
12: Model update:
13: Extract ft,trans ← It at pt−1 , ft,scale ← pt at st−1

using HOG extractor
14: Using SVD compute Pt,trans, calculate DFT2 of

ut,trans and ft,trans then update the translation
model At,trans, Bt,trans using (3) and (4)

15: Using QR compute Pt,scale, calculate DFT of ut,scale

and ft,scale then update scale model At,scale,
Bt,scale using (3) and (4)

16: end for

A straightforward implementation of N-Point DFT has a 
complexity of O(N2 ) operations. Fast Fourier transform 
(FFT) is a hardware friendly algorithm which reduces the 
DFT computations to O(Nlog2N ), using well-known deci-
mation in time (DIT) and decimation in frequency (DIF) 
techniques [12]. A number of hardware implementations 
of FFT exist including parallel [13] and serial approaches 
[14]. FFT requires N = 2n which is not fixed in this case. So, 
instead DFT is implemented. An implementation for DFT is 
provided in [15], which uses the Coordinate Rotation Digital 
Computer (CORDIC) algorithm to calculate the twiddle fac-
tor. Our approach uses precalculated twiddle factors and thus 
improves performance.

The DFT2 is the two-dimensional Fourier transform 
applied to a matrix. To compute DFT2, first DFT is applied 
along the rows of the matrix, and the result is transposed. 
Then DFT is applied along with the columns. Finally, results 
are transposed and assigned to the output. In most of the 
published works, the DFT2 is approximated by two dimen-
sional fast Fourier transform (FFT2). Instead, this work 

(6)Xk =

∑N−1

n=0
xn

[
cos

(
2�n

N

)
− j ⋅ sin

(
2�n

N

)]

Table 1  Symbols in DSST [9]

Symbol Meaning

̄ Complex conjugate
~ Compressed dimensions
� Regularization parameter
�, ◦ Learning rate, element-wise multiplication
F Input image extracted features
l, d Feature channel and length dimensions
G Gaussian function for CF output
Y
t

Correlation scores
A
l
,B

t
Numerator and denominator of the CF

Z
l Image features extracted from new location

P Projection matrix using PCA
U

l Iterative compression of features f
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adopts the approach of [16] based on modified row–column 
decomposition.

2.2  QR factorization

QR factorization is the decomposition of a matrix A of 
dimensions m × n into two matrices, i.e. Q matrix of dimen-
sions m × m and R matrix of dimensions m × n . Q is the 
orthogonal matrix, while R is the upper triangular matrix. 
The literature proposes three main approaches for QR fac-
torization, namely, Gram-Schmidt approach [17], House-
holder transformation [18] and approach based on Givens 
rotation [19, 20]. This work adopts the third approach, i.e. 
Givens rotation. The idea is to apply Givens rotations to 
elements of the lower triangle of A and turn them to zero. 
When all the lower triangle elements are zeroed, matrix R is 
obtained. Applying the same transformation to an identity 
matrix in parallel gives the matrix QT . The Givens rotation 
matrix is of the form,

G =

[
c s

−s c

]
 , where c = a√

a2+ab
 , s = b√

a2+ab
, a is the first 

element of the row pair and b is the element which has to be 
turned to zero below a. A systolic array-based implementa-
tion is proposed in [20]. Our approach is similar, but we 
focus on resource optimization rather than performance. We 
also employ row-parallel approach, which improves perfor-
mance by offering more parallelism.

2.3  SVD

SVD is the eigenvalue decomposition of a matrix A of 
dimensions m × n into three matrices U, S and V of dimen-
sions m × m , m × n and n × n , respectively. U and V contain 
the left and right eigenvectors of A, while S is a diagonal 
matrix containing real eigenvalues. SVD in hardware is 
mostly implemented using two-sided Jacobi method [21]. 
The idea is to divide the matrix into 2 × 2 small matrices. 
Jacobi rotations to elements of the matrix A are applied from 
left and right, hence the name two-sided Jacobi. This multi-
plication turns non-diagonal elements to zero giving the 
matrix S. Similar transformations to the identity matrix gives 
matrix U and V. The Jacobi rotation matrix is of the form [
c − s

s c

]
 
[
a b

c d

]
 
[
c s

−s c

]
 = 
[
a1 0

0 a2

]
 , where c = cos(�) , s = sin(�) 

and � is given by � =
1

2
arctan

c+b

d−a
 . Fixed point based imple-

mentation are given in [21, 22]. Our approach is similar but 
we focus on time optimization because this unit has small 
dimensions in the algorithm, so it is operated in parallel.

2.4  Histogram of gradients (HOG)

HOG is a classifier used for target recognition. It is con-
structed with the help of image gradients and extracts the 
features contained in image pixels. HOG is a computation-
ally intensive operation, and its implementation is proposed 
by a number of approaches [23–25]. The authors of [23] 
provide a comparative study of different implementations as 
well. The implementation in [24] utilizes the least amount of 
resources but operates below 100 MHz. In [25], an approach 
is proposed which achieves a frame rate of 60 and requires 
less amount of hardware resources. It avoids expensive 
angle calculation using integer multiplication and inequal-
ity comparisons.

As a first step, the magnitude and orientation of an image 
gradient are computed. The magnitude of the gradient is 
assigned to suitable bins among the nine available. This 
assignment is done based on the gradient orientation (0–180) 
and for (0–360). The window for detection is composed of 
8 × 8 pixels of non-overlapping cells. Afterwards, an aggre-
gate module is utilized for summing the 64 pixels of each bin 
to create the histogram. Finally, they are passed to a normali-
zation phase. The details of the algorithm are given in [25].

3  Proposed architectures

This section deals with the details of the architecture of the 
mathematical operations described in the previous section. 
The flowchart is depicted in Fig. 1. The proposed DSST 
algorithm has four major steps. The translation search, i.e. 
the 2D position of target and translation filter update steps 
involve HOG extraction and DFT2 of 3D matrices. The scale 
search and scale filter update involve HOG extraction and 
DFT of a 2D matrix. SVD and QR are involved in translation 
filter update and scale filter update steps respectively. The 
DFT unit is the most critical block in terms of performance 
because of operation on 3D 320 × 320 matrix. Vivado HLS 
is used as the base tool for synthesizing and simulation.

3.1  Discrete Fourier transform and DFT2

The vector DFT acts as a building block for matrix DFT, i.e. 
DFT2. The architectures for both are discussed as follows.

3.1.1  DFT

Figure 2 demonstrates the proposed architecture to compute 
one dimensional DFT. In the first clock cycle i (input loop 
counter), the sample X_real [i] and X_imag [i] are received 
along with twiddle factors cos [i] and sin [i] . Four multipliers 
and two adders/subs are required to complete the complex 
multiplication which is the basic DFT block. This goes to the 
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accumulator (at first, the other input to the accumulator is 0 
because the register is at reset). This produces real part of 
complex multiplication, i.e. X_real [i]⋅ (cos [i] ) − X_imag [i]⋅ 

(sin [i] ). Similarly, the other output of accumulator produces 
X_real [i]⋅ (sin [i] ) + X_imag [i]⋅ (cos [i] ). Now, in the next 
clock cycles, the basic DFT receives the inputs X_[i + 1] 
along with the twiddle factors. After it performs the com-
plex multiplication, the results are accumulated. When the 
last input is processed, j (the output loop counter which is 
0 at first) assigns the first output Y_real[i] , Y_imag[i] via 
demultiplexers. In the end, j is incremented and the register 
is reset. This whole process is repeated until all the N outputs 
are produced. This approach is serial as it takes N cycles to 
produce one output and consumes 1 input per cycle.

Using the basic blocks discussed above, now the archi-
tecture is parallelized to support fast DFT for higher image 
dimensions. This parallelization is shown in the lower part 
of Fig. 2. By operating eight elements in parallel, Equation 
(6) can be modified as

xn is complex. Each complex multiplication i.e. 
Cn = xn ⋅

[
cos

(
2�n

N

)
− j ⋅ sin

(
2�n

N

)]
 is performed by a basic 

DFT block. The L1 adders add the outputs of basic DFT in 
p a i r s  o f  

{
Cn,Cn+1

}
,
{
Cn+2,Cn+3

}
, {

Cn+4,Cn+5

}
,
{
Cn+6,Cn+7

}
. Let Mn = Cn + Cn+1 then L2 

a d d e r s  a d d  t h e  f o l l o w i n g  p a i r s : 
 
{{

Mn,Mn+1

}
,
{
Mn+2,Mn+3

}}
 . Finally, the L3 adders add 

the Mn terms to produce 8 point DFT. Accumulator sums the 
DFTs until N inputs are processed. Similarly to the serial 
approach when the last input is processed demultiplexers 
assign the output, j is incremented and accumulators are 
reset. Thus, with an adder tree between the basic unit and 
accumulator, 8-parallel DFT is performed. All the DFT coef-
ficients are pre-computed and stored in memory. The HLS 
compiler mostly handles the intermediate computation 
results. However, in some cases, we instantiate and partition 
the BRAMs for intermediate values so, the elements can be 
processed in parallel. For this unit, the input and output 
arrays are partitioned into 8 BRAMS. So, eight elements can 
be accessed in parallel. The general DFT has a delay of 
O(N2

)  .  T h i s  a r c h i t e c t u r e  i m p r ove s  i t  t o 
delay = O(

N2

8
) + pipeline stages ≈ O(N

2

8
) . The architecture is 

implemented for maximum N = 320 . If N < 320 then a com-
parator (not shown in figure for simplicity) limits the number 
of traverses through the block. For improving performance, 
task-level parallelism is used with the help of Vivado HLS 
Dataflow pragma.

(7)
Xk =

N∕8−1∑
n=0

xn

[
cos

(
2�n

N

)
− j ⋅ sin

(
2�n

N

)]
+⋯+

xn+7

[
cos

(
2�(n + 7)

N

)
− j ⋅ sin

(
2�(n + 7)

N

)]
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Fig. 1  Flowchart of the DSST algorithm [9]
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3.1.2  DFT2

The proposed DFT2 architecture is shown in Fig. 3 and 
uses the row–column decomposition approach. The real and 
imaginary parts are kept separate so that operations run in 
parallel. The 2D matrix is taken as input. Rows are selected 
and passed to the DFT calculation blocks first, while the 
coefficients are precomputed and saved in BRAM blocks. 
8-parallel unit is used as a basic block for this unit. The out-
put goes to a transpose unit and afterwards to the memory. 
In the next steps, relevant outputs are fed along with the 
weights to 8-parallel DFT block, to compute the column-
wise DFT.

The transpose unit has a delay proportional to N. It is 
given by O

�
N2

−

∑N−1

i=1
i)
�

 .  It  is parallelized to 

O

�
N2

8
−

∑ N

8
−1

i=1
i)

�
 . The total delay is 2M × (TDFT + TTrans)) , 

where M is the number of rows of the matrix. This is nearly 
equal to 2M × (TDFT) . As this unit lies in the critical path, at 
the cost of twice the hardware, the maximum delay can be 
reduced to half that is M × (TDFT) . It was synthesized for a 
maximum size of 320 × 320 . To save the BRAM resources, 
the same input matrix is used for saving the outputs. For 
DFT2 (3D), DFT2 is used as a base unit. The maximum 
delay will be P × (TDFT2) , where P is the third dimension, 
i.e. the number of 2D matrices. The maximum value of P is 
18 for fDSST. The same DFT2 unit is used with a divisor in 
the accumulator before the delay element to divide by N.

3.2  QR factorization

The proposed DSST architecture performs the QR factori-
zation using the Givens Rotation Method [20]. The Vivado 
HLS QR factorization library [26] is used as a reference unit 
and modified for our architecture. This implementation is for 
real numbers and is shown in Fig. 4. Algorithm 2 highlights 
the main computational steps of QR factorization. The QR 
factorization unit consists of Givens matrix generation and 
rotation units. The Givens matrix generation takes as input, 
two elements from two rows of matrix A and provides the 
Givens matrix as output. The input 2D matrix A and the 
Givens matrix G are given by

where c = a

M
 and s = b

M
 . Magnitude M is calculated as

where x = max(a, b) and y = min(a,b)

x
.

Lets take a = a31 and b = a41 . With the help of (9) matrix 
G is calculated. Equation (9) is implemented by magnitude 
calculation unit shown in Fig. 5. In this unit, the maximum 
of the two inputs is determined using a comparator and two 
multiplexers. Afterwards, the divider calculates y. In the end, 
magnitude M is obtained by a combination of adder, mul-
tiplier and square root unit. To obtain matrix G, c and s are 
determined. As the magnitude appears in the denominator, 
divide by zero is checked using a comparator and a multi-
plexer. Matrix R is obtained by turning the lower triangular 
elements of matrix A to zero. For this purpose, the Givens 
rotation is applied in the following manner:

(8)A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a14

⏞⏞⏞
a31 a32 a33 a34
a41

⏟⏟⏟
a42 a43 a44

⎤
⎥⎥⎥⎥⎥⎦

and G =

�
c s

−s c

�
,

(9)M =

√
a2 + b2 = x ×

√
1 + y × y,

(10)G ⋅

[
a31a41

]T
=

[
a31∗0

]T
.
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The Givens rotation block is shown on the left of Fig. 5. 
It is simply a 2 × 2 matrix to vector multiplication. If the 
second element b is already zero, then Givens rotation is 
simply a = M and b = 0 . This assignment is implemented 
with multiplexers. Givens rotation unit is accompanied by a 
comparator to avoid assigning wrong values to zeroed posi-
tioned elements shown in the top left of Fig. 5. In that case, 
the first element is equal to the magnitude. For complete 
matrix R now select a = a21 and b = a31 ∗ and repeat until all 
the lower triangular elements are turned to zero. The matrix 
Q is obtained by performing the same generated rotations to 
an identity matrix. A small address generation unit is used 
for row selection. Row pairs are selected to be operated in 
parallel. The rotations are applied to all the columns of the 
selected rows.

A single matrix is used for input A and output R to 
reduce the number of resources. The critical path is in the 
Givens generation block because of the magnitude unit. 
This block has a division and square root operator. The 
generated Verilog code can be modified at RTL level to 
pipeline the architecture. Also, the number of parallel rota-
tions impact resources and performance. Resource opti-
mization is employed since this unit is not on the critical 
path. The generation and rotation blocks are parallelized 
by a factor of two and pipelined with an initiation interval 
of 4.

3.3  SVD

This work uses the two-sided Jacobi method [21] to per-
form SVD. The Vivado HLS library [26] is adopted as a 
reference unit and optimized for the target application. 
This implementation is for real numbers. The implementa-
tion is shown in Fig. 6. Algorithm 3 demonstrates the 
execution of SVD. The SVD unit consists of the diagonal 
processor (DP) and non-diagonal processor. The DP takes 
as input the 2D matrix A, divided into N/2 2 × 2 

submatrices. Matrix A is the same as Eq. (8) and Jacobi 

left and right matrices are given by u =

[
c1 s1

−s1 c1

]
  and  

v =

[
c2 s2

−s2 c2

]
 , where c = cos(�) and s = sin(�) . For � , we 

have � =
1

2
arctan

b+c

d−a
 to avoid calculation of arctan, 

consider

Algorithm 2 QR calculation algorithm.
Inputs: Matrix: A
Outputs: Orthogonal matrix: Q , Triangular matrix: R

Givens rotation Generation:
1: for all r, c ∈ A do
2: if r > c and A [r] [c] = 0 then
3: for all non overlapping [ra, rb] pairs do
4: Compute magnitude M using (9)
5: Generate the matrix G using c = a

M
, s = b

M
6: end for
7: end if
8: end for

Givens rotation Application:
9: for all r, c ∈ A do
10: if r > c and A [r] [c] = 0 then
11: for all non overlapping [ra, rb] piars do
12: for all c ∈ [ca, cmax] do
13: Triangular matrix R computation:
14: Obtain R by applying (10) to [ra,rb] pairs
15: Orthogonal matrix Q computation:
16: Generate matrix Q by applying (10) to I
17: end for
18: end for
19: end if
20: end for

The implementation of angle calculation is shown in Fig. 7. 
A divisor depicted in the figure generates tan(2�) . By the 
use of trigonometric identities, cos and sine are derived. 
They are as under

(11)tan(2�) =
2b

(d − a)
.
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The computation of half-angle identities is shown in the left 
of Fig. 7. Angle calculator is shown in the right of Fig. 7, 
which consists of a tree of multiplexers to select the correct 
angle based on whether the number is real, imaginary or 
complex.

The Jacobi matrix generation is shown in Fig. 8. The 
numerator and denominator of (11) are computed via adder 
and subtractor and passed to the angle calculator unit. The 
Jacobi matrices are generated using c = cos(� ∓ �) and 
s = cos(� ± �) identities, where � and � are half angles 
calculated previously. The identities are implemented with 
simple vector multiplier. The Jacobi rotations are given by

Thus Jacobi rotations are simple matrix multiplications and 
are implemented by vector multipliers in Fig. 8.

As all the building blocks are described, next is the dem-
onstration of how the three U, S and V matrices are gener-
ated. As shown in Fig. 6, SVD consists of DP and non-DP. 
The quantities used are defined as follows: A_s denotes diag-
onal submatrix of A, terms with DP mean newly updated 
submatrix from DP unit and terms with I indicate they are 
from identity matrix. DP_c and col represent 2 × 2 sub-
matrix the current iteration and currently selected column 
pairs, respectively. The algorithm is repeated for a minimum 
number of iterations to achieve convergence. Literature sug-
gests that 6–10 iterations are enough for it. In our case, for a 
dimension of 32, the iteration factor is 6. The iteration factor 
is determined from the table given in [21].

The diagonal processor receives a 2 × 2 main diago-
nal submatrix A_s of matrix A. It has a swap operator 

(12)

cos(�) =
1√

1 +
(
tan2(�)

) ,

sin(�) = cos(�). tan(�),

tan

(
�

2

)
=

(1 − cos(�))

sin(�)
.

(13)
[
c1 − s1

s1 c1

] [
a11 a12

a21 a22

] [
c2 s2

−s2 c2

]
=

[
a11 0

0 a22

]
.

implemented with a mux. The swap operator swaps the col-
umns to arrange the diagonal elements in ascending order 
as SVD requires it. After the swap, DP generates the Jacobi 
matrices and applies the rotations. A_s is rotated by DP_v 
first and then it is post multiplied by DP_u . Now the non-
diagonal elements of A_s are turned to zero. DP now outputs 
the new matrices DP_s , DP_u and DP_v to the non-DP. Non-
DP in Fig. 6 receives 2 identity matrices U, V and matrix 
A. It also receives DP_u , DP_s and DP_v from the DP. Now 
there are two subcases, current 2 × 2 submatrix DP_c is less 
than current column indices col and DP_c is greater than 
col. In the first case, A_s is pre-rotated by Hermitian trans-
posed DP_u then post-rotated by DP_v . In the second case, 
A_s is pre-rotated by DP_v then post-multiplied by Hermi-
tian transposed DP_u . If the submatrix overlaps with DP_s , 
then DP_s values from DP are used otherwise from matrix 
A. This process is repeated until the matrix A is diagonal-
ized. This diagonalized matrix is the matrix S containing 
the eigenvalues. Matrix U (left eigenvectors) and V (right 
eigenvectors) are obtained by applying the same DP_u and 
DP_v rotations to identity matrices I_u and I_v, respectively.

Algorithm 3 SVD algorithm.
Inputs: Matrix: A
Outputs: Diagonalized eigen values matrix: S

Left and right eigen vectors matrices: U and V
1: repeat
2: for all c ∈ A do
3: Diagonal Processor:
4: for all 2× 2 DP c ∈ [0, columns/2] do
5: if cdiag1 < cdiag2 then
6: Swap the columns.
7: end if
8: Jacobi matrices generation:
9: Compute half angles cosα, cos β and sinα, sinβ

using (11) and (12)
10: Generate the matrix DP u and DP v by using c

= cosα∓ β and s = sinα± β identities
11: Jacobi two sided rotation:
12: Matrix S diagonal is computed by applying the

Jacobi rotations on A using (13)
13: end for
14: Non Diagonal Processor:
15: for all 2× 2 DP c ∈ [0, columns/2] do
16: Jacobi rotations for matrix S:
17: if DPc < col then
18: Pre-rotate A by Hermitian DP u and post-

rotate by DP u
19: end if
20: if DPc > col then
21: Pre-rotate A by DP v and post-rotate by Her-

mitian DP u
22: end if
23: Jacobi rotations for matrices U and V:
24: For matrix U rotate identity matrix I u by DP u
25: For matrix V rotate identity matrix I u by DP v
26: end for
27: end for
28: until minimum number of iterations to converge
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A single matrix is used for input A and output U to reduce 
the number of resources. The critical path is in the DP block 
because of the SVD 2 × 2 unit, which has the angle calcu-
lator. The generated Verilog code can be modified at the 
RTL level to pipeline the architecture as the critical path 
is too long. At the cost of resources, frequency and latency 
optimization is employed. The 2 generations and rotation 
blocks are used in parallel and pipelined with the initiation 
interval of 8.

In summary, initially, Jacobi’s left and right rotations are 
generated. They are applied to original matrix A to obtain 
S. Left rotations on identity matrix produce Matrix U while 
the right rotations produce matrix VT . But this approach can 
only be applied to symmetric matrices. If the matrix is not 
symmetric, then a further step is needed to symmetrize the 
matrix. The symmetrization can be done with the help of 
Givens rotations.

3.4  Histogram of gradients (HOG)

The architecture suggested relies on the implementation 
provided by the authors of [25]. The 2D grayscale image is 
taken as input. Gradients px and py are calculated for each 
pixel in both x and y directions, respectively, using two sub-
tractors. The gradient magnitude and direction are given by

The angle (0–180) is used to assign a gradient magnitude 
to 9 different bins [24]. The histogram is built from these 
bins. To save resources angle calculation, i.e. the orientation 
of the gradients is computed using integer multiplications 
instead of division. This improvement is achieved by per-
forming angle calculation and bin assignments together. If 

M =

√
p2
x
+ p2

y
,

tan(�) =
py

px
.

the angle lies between any one of the nine available slots, 
then that gradient magnitude is assigned to the correspond-
ing bin. As demonstrated by authors of [25], the gradient 
magnitude is assigned to bin one if the following inequality 
holds:

This step simply involves a multiplication of integer con-
stant to satisfy the inequality. This step helps save resources 
because it avoids a calculation of tan(�) , which involves divi-
sions. Based on the orientation, the gradients are assigned to 
9 different bins. They are the contrast insensitive bins. After-
wards, they are aggregated for smoothening among all bins. 
At last, they are normalized using L1-norm. As compared 
to the L2-norm, L1-norm avoids squaring. Also, instead of 
dividing the reciprocal is multiplied. This improvement fur-
ther saves hardware resources without sacrificing accuracy 
too much. To obtain Felzenszwalb’s HOG, two extra steps 
need to be performed. First bin assignment step is performed 
again. This time the gradients are assigned to 18 different 
bins based on orientation (0–360). They are the contrast-
sensitive bins. These 18 bins from each block are averaged 
together. Also, the previously calculated 9 bins are averaged 
for each block. For 4 blocks, the 9 normalized bin elements 
are also averaged. These 18 directional, 9 non-directional 
and 4 normalization bins form the 31 third dimensional fea-
tures of fHOG. After this step, the output is assigned. The 
implementation diagram is demonstrated in [25].

4  Implementation results and discussion

The data path of the proposed DSST system is speci-
fied using the Vivado HLS tool. The prototyping is per-
formed on Zedboard with Xilinx Zynq xc7z020clg484-1 

0 ≤ py∕px ≤ tan(20) → 0 ≤ py ≤ px tan(20).

Table 2  Timing results for the 
FPGA-based DFT in us

N Cycles Cycles Cycles Time Time Time
[15] S_HLS S_HLS [15] P_HLS P_HLS

10 24,179 260 247 484 2.2 2.4
12 28,999 358 342 580 3.3 3.32
20 96,509 910 883 1930 7.7 8.6

Table 3  Area results for the 
DFT implementation in FPGA

N LUT LUT LUT MUL DSP48E DSP48E
[15] S_HLS S_HLS [15] P_HLS P_HLS

10 616 395 3702 4 8 32
12 648 421 3710 4 8 32
20 776 460 3823 4 8 32
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System-on-Chip. The block-wise implementation results 
are discussed as follows.

4.1  Discrete Fourier transform

DFT 1D has maximum size N = 320 . For DFT, the results 
are compared with [15]. Vivado HLS post-synthesis tim-
ing and resources results, referred to as HLS, are shown 
in Tables 2, 3 and 4. HLS timing results in Table 2 outper-
form the one in [15] by factor of 92%. This improvement 
is because of using precalculated twiddle factors. Also, in 
contrast to the implementation in [15], our implementation 
is extensively unrolled. Two different implementations are 
provided here, serial S_HLS and parallel P_HLS. Resources 
in Table 3 indicate that our serial DFT uses less LUTs than 
the one in [15] but uses twice the DSP48E units. The higher 
number of resources is because of separate hardware for 
imaginary and real parts. Also, for 8 parallel DFT, our 
resource consumption is much higher than [15]. The higher 
resource consumption is justifiable because optimization is 
done for performance in the case of higher dimensions. The 
maximum operating frequency for 8 parallel DFT is 112 
MHz while [15] operates at 50 MHz. The frequency can be 
further improved by pipelining the Verilog code generated 
at the RTL level. It cannot be improved in Vivado HLS as 
the pipeline commands unroll the architecture in the scope 
available. So only inner loops are pipelined.

The simulation results were compared against MATLAB-
generated golden matrices. The relative percentage error is 
computed by E =

(RMATLAB−RHLS)

RMATLAB

⋅ 100 , where E is the error. 
The golden matrices were generated using intermediate val-
ues of the algorithm at the input of each block. This is then 
applied to HLS-based units. Afterward, the outputs of both 
are compared. The average error values, in this case, were 
6.52 and 6.9 for real and imaginary matrices, respectively. 
This is because MATLAB uses double-precision values. Our 
results are still approximate enough because double preci-
sion in hardware will consume four times more resources. 
Also, the latency will be much slower. DFT2 is implemented 
for maximum dimensions of 320 × 320 . The results for DFT 
and DFT2 are reported in Table 4. It has a maximum fre-
quency of 112 MHz.

4.2  QR factorization

This unit has the maximum dimensions of 800 × 17 . For 
QR, the results are compared with [20] where implemen-
tation is for a 4 × 4 matrix. QR [20] is fully unrolled and 
uses fixed-point iterations while the approach is based on 
floating-point. The comparison can be made from the 32-bit 
fixed-point version. A comparison of the timing results from 
Table 5 indicates that HLS-based approach takes 4 times 
more clock cycles than the one in [20]. But HLS based area 
results are significantly better. This approach takes 2.3 times 
less DSP48E resources as this is not the critical block, so 
resource optimization was our target. The operating fre-
quency is almost similar to the non-pipelined version. Our 
approach is generic while the one in [20] is a fixed size. The 
worst-case delay for an input of size 800 × 17 is 337 µs for 
QR economy. At the same time, it consumes 26 DSP48Es 
resources. The maximum frequency is 116 MHz. The error 
is calculated using the same procedure as in Sect. 4.1. The 
average error value is 0.034 for matrix Q as only matrix Q 
is needed for the DSST algorithm. Our results are approxi-
mate enough because double precision used by MATLAB in 
hardware will consume four times more resources.

Table 4  AREA and TIME results of DFT and DFT2

N DFT type Time (ms) LUT DSP

320 DFT 0.475 1722 32
320 × 320 DFT2 273 11,352 32
320 × 320 DFT2 (2 parallel) 170 14,934 64

Table 5  TIME and area for FPGA-based 4 × 4 QR

Architecture F (MHz) Cycles DSP FF LUT

Mult A [20] 117.1 116 48 10,844 11,337
Mult B [20] 377.6 140 48 11,520 11,225
HLS 115.9 467 21 6054 8824

Table 6  TIME results for SVD implementation in FPGA

N Time [22] (µs) Time [21] (µs) Time HLS (µs)

4 × 4 – 12.1 35
10 × 10 3570 1001 207
20 × 20 4280 12,100 1135
30 × 30 12,550 – 3445
40 × 40 26,860 – 7799
50 × 50 – 69,500 14,872

Table 7  AREA results for SVD implementation in FPGA

Architecture 4 × 4 LUT BRAM DSP48E

Implementation [22] 5283 8 12
Implementation [21] 1504 3 16
HLS 10,110 14 30
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4.3  SVD

This unit is implemented for maximum dimensions of 
32 × 32 . For SVD, the results are compared with [21, 22]. 
The results are compared for low values of N with [21] 
and for higher values with [22]. Authors of [21, 22] use 
fixed-point iterations while we have a floating-point imple-
mentation. Comparison of the timing results from Table 6 
indicates HLS-based approach performs better than both 
implementations for all dimensions except for N = 4 with 
[21]. Timing is improved by nearly a factor of 3.7 and 4.8 
as compared to [22] and [21], respectively. But HLS based 
area consumption is 2 times higher, as shown in Table 7. The 
reason being our angle calculation unit uses division and the 
square root of floating-point numbers, while [21, 22] uses 
the CORDIC algorithm for it. The worst-case delay for an 
input of size 32 × 32 is 4 ms. At the same time, it consumes 
30 DSP48Es resources. The maximum frequency is 108 
MHz. The error is calculated similarly as in Sect. 4.1. The 
average error value is 7.156 for matrix U. As only matrix U 
is needed for the DSST algorithm. Our results are approxi-
mate enough because double precision used by MATLAB 
in hardware will consume more resources. Also, the latency 
will be higher.

4.4  Histogram of gradients (HOG)

The maximum dimensions of this unit are 320 × 240 . The 
results of [25] are reported here. The maximum oper-
ating frequency is 270 MHz. 60 fps for an image size of 
1920 × 1080 . It consumes only 12 DSP blocks.

4.5  Overall resources and speed

Table 8 shows the maximum resources used by the units in 
terms of DSP48E, BRAM, FF and LUTs. Also, the maxi-
mum power for each unit is displayed. Power is reported 
using power reports of post place-and-route from VIVADO 
HLS. The values are for the maximum dimensions of each 
unit. The speed/frames per second (fps) is calculated for 
each unit separately. For each block, an average fps is con-
sidered using a range of sizes as input. The fps is calculated 
as

fps =
Fmax

Cycles
 , where cycles is the number of clock cycles 

required to process one frame. Table 8 shows the mean fps 
of each unit. As for the whole architecture, there are four 
stages, namely, Scale Search (SS), Scale Filter (SF), Trans-
lation Search (TS), and Translation Filter (TF). Table 9 
shows the mean fps of each stage.Total fps for a stage is 
computed by adding reciprocal fps of units involved in the 

Table 8  Area, fps and power 
results of proposed architecture 
for DSST algorithm

a The resources and fps reported are from [25]. The power is calculated using the implementation in https:// 
github. com/ nikka tsa7/ HOG_ Zedbo ard. git

Unit Bram DSP FF LUT FPS P (mW)

DFT 0 32 4419 6305 6153 258
DFT2 192 64 11,922 18,343 173 662
QR 33 26 6662 5837 2948 238
SVD 16 30 8294 10,808 248 358
HOGa 7 12 3642 3924 60 244
Misc 0 8 591 1545 4392 156
Used 248 172 35,530 46,762 – 1916
(%) (88.6) (78.2) (33.4) (87.9) – –
Total 280 220 106,400 53,200 – –

Table 9  FPS results for 
proposed DSST architecture for 
240 × 320 image

Unit SS SF TS TF TS2 TF2

HOG 60 60 60 60 60 60
DFT 6153 6153 – – – –
IDFT2 – – 29.9 – 59.8 –
DFT3 – – 86.52 43.26 173 86.52
SVD – – – 248 – 248
QR – 1474 – – – –
Misc 4392 4392 4392 4392 4392 4392
Total 58.63 56.38 16.16 22.71 25.38 30.78

https://github.com/nikkatsa7/HOG_Zedboard.git
https://github.com/nikkatsa7/HOG_Zedboard.git
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corresponding stage. The critical stages are the TS and TF 
stages, as they involve DFT2 units. Using 2-parallel archi-
tecture for DFT2, the fps is improved. This is shown as TS2 
and TF2 in Table 9. The most critical stage (stage with the 
minimum fps) dictates the mean fps of the whole architec-
ture. Thus, for an image size of 320 × 240 , it can fit in Zync 
Zed board with a frame rate of 25.38 fps. The maximum 
frequency is 108 MHz. Increasing the image size in the 
same FPGA would decrease fps. If frame size doubles, the 
fps is lowered by a factor of 1.5. With a different FPGA, the 
same fps can be achieved at the cost of higher resources. 
For the input and output images, (hls::Mat) from HLS is 
used. They are transformed into an 8-bit integer matrix for 
processing.

Table 10 shows the comparison of our whole HLS archi-
tecture against other tracker implementations. Our frame 
rate is equal to the original DSST [9], but it is less than 
the fDSST tracker. In terms of power HLS-based solution 
is much better as the fDSST runs on Xeon CPU and uses 
more resources. Another correlation filter-based tracker [27] 
reported is for IoT applications and is implemented for edge 
devices. It relies on the server for computations, which helps 
it speed up then our HLS based approach. Again in terms of 
power our solution is much better. The authors of Rotation 
Aware DSST tracker [28] use DSST but also integrate rota-
tion awareness for accurate scale estimation. Our solution 
dominates both in terms of power and speed the RADSST 
[28]. MOSSE [29] is not DSST-based tracker but relies on 
programmable logic. It has a higher speed at 4K resolution, 
but it is reported to compare power. Again for power HLS 
solution is better. The best fps is of Moving Target Tracker 
MTT [30] which uses SIMD based DSP platform. It also 
uses 4GB of RAM. So in terms of power, resources and port-
ability our solution is better. In comparison to these track-
ers, HLS based solution consumes less power. The speed is 
comparable to some of the trackers, but the fewer resources 
make it feasible to operate on the field.

5  Conclusions

In this paper, the RTL level implementation of the major 
blocks of Discriminative Scale Space Tracker (DSST) [9] is 
presented. The implementation is given in terms of the major 
mathematical operations involved including SVD, QR, 
DFT2 and HOG extractor. DFT is implemented by 8-paral-
lel architecture; this is the base for DFT2 unit. This approach 
improves the timing by 92% with increased resources. For 
QR, the resource consumption is improved by a factor of 
2.3 compared to [20]. For SVD, the timing is improved by 
a factor of nearly 3.8 compared to [22]. For an image size 
of 320 × 240 it is able to fit in Zync Zed board with a mean 
frame rate of 25.38 fps, thus can be operated as a stand-alone 
unit. Future research can be performed at further optimiz-
ing the operations involved. The effort can also be made to 
integrate the whole algorithm implementation and interface 
with a real camera to test it on the field. Finally, the overall 
accuracy can be compared to the databases available.
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