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ABSTRACT
With the spread of broadband Internet, Real-Time Commu-
nication (RTC) platforms have become increasingly popular
and have transformed the way people communicate. Thus,
it is fundamental that the network adopts traffic manage-
ment policies that ensure appropriate Quality of Experience
to users of RTC applications. A key step for this is the
identification of the applications behind RTC traffic, which
in turn allows to allocate adequate resources and make de-
cisions based on the specific application’s requirements.

In this paper, we introduce a machine learning-based sys-
tem for identifying the traffic of RTC applications. It builds
on the domains contacted before starting a call and lever-
ages techniques from Natural Language Processing (NLP)
to build meaningful features. Our system works in real-time
and is robust to the peculiarities of the RTP implementa-
tions of different applications, since it uses only control traf-
fic. Experimental results show that our approach classifies
5 well-known meeting applications with an F1 score of 0.89.
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1. INTRODUCTION
In recent years, the Internet has gained unprecedented

popularity, reaching billions of users and providing a reli-
able means for a large plethora of services. Moreover, in the
last decade, we witnessed the spread of social networks and
chat applications [15], which revolutionized the way people
communicate. The extensiveness and performance of to-
day’s networks also fostered the adoption of RTC platforms,
which allow for audio and video calls, thus avoiding the cost
of the traditional telephony. Recently, dozens of new RTC
platforms have appeared [11], competing in a world where
video calls are part of the normal business and leisure rou-
tine. Nowadays, they are massively adopted and companies
pay subscriptions for premium plans.

In this context, it is not trivial for in-network devices to
correctly recognize the RTC applications behind the traf-
fic, which is fundamental for the proper network operation.
Indeed, correct classification of such traffic is very impor-
tant for adequate traffic engineering, in both ISP networks
to ensure users’ Quality of Experience (QoE) and corporate
scenarios, in which, for instance, accredited services must be

Workshop on AI in Networks and Distributed Systems (WAIN) 2020
Milan, Italy
Copyright is held by author/owner(s).

prioritized and the other segregated. The spread of encryp-
tion [9] makes it difficult to use classical approaches based
on mere Deep Packet Inspection (DPI), which fall short in
the case the RTC applications adopt TLS, DTLS or other
secure protocols, which is very often the case.

To regain visibility on network traffic, the research com-
munity has turned towards Machine Learning (ML) for traf-
fic classification [10]. These efforts target specific fields of
applications, such as mobile apps [1], web traffic [13], net-
work performance [2] or users’ QoE [3, 12]. DNS has also
been used extensively to mark traffic [4, 7]. Regarding
RTC traffic, many works propose techniques for identifica-
tion among other traffic categories [5, 6], while in this work
we aim to go a step further.

In this paper, we propose a novel methodology to un-
veil the applications behind RTC traffic. We base our ap-
proach on the domains applications contact prior to set up
a call, that we use as a signature to classify RTC streams
in live traffic.1 We employ NLP techniques to model how
these domains appear in the traffic and use them to extract
meaningful features that we then feed to Machine Learning
(ML) classifiers. Exploiting a large dataset containing more
than 230 packet traces, we evaluate the performance of our
methodology when classifying the traffic of 5 RTC applica-
tions. Our results show that it is possible to obtain good
performance, reaching an F1 score as high as 0.89. More-
over, our approach is based solely on the domains clients
resolve prior to start an RTC call, allowing the system to
classify new streams with virtually zero delay. Indeed, our
system does not need any feature coming from the RTC
stream itself, making it robust to, e.g., applications resort-
ing to peer-to-peer communication between clients.

2. SYSTEM ARCHITECTURE
Our goal is to identify the meeting software that is behind

an RTC stream when observing live network traffic. In other
words, whenever we find a client starting an RTC session, we
want to classify it as generated by, e.g., application A. For
us, an RTC session is a media stream of an RTC application,
carried, in our cases, always over the RTP protocol.

Rather than extracting features directly from the RTC
streams or leveraging the server-side IP address, we target
the domains the client resolves prior to start the session. We
opt for this approach for a twofold reason. First, nowadays
large companies rely on Content Delivery Networks to serve

1We use the term domain throughout the paper, meaning
Fully Qualified Domain Name.



Table 1: Dataset overview

Application
Webex
Teams

Microsoft
Teams

Skype Jitsi Zoom

No. training 27 47 35 35 30
No. testing 12 17 11 12 13

their content and on Cloud Providers to host their infras-
tructure, making simple approaches based on the enumera-
tion of the server IP addresses or ranges ineffective. Second,
RTC applications are known to rely on peer-to-peer com-
munication between participants when possible. This again
makes it difficult to leverage IP address and ports numbers,
typically randomized by NATs. Also, the behavioral fea-
tures of the streams are subject to extreme variability due to
the diverse possible network conditions, discouraging their
use for classification.

As such, we want to feed our classifier the domains re-
solved by the client before starting the RTC session. In this
way, we target the control traffic of the application, that is
typically exchanged over the TLS protocol. More specifi-
cally, we extract the Server Name Indication contained in
the Client Hello messages, revealing in-clear the domain
name of the server. This said, whenever we encounter an
RTC stream in the traffic, we collect the bag of domains the
client resolved in the previous ∆T seconds.

Training Methodology. We train our system on a collec-
tion of packet traces, each one containing a single RTC call
using a known application – i.e., we know the ground truth.
In Figure 1, we show an overview of the training steps. We
collect the domains contacted by the client in the ∆T sec-
onds before the call begins. Then, we prepare the dataset
to be used to train a ML-classifier – i.e., we vectorize the
data. This means we turn the textual domains into numeric
features, and, as such, each domain results in a column of
the dataset, which assumes the usual tabular format. At
this stage, we merge the data of all packet traces in a single
dataset, where each row represents an RTC call, and a value
v greater than 0 in a cell means the domain corresponding
to the column has been observed v times.

Our goal is to find, for each application, the domains that
are more useful for its classification, because they are used,
for example, for signaling, session setup, login, etc. To this
end, we rely on NLP techniques, which have been proved to
be useful to find the terms that better characterize each doc-
ument within a corpus. In our system, we opt for the tf−idf
analysis [8], which is traditionally used to describe docu-
ments in a collection with the most representative terms.
Given a particular term and a document, the tf − idf is
computed as the product of the frequency of the term in
the given document (tf) and the inverse of the frequency at
which the term appears in distinct documents (idf). While
tf estimates how well the given term describes the docu-
ment, idf captures the term’s capacity to discriminate the
document from others. In our context, we use tf − idf to
identify the domains that better characterize an application.
The intuition is that if a domain appears in the majority of
the traces, it is less important than a domain appearing in
only a few of them. Using the tf−idf , we process the feature
matrix so that each cell value v is replaced by the results of
tf − idf on the dataset.

To help the tf − idf get rid of noise, we apply a threshold

Figure 1: Scheme of our training methodology.

that each domain must reach to be included. We want to
avoid very rare domains, appearing in one or a few traces,
that obtain, by chance, high tf−idf scores due to a high idf
(because they are infrequent) and a high tf (because they
have appeared many times in a trace). To this end, we set a
threshold MinFreq, below which a domain is discarded. If
a domain appears in a fraction of packet traces smaller than
MinFreq, we flag it as noise and neglect it.

Once we obtain the feature matrix, we use classifiers to
decide between the RTC applications. Remember that we
suppose our training set includes a ground truth, indicating
for each row (a session), the employed application. We use
the one-vs.-rest strategy, which consists of fitting one binary
classifier per class. We opt for this schema to improve ro-
bustness if classifiers are used in the wild, with potentially
new unknown applications. By using one-vs.-rest, we force
each classifier to focus on a single application, leaving all
the rest in the Other class. This also improves the inter-
pretability, since it allows us to gain knowledge about each
class by looking at its specific classifier.

RTC Stream Classification. We use the obtained classi-
fiers to identify the applications behind live network traffic.
At classification time, we build the bag of domains whenever
an RTC session begins. We then build the tf − idf vector
from the bag, which means using as tf the frequency at
which domains have appeared and as idf the values we com-
puted at training time. If a domain was not seen at training
time, and, as such, we have no idf value, it is discarded. On
the obtained feature vector, we run the classification models
previously trained. We try five different algorithms: tree-
based classifiers [Decision Tree (DT) and Random Forest
(RF)], k-Nearest Neighbors (kNN), which classifies points
based on proximity to other data points, Support Vector Ma-
chine (SVM), which instead constructs a hyperplane in high
dimensional space to separate the data points and Gaussian
Näıve Bayes (GNB) as a generative probability model. We
then compare their performance under different conditions.
Moreover, in Section 4.1, we explore the impact of the sys-
tem parameters (∆T and MinFreq among all) on the clas-
sification performance. The system is easily parallelizable,
since it works on a per-client basis.

3. DATASET
We rely on a dataset collected by a set of 15 volunteers,

which recorded packet traces whenever they made a call dur-
ing the first six months of 2020. Important to our analysis,
the volunteers begin capturing the traffic on their equipment
before starting the RTC application. In total, we collect 239
traffic traces from five meeting applications: Webex Teams,
Microsoft Teams, Skype, Jitsi and Zoom. Note that it is
hard to do automatic collection of such data, because it
is not possible to rely on well-known browser automation
tools like Selenium when using native applications running
on PCs. Moreover, collecting data in the wild improves the



Table 2: Examples of highly discriminative domains.

Application Domains

Webex Teams
ciscospark.com
webex.com

Microsoft Teams
area.microsoft.com
teams.microsoft.com

Skype
area.microsoft.com
skype.com

Jitsi meet.jit.si
Zoom zoom.us

robustness of our results, since the packet traces were col-
lected under a diverse set of operating systems, user devices,
application versions, etc. Out of 239 calls, we use 174 for
training and 65 for testing. We explicitly use all the traces
of a single individual either for training or for testing, with
the goal of avoiding overfitting to specific features of a client.
Due to the nature of our problem, one call translates to one
data point for the classifiers. We provide a breakdown of
the dataset in Table 1. Recalling that we have to resort to
a non-automated data collection, we consider to have a fair
amount of data in terms of number of calls. More impor-
tantly, results show that our system is very accurate even
with a low number of data points.

We process the packet traces using Tstat [14] to obtain
the bag of domains the client contacted before starting the
RTC stream. For all applications, it is straightforward to
identify the media streams as they all rely on RTP. Only for
Zoom, we had to strip a custom encapsulation header using
a simple command-line tool.2

4. RESULTS

4.1 Classification Performance
We now discuss the performance of our system in terms of

its ability to classify the application generating RTC streams.
We assess the performance using our test set composed only
of packet traces collected by individuals that do not appear
in the training set. We try different algorithms and finally
opt for a Random Forest classifier, which gives us the high-
est F1 score.3 However, we also evaluate the impact of the
classification algorithm and parameters in Section 4.2.

In Figure 2, we show the confusion matrix obtained using
the best configuration of parameters. By definition, a con-
fusion matrix C is such that Cij is equal to the number of
observations known to be in group i and predicted to be in
group j. The diagonal represents the number of correctly
classified samples. We also show the per-class recall and
F1 score in the last two columns, as well as the precision
in the bottom row. Looking at the figure, we observe that
all classes exhibit an F1-score higher than 0.8 and 3 out of
5, a score higher than 0.9. Webex Teams is the only class
with slightly lower precision (0.67), meaning the other ap-
plications are being confused with it, especially Jitsi. This
is also why Jitsi exhibits a lower Recall (0.75) than the other
classes. The overall macro-averaged F1 score is 0.89.4 The
Random Forest classifiers used to reach this score consist of
as little as 100 trees and a maximum depth of 20.

2https://github.com/marty90/rtc_pcap_cleaners
3The F1-Score is the harmonic mean between the Precision
and Recall of a class.
4The macro average is the mean of the scores of each class.
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Figure 2: Confusion matrix with the best parameter choice.

Since we adopted the one-vs.-all classification schema, we
can observe, for each application, which features (i.e., do-
mains) are important for each class. Table 2 provides exam-
ples of the domains for which the Random Forest classifier
indicates the high feature importance. To ease visualization,
we truncate the domains at the second level. We qualita-
tively note how our approach is able to identify the domains
per application. For example, Webex relies on webex.com

and, not trivial, on ciscospark.com, the former name of
the application. In other words, with our approach based on
domains, we obtain interpretable results, especially if com-
pared with other techniques based on packet-level features.

4.2 Parameter Tuning
We now briefly illustrate the impact of system parameters

and different algorithms on the classification performance.
We first investigate the impact of ∆T – i.e., the duration

of the period before the stream begins, that we use to collect
the bag of domains. We vary it between 5s and 30s and show
the results in Figure 3. We also use the figure to show the im-
pact of different classification algorithms in terms of macro-
averaged F1 score, represented on the y-axis. Note that all
algorithms undergo hyperparameter tuning, using a 3-fold
cross-validation on the training set, which however leads to
small improvements. In general, the larger ∆T is, the more
domains we collect and the better the final performance is.
Indeed, the F1-score for 15s and above is altogether higher
than the one for 5s or 10s. The performance also varies
with different classification algorithms. kNN shows gener-
ally worse performance for higher ∆T , working better with
a low number of features. DT and SVM achieve high F1
scores in general. GNB exhibits excellent results, showing
the best performance of all for 15s or 20s, but the best result
in absolute terms is achieved with RF, for ∆T = 25s.

We now analyze the impact of the number of features, that
we tune by setting MinFreq, the fraction of traces where we
must see a domain to consider it valid. Intuitively, a large
MinFreq allows only few domains to appear as columns in
the feature matrix, while small values allow also infrequent
ones to be considered. We vary the threshold from 0.02 (ap-
peared in a minimum of 5 traffic traces in our case) to 0.2
(48 traces minimum). We then use Figure 4 to show how the
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Figure 3: Performance of the five algorithms for different
time bins.

number of features (left y-axis) and the overall performance
(right y-axis) vary. Looking at the figure from right to left,
we notice an increase in both number of features and F1-
score as we decrease MinFreq, since we let more domains
in. However, the two curves follow a different slope, with
the F1 score exhibiting two main jumps. With MinFreq
0.13 through 0.10, we use as little as 4 features, and the
F1 score jumps at 0.54. Then, with MinFreq = 0.07, we
have 9 features and an F1 score of 0.86, with small increases
when further reducing MinFreq. Indeed, with very low
MinFreq, we manually observe that the domains that we
include are not related to the RTC applications but refer
to background jobs of the workstations or parallel activity
of users. To sum up, these results show that our approach
requires a relatively low number of features to achieve good
performance – in this case 9 features are enough for distin-
guishing up to five applications. Nonetheless, it is robust to
noise and domains that may appear in the traffic by chance.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented a ML-based system for classi-

fying RTC applications. Given the domain names resolved
prior to the start of a call, our system successfully distin-
guishes among 5 popular meeting applications with an F1
score of 0.89. It leverages NLP techniques and one-vs.-
rest classifiers to build meaningful features and be robust
to noisy data. Our approach can work in real-time and clas-
sifies flows with practically zero delay.

This paper presents only an initial work towards a metic-
ulous system designed to make the network control plane
aware of RTC traffic and manage the network accordingly.
Our future challenges include the identification of RTC ses-
sions and the exposure of various characteristics, from the
type of application being used to the users’ QoE.
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Papagiannaki, K., and Steenkiste, P. The cost of the” s”
in https. In ACM International on Conf. on emerging
Networking Experiments and Technologies (2014).

[10] Nguyen, T. T., and Armitage, G. A survey of techniques
for internet traffic classification using machine learning.
IEEE Comm. surveys & tutorials 10, 4 (2008), 56–76.
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and Rossi, D. Traffic analysis with off-the-shelf hardware:
Challenges and lessons learned. IEEE Communications
Magazine 55, 3 (2017), 163–169.

[15] Trevisan, M., Giordano, D., Drago, I., Munafò,
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