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Abstract: It is well known that fabrication processes inevitably lead to defects in the manufactured
components. However, thanks to the new capabilities of the manufacturing procedures that have
emerged during the last decades, the number of imperfections has diminished while numerical
models can describe the ground truth designs. Even so, a variety of defects has not been studied
yet, let alone the coupling among them. This paper aims to characterise the buckling response of
Variable Stiffness Composite (VSC) plates subjected to spatially varying fibre volume content as well
as fibre misalignments, yielding a multiscale sensitivity analysis. On the one hand, VSCs have been
modelled by means of the Carrera Unified Formulation (CUF) and a layer-wise (LW) approach, with
which independent stochastic fields can be assigned to each composite layer. On the other hand,
microscale analysis has been performed by employing CUF-based Mechanics of Structure Genome
(MSG), which was used to build surrogate models that relate the fibre volume fraction and the
material elastic properties. Then, stochastic buckling analyses were carried out following a multiscale
Monte Carlo analysis to characterise the buckling load distributions statistically. Eventually, it was
demonstrated that this multiscale sensitivity approach can be accelerated by an adequate usage of
sampling techniques and surrogate models such as Polynomial Chaos Expansion (PCE). Finally, it
has been shown that sensitivity is greatly affected by nominal fibre orientation and the multiscale
uncertainty features.

Keywords: sensitivity; multiscale; stochastic fields; polynomial chaos; layer-wise models; unified
formulation

1. Introduction

Novel fabrication techniques are leading to a reduction in the number of defects present
at the mesoscale level of variable stiffness composites (VSCs). One of those procedures is
Continuous Tow Shearing (CTS) [1], which permits the steering of the fibres while avoiding
waviness and skipping the formation of gaps and/or overlaps among tows. Another arising
manufacturing process is the so-called Fused Deposition Modelling (FDM) [2], which is
one technique from the vast family of the now named “3D Printing” methodologies. These
techniques are promising, yet they are not flaw-exempt. For instance, CTS produces variabil-
ity in the lamina thickness along the steering direction that stems from the shearing when
tows are being placed [3]. Similarly, FDM presents a wide variety of defects. Among them,
the most common are voids between layers and surface roughness [4,5]. An extensive
review of 3D printing-FDM has been provided by Wickramasinghe et al. [6], in which
mechanical properties and defects arising from such procedure are thoroughly depicted.

Many papers have been published where gaps and overlaps due to the Automatic
Fibre Placement (AFP) process were accounted for. See, for instance, the works by
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Blom et al. [7] and Falcò et al. [8] in which a very accurate description of gaps and
overlaps was provided. A reduction in terms of computational effort was proposed by
Fayazbakhsh et al. [9], employing the so-called Defect Layer Method (DLM). DLM assigns
homogenised material properties to the finite elements depending on the presence of gaps
or overlaps in the structural discretisation.

The presence of gaps and/or overlaps depends on deterministic parameters such as
the turning radius, tow width and the orientation angles of the fibre path and, therefore,
their influence can be analysed straightforwardly. However, other sorts of defects might
be uncertain in the sense that their location cannot be foreseen beforehand. Moreover,
uncertainty is not only induced during the manufacturing of composite components. It
can also stem from variability in the elastic properties of the inner constituents, that is,
the actual material. Many works have considered the macroscale mechanical properties (see,
for instance, the article by Dey et al. [10]), that is, those that are imposed homogeneously to
the whole structure regardless of the spatial variation that may exist. Zhou and Gosling [11]
studied the uncertainty in the mechanical performance of VSC due to variability in the
material properties and in the fibre tow-paths. However, these macroscale properties are
due to the mechanical characteristics of the inner constituents, which, in turn, are subjected
to uncertainty.

In this context, during the last decades, increasing interest in spatially distributing the
uncertainty has appeared. These techniques are known as random or stochastic fields [12]
and have already been applied for the study of aerospace structures, as devised in the works
by van den Broek et al. [13,14], and Scarth et al. [15]. In the cited articles, material property
and geometric variations were induced to investigate how they may affect the free vibration
and buckling performance of the structures. Then, in a work by Guimaraes et al. [16],
the influence of fibre volume fraction on the flutter instability of wings was analysed. It
is worth commenting that in those cited works, different approaches to stochastic field
implementation were considered. For instance, in references [13–15] the Covariance Matrix
Decomposition (CMD) was used, whilst [16] utilised the Karhunen-Loève Expansion (KLE).
More information regarding different implementations can be found in the article by
Spanos and Zeldin [17].

Similar to the work by Guimaraes et al. [16], other authors included uncertainty at the
microscale level. This is relevant since composites are multiscale and hierarchical materials
in which the inner constituents influence the mechanical performance of the overall struc-
ture and vice versa. One of those works was the research conducted by Naskar et al. [18],
in which a comparison between including macromechanical and micromechanical uncer-
tainty was carried out. In this work, they demonstrated that spatially varying properties
lead to wider response bounds with the same level of stochasticity, which is explained
by the cascading effect of considering uncertainty at the most elementary level of the
multiscale. In recent years, Li et al. [19,20] developed a methodology to analyse the differ-
ent scales of composite materials following a multi-level and multi-site mesh refinement
that, as its authors mention, can be used to study the presence of microscopic inclusions
and voids.

The presence of such imperfections leads to an uncertain structural response, whose
quantification might be aimed. This part of the design process is known as Uncertainty
Quantification (UQ) and can be carried out by several techniques, being Monte Carlo analy-
sis one of the most widespread methods. However, Monte Carlo requires the computation
of a large number of samples. For that reason, surrogate models are used to accelerate
the UQ. Polynomial Chaos Expansion (PCE) is one family of metamodels commonly cou-
pled with KLE-generated random fields. Indeed, the Spectral Stochastic Finite Element
Method (SSFEM) [21] has been demonstrated to be a suitable technique for the solution
of complex, general problems in probabilistic mechanics. However, this method requires
solving extensive systems of equations. For instance, if the deterministic model is of size
n× n, and the number of terms considered in the PCE is N, then the size of the stochastic
system would be N × n× N × n. Other techniques have been proposed to circumvent
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such numerical issues. For example, Huang et al. [22] employed a collocation scheme
to calculate the coefficients of the PCE, which helped to decouple the finite element and
stochastic simulations. Therefore, the finite element solver was treated as a black-box
model. Apart from structural mechanics, this black-box approach has also been applied
to acoustic problems as in the paper by Sharma et al. [23], where they investigated the
effect of uncertainties in material and geometric parameters on the acoustic performance of
a viscoelastic coating. Indeed, Sharma and Sarkar [24,25] demonstrated that the acoustic
radiation could be redirected towards regions of interest by distributing lumped masses.

In this manuscript, the Carrera Unified Formulation (CUF) [26] is utilised for the
numerical modelling of VSC plates to exploit its capabilities of creating structural mod-
els in which the desired accuracy of the solution is considered as input of the analysis,
as demonstrated in [27]. CUF has been employed for a wide variety of problems such
as rotor dynamics [28], hygrothermal analysis [29] and incompressible flow analysis [30].
Moreover, CUF has been recently extended to the study of VSC. Vescovini et al. [31,32]
employed CUF combined with Ritz methods for free vibration, buckling and post-buckling
problems. Then, Demasi et al. [33,34] performed linear static analysis to show the capabili-
ties of CUF against commercial software, demonstrating the reduction in terms of degrees
of freedom (DOF). Moreover, Viglietti et al. [35,36] developed one-dimensional models
and compared the usage of equivalent single layer (ESL) and layer-wise (LW) theories for
the free vibration analysis. Finally, Pagani and Sanchez-Majano [37,38] combined CUF
and mesoscale uncertainty to study, respectively, the variability of critical buckling loads
and failure indices due to fibre misalignments induced during manufacturing processes.
Following the research path established in the previous paragraphs, this manuscript aims
to investigate the influence of microscale defects such as the spatially varying fibre volume
fraction and the fibre misalignments in the buckling performance of VSC plates and inves-
tigate an efficient mathematical model to relate such spatial variation with the macroscale
structural response.

The outline of the article is as follows: first, the formulation of layer-wise and
component-wise models to describe the macroscale and microscale structure is explained
in Section 2. Next, how spatial variation of the micro and mesoscale features are imposed
is depicted in Section 3. Then, the uncertainty quantification models are described in
Section 4. Afterwards, numerical results are shown in Section 5, and discussed in Section 6.
Finally, conclusions are drawn, and comments regarding future developments are made
in Section 7.

2. Layer- and Component-Wise Unified Finite Elements

In the present study, VSC plates are analysed using one-dimensional (1D) CUF models,
which have been extensively used in the structural analysis considering various geometries
and materials. Within the CUF framework, the three-dimensional (3D) displacement field
can be expressed in terms of an arbitrary expansion of the 1D generalised unknowns that
lay along the longitudinal axis, referred to as the y-axis hereinafter:

u(x, y, z) = Fτ(x, z)uτ(y) τ = 1, . . . , M. (1)

Therein, uτ(y) represents the vector containing the generalised displacements, Fτ(x, z)
is the expansion function depending on the cross-section coordinates, and M is the number
of expansion terms. In this manuscript, two expansion functions are utilised, namely the
Lagrange expansion (LE) and Hierarchical Legendre expansion (HLE). Such families are
explained in upcoming sections. A graphical representation of the spatial discretisation of
the macroscale structure is shown in Figure 1.
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4 node (B4) FE

LE

T1

T1

T0

Figure 1. Representation of the finite element (FE) and Lagrange expansion (LE) theories employed
over the macroscale structure. FE are used along the longitudinal axis and LE are utilised for
the cross-section. T0 and T1 represent the fibre orientation at the centre of the plate and at the
edge, respectively.

2.1. Finite Element Formulation

In the finite element (FE) method, the generalised displacements uτ can be expressed
in terms of the unknown nodal vector uτi and the shape functions Ni(y) as follows:

uτ = Ni(y)uτi i = 1, . . . , nnodes, (2)

in which nnodes represents the total number of beam nodes. Lagrange interpolation poly-
nomials are employed as shape functions in this work. For the sake of brevity, these
expressions are not reported here, but they can be found in Chapter 8 of the book by
Carrera et al. [26]. Then, coupling Equations (1) and (2), one obtains that the generalised
3D displacement field can be expressed as:

u(x, y, z) = Fτ(x, z)Ni(y)uτi i = 1, . . . , nnodes τ = 1, . . . , M. (3)

This displacement field can be used along with the principle of virtual displacements
(PVD) to derive the governing equations and calculate the stiffness matrix for a linear static
problem. According to the PVD:

δLint = δLext, (4)

in which δLint represents the variation of the internal strain energy

δLint =
∫

V
δεTσdV, (5)

where ε and σ are the strain and stress tensors in the Voigt notation, respectively; and δLext
is the virtual work of the external loading:

δLext = FsNjδuT
sjP, (6)

where P denotes the 3× 1 vector of the applied load.
Equation (5) can be expanded by using Equation (3), the constitutive relations between

stresses and strains and the geometrical relations, yielding the following result:

δLint = δusjk
ijτs
0 uτi, (7)
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in which kijτs
0 is the so-called fundamental nucleus (FN), which is a 3× 3 matrix, whose

expression is invariant regardless of the structural order and expansion function. The math-
ematical expression for the FN is:

kijτs
0 =

∫
V

DT(Fτ Ni)C̃D(FsNj)dV, (8)

where D represents the differential operator containing the geometrical relations between
strains and displacements and C̃ is the material stiffness matrix, dependent on the point-
wise fibre orientation θ(x, y) and expressed in the global reference frame. A reference
on how C̃ can be calculated is found in Reference [38]. The final stiffness matrix K̃ of
the structure is assembled by simply looping through the indices i, j, τ and s. Then,
the buckling analysis consists in solving the equation:

|KT | = 0, (9)

where KT is the tangent matrix of the structure. The expression for this matrix is derived
by means of the PVD:

δ2(Lint) =
∫

V
δ(δεTσ)dV =

∫
V

[
δ(δεT)σ + δεTδσ

]
dV. (10)

After applying the expressions from Equation (3), the constitutive law and the geo-
metrical relations, the previous equation adopts the following form:

δ2(Lint) = δuT
sjk

ijτs
T δuτi. (11)

This equation can be written for the case of linearised buckling problem as:

δ2(Lint) ≈ δuT
sj

(
kijτs

0 + kijτs
σ

)
δuτi, (12)

where the tangent stiffness matrix has been expressed as kijτs
T = kijτs

0 + kijτs
σ . On one side,

kijτs
0 refers to the linear stiffness matrix in terms of FN. On the other side, Kijτs

σ represents
the FN of the geometric stiffness matrix, which strictly depends on the internal linear stress
state of the structure. This stress state will be dependent on the accuracy of the model.
The equations that allow the calculation of the tangent matrix are not reported in the
manuscript for brevity reasons but can be found in [39]. Finally, since the linear hypothesis
holds, Kσ is supposed to be proportional to λcr, which is the solution to the eigenvalue
problem and is proportional to the applied load in the case of linearised buckling. Thus,
Equation (9) can be rewritten as follows:

|K0 + λcrKσ| = 0, (13)

in order to calculate λcr. Note that K0 and Kσ denote the global assembled finite element arrays.

2.2. Cross-Sectional Expansions for Multilayered and Multicomponent Structures

The structural theory depends on the order of the chosen Lagrange polynomial:
four-node bilinear L4, nine-node quadratic L9 and cubic sixteen-node sixth-order L16.
For instance, the interpolation functions of L4 expansion are defined as:

Fτ =
1
4
(1− rτr)(1− sτs) τ = 1, 2, 3, 4, (14)
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where r, s ∈ [−1, 1]× [−1, 1], and rτ and sτ represent the location of the polynomials’ roots.
Thus, the kinematic displacement field of a single L4 beam is:

ux(x, y, z) = F1(x, z)u1x(y) + F2(x, z)u2x(y) + F3(x, z)u3x(y) + F4(x, z)u4x(y)

uy(x, y, z) = F1(x, z)u1y(y) + F2(x, z)u2y(y) + F3(x, z)u3y(y) + F4(x, z)u4y(y) (15)

uz(x, y, z) = F1(x, z)u1z(y) + F2(x, z)u2z(y) + F3(x, z)u3z(y) + F4(x, z)u4z(y),

where u1x, u1y, u1z, . . . , u4x, u4y, u4z are the generalised displacements.
On the other hand, HLE consists of a set of two-dimensional (2D) Legendre polyno-

mials that act as expansion functions of the cross-section coordinates. This set of inter-
polation functions was derived by Szabò and Babuska [40] for the p-version of the finite
element method for the 1D interpolation functions and exhibit some interesting properties
for the generation of interpolation functions. They constitute an orthogonal basis and
form a fully hierarchical set. The 1D set was later extended to quadrilateral domains by
Pagani et al. [41]. Depending on where these polynomials vanish, they are divided into
the following categories:

• Nodal modes: they are analogous to the Lagrange linear interpolation polynomials on
the four vertex nodes of the quadrilateral domain. They vanish in all vertices, but one,
and their expressions are:

Fτ(r, s) =
1
4
(1− rir)(1− sis) for i = 1, 2, 3, 4. (16)

• Side modes: they are defined for p ≥ 2. They vanish for all edges, but one, and are
defined in the [−1,1] × [−1,1] domain as:

Fτ(r, s) = 1
2 (1− s)φp(r) for i = 5, 9, 13, 18 (17)

Fτ(r, s) = 1
2 (1 + r)φp(s) for i = 6, 10, 14, 19 (18)

Fτ(r, s) = 1
2 (1 + s)φp(r) for i = 7, 11, 15, 20 (19)

Fτ(r, s) = 1
2 (1− r)φp(s) for i = 8, 14, 16, 21, (20)

where φp corresponds to the 1D internal Legendre-type modes, defined in [40].
• Internal modes: they are built by multiplying 1D internal modes. They are consid-

ered when the polynomial has a degree p ≥ 4, and vanish at all the edges of the
domain. For instance, the set of sixth-order polynomials comprises three internal
expansions are:

F28(r, s) = φ4(r)φ2(s) (21)

F29(r, s) = φ3(r)φ3(s) (22)

F30(r, s) = φ2(r)φ4(s). (23)

HLE theories can be used to obtain a coarse discretisation over large quadrilateral do-
mains. However, when dealing with curved geometries, standard isoparametric elements
represent the boundaries employing the same interpolation functions, thus introducing
a numerical error while computing the stiffness matrix due to the inability to exactly
represent the curved boundaries. In the case of large curved domains, this error can be
sufficiently large to consider the usage of non-isoparametric techniques to represent such
boundaries. This is of utmost importance when, over cross-sectional domains, there exist
diverse phases with different material properties as illustrated in Figure 2.
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Mapping function 

Q 

Figure 2. Mapping of the fibre section of the RUC by means of the blending function method.
Reprinted from Reference [42], with permission from Elsevier.

Several mapping techniques exist, such as the so-called first-order and second-order
mapping. Nevertheless, if an exact representation is pursued, the blending function method
(BFM) developed by Gordon and Hall [43] is recommended. BFM permits to describe
the exact geometry of an arbitrary component in the cross-sectional coordinates y2, y3 by
means of the mapping functions as:

y2 = Qa(r, s) = 1
2 (1− s)a1(r) + 1

2 (1 + r)a2(s) + 1
2 (1 + s)a3(r) + 1

2 (1− r)a4(s)− Fτ(r, s)rτ (24)

y3 = Qb(r, s) = 1
2 (1− s)b1(r) + 1

2 (1 + r)b2(s) + 1
2 (1 + s)b3(r) + 1

2 (1− r)ab4(s)− Fτ(r, s)sτ, (25)

where τ = 1, . . . , 4 and aτ and bτ are the parametric curves of the edges. For further
insights into these mapping techniques, the reader is invited to read [41], where these
methodologies are properly explained.

The assembly of multilayered and multicomponent structures’ stiffness arrays is dis-
cussed in the following. For instance, LW models allow the consideration of the generalised
displacements of each individual layer independently. Then, compatibility conditions are
imposed at the interfaces of two consecutive plies by considering that:

uk
top = uk+1

bottom, (26)

in which k represents the k-th layer of the laminate. This model was initially introduced
employing HLE by Pagani et al. [41] for the analysis of classical laminates and thin-
walled structures and, more recently, LE was used for the study of VSC in the works by
Viglietti et al. [35,36] and Pagani and Sanchez-Majano [37,38].

Based on this approach, and taking advantage of the CUF capacities, the LW modelling
can be extended straightforwardly to any component on the cross-section with no loss of
generalisation. Indeed, by extending the meaning of the index k from the layer to a generic
component of the cross-section, one can generate independent kinematics for the matrix,
the fibre or any other component and then impose the compatibility of displacements
at the interfaces. Thus, the assembly of the stiffness matrix of a component-wise (CW)
model remains formally the same as that of LW approaches. Both assembly procedures are
illustrated in Figure 3.

Assembled matrix

s

�

Layer 1 Layer 2 Layer 3

s s s

� � �

Layer-wise

Component 1

s s s

� � �

Component 3Component 2

Component-wise

Figure 3. Layer-wise and component-wise assembly procedures.
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2.3. Micromechanical Modelling

Composite structures can be considered as a whole ensemble of microstructures
periodically distributed over the structure’s volume. In this context, the Representative Unit
Cell (RUC) constitutes the essential building block that contains the necessary information
to identify the material properties. This is represented in Figure 4, where a zoom into the
heterogeneous material shows the RUC. The macroscopic properties can be defined in the
global reference system x = x1, x2, x3, whereas y = y1, y2, y3 denotes the local reference
frame of the RUC. Micromechanical analyses can be two-way: (i) in a first instance, they
can be used to calculate the effective properties of the heterogeneous material represented
by the RUC as input of the equivalent homogeneous material properties in higher scale
analyses; (ii) retrieve the displacements, strains and stresses fields over the RUC from the
outputs of the macroscale structural analysis at certain points of interest.

x2

x1
x3 y2

y1

y3

δ2

δ3

δ1

Figure 4. Representation of a periodic heterogeneous material and its RUC along with the global and
local coordinate reference frames.

Micromechanical analyses assume that the RUC is much smaller than the macroscopic
structure, such that y = x/δ, where δ is a scaling factor that characterises the dimension of
the RUC. In micromechanics, the material properties provided by the RUC analysis at the
microscale do not depend on the macroscale structural problem. That is, they are intrinsic
properties of the material chosen for the structural analysis. Additionally, the average
value of the local solutions over the RUC volume is equal to the global solution of the
macroscopic problem. That is, for a generic field φ(x, y):

1
V

∫
V

φ(x, y)dV = φ̄(x), (27)

where V is the volume of the RUC, φ(x, y) is the local field, dependent of the global and
local coordinates (x and y, respectively) and φ̄ is the averaged field which only depends on
the global coordinates. Generally, periodic boundary conditions are applied to guarantee
the compatibility of deformations with respect to the adjacent RUCs. This periodicity can
be written as:

ui(x1, x2, x3; δ1/2, y2, y3) = ui(x1 + δ1, x2, x3;−δ1/2, y2, y3)

ui(x1, x2, x3; y1, δ2/2, y3) = ui(x1, x2 + δ2, x3; y1,−δ2/2, y3) (28)

ui(x1, x2, x3; y1, y2, δ3/2) = ui(x1, x2, x3 + δ3; y1, y2,−δ3/2).

In this work, the Variational Asymptotic Method (VAM) and the Mechanics of Struc-
ture Genome (MSG), initially derived in [44,45], are coupled with CUF to obtain the
homogenised material properties of the RUC. MSG states that such properties of an RUC
can be obtained by minimising the difference between the strain energies of the heteroge-
neous structure and the equivalent homogeneous material. This difference is expressed as
the following functional:

Π =
1
V

∫
V

1
2

CijklεijεkldV − 1
2

C∗ijkl ε̄ij ε̄kl , (29)

where the first term is the strain energy of the heterogeneous material represented by
the RUC, whilst the second corresponds to the strain energy of the homogeneous one.
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Cijkl represents the fourth-order elastic tensor, and εij is the second-order strain tensor.
Similarly, C∗ijkl and ε̄ij are their equivalents of the homogeneous material, respectively. In
micromechanics, the local displacements ui(x; y) can be written in terms of the global
displacements ūi(x) and a fluctuation χi, which is scaled down by δ, as:

ui(x; y) = ūi(x) + δχi(x; y). (30)

Then, because of the different coordinate systems involved in a multiscale analysis,
the derivative of a field φ(x; y) can be computed as:

∂φ

∂xj
+

1
δ

∂φ

∂yj
. (31)

Thus, applying Equation (31) to Equation (30), and neglecting small terms according
to VAM, the strains can be expressed as:

εij(x; y) = ε̄ij(x) + χi,j(x; y), (32)

where

ε̄ij(x) =
1
2

(
∂ūi(x)

∂xj
+

∂ūj(x)
∂xi

)
(33)

and

χi,j(x, y) =
1
2

(
∂χi(x; y)

∂xj
+

∂χj(x; y)
∂xi

)
. (34)

Then, using Equation (27), the following can be written:

ūi = 〈ui〉 ε̄ij =
〈
εij,
〉

(35)

which yields the following constraints to the fluctuation unknowns:

〈χi〉 = 0
〈
χi,j
〉
= 0. (36)

Finally, making use of the displacement and strain expressions from Equations (30)
and (32), respectively, and considering the second term from Equation (29) as a constant,
the fluctuation unknowns χi can be obtained by minimising the functional:

Π =
1
V

∫
V

1
2

Cijkl(ε̄ij + χi,j)(ε̄kl + χk,l)dV. (37)

In the CUF micromechanics framework, the RUC is modelled by means of 1D beam
elements using the CW approach. Figure 5a shows a composite microstructure with two
different constituents and the CW idealisation of it with individual components modelled
separately. Figure 5b represents the assembled cross-section with HLE elements along
the beam axis for the RUC. The cross-section lies in the y2 − y3 plane and extends along
the longitudinal direction y1. The coarse mesh employed for the discretisation of the
cross-section is due to the BFM coupling with fourth-order HLE, while for the beam axis,
a two-node beam element is used. The geometry of the model is fixed at the beginning
of the analysis, and the accuracy of the micromechanical analysis is tuned through the
polynomial order of the theory of structure. Readers are referred to the original work by de
Miguel et al. [42], where a detailed derivation, in the CUF framework, of the explained
micromechanical problem is obtained. Therein, Equation (37) is expressed in terms of FN
for the RUC problem.
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y1

y2

y3

Unit Cell
Matrix

Fibre

(a)

HLE + Mapping

+

FE nodes

y3
y1

y2

(b)
Figure 5. (a) Component-wise modelling of composite microstructure with different phases. (b) Kine-
matics used to define the RUC cross-section.

3. Stochastic Fields Using KLE

In this work, both a spatial variation of the fibre volume fraction at the microscale
level and fibre misalignments at the layer level is imposed. This is made by means of a
two-dimensional stationary stochastic field dependent on the in-plane coordinates, which,
in a general notation, can be expressed as follows:

Hk(x, y; α) = H̃k + ∆Hk(x, y; α), (38)

in which α represents the random nature of the stochastic distributions and the apex k
refers to the k-th layer of the laminate; H̃k is the mean value of the stochastic field and
∆Hk(x, y; α) denotes the Gaussian variation of the random field about its mean for layer
k. Hk(x, y; α) can represent the fibre volume fraction Vk

f and the misalignment Θk. Note

that misalignments affect the nominal fibre path θ(x, y), hence Θk = θk(x, y) + ∆Θk(x, y; α).
In a generalised manner, the random fluctuation can be expressed in terms of an infinite
series expansion referred to as Karhunen-Loève expansion (KLE):

∆Hk(x, y; α) =
∞

∑
i=1

ξi(α)
√

λi ϕi(x, y), (39)

where ξi(α) are standard uncorrelated random variables and λi and ϕi(x, y) are the eigen-
values and eigenfunctions of the autocovariance kernel from solving the homogeneous
Fredholm integral equation of the second kind:∫

C(x, x′)ϕi(x′)dx′ = λi ϕi(x) (40)

in which C(x, x′) is the autocovariance kernel of the stochastic field. As stated in the book
by Ghanem and Spanos [21], there exist analytical solutions to Equation (40) when certain
families of covariance kernel are considered. One of them is the exponential function,
which is considered in this work and is expressed as:

C(x, x′, y, y′) = σ2
Hk e−|x−x′ |/lx−|y−y′ |/ly , (41)

in which lx and ly are the correlation lengths in x and y direction, respectively. Note that
when lx = ly, the stochastic field is called isotropic. Then, depending on the value of the
correlation lengths, the amount of negligible terms of the truncated KLE varies. This can
be appreciated in Figure 6 where the first eigenvalues have higher values when a larger
correlation length is considered. Therefore, the higher the correlation length is, the fewer
terms could be considered in the KLE. Nevertheless, the value of the correlation length lc
is based on the experience of both the engineer and the spatially varying property that is
considered. In this work, lx = ly and equal to the plate side length for both stochastic fields.
Mean values and standard deviations have been selected according to References [16,46]
for fibre volume fraction and fibre waviness, respectively. Examples of these two stochastic
fields over VSC plies are illustrated in Figure 7, in which x and y represent the in-plane
coordinates of the plate.
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Figure 6. Eigenvalues of the Fredholm integral for different correlation lengths.

(a) (b)

(c) (d)

Figure 7. (a) Fibre volume fraction (∆Vf ) random field over a [90 + < 0, 45 >]. (b) ∆Vf random field
over a [0 + < 0, 45 >] ply. (c) Misalignment field over a [90 + < 0, 45 >] ply. (d) Misalignment field
over a [0 + < 0, 45 >] ply. These random fields are generated by means of the Karhunen-Loève
expansion. The stochastic fields represent the fibre volume fraction and has a mean value Ṽf = 0.60
and a standard deviation σVf = 0.05 and fibre misalignments of null mean and standard deviation
σθ = 1.5◦.

Finally, the closed-form solutions to the stated problem can be found in the aforemen-
tioned book [21]. However, numerical approaches such as Nyström and Galerkin finite
element method can be found in the paper by Betz et al. [47]. For instance, Galerkin FE
was utilised to generate 3D stochastic fields in the paper by Choi et al. [48].

4. Polynomial Chaos Expansion

Commonly, uncertainty analyses regarding certain parameters of interest are carried
out by means of Monte Carlo analysis due to their relative easiness. Indeed, it consists of
computing several (103–106) samples of a deterministic problem in which those param-
eters are tweaked between each run. Afterwards, statistical moments can be computed.
Unfortunately, due to the expensive computational models that current numerical simu-
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lations require, performing this sort of analysis is time-consuming. Therefore, advanced
techniques such as Polynomial chaos expansion (PCE) are used for such purposes.

In the present study, uncertainty quantification of the critical buckling loads (Fcr)
is carried out by means of PCE. PCE can be used as a response surface metamodel that
represents the stochastic output as a multivariate polynomial function of a set of convenient
random variables. PCE can be generally expressed as:

Fcr(ξ1, ξ2, . . . , ξr) = a0Γ0 +
∞

∑
i=1

a1iΓ1(ξi1(α)) +
∞

∑
i=1

i

∑
j=1

ai1i2Γ2(ξi1(α)ξi2(α)) + . . . , (42)

where ξi1(α) is a set of independent standard Gaussian variables and Γp(ξi1(α), . . . , ξip(α))
is a set of multivariate Hermite polynomials of order p; ai1, . . . , aip are deterministic coeffi-
cients and α represents the random nature of the quantities involved. Equation (42) can be
rearranged and expressed as:

Fcr(ξ1, ξ2, . . . , ξn) =
r

∑
i=0

βiψi(ξi(α)), (43)

in which βi and ψi(ξi(α)) are equivalent to ai1, . . . , aip and Γp(ξi1(α), . . . , ξip(α)), respec-
tively. Note that, depending on the nature of the uncertainty quantities involved, that is:
Gaussian, uniform, beta distribution, and so forth, the polynomial basis varies as depicted
in [49]. Finally, the number of terms involved in a PCE up to order p are calculated by the
following expression:

N =
(r + p)!

r!p!
, (44)

where r is the number of variables involved, and p is the polynomial degree. Additionally,
due to the orthonormality of the polynomial basis, the first two statistical moments of the
PCE are encoded in its coefficients. Therefore, the mean value F̃cr and the variance σ2

Fcr
can

be calculated using the following expressions:

F̃cr = β0

σ2
Fcr

=
r

∑
i=1

β2
i . (45)

In this study, the PCE independent variables ξi(α) correspond to the standard Gaus-
sian terms considered in the KLE (recall Equation (39)), and Fcr denote the critical buckling
loads whose regression is intended. This uncertainty quantification procedure is illustrated
in Figure 8, where the dashed box contains the FE model, which aims to be substituted
by the PCE surrogate model. In this manner, the PCE is used as a non-intrusive model.
Further details on how the uncertainty is propagated throughout the FE solver is available
in Section 4.1. Similarly to the critical buckling loads, other quantities of interest, such as
stresses, could be computed by means of PCE.
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Generate i( ) ~N(0,1) for KLE 

Fibre vol frac (Vf )
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KLE assigns

Fibre misalignment (  )

 C=C(x*,y*,Vf)

 (x*,y*)= (x*,y*)+ (x*,y*) 

Rotation matrix: T=T( (x*,y*)) 

Nominal ibre orientation

             (x*,y*)

  Defected ibre orientation

 (x*,y*)= (x*,y*)+ (x*,y*) 

Microscale

   defect

Mesoscale 

   defect

E11,E22,E33,G12,G13

G23, 12, 13, 23

Polynomial regression

Homogenisation

C=T(x*,y*, )C(x*,y*,Vf)T(x*,y*, )T

Compute Kij s

Assemble K

Stochastic structural response

PCE Surrogate Model

Figure 8. Flow-chart of the stochastic structural analysis performed.

4.1. Multiscale Uncertainty Quantification

The flow-chart of this multiscale procedure is depicted in Figure 8 and is explained
herein. First of all, r = 4ndefn ξi(α) terms for the KLE are generated by means of Latin
Hypercube Sampling (LHS) for each analysis run. The reason for generating 4ndefn is that
the structure that is analysed has four layers and n terms for ndef defects are considered
in the KLE of each ply’s stochastic fields. Once the structural analysis begins, a fibre
volume fraction and fibre misalignment field are obtained with the KLE and are assigned
to each integration point. First, an homogenisation of the material properties is carried out
by means of a polynomial regression, whose curves are shown in Figure 9. Then, these
material properties are used to calculate the coefficients of the material stiffness matrix
(C), which is then rotated into the structural reference frame taking into account the fibre
misalignment ∆Θ to obtain C̃. Afterwards, the FN is computed for each FE, and the global
stiffness matrix is assembled. Once the equilibrium state is calculated, the internal stress
state is employed to calculate the geometrical stiffness matrix from Equation (13). Finally,
the stochastic buckling response is retrieved.

Note that the curves in Figure 9 have been obtained by randomly sampling 102 values
of Vf , which is considered as a Gaussian random variable of mean value equal to 0.60 and
a standard deviation equal to 0.05. Each sample is used as input of the homogenisation
problem, and the homogenised elastic properties are retrieved by means of the methodology
proposed in Section 2.3. After sampling, regression curves are obtained by polynomial fit.
From these curves, it can be appreciated that larger fibre volume fractions provide higher
values of the Young, transverse and shear moduli. Conversely, Poisson ratios decrease with
increasing values of Vf .
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(a) (b)

(c) (d)

(e) (f)
Figure 9. (a) E11 vs. Vf , (b) E22 vs. Vf , (c) G12 vs. Vf , (d) G23 vs. Vf , (e) ν12 vs. Vf , (f) ν23 vs. Vf .
Sampling results and data fit of the homogenised material properties. Fibre volume fraction is treated
as a Gaussian random variable with mean value Vf = 0.60 and standard deviation σVf = 0.05.

As the reader can see, this is a cumbersome procedure in which several numerical
techniques are employed and requires high computational cost when larger structures
are involved. Therefore, it is convenient to build a surrogate model that accounts for the
macroscale behaviour of the structure. As it was mentioned priorly, in this work, PCE is
used for such a purpose. In this case, the input of the surrogate model are the 4ndefn ξi(α)
coefficients used to build the layers’ random fields and the output are the different buckling
loads, where n = 10 are the number of terms considered in the KLE per random field.
The fact of considering 4ndefn terms to build the PCE surrogate is explained in the report
by Sudret and Der-Kiureghian [12] in which the inclusion of multiple random fields is
discussed. The addition of ndef defects increases the amount of ξi(α) coefficients, and thus
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the size of the PCE basis. This fact may lead to the so-called curse of dimensionality, hence
requiring a large number of samples to characterise the buckling load variability thoroughly.

5. Numerical Results

This section presents a series of numerical assessments on the verification of the pro-
posed in-house-developed 1D CUF-based FE models used to solve the linearised buckling
problem of VSC plates. In these assessments, a four-layer balanced and symmetric variable
stiffness composite plate is analysed. The structure is clamped on one edge, while, on the
opposite side, a pressure P = 7.75 kPa is applied, and the remaining edges are free (see
Figure 10), which is equivalent to apply a unitary point-load. The plate dimensions are
listed in Table 1 and the material properties of the fibre and matrix are shown in Table 2,
along with the homogenised material properties using a nominal fibre volume fraction
Vf = 0.60. Recall that these homogenised material properties are the outcome of a mi-
cromechanical analysis, in which the RUC is composed of a two-node beam FE and a
fourth-order HLE using BFM for the cross-section. Two fibre orientations are considered in
this study, namely:

• Case 1: θ = [0± < 45, 0 >]s
• Case 2: θ = [90± < 0, 45 >]s,

following the notation for linearly varying fibre orientation introduced by Gürdal and
Olmedo in [50] as θ = [φ < T0, T1 >]. φ represents the rotation of the fibre path with
respect to the x-axis and T0 and T1 are the orientations at the centre and at the edge of the
plate as shown in Figure 1.

F

P

a

b

Figure 10. Boundary conditions of the laminated plates. C and F stand for clamped and free edges
respectively. Pressure P is exerted uniformly on the laminate yz plane.

Table 1. Geometrical dimensions of the laminated plate.

a [m] b [m] Ply Thickness [mm]

0.254 0.254 0.127
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Table 2. Elastic properties of the constituents of the composite material and the homogenised material
properties for a fibre volume fraction Vf = 0.60.

Constituent E11 [GPa] E22 [GPa] G12 [GPa] G23 [GPa] ν12 [-] ν23 [-]

Fibre 235.0 14.0 28.0 5.60 0.20 0.25
Matrix 4.80 4.80 1.79 1.79 0.34 0.34

Homogenised Vf = 0.60 143.17 9.64 6.09 3.12 0.252 0.349

5.1. Preliminary Assessments on Pristine Plates

The first numerical assessment is the verification of the proposed CUF FE model
against the commercial software Abaqus. Initially, a mesh convergence analysis is carried
out. In these results, the fibre volume fraction is fixed to Vf = 0.60, and the fibre orientation
is not subjected to any misalignments. An equal number of beam elements and cross-
section subdomains are used to discretise the y and x axes, while a single cross-sectional
element is used per ply. Quadratic (B3/L9) and cubic (B4/L16) elements are considered
for both y and x directions, thus yielding to the nomenclature D BY-E LX, where D and E
denote the amount of FE and cross-sectional subdomains along the mentioned directions,
and Y and X represent the order of the elements, respectively.

The outcomes of the mesh convergence analysis are shown in Tables 3 and 4, along
with the results of a similar study conducted using Abaqus, which utilises a planar shell
model composed of S4R elements.

Table 3. Convergence of the buckling load for the Case 1 pristine structure. A uniform fibre volume Vf = 0.60 is considered
and no fibre waviness.

Model Mesh DOF Fcr1 [N] Fcr2 [N] Fcr3 [N] Fcr4 [N] Fcr5 [N] Fcr6 [N]

Abaqus 11×11 726 154.82 175.73 240.64 355.42 397.41 481.44
14 × 14 1176 146.08 166.74 229.19 332.39 373.74 452.42
26 × 26 4056 141.92 161.34 220.12 310.66 349.98 422.85
35 × 35 7350 134.29 151.70 215.58 287.20 321.01 412.78
52 × 52 16,224 133.80 151.11 214.76 285.49 318.71 410.53

Cubic 2B4-2L16 2184 163.98 186.71 255.72 391.69 440.89 521.07
4B4-4L16 7098 143.59 159.08 216.77 310.22 366.45 407.53
6B4-6L16 14,820 142.01 156.24 211.10 294.06 349.56 390.31
8B4-8L16 25,350 141.64 155.57 209.82 290.89 345.89 386.11

Quadratic 4B3-4L9 2430 209.87 236.55 311.29 436.55 501.59 570.80
6B3-6L9 4914 168.20 187.70 251.96 367.75 414.15 477.14
8B3-8L9 8262 155.93 172.94 232.71 333.21 384.60 436.97

10B3-10L9 12,474 150.49 166.32 223.96 316.89 370.03 417.18
12B3-12L9 17,550 145.85 160.64 216.41 302.76 356.92 400.51

In addition to the previous results, the computational time has been taken into account
since, in the following assessments, time plays a significant role. Table 5 shows the relative
computational time, with respect to the computing time of the 4B4-4L16 mesh, which has
been chosen to perform the following sensitivity analyses. Each of the simulations has
been carried out by an i7-10510U CPU 1.80 GHz.

Finally, buckling loads and modes of the two fibre paths are illustrated in
Figures 11 and 12. The following comments are made:

1. The proposed CUF model provides similar results to those obtained by
commercial software.

2. The 4B4-4L16 mesh has been chosen because of its trade-off between accuracy and
computational time.

3. Relevant differences in the buckling loads’ values appear when considering different
rotation angle, that is, whether φ = 0◦ or φ = 90◦.
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Table 4. Convergence of the buckling load for the Case 2 pristine structure. A uniform fibre volume Vf = 0.60 is considered
and no fibre waviness.

Model Mesh DOF Fcr1 [N] Fcr2 [N] Fcr3 [N] Fcr4 [N] Fcr5 [N] Fcr6 [N]

Abaqus 11×11 726 26.49 51.56 64.29 88.30 137.57 168.73
14 × 14 1176 25.75 49.55 61.27 83.54 121.31 149.29
26 × 26 4056 24.99 47.35 58.64 78.90 107.40 132.03
35 × 35 7350 24.71 47.02 57.67 78.09 104.31 129.26
52 × 52 16,224 24.67 46.75 57.55 77.59 103.26 127.54

Cubic 2B4-2L16 2184 27.90 59.06 91.21 141.54 322.77 387.92
4B4-4L16 7098 26.05 48.64 60.27 81.31 109.39 134.89
6B4-6L16 14,820 25.42 46.97 58.29 77.04 108.59 128.68
8B4-8L16 25,350 25.21 46.49 57.75 76.33 105.89 124.91

Quadratic 4B3-4L9 2430 34.83 69.15 89.79 137.56 323.65 391.87
6B3-6L9 4914 29.65 56.91 72.49 101.51 154.18 196.38
8B3-8L9 8262 27.77 52.52 65.55 89.78 134.59 163.93

10B3-10L9 12,474 26.84 50.33 62.49 84.59 123.75 148.71
12B3-12L9 17,550 26.33 49.13 60.92 81.87 117.82 140.63

Table 5. Dimensionless CPU time for the different meshes employed with the present LW approach.

Model Mesh DOF t/tch [-]

Cubic 2B4-2L16 2184 0.30
4B4-4L16 7098 1.00
6B4-6L16 14,820 2.47
8B4-8L16 25,350 4.23

Quadratic 4B3-4L9 2430 0.01
6B3-6L9 4914 0.22
8B3-8L9 8262 0.37

10B3-10L9 12,474 0.55
12B3-12L9 17,550 0.79

5.2. Single-Defect Multiscale Uncertainty

The second assessment considers the inclusion of fibre volume fraction stochastic
fields in the numerical model to investigate their influence on the buckling loads. Af-
ter performing 103 Monte Carlo simulations, their outcomes are employed to compute
some statistics, such as mean value and standard deviation. Additionally, these outcomes
are used to build first- and second-order PCE, as explained in Section 4.1. The first two
statistical moments, calculated through Monte Carlo analysis and first- and second-order
PCE, are enlisted in Tables 6 and 7. The standard deviation is expressed in terms of the
Coefficient of Variation (COV), which is defined as the ratio between the standard deviation
and the mean value.

Additionally, the convergence of the mean value and COV concerning the number of
samples used to build the PCE is reported in Figure 13.

Table 6. Case 1 critical buckling loads mean value and standard deviation calculated by means of pure Monte Carlo and
first- and second-order PCE.

Buckling Deterministic Monte Carlo 1st Order
PCE

2nd Order
PCE Monte Carlo 1st Order

PCE
2nd Order

PCE
Load Value [N] Mean [N] Mean [N] Mean [N] COV [%] COV [%] COV [%]

Fcr1 143.59 143.48 143.48 143.49 3.14 3.16 3.16
Fcr2 159.07 159.21 159.21 159.21 3.07 3.08 3.09
Fcr3 216.77 217.16 217.16 217.16 3.20 3.22 3.21
Fcr4 310.21 310.47 310.46 310.48 3.11 3.12 3.12
Fcr5 366.45 366.61 366.61 366.62 3.27 3.31 3.31
Fcr6 407.53 407.91 407.91 407.93 3.24 3.11 3.10
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Probability density functions (PDFs) are calculated from the Monte Carlo data and after
carrying out 104 emulations using the previous PCE. Note that with the term emulation,
the authors refer to the surrogate model feeding and gathering results. These curves are
represented in Figures 14 and 15. For the sake of clearness, only the PDFs obtained with
the second-order PCE emulation results are shown since Monte Carlo and PCE provide
practically the same outcomes.

(a) (b)

(c) (d)

(e) (f)
Figure 11. (a) First mode, (b) Second mode, (c) Third mode, (d) Fourth mode, (e) Fifth mode, (f) Sixth
mode. Case 1 pristine buckling modes. A uniform fibre volume Vf = 0.60 is considered and no fibre
waviness. The colour bar in (a) applies for all figures in this panel.
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(a) (b)

(c) (d)

(e) (f)
Figure 12. (a) First mode, (b) Second mode, (c) Third mode, (d) Fourth mode, (e) Fifth mode, (f) Sixth
mode. Case 2 pristine buckling modes. A uniform fibre volume Vf = 0.60 is considered and no fibre
waviness. The colour bar in (a) applies for all figures in this panel.

Table 7. Case 2 critical buckling loads mean value and standard deviation calculated by means of pure Monte Carlo and
first- and second-order PCE.

Buckling Deterministic Monte Carlo 1st Order
PCE

2nd Order
PCE Monte Carlo 1st Order

PCE
2nd Order

PCE
Load Value [N] Mean [N] Mean [N] Mean [N] COV [%] COV [%] COV [%]

Fcr1 26.05 26.10 26.10 26.10 2.81 2.84 2.84
Fcr2 48.64 48.66 48.66 48.66 2.49 2.49 2.50
Fcr3 60.27 60.30 60.29 60.30 2.75 2.76 2.75
Fcr4 81.31 81.29 81.29 81.29 2.48 2.48 2.48
Fcr5 109.3 109.58 109.58 109.58 2.85 2.86 2.86
Fcr6 134.89 134.96 134.96 134.96 2.52 2.51 2.51
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(a) (b)
Figure 13. (a) Case 1 Fcr5, (b) Case 2 Fcr5. Mean value and COV convergence of the Case 1 and
Case 2 buckling loads provided by the computed PCE for different amount of samples. Fibre volume
fraction is treated as a Gaussian random variable with mean value Vf = 0.60 and standard deviation
σVf = 0.05 and no fibre waviness.

(a) (b)
Figure 14. (a) Case 1 Fcr1, Fcr2 and Fcr3 PDFs, (b) Case 1 Fcr4, Fcr5 and Fcr6 PDFs. Fibre volume
fraction is treated as a Gaussian random variable with mean value Vf = 0.60 and standard deviation
σVf = 0.05 and no fibre waviness.

(a) (b)
Figure 15. (a) Case 2 Fcr1, Fcr2 and Fcr3 PDFs, (b) Case 2 Fcr4, Fcr5 and Fcr6 PDFs. Fibre volume
fraction is treated as a Gaussian random variable with mean value Vf = 0.60 and standard deviation
σVf = 0.05 and no fibre waviness.

The computational time needed to perform the Monte Carlo analysis, obtain 300 samples
to construct the PCE surrogate and emulate 104 samples with PCE is enlisted in Table 8.
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Table 8. Computational time needed to: perform a Monte Carlo analysis consisting of 103 samples;
obtain 300 samples to construct the PCE surrogate, and emulate 104 samples using PCE.

Monte Carlo [hours] PCE Build-Up [hours] PCE Usage [s]

71 21 3

It is appreciated in Figure 14 that PDFs present overlapping tails, which is due to the
fibre volume fraction variation. However, it is not clear whether the microscale uncertainty
causes mode switching or not. For that purpose, correlation indices between the buckling
load of the overlapping curves are calculated as follows:

rj,k =
∑Nsim

i=1 (Fi
crj
− F̃crj)(Fi

crk
− F̃crk )√

∑Nsim
i=1 (Fi

crj
− F̃crj)

2
√

∑Nsim
i=1 (Fi

crk
− F̃crk )

2
, (46)

in which Fi
crj

is the i-th result for the j-th buckling load, F̃crj is the mean value of the j-th
buckling load and rj,k represents the correlation between the j-th and k-th buckling load.
Correlation results are enlisted in Table 9.

Table 9. Correlation indices between Case 1 buckling loads.

r1,2 r4,5 r5,6

0.998 0.912 0.988

Modal Assurance Criterion (MAC) matrix is used to foresee eventual mode switching
and interactions between modes of the defected and the pristine structure. The matrix’s
components are calculated as:

MAC(i)
j,k =

|φT
i,jφref,k|2

(φT
i,jφi,j)(φ

T
ref,kφref,k)

, (47)

where φi,j is the i-th sample of the j-th eigenvector, φref,k refers to the k-th eigenvector of

the reference solution and MAC(i)
j,k represents the i-th sample of the j, k component of the

MAC matrix. Mean value and standard deviation of each component are calculated and
represented in Figure 16.

The following comments are made:

1. Statistical moments provided by first- and second-order PCE are in good agreement
with the Monte Carlo results, as seen in Tables 6 and 7.

2. The mean value provided by the considered PCE converges when some 200 to
300 samples are employed to construct such surrogates. Conversely, COV needs
additional samples.

3. The results in Table 8 suggest that PCE could be used to decrease computational times.
4. Overlapping tails appear in Case 1 buckling load PDFs, as seen in Figure 14. Conversely,

Case 2 buckling load PDFs do not show such feature, as appreciated in Figure 15.
5. Correlation indices in Table 9 and MAC statistics in Figure 16 suggest that no mode

switching occurs.
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(a)

(b)
Figure 16. (a) Case 1 3D MAC matrix, (b) Case 2 3D MAC matrix. Floor indicates the mean value
and bars the standard deviation of each component of the matrix. Fibre volume fraction is treated as
a Gaussian random variable with mean value Vf = 0.60 and standard deviation σVf = 0.05 and no
fibre waviness.

5.3. Double-Defect Multiscale Uncertainty

The third numerical assessment aims to show the capabilities of the current defect
modelling approach. Herein, two kinds of uncertainty are included, namely fibre volume
fraction and fibre misalignment. This implies that microscale and mesoscale defects are
considered. The latter defects were already studied by the authors in [37,38]. The influence
that the combination of defects has on the buckling load is addressed in this section. For this
analysis, the fibre volume fraction keeps the same mean value and standard deviation.
At the same time, misalignments have a null mean value and a standard deviation σθ = 1.5◦,
in accordance with the data obtained by Sutcliffe et al. [46]. Additionally, taking advantage
of the capabilities demonstrated in terms of convergence by PCE in the previous section
(recall Figure 13), only 300 simulations are carried out to build regression models and
compute the first two statistical moments, which are enlisted in Tables 10 and 11.

Table 10. Case 1 critical buckling loads mean value and COV calculated by means of first- and
second-order PCE considering spatially varying fibre volume fraction and fibre misalignments.

Buckling Deterministic 1st Order
PCE

2nd Order
PCE

1st Order
PCE

2nd Order
PCE

Load Load [N] Mean [N] Mean [N] COV [%] COV [%]

Fcr1 143.59 143.30 143.34 4.52 4.42
Fcr2 159.07 159.29 159.26 3.91 3.79
Fcr3 216.77 217.22 217.23 3.61 3.41
Fcr4 310.21 309.82 309.76 3.59 3.39
Fcr5 366.45 366.75 366.76 5.02 4.88
Fcr6 407.53 407.09 406.99 4.05 3.93
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Table 11. Case 2 critical buckling loads mean value and COV calculated by means of first- and
second-order PCE considering spatially varying fibre volume fraction and fibre misalignments.

Buckling Deterministic 1st Order
PCE

2nd Order
PCE

1st Order
PCE

2nd Order
PCE

Load Load [N] Mean [N] Mean [N] COV [%] COV [%]

Fcr1 26.05 26.13 26.14 3.96 3.88
Fcr2 48.64 48.65 48.65 3.57 3.46
Fcr3 60.27 60.42 60.41 5.32 5.22
Fcr4 81.31 81.32 81.32 3.72 3.63
Fcr5 109.30 109.67 109.66 4.08 4.05
Fcr6 134.89 135.11 135.11 3.75 3.68

Case 1 and 2 buckling load PDFs, considering the two defects, are represented in
Figure 17. These PDFs were obtained using the second-order PCE surrogate and computing
a total of 104 emulations.

(a) (b)

(c) (d)
Figure 17. (a) Case 1 Fcr1, Fcr2 and Fcr3 PDFs, (b) Case 1 Fcr4, Fcr5 and Fcr6 PDFs. (c) Case 2 Fcr1, Fcr2 and
Fcr3 PDFs. (d) Case 2 Fcr4, Fcr5 and Fcr6 PDFs. Fibre volume fraction is treated as a Gaussian random
variable with mean value Vf = 0.60 and standard deviation σVf = 0.05 whereas misalignments have
a null mean and standard deviation σθ = 1.5◦.

As carried out in Section 5.2, mean value and standard deviation of each MAC matrix’s
component are calculated and represented in Figure 18.
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(a)

(b)
Figure 18. (a) Case 1 3D MAC matrix, (b) Case 2 3D MAC matrix. Floor indicates the mean value
and bars the standard deviation of each component of the matrix. Fibre volume fraction is treated as
a Gaussian random variable with mean value Vf = 0.60 and standard deviation σVf = 0.05 whereas
misalignments have a null mean and standard deviation σθ = 1.5◦.

The following comments are made:

1. First- and second-order PCE provide similar results for both the mean and COV,
as seen in Tables 10 and 11. As expected, the addition of a second defect increases the
COV of the buckling load distribution. Particularly, Case 2 shows a larger increment.

2. Case 1 and 2 buckling load PDFs are wider when two defects are accounted for,
compared to the single-defect case. As a consequence, overlapping tails between
PDFs appear now for both fibre paths. This can be appreciated in Figure 17.

3. MAC matrix’s statistics in Figure 18 suggest that no mode switching occurs, for both
fibre paths, when two defects are accounted for.

6. Discussion

The first set of numerical assessments consists of the verification of the proposed
methodology. It is observed in Tables 3 and 4 that the present method provides results that
are in agreement with those obtained by the commercial software Abaqus [51]. At first
glance, it may seem that employing LW models in the characterisation of the buckling load
of a VSC plate might not be helpful since, with the actual Abaqus shell model, a similar
solution is achieved by using a fraction of the DOF. Nevertheless, this LW model approach
is useful to include uncertainty at the micro and mesoscale level of the composite plate,
which affects the internal stress state utilised to compute the geometric stiffness matrix
to solve Equation (13). Therefore, a precise evaluation of such stresses is mandatory.
The differences between Abaqus and CUF LW models stem from two main factors: (i) the
modelling approach and (ii) the computation of the local fibre angle orientation. Regarding
the former, an ESL approach is obtained with Abaqus since classic plate theories are
employed in the definition of the FEs, whilst for the present LW model, a more accurate
approach is used. Then, regarding the latter, in the Abaqus model, each ply element is
assigned a specific fibre angle orientation based on the element’s centroid coordinates.
Conversely, in the LW model, such value is computed at each integration point, leading
to a more realistic modelling approach. LW models keep the local fibre orientation at
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the different plies, as opposed to the ESL approach, implemented in Abaqus, where a
homogenisation of the layer orientations is carried out.

Some differences between Case 1 and Case 2 buckling loads arise and are commented
herein. The clearest one is that Case 1 provides a larger critical load than Case 2. Indeed, it
is one order of magnitude larger. This is due clearly to the fibre orientation and, particularly,
to the rotation angle φ. That is, in Case 2, the fibre path is rotated 90 degrees with respect to
the x-axis, which coincides with the loading direction. Thus, the load-carrying capacity of
the plate diminishes. Further details regarding the stiffness and buckling load behaviour
of symmetric and balanced VSCs can be found in the paper by Gürdal and Olmedo [52].
The buckling modes of the structure of both fibre angle orientations also present differences
and are gathered in Figures 11 and 12. It is appreciated that, for both cases, the first mode
corresponds to a single-wave bending mode in the direction of the applied load. Then,
the second mode presents a double-wave in the transverse in-plane direction and a single
longitudinal undulation for both fibre paths. The third mode shows a triple undulation
in the transverse in-plane direction in Case 1 (see Figure 11c), whereas a double one
appears for Case 2 (see Figure 12c). More evident differences appear when higher modes
are considered.

The second set of numerical results considers the spatial variation of the fibre volume
fraction. Tables 6 and 7 provide the mean value, and COV of the first six buckling loads
for the two studied fibre paths. It is worth noting that similar values of COV are obtained.
Additionally, Monte Carlo and PCE surrogates show a good agreement in the values of
both statistical moments. Then, the convergence of the mean value and COV with regard
to the number of samples used to build the PCE is reported in Figure 13. These results
suggest that the computational cost of the uncertainty analysis can be strongly reduced by
using such surrogates, as Table 8 shows. The number of terms for the first-order PCE is
obtained by imposing r = 40 and p = 1, whereas r = 40 and p = 2 for second-order PCE.
However, after computing the relative coefficients of such PCE, many of them were null.
Hence, a reduction in the number of terms could be performed by employing sparse PCE,
in which higher-order terms can be neglected. See [53] for further details.

Correlation indices reported in Table 9 have a value close to one. This indicates that
when one of the confronted buckling loads increases, so does the other (e.g., Fcr1 and Fcr2
in r1,2). This means that the spatial variation of fibre volume fraction affects the buckling
loads in the same manner, that is, increasing or decreasing all of them. Then, concerning the
mode variability, 3D MAC matrices in Figure 16 show mean values close to one in the main
diagonal. Therefore, no mode switching occurs. However, out-of-the-diagonal components
show non-zero values. For instance, in Figure 16a values close to 0.4 are appreciated in
components MAC2,5 and MAC5,2, while in Figure 16b this occurs for MAC1,5, MAC2,3,
MAC2,6, MAC3,6 and their transposed. This implies that the defective buckling modes
show resemblances between the cited modes.

The third numerical assessment studied the presence of two spatially varying dis-
tributions of defects: fibre volume fraction and fibre misalignments. Second-order PCE
was used to obtain the buckling load PDFs, illustrated in Figure 17. In these plots, some
differences can be appreciated as compared to Figures 14 and 15. As mentioned before,
Case 1 PDFs considering both defects are wider than those of a single defect, which is
due to the higher COV reported in Tables 10 and 11. Again, overlapping PDF tails are
still present and even more exacerbated since, in Figure 17b, upper and lower tails of the
fourth and sixth critical loads slightly overlap around 350 N. Similarly, Case 2 PDFs are
wider. Indeed, in this case, overlapping tails appear between the second and third loads
and fourth, fifth and sixth loads, which did not occur in the precedent results.

Three dimensional MAC matrices, provided in Figure 18, inform that no swapping
occurs between buckling modes. For both fibre patterns, main diagonal components have a
mean value close to one, whilst some of the remaining components present values between
0.40 and 0.50. This implies that the defective modes have resemblances of the pristine ones.
Concerning the standard deviation of the MAC components, Case 1 presents similar values
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to those obtained priorly, whilst, for Case 2, such standard deviation increased, which is in
agreement with the behaviour of Case 2 COV of the buckling loads.

Finally, concerning the uncertainty results, additional information can be inferred.
For instance, for the two analysed fibre orientations, a COV between 2.5% and 3.5%
variability in the buckling loads was obtained for the single-defect uncertainty. Then,
the double-defect uncertainty results provided a COV between 3.4% and 5.2%. This
confirms that, for the studied cases, the consideration of multiple uncertain defects leads
to broader stochastic structural responses. In this manner, in a 3σ reliability analysis,
the buckling loads may vary up to 11.5% and 15% when microscale uncertainty and micro
and mesoscale uncertainty are considered, respectively.

7. Conclusions

In this study, a 1D modelling strategy based on the Carrera Unified Formulation (CUF)
framework has been proposed for the linearised buckling analysis of VSC plates. The LW
CUF model of a four-layered cantilevered plate has been verified against commercial
software Abaqus. The LW capabilities allow us to consider the local fibre orientation of
each ply independently, which is helpful when considering defects.

The inclusion of uncertain defects was achieved by means of stochastic fields, thus
yielding a non-intrusive technique of considering defects. In this manner, no additional
degrees of freedom (DOF) are required, and the computational cost is kept invariable.

The presented methodology has been found to provide satisfactory results when
dealing with multiscale uncertain defects for the buckling analysis of VSC plates. Moreover,
this procedure will permit to conduct more complex structural problems involving such
defects. Future work aims to investigate the macro and micro stress state of VSC laminates.
Unfortunately, and to the authors’ concern, no experimental evidence of the structural
response variability stemming from the defects herein considered has been found. Nev-
ertheless, recent numerical works (see Dodwell et al. [54] and van der Broek et al. [55])
have addressed the influence of misalignments in the buckling and post-buckling regime,
providing COV that are in agreement with the ones obtained in this manuscript.

Finally, the usage of PCE as regression metamodels for the buckling loads has been
found to be an accurate tool, although it presents some drawbacks. Among them, the in-
clusion of different random fields to characterise diverse uncertainty defects increases the
amount of polynomial basis that conform the PCE, which may lead to the so-called curse
of dimensionality as discussed in Section 4.1. Therefore, additional surrogate models or
techniques might be applied to circumvent that issue.
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