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Abstract

We present an efficient algorithm to identify which edge should be
improved in a traffic network to minimize the total travel time. Our
main result is to show that it is possible to approximate the variation of
total travel time obtained by changing the congestion coefficient of any
given edge, by performing only local computations, without the need of
recomputing the entire equilibrium flow. To obtain such a result, we re-
formulate our problem in terms of the effective resistance between two
adjacent nodes and suggest a new approach to approximate such effective
resistance. We then study the optimality of the proposed procedure for
recurrent networks, and provide simulations over synthetic and real trans-
portation networks.
Keywords: Wardrop equilibrium; transportation networks; effective resis-
tance; network design problem.

1 Introduction

Due to increasing populations living in urban areas, many cities are facing the
problem of traffic congestion, which leads to increasing levels of pollution and
massive waste of time and money (Schrank et al. [29]). The problem of mitigat-
ing congestion has been tackled in the literature from two main perspectives.
One approach is to indirectly influence the behaviour of the drivers, for in-
stance by road tolling (e.g., in Brown and Marden [7], Fleischer et al. [16],
Zhao and Kockelmann [39], Cole et al. [10]), information design (e.g., in Das
et al. [12], Meigs et al. [25], Wu et al. [35, 36]) or lottery rewards (Yue et al.
[38]), to minimize inefficiencies due to the autonomous uncoordinated decisions
of agents. A second approach is to intervene on the transportation network
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directly, by building new roads or enlarging existing ones. The corresponding
network design problem (i.e., the problem of optimizing the intervention on a
transportation network subject to some budget constraints, see e.g. LeBlanc
[22]) is very challenging because of its bi-level nature (Farahani et al. [15]), i.e.,
it involves a network intervention optimization problem given the flow distribu-
tion for that particular network. We assume that each edge of the network is
endowed with a delay function and the flow distributes according to a Wardrop
equilibrium, taking paths with minimum delay, defined as the sum of the delays
of edges along a path (see Beckmann et al. [3] and Wardrop [34]). Characteri-
zation of Wardrop equilibrium is used to construct the lower level of the bilevel
network design problem.

In this paper we study a special class of network design problem (NDP),
where the planner can improve the delay function of a single edge. Our objec-
tive is to strike a balance between a model that is simple enough to guarantee
tractable analysis, yet rich enough to allow insights for more general classes of
NDPs. For this class of NDPs (with E denoting the number of edges), our first
main result provides an analytical characterization of the cost variation corre-
sponding to an intervention on a particular edge under a regularity assumption,
which states that the edges that carry positive flow remain unchanged with an
intervention. This assumption, tipically used in the traffic equilibrium literature
(see Steinberg and Zangwill [31], Dafermos and Nagurney [11]) leads to charac-
terization of Wardrop equilibria using a system of linear equations and enables
representing edge interventions as rank-1 perturbations of the system. We show
that this assumption is satisfied provided that the total incoming flow to the
network is large enough, which may be of independent interest. We exploit the
structure of our characterization and linearity of delay functions to express the
cost variation using the effective resistance of an edge (i.e., between the enpoints
of the edge), defined with respect to a related resistor network. Computing the
effective resistance of a single edge requires the solution of a linear system with
a matrix with dimension scaling with the size of the network (we indistinctly
refer to the size of the network as the cardinality of the node and the edge sets,
implicitly assuming that transportation networks are sparse in a such a way
that the average degree of the nodes is independent of the number of nodes, in-
ducing then a proportionality between the number of nodes and edges). Hence,
solving the NDP requires the solution of E of these problems. Since this can be
computationally untractable for large networks, our second main result proposes
a method based on Rayleigh’s monotonicity laws to approximate the effective
resistance of each edge with a number of iterations independent of the network
size, thus leading to a significant reduction of complexity. The key idea is that
the effective resistance between two adjacent nodes i and j depends mainly on
the local structure of the network around the two nodes (i.e., the set of nodes
N≤d that are at distance no greater than a small given constant d from at least
one of i and j), and may therefore be approximated by performing only local
computations. Since for networks with bounded degrees (as typical in traffic
networks, think for instance of the bidimensional square grid) the size of N≤d
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does not scale with the network size, we can guarantee that the approximation
error and computational complexity of our method also do not scale. Finally, we
give sufficient conditions on the network under which the approximation error
vanishes asymptotically in the limit of infinite networks, and we show simula-
tions on synthetic and real networks.

In our work we consider a special case of a NDP. These problems have been
formalized in the last decades via many different formulations. Both continuous
network design problems (e.g., Chiou [8], Li et al. [24], Wang et al. [32]), where
the budget can be allocated continuously among the edges, and discrete formu-
lations, in which the decision variables include which new roads to build (Gao et
al. [19]), how many lanes to add to existing roads (Wang et al. [33]), or a mix
of those two problems (Poorzahedy and Rouhani [26]), have been considered
in the literature, together with dynamical formulations (Fontaine and Minner
[17]), and formulations where the optimum is achieved by removing, instead of
adding, edges, because of Braess paradox, as in Roughgarden [28] and Fotakis et
al. [18]. For comprehensive surveys on the literature on NDP we refer to Yang
and Bell [37] and Farahani et al. [15]. We stress that most of the literature
focused on finding time polynomial algorithms to approximately solve NDPs in
their most general form. As noted above, we instead consider a problem that
can be solved with a polynomial algorithm by simply enumerating all the candi-
date edges and computing the cost corresponding to the intervention on each of
those edges. Our main contribution is to define a simplified, more intuitive and
tractable approach to solve such a design problem in quasilinear time instead
of polynomial, as well as providing intuition and a complete new formulation.
For the future we aim at extending our techniques to more general cases, like
the multiple interventions case. Our work is related to Steinberg and Zangwill
[31] and Dafermos and Nagurney [11], where the authors investigate the sign
of total travel time variation when a new path is added to a two-terminal net-
work, under similar assumptions to ours, providing sufficient conditions under
which Braess paradox arises. In our work we instead suggest an efficient al-
gorithm to select the best edge to improve. As mentioned, a key step of our
approach is to reformulate the NDP in terms of a resistance problem. We do
this in two steps: first we reformulate the NDP in terms of random walks over
a network (following a similar approach as in Rebeschini and Tatikonda [27],
where however the problem of finding conditions under which a perturbation
of the incoming flow to a small part of the network leads to local perturbation
of Wardrop equilibrium), then following standard literature we reformulate the
random walk problem as an electrical one (see e.g. Doyle and Snell [13]). To
summarize, the contribution of this paper is two-fold. From a methodological
perspective, we provide a method to locally upper and lower bound the effective
resistance between adjacent nodes, which may be of a separate interest beyond
traffic applications. From the network design perspective, we provide a new
formulation of the design problem in terms of resistor networks, and we exploit
our methodological result to approximate in an efficient manner a simplified ver-
sion of the design problem where a single edge can be improved. For the future
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we aim at extending our methods to the case of multiple interventions. From
a methodological perspective, it is worthwhile mentioning that the equivalence
between Wardrop and electric flows has been already investigated in Klimm and
Warode [21].

The remainder of the paper is organized as follows. In Section 2 we define
the model and formulate the problem as a bi-level programming. In Section 3 we
first translate the problem into a single-level program, and then rephrase it in
terms of resistor networks. In Section 4 we provide our method to approximate
effective resistance between neighbors. In Section 5 we analyze the asymptotic
behaviour of the bounds in the limit of infinite networks. In Section 6 we show
some simulations over relevant networks. Finally, in the conclusive section, we
summarize the work and discuss future research lines.

1.1 Notation

G = (N , E) denotes a two-terminal strongly connected directed network with
origin o and destination d, where N and E are respectively the node and the
edge sets. Let P denote the set of paths from o to d, and N, E and P denote the
cardinality of N , E and P, respectively. We allow for multiple edges between
the same pair of nodes. We do not allow for selfloops, since they are not relevant
in traffic networks. δi, 1 and I denote the unitary vector with 1 in position i
and 0 in all the other positions, the column vector of all ones, and the identity
matrix, respectively, where the size of them may be deduced from the context.
AT and vT denote the transpose of matrix A and vector v, respectively. For
simplicity of notation we use A−1ij instead of (A−1)ij .

2 Model and problem formulation

2.1 Model

The transportation network is modeled as a two-terminal strongly connected
directed network G = (N , E). Let τ>0 denote the throughput from the origin
o to the destination d, and ν = τ(δo − δd) ∈ RN denote the net inflow to
the network. An admissible path flow is a vector z ∈ RP satisfying the non-
negativity and conservation of mass constraints

z ≥ 0, zT1 = τ. (1)

Let R ∈ RE×P denote the edge-path incidence matrix, with entries Rlp = 1 if
the edge l belongs to the path p or 0 otherwise. The path flow induces a unique
edge flow f ∈ RE via

f = Rz. (2)

Let B ∈ RN×E denote the node-edge incidence matrix, with entries Bnl = 1 if
the node n is the tail of the edge l, −1 if n is the head of l, or 0 otherwise. The
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constraints can be reformulated in terms of edge flows as

f ≥ 0, Bf = ν.

Every edge is endowed with a delay function, which is assumed affine, non-
negative and strictly increasing,

dl(fl) = alfl + bl, al > 0, bl ≥ 0, ∀l ∈ E .

The cost of a path p, under flow distribution f , is

cp(f) =
∑
l∈E

Rlpdl(fl), (3)

which is the sum of the delays of the edges belonging to that path. We also
define A ∈ RE×E and b ∈ RE as

A :=


a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . aE

 , b :=


b1
b2
...
bE

 .
Definition 2.1 (Affine routing game). An affine routing game is a quadruple
(G, A, b, ν).

A Wardrop equilibrium is a flow distribution such that no one has incentive
in changing his path.

Definition 2.2 (Wardrop equilibrium). A path flow z∗, with associated edge
flow f∗ as defined in (2), is a Wardrop equilibrium if for every path p

z∗p > 0 =⇒ cp(f
∗) ≤ cq(f∗), ∀q ∈ P.

It is shown in Beckmann et al. [3] that an edge flow f∗ is a Wardrop
equilibrium of a routing game if and only if it solves the following minimization
problem:

minimize
f

∑
l∈E

∫ fl

0

dl(s)ds

subject to f ≥ 0, Bf = ν.

(4)

Since the delay functions are assumed strictly increasing, the objective function
is strictly convex and the Wardrop equilibrium f∗ is unique.
We now define the social cost, which is the total travel time at the equilibrium.

Definition 2.3 (Social cost). Let f∗ be the unique Wardrop equilibrium of an
affine routing game (G, A, b, ν). The social cost is

C(f∗) =
∑
l∈E

f∗l dl(f
∗
l ).

The social cost can be interpreted by a planner that aims at minimizing the
overall congestion as a measure of performance of the transportation network.
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2.2 Problem formulation

We consider a problem in which a planner can intervene on the network with
the goal of minimizing the social cost. We propose as intervention to rescale
the slope of one edge l by a scaling parameter κ > 1, so that the slope of the
edge l gets reduced from al to ãl = al/κ. This intervention may correspond
for instance to adding a new lane in a street. In fact, every intervention on a
single edge may be seen as a rank-1 perturbation of the system and may be
handled by our method (see §3.1). We aim at identifying which edge should
be selected by the planner to minimize the social cost. Let f∗(l) and C(f∗(l))
denote the Wardrop equilibrium when the slope of the edge l is rescaled, and the
corresponding social cost, respectively. Hence, the problem can be expressed as
follows.

Problem 1. Let (G, A, b, ν) be an affine routing game and κ > 1 be the scaling
parameter. Find edge l∗ such that

l∗ ∈ argmin
l∈E

C(f∗(l)).

We stress the fact that Problem 1 is bi-level, in the sense that the planner
optimizes the intervention over the edge set, but the cost function is a function
of the Wardrop equilibrium f∗, which in turn is the solution of the optimization
problem (4).
Problem 1 can be solved by a brute force approach, by enumerating all the
edges and computing the corresponding equilibrium f∗(l) by solving the convex
program (4) with dl(fl) = ãlfl + bl instead of dl(fl). In this work we propose a
method that, given f∗ before the intervention (which is assumed to be observable
and therefore known) and other electrical quantities computed on a resistance
network related to the original unperturbed traffic network, provides an upper
and lower bound to C(f∗(l)) with a computational complexity that does not
scale with the size of the network. The main idea is that the effect of perturbing
an edge may be well approximated by looking at a local portion of the network.
Our method works under the assumption that the network is sparse in such
a way that the average degree of the nodes does not depend on the size of
the network, and under the assumption that the set of the used edges does
not change after the intervention. The first assumption is suitable for traffic
networks, and the second one is standard in the literature on intervention in
traffic networks (see Steinberg and Zangwill [31] and Dafermos and Nagurney
[11]). We provide a more detailed discussion on this assumption in §3.2.

3 Two equivalent reformulations

In this section we provide two equivalent formulations for Problem 1. The first
formulation is based on the fact that modifying the slope of one edge is equiv-
alent to introducing a rank-1 perturbation in the KKT conditions of (4) (for
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an in depth discussion on KKT conditions we refer to Boyd and Vandenberghe
[5]). The second formulation gives an interpretation using resistor networks.

3.1 KKT formulation

Let us introduce the dual variables λ∗(i,j) associated to f∗(i,j) ≥ 0 and γ∗ associ-

ated to the constraint Bf = ν. The KKT conditions of (4) are:

a(i,j)f
∗
(i,j) + b(i,j) + γ∗j − γ∗i − λ∗(i,j) = 0 ∀(i, j) ∈ E ,∑

j:(j,i)∈E f
∗
(j,i) −

∑
j:(i,j)∈E f

∗
(i,j) + νi = 0 ∀i ∈ N ,

λ∗(i,j)f
∗
(i,j) = 0 ∀(i, j) ∈ E ,

λ∗(i,j) ≥ 0 ∀(i, j) ∈ E ,
f∗(i,j) ≥ 0 ∀(i, j) ∈ E .

(5)

The third condition is known as complementary slackness, and implies that all
the edges such that λ∗e > 0 are not used at the equilibrium, i.e. f∗e = 0. Let E+
denote the set of such edges. Thus, the edges in E+ and the last three conditions
of (5) can be removed, without affecting the solution of (5). With a slight abuse
of notation, from now on let E denote E\E+. Thus, the KKT conditions become:{

a(i,j)f
∗
(i,j) + b(i,j) + γ∗j − γ∗i = 0 ∀(i, j) ∈ E ,∑

j:(j,i)∈E f
∗
(j,i) −

∑
j:(i,j)∈E f

∗
(i,j) + νi = 0 ∀i ∈ N ,

(6)

where the constraint f∗i,j ≥ 0 can now be removed since the solution of (6) gives
f∗i,j ≥ 0 for every edge (i, j) /∈ E+. Without loss of generality, we order the
nodes in such a way that the origin o and the destination d are the first and the
last node respectively. Observe from (6) that the optimal flows f∗(i,j) depend on
γ∗ only via the difference γ∗i − γ∗j , so that γ∗ remains a solution if a constant
vector is added to it. This is due to the fact that the matrix B is not full rank.
Removing the last row of B is therefore equivalent to setting γ∗d = 0. Thus, we
define x ∈ RN+E−1 and y ∈ RN+E−1 as

x :=

[
f
γ−

]
, y := −

[
b
ν−

]
,

where γ− and ν− denote respectively γ and ν where the last element of both
vectors is removed. Also, B− ∈ R(N−1)×E denotes the node-edge incidence
matrix where the last row is removed. Finally, we define H ∈ R(N+E−1)×(N+E−1)

as

H :=

[
A −(B−)T

−B− 0

]
.

With this notation and assuming γ∗d = 0, the KKT conditions (6) become:

Hx∗ = y. (7)
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Because we assumed γ∗d = 0, x∗ is unique, and

x∗ = H−1y. (8)

The invertibility of H follows from the invertibility of A (the delays are strictly
increasing) and from the invertibility of Q := B−A

−1(B−)T (see Horn and John-
son [20]), which we prove in the proof of Theorem 1. Let A(l) and H(l) denote
the matrix A and H corresponding to the intervention on edge l. The opti-
mal lagrangian multipliers γ∗ have an useful interpretation, under the following
assumption.

Assumption 1. Let E+(l) be the set of edges e for which λ∗e(l) > 0 in the
Wardrop equilibrium of (G, A(l), b, ν). We assume that E+(l) = E+ for all l ∈ E.

The intuition is that under Assumption 1 the KKT conditions (7) before
and after the intervention on the edge l involve the same set of edges and differ
for the value of al only, allowing therefore to handle the intervention as rank-1
perturbation in H. A detailed discussion on such assumption is given in §3.2.

Proposition 1. For any l ∈ E consider the modified game (G, A(l), b, ν) ob-
tained by changing the slope of edge l from al to ãl = al/κ and construct the
corresponding primal and dual solution x∗(l) as in (8). Then,

C(f∗)− C(f∗(l)) = τ(γ∗o − γ∗o (l)),

where γ∗o and γ∗o (l) are the (E + 1)−th component of x∗ and x∗(l) respectively.

Proof. See the Appendix.

Since τ is a given constant of the problem, Proposition 1 states that the
goal of the planner should be to select the edge l minimizing γ∗o (l), that is, the
optimal lagrangian multiplier of the origin after the intervention on the edge
l. Observe that the brute force method requires the computation of the whole
vector x∗(l) for every edge l. A natural question is whether it is possible to
evaluate γ∗o (l) for every edge l without computing the whole vector x∗(l). We
provide a positive answer under Assumption 1 in the next proposition, where
the social cost variation is expressed in terms of the scaling parameter κ, the
unperturbed equilibrium f∗, and selected elements of H−1.

Proposition 2. Let (G, A, b, ν) be a routing game, κ > 1 be the scaling pa-
rameter and suppose that Assumption 1 holds. Then, the social cost variation
corresponding to the intervention on edge l is equal to

C(f∗)− C(f∗(l)) = τ
(κ− 1)alH

−1
(E+1,l)f

∗
l

(κ− 1)alH
−1
ll − κ

. (9)

Proof. See the Appendix.

In the next section we provide an interpretation to the required elements of
H−1 in terms of electrical quantities. Before doing that we discuss Assumption
1 in detail.
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Figure 1: A directed network that is not series-parallel. On this network As-
sumption 1 is not guaranteed to hold.

3.2 On Assumption 1

In the following we show that Assumption 1 is without loss of generality on
series-parallel networks, provided that the throughput is sufficiently high. First,
we recall the definition of directed series-parallel networks, and then present the
result in Proposition 3.

Definition 3.1 (Directed series-parallel networks). A two-terminal directed net-
work G is series-parallel if and only if (i) it is a single edge from the origin to
the destination, or (ii) it is the result of connecting two directed series-parallel
networks G1 and G2 in parallel, by merging o1 with o2 and d1 with d2, or (iii)
it is the result of connecting two directed series-parallel networks G1 and G2 in
series, by merging d1 with o2.

Proposition 3. Let (G, A, b, ν) be a routing game. If G is a directed series-
parallel network, it exists τ such that for every τ ≥ τ , E+ = ∅. Furthermore, if
b = 0, E+ = ∅ for every τ > 0.

Proof. See the Appendix.

Remark 1. Proposition 3 immediately implies that Assumption 1 is without loss
of generality on directed series-parallel networks provided that τ ≥ τ . However,
τ depends on A and thus may change after the intervention.

The next example shows that without the assumption of series-parallel net-
works Proposition 3 may fail, even in case of linear delays.

Example 1. Consider the network in Fig. 1, which is not series-parallel. Let
us consider τ = 1 and linear delay functions, with a1 = a2 = a3 = a4 = a6 = 1
and a5 = 2. By some computations,

f∗1 =
6

11
, f∗2 =

5

11
, f∗4 =

7

11
, f∗5 =

4

11
, f∗6 =

1

11
, λ∗3 =

1

11
, f∗3 = λ∗6 = 0.
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Turning a5 from 2 to 1/2, we get:

f∗1 =
6

13
, f∗2 =

7

13
, f∗3 =

1

13
, f∗4 =

5

13
, f∗5 =

8

13
, λ∗6 =

1

13
, f∗6 = λ∗3 = 0.

Thus, E+(a5 = 2) = {l3} and E+(a5 = 1/2) = {l6}. Since E+(a5 = 2) 6=
E+(a5 = 1/2), Assumption 1 is violated, even in case of linear delays.

3.3 Electrical formulation

In this section we explore the structure of H−1 to give an interpretation of it
in terms of electrical quantities. To this end, by the well-known formula for the
2× 2 block-matrices inversion (see Bernstein [4]), we get:

H−1 =

[
A−1 −KQ−1KT −KQ−1
−Q−1KT −Q−1

]
, (10)

where K ∈ RE×(N−1) and Q ∈ R(N−1)×(N−1) are

K := A−1BT−, Q := B−A
−1BT−.

From the definitions of B− and A, it follows

Kl: =
δTi − δTj

al
∀l = (i, j) ∈ E , (11)

with the convention that δd = 0 · 1 (since we removed the destination), and

Qij =

{
−
∑
l∈{(i,j),(j,i)}

1
al

if i 6= j∑
l∈∂i

1
al

if i = j.
∀i, j ∈ N \ d,

where ∂i denotes the in and out neighborhood edges of i, that is

∂i := {l ∈ E : Bil 6= 0}.

We remark that ∂i includes also edges pointing to the destination. The matrix
Q allows for an interpretation in terms of electrical quantities. To this end, let
us introduce the notion of resistor network and effective resistance between two
nodes.

Definition 3.2. A resistor network is an undirected weighted network, where
the weight matrix W represents a conductance matrix, i.e., Wij = Wji is the
conductance between nodes i and j.

Definition 3.3. Let ∆V = Vi−Vj be a difference of potential that is set between
nodes i and j on a resistor network. The effective resistance rij between i and
j is

rij =
∆V

ii
,

where ii denotes the total current flowing from node i under such potential.
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We define the resistor network GR obtained by making every directed edge
of the traffic network G undirected, with conductance matrix W ∈ RN×N

Wij :=

{∑
l∈{(i,j),(j,i)}

1
al

if i 6= j

0 if i = j.

Observe that W includes also the destination, is symmetric by construction,
since GR is undirected, and the coefficients al correspond to resistances. Finally,
let D ∈ RN×N be the diagonal matrix of degrees in GR, i.e., D = diag(W1), and
P = D−1W ∈ RN×N the normalized adjacency matrix. The matrix Q may be
related to the truncated Laplacian of the resistor network GR. This is the key
point to prove the next theorem. To this end, let us give the following definition.

Definition 3.4. Let V ∈ RN denote the potential over the nodes of GR when
the boundary conditions Vo = 1 and Vd = 0 are imposed. V is an harmonic
function (see Levin and Peres [23]), i.e., it satisfies

Vo = 1, Vd = 0, Vi =
∑
j∈N

PijVj ∀i ∈ N \ o,d. (12)

Theorem 1. Let (G, A, b, ν) be a routing game, κ > 1 be the scaling parameter,
and suppose Assumption 1 holds. The social cost variation corresponding to the
intervention on edge l = (i, j) is

∆C(l) := C(f∗)− C(f∗(l)) = τ̃
f∗l (Vi − Vj)

1
κ−1 +

rij
al

, (13)

where τ̃ is a constant independent of l, and rij is the effective resistance between
nodes i and j in GR.

Proof. See the Appendix.

Intuitively, Theorem 1 states the social cost variation after intervention on
the edge l = (i, j) depends:

� proportionally on Vi−Vj , which may be interpreted as a gradient of relative
position from the tail to the head of l, since Vi may be seen as a measure
of relative position with respect to the origin and the destination, with
Vo = 1 at the origin, Vd = 0 at the destination, and every other node in
between assuming an intermediate value that approaches 1 when the node
is closer to the origin and far from the destination, and 0 in the opposite
case;

� proportionally on the unpertured flow f∗l , which is a measure of impor-
tance of the edge from the traffic perspective;

� inversely on rij/al, which is a non-negative quantity, no greater than 1;
this term is maximum when the edge l is a bottleneck and decreases as
the number of alternative paths from i to j increases.

11



In order to solve Problem 1 by the electrical formulation, we need to compute
(13) for every edge l. The unperturbed equilibrium f∗ is assumed to be ob-
servable and therefore given, and the potential V can be derived by solving the
linear system (12). Observe that V has to be computed only once. However,
the computation of rij involves the solution of a linear system, and is needed
for every edge l = (i, j), so that the solution of Problem 1 by the electrical
formulation requires to solve E linear systems (see Aldous and Fill [1]), whereas
by formulation (9) we need to compute a row and the diagonal of the inverse
of H, which still is computationally onerous when the network is large. In the
next section we propose a method to approximate the effective resistance be-
tween a pair of neighbors that, under a suitable assumption on the sparseness
of the network, does not scale with the size of the network, allowing for a more
efficient solution to Problem 1.

4 An approximate solution to Problem 1

As seen in the previous section, Problem 1 may be rephrased in terms of elec-
trical quantities over a resistor network. However, even in this formulation the
complexity of the problem scales badly because it requires to solve E linear
systems whose size grows linearly with N. Since the computational bottleneck
is represented by the effective resistance between every pair of adjacent nodes
of the network, in the next subsection we propose a computationally cheaper
method to approximate this quantity. The main idea of our method is that,
even though the effective resistance depends on the entire network, when i and
j are adjacent nodes, rij can be approximated by looking at a local portion
of the network only. We then formulate an algorithm to approximately solve
Problem 1 by exploiting the approximation of the effective resistance.

4.1 Approximating the effective resistance

Let us introduce the notion of cutting and shorting a network.

Definition 4.1 (Cutting at distance d). A resistor network GR is cut at distance
d with respect to a pair of nodes (i, j) if every node at distance greater than d
from both i and j is removed, and every edge having at least one end in the set
of the removed nodes is removed. Let GUd

ij and rUd
ij denote such a network and

the effective resistance on it, respectively.

Definition 4.2 (Shorting at distance d). An resistor network GR is shorted at
distance d with respect to a pair of nodes (i, j) if all the nodes at distance greater
than d from both i or j are shorted together, i.e., an infinite conductance is added
between each pair of such nodes. Let GLd

ij and rLd
ij denote such a network and

the effective resistance on it, respectively.

We refer to Fig. 2 for an example of these techniques applied to a regular
grid. We next prove that rUd

ij and rLd
ij are respectively an upper and a lower
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Figure 2: Square grid. Above: the yellow, orange and red nodes are at distance
1, 2 and 3, respectively from the green nodes. Bottom left: cut at distance 1.
Bottom right: shorted at distance 1. We stress that in the bottom right network
the edges connecting yellow nodes with node s do not have unitary weights.

bound for the effective resistance rij for every pair of adjacent nodes. To this
end, let us introduce the Rayleigh’s monotonicity laws.

Lemma 1 (Rayleigh’s monotonicity laws (Levin and Peres [23])). If the resis-
tances of one or more edges are increased, the effective resistance rij between
any two nodes i and j cannot decrease. If the resistances of one or more edges
are decreased, rij cannot increase.

Proposition 4. Let GR be a resistor network, Dmax denote the maximal weighted
degree of the network, and rij be the effective resistance between any two neigh-
boring nodes i and j. Then,

r
Ud1
ij ≥ rUd2

ij ≥ rij ≥ r
Ld2
ij ≥ rLd1

ij , ∀d2 > d1 ≥ 1.

Moreover,
1/Dmax ≤ rLd

ij ≤ r
Ud
ij ≤ 1/Wij , ∀d ≥ 1. (14)
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Proof. Cutting a network at distance d is equivalent to setting to infinity the re-
sistance of all the edges that have one node at distance greater than d. Shorting
a network at distance d is equivalent to setting to zero the resistance between
any pair of nodes at distance greater than d. Then, by Rayleigh’s monotonicity
laws, rUd

ij ≥ rij ≥ r
Ld
ij . Similar arguments may be used to show that, if d1 < d2,

r
Ud1
ij ≥ rUd2

ij and r
Ld1
ij ≤ rLd2

ij . The right inequality of (14) follows from noticing
that, by Rayleigh’s monotonicity laws, the effective resistance computed in the
network with only nodes i and j, which is equal to 1/Wij , is an upper bound

for rU1
ij . The left inequality follows from noticing that the effective resistance

on the network in which every node except j is shorted with i, which results in
a network with only two nodes and a conductance between i and j not greater
than Dmax (hence, resistance no less than 1/Dmax) is a lower bound of rL1

ij .

Proposition 4 states that cutting and shorting a network provides upper and
lower bound for the effective resistance. Moreover, the tightness of the bounds
is a monotone function of the distance d.

4.2 Our algorithm

Based on the method for approximating the effective resistance, we here propose
an algorithm to approximately solve Problem. Our approach is detailed in
Algorithm 1.

Algorithm 1:

Input: The resistor network GR = (N , ER,W ), the rescale parameter κ
and the distance d ≥ 1 used to approximate the effective
resistance.

Output: The optimal edge l∗d for the intervention.
Compute V by solving the sparse linear system

Vo = 1, Vd = 0, Vi =
∑
j∈N

PijVj ∀i ∈ N \ o,d;

for each l = (i, j) ∈ E do

Construct GUd
ij and GLd

ij ;

Compute rUd
ij and rLd

ij on GUd
ij and GLd

ij .

end

Select l∗d such that

l∗d ∈ argmax
l=(i,j)∈E

∆Cd(l) :=
f∗l (Vi − Vj)
1

κ−1 +
r
Ud
ij +r

Ld
ij

2al

.

Note that the performance of Algorithm 1 depends on the choice of the
parameter d. Specifically, the higher d is the better is the approximation of the

14



effective resistance and the closer is the output of Algorithm 1 to the achieving
the minimum of Problem 1.

Theorem 2. Let ∆C(l) be the cost variation corresponding to intervention on
edge l = (i, j) ∈ E as given in Theorem 1, ∆Cd(l) be the cost variation estimated
by Algorithm 1 for a given distance d ≥ 1, and

εijd :=
rUd
ij − r

Ld
ij

al
.

Then, ∣∣∣∣∆C(l)−∆Cd(l)

∆C(l)

∣∣∣∣ ≤ εijd

2
(

1
κ−1 +

r
Ud
ij +r

Ld
ij

2al

) ≤ εijd

2
(

1
κ−1 + 1

Dmax·al

)
Furthermore,

∆C(l) ≥ τ̃ f
∗
l (Vi − Vj)
1

κ−1 +
r
Ud
ij

al

. (15)

Proof. See the Appendix.

In the next section we provide conditions for εijd to go to zero for large
distance d in the limit of infinite networks. In the rest of this section we show
that the tightness of the bounds (and therefore εijd), and their computational
complexity (for a fixed d) depend only on the local structure around the edge
l, and do not scale with the size of the network, under a suitable assumption.

Assumption 2. Let GR be a resistor network, l = (i, j) an arbitrary edge of the
network, and N≤d denote the set of nodes that are at distance no greater than
d from at least one of i and j. We assume that the network is sparse in such a
way that the cardinality of N≤d does not depend on N for any d.

Assumption 2 is suitable for transportation networks, because of physical
constraints not allowing for the degree of the nodes to grow unlimitedly (think
for instance of a square grid, where the degree of the nodes is 4 no matter what
the size of the network is). Notice also that, under Assumption 2, N and E are
proportional. Hence, from now on we refer indistinctly to N or E to denote the
size of the network.

Proposition 5. Let GR = (N , ER,W ) be a resistor network, (i, j) be a pair of
neighbors, d ≥ 1. Then, the time complexity of the bounds and the tightness of
the bounds are functions of the structure of GR within distance d+ 1 from i and
j only. Furthermore, under Assumption 2 they do not depend on the size of the
network.

Proof. See the Appendix.
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Remark 2. Proposition 5 states that under Assumption 2 the time complexity
to approximate a single effective resistance does not scale with the size of the
network for every distance d. Therefore, all the effective resistance may be ap-
proximated in linear time. V is computed via a diagonally dominant, symmetric
and positive definite linear systems. The design of fast algorithms to solve this
class of problem is an active field of research in the last years. To the best of
our knowledge, the best algorithm has been provided by Cohen et al. [9] and has
complexity O(M logk N log 1/ε), where ε is the tolerance error, k is a constant,
and M is the number of nonzero elements in the matrix of the linear system.
Since in our case M scales with E, and since E scales with N under Assumption
2, Algorithm 1 is quasilinear in N.

5 Bound analysis

In this section we provide a characterization of the tightness of the bounds
of the effective resistance between neighbors in terms of random walks over the
resistor networks GR, GUd

ij and GLd
ij . We then use this characterization to provide

a sufficient condition on the network under which the approximation error of
the bounds vanishes asymptotically as the distance d grows. To this end, we
introduce the following notation. Let

� TS and T+
S denote the hitting time, (i.e., the first time t ≥ 0 such that

the random walk hits the set S), and return time (i.e., the first time t > 0
such that the random walk hits the set S), respectively.

� Nd denote the set of the nodes that are at distance d from either i or j
and at distance greater or equal than d from the other node (we omit i
and j for simplicity of notation).

� pk(X), pUd

k (X) and pLd

k (X), denote the probability that the event X oc-
curs, given a random walk that starts in k at time 0 and evolves over the
resistor networks GR, GUd

ij and GLd
ij , respectively.

The next proposition provides a characterization for the distance between the
upper and lower bound on rij in terms of probabilities of random walks over

GR, GUd
ij and GLd

ij .

Proposition 6. Let GR = (N , ER,W ) be a resistor network. Based on the
random walk on the resistor network,

rUd
ij − r

Ld
ij ≤

Dii

(Wij)2
pi(TNd

< Tj)︸ ︷︷ ︸
Term 1

· max
g∈Nd

(
pUd
g (Ti < Tj)− pLd

g (Ti < Tj)
)︸ ︷︷ ︸

Term 2

. (16)

Proof. See the Appendix.

In the next subsection we use this result to study the asymptotic behaviour
of the error term εijd = (rUd

ij − r
Ld
ij )/al. In §5.1 we show that this error goes
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Table 1: All the four cases are possible, as shown in §5.2. Term 1 → 0 under
the assumption that the network is recurrent, as proved in §5.1.

Term 2 → 0 Term 2 9 0
Term 1 → 0 2d grid Ring
Term 1 9 0 3d grid Double tree

to zero for the class of recurrent networks. The core idea to prove this result is
to show that Term 1 goes to zero. To generalize our analysis beyond recurrent
networks, in §5.2 we study both Term 1 and 2 and provide examples showing
that all combinations are possible (see Table 1). In particular, it is still possible
that εijd → 0 for non-recurrent networks (for which Term 1 9 0, see Levin and
Peres [23]) if Term 2 → 0.

5.1 Recurrent networks

In this section we show that a sufficient condition under which the distance
between the upper and the lower bound vanishes as the distance d goes to
infinity is that the network is recurrent. We start by introducing this class of
networks.

Definition 5.1 (Recurrent random walk). A random walk is recurrent if, for
every starting point, it visits its starting node infinitely often with probability
one (Levin and Peres [23]).

Definition 5.2 (Recurrent network). An infinite network G = (N , E ,W ) is
recurrent if the random walk on the network is recurrent.

The next theorem states that the distance between the upper and the lower
bound on recurrent networks vanishes as d goes to infinity, provided that the
degree of every node is finite.

Theorem 3. Let GR be an infinite recurrent resistor network, and let the max-
imal weighted degree Dmax be finite. Then, for every edge l = (i, j),

lim
d→+∞

(rUd
ij − r

Ld
ij ) = 0.

Proof. It is proved in Levin and Peres [23, Proposition 21.3] that a graph is
recurrent if and only if

lim
d+→∞

pi(TNd
< Tj) = 0 ∀i, j ∈ N . (17)

Observe that, to hit any node at distance d+1, the random walk starting from i
has to hit at least a node at distance d. Hence, the sequence

{
pi(TNd

< Tj)
}∞
d=1

is non-increasing in d and the limit is well defined. Then, from (16), (17), from
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the fact that 0 ≤ pUd
g (Ti < Tj) − pLd

g (Ti < Tj) ≤ 1 for every node g, and from
the assumptions Dmax < +∞ and Wij > 0 (recall that i and j are adjacent
nodes), it follows

lim
d→+∞

rUd
ij − r

Ld
ij ≤

Dmax

(Wij)2
lim

d→+∞
pi(TNd

< Tj) = 0,

which completes the proof.

Remark 3. Theorem 3 implies that limd→+∞ εijd = 0 on recurrent networks
for every neighboring nodes i and j. Hence, by Theorem 2, the cost variation
corresponding to intervention on edge l = (i, j) can be estimated with vanishing
error. Observe that not only the error term εijd, but also the relative error
εijd/rij, vanishes asymptotically, since rij ≥ 1/Dmax.

Recurrence is a sufficient condition to guarantee limd→+∞ εijd = 0, but is
not necessary, as discussed in the next subsection.

5.2 Beyond recurrence

We here provide examples of infinite networks for all of the cases in Table 1.
Observe that, for every edge l = (i, j) ∈ ER, the network cut at distance d from l
and the network shorted at distance d from l differ for a node only. Let s denote
such node, which is the result of shorting all the nodes at distance greater than
d from both i and j in a unique node. Intuitively speaking, our conjecture is
that Term 2 in (16) is small when the network has many short paths. In fact, in
this case, adding the node s does not affect too much the probability, starting
from any node in Nd, of hitting i before j, thus making Term 2 small. This
intuition can be made more clear by the next examples.

5.2.1 2d grid

Consider an infinite unweighted bidimensional grid as in Fig. 3. This network
is relevant for the NDP since many transportation networks are very similar
to grids. This network is recurrent (Levin and Peres [23]), hence Theorem 3
guarantees that Term 1 and thus εijd go to 0 for large d. Our conjecture,
confirmed by numerical simulations, is that, for every node g ∈ Nd,

lim
d→+∞

pUd
g (Ti < Tj) = 1/2, lim

d→+∞
pLd
g (Ti < Tj) = 1/2.

Hence, this is recurrent network for which also Term 2 vanishes asymptotically.

5.2.2 3d grid

Consider an infinite unweighted tridimensional grid. This network is not recur-
rent (Levin and Peres [23]), therefore Term 1 does not go to 0 and we cannot
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Figure 3: Bidimensional square grid, cut at distance d = 3. The red nodes
belong to Nd. As d grows, pg(Ti < Tj) approaches 1/2 for each g ∈ Nd, because
there are many short paths.

conclude that εijd → 0 from Theorem 3. Nonetheless, numerical simulations
show that, similarly to the bidimensional grid, for every node g ∈ Nd,

lim
d→+∞

pUd
g (Ti < Tj) = 1/2, lim

d→+∞
pLd
g (Ti < Tj) = 1/2.

Hence, this is a non-recurrent network for which Term 2 (and therefore εijd)
vanishes as the distance grows.

5.2.3 Ring

Consider an infinite unweighted ring as in Fig. 4. Consider nodes c and e as in
Fig. 4. Then,

pUd
c (Ti < Tj) = 1, pUd

e (Ti < Tj) = 0.

for each d (even d→ +∞), whereas,

pLd
c (Ti < Tj) =

d

2d+ 1
−−−−−→
d→+∞

1

2
, pLd

e (Ti < Tj) =
d+ 1

2d+ 1
−−−−−→
d→+∞

1

2
,

since this case is equivalent to the gambler’s ruin problem (Levin and Peres [23]).
Hence, Term 2 does not vanish for the ring. This is due to the fact that, on the
ring, all the paths from c to j not passing in i include the node s. Still, Term
1, and therefore εijd, vanish asymptotically by Theorem 3, since this network is
recurrent.

5.2.4 Double tree network

We finally propose an infinite network for which εijd does not converge asymp-
totically. This network is not relevant for traffic applications, since it admits one
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Figure 4: Left: shorted ring at distance d = 2. Right: cut ring at distance
d = 2.

i j

Figure 5: The double tree is an infinite non-recurrent network. On this network
limd→∞ εijd = 1/3.

path only between every pair of nodes, but provides an interesting counterexam-
ple where the bounds do not converge asymptotically. The network is composed
of two infinite regular trees, starting from node i and j respectively, linked by
an edge l = (i, j), as in Fig. 5, and it is assumed unweighted. It can be shown
that on the double tree network the probability that the random walk, starting
from i, returns on i is equal to the same quantity for a biased random walk
over an infinite line (for more details we refer to the Supplementary Materials).
Since the biased random walk on a line is not recurrent (see Levin and Peres
[23]), this equivalence shows that the double tree network is non-recurrent, and
Term 1 → 0. Moreover, we show in the Supplementary Materials that

lim
d→+∞

rUd
ij − r

Ld
ij =

1

3
,

thus implying that Term 2 9 0.

6 Simulations

6.1 Infinite grids

Infinite regular grids are useful to test the performance of the bounds. Indeed,
despite having an infinite number of nodes, the effective resistance between
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Figure 6: Average relative error of the bounds on Oldenburg network as a
function of distance d.

adjacent nodes can be computed exploiting the symmetric structure of the grid.
We focus on the square grid, but similar arguments can be applied to any regular
infinite grid.

Lemma 2 (Bartis [2]). Let GR be an infinite square grid with unitary resis-
tances. Then, the effective resistance between two neighboring nodes is 1/2.

In Table 2 the performances of the upper and lower bounds are shown.
Numerical simulations show that for every edge l = (i, j),

rUd
ij − rij
rij

=
rij − rLd

ij

rij
= O(1/d2).

We underline that the relative errors of the bounds are symmetric only in the
square grid, but they scale similarly in all the regular bidimensional grids. Ob-

Table 2: Table of upper and lower bound in infinite square grid.
d = 1 d = 2 d = 3 d = 4 d = 5

(rUd
ij − rij)/rij 1/5 0.0804 0.0426 0.0262 0.0178

(rij − rLd
ij )/rij 1/5 0.0804 0.0426 0.0262 0.0178

serve that, despite the network being infinite, even at d = 5, the upper and the
lower bounds give a good estimation of the true effective resistance.

6.2 Simulations on a real transportation network

In this section we present the performances of the cutting and shorting tech-
niques on the traffic network of the city of Oldenburg (Brinkhoff [6]). The
network is composed of 6105 nodes and 7035 edges, and its diameter is 104.
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The network is assumed to be unweighted, with al = 1 for every edge l. The
average relative error of the bounds, i.e.,

ATd :=
1

E

∑
(i,j)∈E

rUd
ij − r

Ld
ij

rij

is shown in Table 3 and Fig. 6. Even for this network, the error of the bounds

Table 3: Table of the average relative error of the bounds at distance d.

d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10
ATd 0.21 0.12 0.079 0.056 0.041 0.031 0.024 0.019 0.016 0.012

decreases quickly, compared to the diameter of the network.

7 Conclusion

In this work we study a discrete network design problem, where a single edge can
be improved. We reformulate the problem in terms of electrical quantities, in
particular in terms of the effective resistance between the two nodes at the end of
the edge. We then provide a method to approximate such effective resistance by
performing only local computations. Both the tightness and the computational
complexity of our bounds do not depend on the size of the network, but on the
local structure only. Based on the electrical formulation and our approximation
method for the effective resistance we propose an efficient algorithm to solve the
original design problem.
An interesting direction for the future is a deeper analysis on tightness of the
bounds on effective resistance as a function of the network and the distance d,
since so far we have a result for the asymptotic behaviour only. Future research
lines also include extending to the case of multiple interventions, dealing with
different interventions (e.g building new roads), and the relaxation of some
assumptions like the single origin and destination, and the assumption that the
set of used edges is not affected by the intervention.
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Appendix

Preliminaries on connection between Green’s function, ran-
dom walks and effective resistance

Let GR = (N , ER,W ) denote a connected resistor network, D = diagW1 ∈
RN×N denote the degree matrix, and P = D−1W ∈ RN×N the associated ran-
dom walk on the network. We define as kP ∈ R(N−1)×(N−1) the matrix where
the row and the column referring to the node k are deleted. kP can be thought
of as the transition matrix of a killed random walk obtained by creating a ceme-
tery in the node k. We then define the Green’s function kG ∈ R(N−1)×(N−1)

as

kG :=

∞∑
t=0

(kP )t = (I− kP )−1, (18)

where the last inequality follows from the connectedness of GR and from the fact
that kP is substochastic and irreducible. Hence, it has spectral radius ρ < 1
and (I − kP )−1 =

∑∞
t=0(kP )t (see Horn and Johnson [20]). Since ((kP )t)ij

is the probability that the killed random walk starting from i is in j after t
steps, kGij indicates the expected number of times that the killed random walk
visits j starting from i before hitting k (Ellens and Spieksma [14]). While these
results hold for any network, it is known (see Ellens and Spiesksma [14]) that
the Green’s function of the random walk on a resistor network can be related
to electrical quantities. In particular, with the convention that

kGik = kGki = kGkk = 0 ∀i ∈ N , (19)

it is known that for any node k,

kGii − kGji
Dii

+
kGjj − kGij

Djj
=

jGii
Dii

=
1

Diipi(Tj < T+
i )

= rij , (20)

where pi(Tj < T+
i ) is as defined in Section 5, and rij is the effective resistance

as defined in §3.3.

Proof of Proposition 1

From (6), for all the used edges,

γ∗i − γ∗j = a(i,j)f
∗
(i,j) + b(i,j) ∀(i, j) ∈ E .

So, by (3), any used path p = (o, n1, n2, · · · , np,d), namely a path containing
only used edges, has cost at the equilibrium

cp(f
∗) = a(o,n1)f

∗
(o,n1)

+ b(o,n1) + · · ·+ a(np,d)f
∗
(np,d)

+ b(np,d)

= (γ∗o − γ∗n1
) + (γ∗n1

− γ∗n2
) + · · ·+ (γ∗np

− γ∗d) = γ∗o − γ∗d = γ∗o ,
(21)
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where the last equivalence follows from the assumption γ∗d = 0. Hence, all the
used paths at the equilibrium have the same cost γ∗o . Then, the social cost is

C(f∗) =
∑
l∈E

f∗l dl(f
∗
l ) =

∑
l∈E

dl(f
∗
l )
∑
p∈P

Rlpz
∗
p

=
∑
p∈P

z∗p
∑
l∈E

Rlpdl(f
∗
l ) =

∑
p∈P

z∗pcp(f
∗) = γ∗o

∑
p∈P

z∗p = γ∗oτ,

where the second equivalence follows from (2), the forth from (3), the fifth
from (21) and the last one from the mass constraint (1). The proof follows by
applying similar arguments for C(f∗(l)).

Proof of Proposition 2

Let x∗(l) = H(l)−1y be the equilibrium after the intervention on edge l. Notice
that

H(l) = H − al
(

1− 1

κ

)
δlδ

T
l ,

Since only the element All is perturbed, H(l) is a rank-1 perturbation of H.
Hence, its inverse can be computed by Sherman-Morrison formula (Sherman
and Morrison [30]):

H(l)−1 = H−1 −
−al

(
1− 1

κ

)
H−1δlδ

T
l H
−1

1− al
(
1− 1

κ

)
δTl H

−1δl
.

By right multiplying by y, and recalling that x∗ = H−1y, it follows

x∗ − x∗(l) = −
al
(
1− 1

κ

)
H−1δlδ

T
l x
∗

1− al
(
1− 1

κ

)
δTl H

−1δl
.

Observe that γ∗o(l) is x∗E+1(l) by construction. Then, by selecting the (E−1)-th
element, we obtain

γ∗o − γ∗o (l) = −
al
(
1− 1

κ

)
H−1(E+1,l)x

∗
l

1− al
(
1− 1

κ

)
H−1ll

=
(κ− 1)alH

−1
(E+1,l)x

∗
l

(κ− 1)alH
−1
ll − κ

.

The statement follows from Proposition 1 and from noticing that x∗l = f∗l by
construction.

Proof of Theorem 1

By letting W̃ ∈ R(N−1)×(N−1) and D̃ ∈ R(N−1)×(N−1) denote the restriction
over N \ d, i.e., all the nodes except the destination, of W and D respectively,
it is straightforward to check that

Q = D̃ − W̃ .
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We notice that, dP , as defined in §7, is

dP = D̃−1W̃ .

dP is substochastic, since the rows referring to nodes pointing to the destination
sum to less than one. We now prove that Q is invertible. Indeed,

Q−1 = (D̃−W̃ )−1 = (D̃(I−dP ))−1 = (I−dP )−1D̃−1 =

∞∑
t=0

(dP )tD̃−1 = dGD̃
−1,

(22)
where the penultimate equivalence follows from strongly connectedness of G
(and therefore, connectedness of GR) and (18).
Let l = (i, j) ∈ E an arbitrary edge. From (10) it follows:

H−1ll =
1

al
−Kl,:Q

−1KT
:,l.

By (11),

H−1ll =

{
1
al
− 1

a2l
(Q−1ii +Q−1jj −Q

−1
ij −Q

−1
ji ) if j 6= d

1
al
− 1

a2l
(Q−1ii ) if j = d.

(23)

We now construct Q̂−1 ∈ RN×N and dĜ ∈ RN×N by adding a zero column and
a zero row to Q−1 and dG and K̂ ∈ RE×N by adding a zero column to K
corresponding to the destination. Thus, (23) can be written as

H−1ll =
1

al
− 1

a2l
(Q̂−1ii + Q̂−1jj − Q̂

−1
ij − Q̂

−1
ji ) ∀l ∈ E ,

and, by Q̂−1 = dĜD
−1 (which follows from (22)),

H−1ll =
1

al
− 1

a2l

(
dĜii − dĜji

Dii
+

dĜjj − dĜij
Djj

)
.

Finally, by noticing that the definition of dĜ is coherent with (19), and by (20),
we get

H−1ll =
1

al
− rij
a2l
. (24)

Using the same notation with Q̂−1 and K̂−1 to handle also edges l pointing to
the destination, from (10), (11), (22) and from symmetry of Q̂−1, it follows:

H−1E+1,l = −(Q̂−1K̂T )1l = −
Q̂−11i − Q̂

−1
1j

al
= −

Q̂−1i1 − Q̂
−1
j1

al
= −dĜio − dĜjo

alDoo
,

(25)
since the first node is the origin by construction.
We now prove that

Vi =
dĜio

dĜoo

∀i ∈ N . (26)
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To this end, notice that both the potential and the Green’s function are har-
monic functions (see Levin and Peres [23]) satisfying same boundary conditions
on the origin and the destination, i.e.,

Vo = 1 =
dĜoo

dĜoo

, Vd = 0 =
dĜdo

dĜoo

,

since dĜdo = 0 by construction, which implies (26) by Levin and Peres [23,
Proposition 9.1]. Plugging (26) into (25), we get

HE+1,l = − dĜoo

alDoo
(Vi − Vj). (27)

The statement follows from plugging (27) and (24) in (9) with the assignment
τ̃ = τ · dĜoo/Doo = τ · dGoo/Doo.

Proof of Proposition 3

A sufficient condition under which E+ = ∅ is that the first E components of
x∗ = H−1b, corresponding to equilibrium edge flows, are nonnegative. Indeed,
since (4) is strictly convex, if the flows corresponding to x∗ = H−1b satisfy the
constraint f∗ ≥ 0, then f∗ is feasible and is the unique Wardrop equilibrium,
with λ∗ = 0 because of the complementary slackness. Hence, we look for con-
ditions satisfying x∗l ≥ 0 for every l ∈ {1, · · · ,E}. Consider an arbitrary edge
l = (i, j). From (5) and (10), it follows:

x∗l = − bl
al

+ [KQ−1KT ]l:b+ [KQ−1]l:(ν−).

With same arguments as in Proof of Theorem 1, we replace Q−1 with Q̂−1

and K with K̂ to take into account edges pointing to the destination. Since
ν− = τδo,

x∗l = − bl
al

+ [K̂Q̂−1K̂T ]l:b+ τ [K̂Q̂−1]lo

= − bl
al

+ [K̂Q̂−1K̂T ]l:b+ τ
dĜio − dĜjo

alDoo

where the last equivalence follows from (25) and from the fact that the origin is
the first node by construction. If dĜio − dĜjo > 0, then, for any τ ≥ τ l with

τ l =

bl
al
− [KQ̂−1KT ]l:b

dĜio−dĜjo

alDoo

it holds x∗l ≥ 0, which in turn implies that if τ ≥ τ := {τ l}Ll=1, then E+ = ∅.
Moreover, if the delays are linear, dĜio − dĜjo > 0 implies x∗l ≥ 0 and E+ = ∅
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for any value of τ , because b = 0. By (26) and Ohm’s law (see [1]), dĜio− dĜjo
is proportional to Vi − Vj = ilal, where il denotes the current flowing through
edge l. Then, it suffices to show that il > 0. To this end, we observe that,
by definition, if the network is series-parallel, it is a single edge (o,d) or it
can obtained by connecting in series or in parallel two series-parallel networks.
Thus, a series-parallel network can be reduced to a single edge by recursively
i) merging two edges l1 and l2 connected in series into a single edge l3, with
a3 = a1 + a2 (recall that the coefficients ae correspond to resistances on the
resistor network), and ii) merging two edges l1 and l2 connected in parallel into
a single edge l3, with a3 = a1a2/(a1 +a2). Moreover, observe that in both cases
i3 > 0 if and only if i1 > 0 and i2 > 0. Indeed, in case i) i3 = i1 = i2, and in
case ii) i1 = i2a2/a1 and i3 = i1 + i2. Obviously, when the network is reduced
to a single edge, the flow on the unique edge is positive because τ > 0. Then,
by applying those arguments recursively, for every edge l = (i, j) ∈ E ,

il > 0 =⇒ Vi − Vj > 0,

implying that if τ ≥ τ then x∗l ≥ 0 and E+ = ∅.

Proof of Theorem 2

Using the definitions,

|∆C(l)−∆Cd(l)| =

∣∣∣∣∣ τ̃ f∗l (Vi − Vj)
1

κ−1 +
rij
al

− τ̃ f∗l (Vi − Vj)
1

κ−1 +
r
Ud
ij +r

Ld
ij

2al

∣∣∣∣∣
=

∣∣∣∣∣ τ̃ f∗l (Vi − Vj)
1

κ−1 +
rij
al

∣∣∣∣∣ ·
∣∣∣∣∣
r
Ud
ij +r

Ld
ij −2rij
2al

1
κ−1 +

r
Ud
ij +r

Ld
ij

2al

∣∣∣∣∣,
Note also that

|rUd
ij + rLd

ij − 2rij |
al

≤
|rUd
ij − rij |+ |rij − r

Ld
ij |

al
=
rUd
ij − rij + rij − rLd

ij

al
=
rUd
ij − r

Ld
ij

al
= εijd.

Putting those two together, and using (13), we get∣∣∣∣∆C(l)−∆Cd(l)

∆C(l)

∣∣∣∣ ≤ εijd

2
(

1
κ−1 +

r
Ud
ij +r

Ld
ij

2al

) ≤ εijd

2
(

1
κ−1 + 1

Dmax·al

) ,
where the last inequality follows from (14). Finally, (15) follows from rUd

ij ≥ rij .

Proof of Proposition 5

The cut and shorted networks are obtained by finding the neighbors within
distance d and d + 1 from (i, j), respectively. The neighbors of a node i can
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be found by checking the non-zero elements of W (i, :). The neighbors within
distance d can be found by iterating such operation d times. Hence, the time for
building the cut and the shorted network depends on the local structure, which,
under Assumption 2, does not depend on the size of the network. Since the
bounds of the effective resistance are computed on these subnetwork, their time
complexity and tightness depends on local structure, which, under Assumption
2, is independent of the size of the network.

Proof of Proposition 6

We introduce the following notation:

� The index Ud and Ld indicate that the random walk takes place over GUd
ij

and GLd
ij , respectively. So, for instance, kG

Ud
ij denotes the expected number

of times that the random walk on the network GUd
ij , starting from i, hits j

before hitting k.

� pi(Tu < TS), with u ∈ S, denotes the probability that the random walk
starting from i hits the node u ∈ S before hitting any other node in S.

By applying (20) to the effective resistance of edge l = (i, j) in the shorted and
the cut network, it follows

rUd
ij =

jG
Ud
ii

Dii
, rLd

ij =
jG

Ld
ii

Dii
,

where we recall that jG
Ud
ii and jG

Ld
ii are the expected number of visits on i,

before hitting j, starting from i, of the random walk defined on GUd
ij and GLd

ij

respectively. The visits on i before hitting j can be divided in two disjoint sets:
the visits before hitting j and before visiting any node in Nd, and the visits
before hitting j but after at least a node in Nd has been visited. Let G<Nd

ii

denote the expected number of visits to i, starting from i, before hitting any
node in Nd and before hitting the absorbing node j (for simplicity of notation
we omit the index j from now on). Observe that this term is the same for both
GUd
ij and GLd

ij , since these two networks differ only for the node s, which cannot

be visited without visiting before at least a node in Nd. Moreover, let GU>Nd
ii

and GL>Nd
ii denote the expected number of visits to i, starting from i, before

hitting j but after at least one node in Nd has been visited in the network GUd
ij

and GLd
ij , respectively. Thus,

GUd
ii = G<Nd

ii +GU>Nd
ii ,

GLd
ii = G<Nd

ii +GL>Nd
ii .

This implies

rUd
ij − r

Ld
ij =

GU>Nd
ii −GL>Nd

ii

Dii
. (28)
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Notice that GU>Nd
ii can be written as the sum over the nodes g ∈ Nd of the

probability, starting from i, of hitting g and going back to i without hitting j,
multiplied by the expected number of visits on i starting from i, before hitting
j, which is the derivative of a geometric sum. Therefore,

GU>Nd
ii =

∑
g∈Nd

pi(Tg < Tj∪Nd
)︸ ︷︷ ︸

(1)

pUd
g (Ti < Tj)︸ ︷︷ ︸

(2)

∞∑
k=1

k
(
pUd
i (T+

i < Tj)
)k−1︸ ︷︷ ︸

(3)

(
1− pUd

i (T+
i < Tj)

)︸ ︷︷ ︸
(4)

=

∑
g∈Nd

pi(Tg < Tj∪Nd
)pUd
g (Ti < Tj)

1− pUd
i (T+

i < Tj)
,

where:

1. probability from i of hitting g before hitting j and any other node in Nd;

2. probability from g of hitting i before j;

3. probability from i of hitting i k − 1 times before hitting j;

4. probability from i of hitting j before i.

Similarly,

GL>Nd
ii =

∑
g∈Nd

pi(Tg < Tj∪Nd
)pLd
g (Ti < Tj)

∞∑
k=1

k
(
pLd
i (T+

i < Tj)
)k−1(

1− pLd
i (T+

i < Tj)
)

=

∑
g∈Nd

pi(Tg < Tj∪Nd
)pLd
g (Ti < Tj)

1− pLd
i (T+

i < Tj)
.

Substituting in (28) yields

rUd
ij −r

Ld
ij =

1

Dii

∑
g∈Nd

pi(Tg < Tj∪Nd
)

(
pUd
g (Ti < Tj)

1− pUd
i (T+

i < Tj)
−

pLd
g (Ti < Tj)

1− pLd
i (T+

i < Tj)

)
.

From (20), it follows

rUd
ij =

1

Diip
Ud
i (Tj < T+

i )
=

1

Dii

(
1− pUd

i (T+
i < Tj)

) ,
rLd
ij =

1

Diip
Ld
i (Tj < T+

i )
=

1

Dii

(
1− pLd

i (T+
i < Tj)

) .

32



i j

1/3

1/3

2/3

2/3

2/3

2/3

2/3

2/3 1/3

1/3

1/3

1/3

1/3

1/3

Figure 7: The double tree network is equivalent to a biased random walk like
this.

Thus,

rUd
ij − r

Ld
ij =

∑
g∈Nd

pi(Tg < Tj∪Nd
)
(
pUd
g (Ti < Tj)r

Ud
ij − p

Ld
g (Ti < Tj)r

Ld
ij

)
=
∑
g∈Nd

pi(Tg < Tj∪Nd
)
(
pUd
g (Ti < Tj)− pLd

g (Ti < Tj)
)
rUd
ij +

+
∑
g∈Nd

pi(Tg < Tj∪Nd
)pLd
g (Ti < Tj)(r

Ud
ij − r

Ld
ij )

≤
∑
g∈Nd

pi(Tg < Tj∪Nd
)
(
pUd
g (Ti < Tj)− pLd

g (Ti < Tj)
)
rUd
ij +

+
∑
g∈Nd

pi(Tg < Tj∪Nd
)(rUd

ij − r
Ld
ij )

=
∑
g∈Nd

pi(Tg < Tj∪Nd
)
(
pUd
g (Ti < Tj)− pLd

g (Ti < Tj)
)
rUd
ij +

+ pi(TNd
< Tj)(r

Ud
ij − r

Ld
ij ),

where the last inequality follows from pLg (Ti < Tj) ≤ 1 and the last equality
from the fact that pi(TNd

< Tj) =
∑
g∈Nd

pi(Tg < Tj∪Nd
). It follows

rUd
ij − r

Ld
ij ≤

∑
g∈Nd

pi(Tg < Tj∪Nd
)
(
pUg (Ti < Tj)− pLg (Ti < Tj)

)
rUd
ij

1− pi(TNd
< Tj)

≤
∑
g∈Nd

pi(Tg < Tj∪Nd
)
(
pUg (Ti < Tj)− pLg (Ti < Tj)

)
rUd
ij

Dii

Wij

≤ pi(TNd
< Tj) · max

g∈Nd

(
pUg (Ti < Tj)− pLg (Ti < Tj)

) Dii

(Wij)2
.

where the second inequality follows from 1 − pi(TNd
< Tj) = pi(Tj < TNd

) ≥
Pij = Wij/Dii and the last one from rUd

ij ≤ 1/Wij (as shown in (14)) and from
pi(TNd

< Tj) =
∑
g∈Nd

pi(Tg < Tj∪Nd
).

More details on Section 5.2.4

We prove that the double tree network is not recurrent by showing that pi(Ti <
TNd

) is the same as in a biased random walk. Indeed, from any d the probability
of going from a node at distance d from i to a node at distance d+ 1 and d− 1
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i j
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s

(d)

i j

Figure 8: From above to below: (a) the double tree network; (b) the cut tree
network at distance 2 from l = (i, j); (c) the shorted tree network at distance 2
from l = (i, j); (d) a network equivalent to the shorted one. In red, the nodes
at distance 2.

are 2/3 and 1/3, respectively. Hence, the double tree is equivalent to a biased
random walk on a line as in Fig. 7, which is not recurrent (see Levin and Peres
[23]).
Since in the actual network and in the cut network there are no paths between
i and j except the edge (i, j) (see Fig. 9 (a) and (b)),

rij = rUd
ij = 1.

Computing rLd
ij is more involved. First, referring to Fig. 8, we note that, because

of the symmetry of the network, the effective resistance between i and j in the
shorted network (c), which is rLd

ij , is equivalent to the effective resistance in
(d). Indeed, if we set potential Vi = 1 and Vj = 0, because of symmetry every
yellow node has potential 1/2. Thus, adding infinite conductance between all
of them, i.e., shorting them, does not affect the current in the network (this
procedure is also known in literature as gluing, see Levin and Peres [23]), and
therefore the effective resistance. The network (d) is series-parallel, so that the
effective resistance can be computed iteratively. Specifically, we refer to Fig. 9
to explain the recursion that leads to rLd

ij . From top to bottom, it is easy to see
that the first network has effective resistance between the two blue nodes equal
to 3. The second network is the parallel composition of two of these, in series
with two single edges. This procedure is iteratively repeated d−1 times (in Fig.
9 only once, since d = 2), leading to a network that, composed in parallel with
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r(0) = 3

i j

r(1) = 2 + r(0)
2

i j

1

r
L2
ij

= 2
r(1) + 1

Figure 9: The network in Fig. 8(d) is series-parallel. Then, it can be obtained by
recursively making parallel and series compositions of series-parallel networks.

a copy of itself and with a single edge, is GLd
ij . Hence, rLd

ij is the result of the
following recursion. 

r(0) = 3,

r(n) = 2 + r(n−1)
2 , d > n ≥ 1,

rLd
ij = (1 + 2

r(d−1) )
−1,

which has solution {
r(n) = (2d+2 − 1)/2d, d > n ≥ 1,

rLd
ij = 2d+1−1

2d+1+2d−1 −−−−−→d→+∞
2
3 .
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